

Doctoral Thesis

NEURAL NETWORK SYNTHESIS

Pavel Vařacha

Specialization: Engineering Informatics

Supervisor: prof. Ing. Ivan Zelinka, Ph.D.

Department of Informatics and Artificial Intelligence

Zlín, 2011

ACKNOWLEDGEMENT

My warm thanks belong especially to the following people:

 my supervisor prof. Ivan Zelinka, for his confidence, support, valuable

consultations and his patience with me

 my beloved wife, parents, brother and grandmother for their unconditional

love and support

 associated prof. Eva Volná who boosted my morale in times of scientific

deprivation

 Tomáš Dulík and Michal Bližňák who gave me their friendship, scientific

example and technical support

 Bronislav Chramcov, Viliam Dolinay, Roman Jašek, Erik Král, Monika

Krištofová, Zuzana Oplatková, Martin Pospíšilík, Roman Šenkeřík,

Lubomír Vašek, (in alphabetical order without academic titles) and all

other Faculty of Applied Informatics members who have become my

second family

 my best friend in science as well as in joy Tomáš Horák

 František Petrík and Miroslav Suchomel for their prayers and profession

 Iva Malinová for her attentive language corrections

Motto:

Only love is creative.

Saint Maxmilian Maria Kolbe

Dedication:

To Jesus Christ for His unconditional love.

SUMMARY

This thesis describes a feed forward Artificial Neural Network (ANN) synthesis

via an Analytic Programming (AP) by means of the ANN creation, learning and

optimization. This process encompasses four different fields: Evolutionary Algorithms,

Symbolic Regression, ANN and parallel computing to successfully synthetize a suitable

ANN within a reasonable time.

AP performes well in many separate cases together with different evolutionary

algorithms as its “engine”. Direct asynchronous parallelization of SOMA – Self-

Organizing Migration Algorithm is applied here to boost AP with unusual efficiency.

Direct asynchronously parallel SOMA distribution is experimentally tested and

statistically evaluated and its suitability for AP is proved. The thesis describes an ANN

synthesis used for function approximation and shows that an optimized and a suitable

ANN is easily found by the presented method while the innovative PRT (SOMA control

parameter) adaptive strategy is employed. Statistical evaluation of this strategy impact on

AP performance is evaluated as well as different AP settings.

The ANN synthesis method is applied to the real life problem of Heat Load

Prediction function optimization of the heating plant in Komořany (Czech Republic) as

well as on cancer classification problem and is compared with other methods.

Software for the ANN synthesis support was developed under .NET Framework

3.5 and source codes were written in C#.

ANN synthesis proved to be a useful and efficient tool for nonlinear modeling and

its results were applied to intelligent system controlling an energetic framework of an

urban agglomeration.

Furthermore, the ANN synthesis proved to have the ability to synthetize smaller

ANN than the Genetic Programming (GP) while simultaneously almost infinitely complex

ANN can be synthetized by the application of multiple evolution loops. This process can

also produce ANN with feed forward branching, which is an unavailable quality for the

GP.

RESUMÉ

Tato dizertační práce popisuje metodu syntézy dopředných umělých neuronových

sítí (ANN) pomocí Analytického Programování (AP). Tento proces obsahuje vytvoření,

učení i optimalizaci ANN. Syntéza ANN v sobě zahrnuje poznatky ze čtyř různých

odvětví: evoluční algoritmy, symbolická regrese, ANN a paralelní výpočty. Díky tomu je

možno úspěšně syntetizovat vhodné ANN v přijatelném čase.

AP podává velmi dobré výsledky za použití nejrůznějších EA jako jeho „pohonu“.

Přímá asynchronní paralelizace SOMA je zde použita k navýšení výkonu AP

s neobyčejnou efektivitou.

Tento přístup je experimentálně testován a jeho statistické zhodnocení opravňuje

jeho použití s AP. Syntéza ANN je dále úspěšně nasazena k získání optimální ANN pro

aproximaci dané funkce za použití adaptivní PRT (řídící parametr SOMA) strategie.

Vyhodnocení dopadu této inovativní strategie společně s různými strategiemi GFS na

výkon AP dokazuje její značný přínos.

Syntéza ANN je prakticky aplikována na problémy reálného života, jako je

optimalizace funkce predikující spotřebu tepla dodávaného teplárnou Komořany, nebo

klasifikaci rakoviny. Dosažené výsledky jsou porovnány s konkurenčními metodami.

 V rámci práce bylo vyvinuto softwarové řešení pro podporu syntézy ANN.

Technologický základ tohoto software je postaven na principech .NET Framework 3.5 a

jeho zdrojový kód je naprogramován v jazyce C#.

Syntéza ANN prokázala svoji užitečnost a efektivitu jako nástroj nelineárního

modelování a její výsledky byly využity v rámci Inteligentního systému pro řízení

energetického systému městské aglomerace.

Syntéza ANN navíc ukázala svoji schopnost syntetizovat menší sítě než algoritmus

Genetického Programování (GP) a přitom současně umožňuje vytvořit téměř nekonečně

komplexní ANN pomocí většího počtu evolučních kol. Tento proces může také vytvářet

dopředně rozvětvené ANN, čehož GP není schopno.

- 7 -

CONTENTS

LIST OF FIGURES .. 10

LIST OF TABLES .. 13

LIST OF IMPORTANT TERMS AND ABBREVIATIONS .. 14

1 INTRODUCTION ... 16

2 THE AIMS OF THE DISSERTATION .. 18

THEORETICAL FRAMEWORK .. 19

3 EVOLUTIONARY ALGORITHMS ... 20

3.1 GENETIC ALGORITHMS ... 20

3.1.1 Crossover ... 21

3.1.2 Mutation ... 22

3.2 DIFFERENTIAL EVOLUTION ... 23

3.3 PARTICLES SWARM OPTIMIZATION... 25

3.4 SELF-ORGANIZING MIGRATION ALGORITHM ... 26

3.4.1 Parameter definition .. 26

3.4.2 Creation of Population .. 27

3.4.3 Migration loop ... 27

3.4.4 Test for stopping condition .. 28

3.4.5 SOMA Recommended Settings ... 30

3.4.6 Null PRTVector Problem Definition .. 30

4 SYMBOLIC REGRESSION .. 34

4.1 GENETIC PROGRAMMING .. 34

4.2 GRAMMATICAL EVOLUTION ... 35

4.3 ANALYTIC PROGRAMMING ... 35

5 NEURAL NETWORKS OPTIMISATION .. 39

5.1 EVOLUTIONARY DESIGNED NEURAL NETWORK ... 40

5.2 ANN GENERATING BY GENETIC PROGRAMMING ... 42

5.3 NEURAL NETWORK SYNTHESIS .. 43

5.3.1 Constant Processing .. 47

5.3.2 Reinforced Evolution ... 48

5.3.3 Cost Function Specification ... 48

6 DISTRIBUTED COMPUTATION .. 50

6.1 ISLAND DISTRIBUTION OF SOMA ... 50

- 8 -

6.1.1 Synchronous Island Model ... 50

6.1.2 Asynchronous Island Model ... 50

6.2 DIRECT ASYNCHRONOUS DISTRIBUTION OF SOMA ... 51

PRACTICAL PART ... 54

7 ASYNCHRONOUS SOMA PERFORMANCE .. 55

7.1 RESULTS ... 56

8 ANN SYNTHESIS FOR FUNCTION APROXIMATION .. 58

8.1 RESULTS ... 60

8.2 CONCLUSION .. 62

9 ANN SYNTHESIS STRATEGY EXPLORATION ... 63

9.1 ADAPTIVE PRT STRATEGY ... 63

9.1.1 Adaptive PRT Strategy Test on Test Functions .. 63

9.1.2 Adaptive PRT Strategy for AP Handling ... 65

9.1.3 Adaptive PRT Strategy for Kn Estimation .. 66

9.1.4 Conclusion ... 66

9.2 COMPARISON OF SYNCHRONOUS AND ASYNCHRONOUS SYNTHESIS 66

9.3 ANN SYNTHESIS RUNNING WITH DIFFERENT EA .. 67

10 ANN SYNTHESIS FOR PREDICTION ... 68

10.1 HEAT LOAD PREDICTION .. 70

10.1.1 Temperature dependent component ... 70

10.1.2 Time dependent component .. 71

10.2 ANN SYNTHESIS FOR HLP ... 73

10.3 RESULTS ... 74

10.4 PREDICTION BY STANDARD FEEDFORWARD ANN .. 80

10.5 ARITHMETICAL APPROACH TO GFS STRUCTURE FORMULATION 82

10.6 CONCLUSION .. 83

11 ANN SYNTHESIS FOR CLASS CLASSIFICATION .. 85

11.1 XOR CLASSIFICATION PROBLEM .. 85

11.2 CANCER CLASSIFICATION PROBLEM... 86

11.2.1 Experiment Set Up ... 87

11.2.2 Results .. 87

11.2.3 Conclusion ... 89

11.2.4 Terminals Density Comparison for Different GFS .. 89

12 ANN SYNTHESIS SOFTWARE ... 90

- 9 -

13 FINAL CONCLUSION .. 97

14 REFERENCES .. 98

15 LIST OF AUTHOR’S PUBLICATION ACTIVITIES .. 107

16 CURRICULUM VITAE ... 114

17 APENDIX I TEST FUNCTION VISUALISATION .. 116

18 APPENDIX II ADAPTIVE PRT STRATEGY .. 123

19 APPENDIX III – ANN SYNTHESIS RESULTS ... 128

20 APPENDIX IV – SUPER MICRO SERVER ... 132

21 APPENTIX V – ASYNCHRONOUS SOMA IN C# ... 138

22 APPENDIX VI – XML RESULT FORMAT ... 142

- 10 -

LIST OF FIGURES

Fig. 1: Neural network synthesis intersection with connected scientific disciplines 16

Fig. 2: Main principle of EA .. 20

Fig. 3: GA crossover of individuals .. 22

Fig. 4: Mutation of GA individuals .. 22

Fig. 5: DE example ... 24

Fig. 6: All-to-One SOMA migration loop ... 26

Fig. 7: PRTVector and its action on individual movement .. 28

Fig. 8: SOMA example ... 29

Fig. 9: SOMA dependence on PRT size [19] .. 30

Fig. 10: Probability of null PRTVector for L = 100 .. 31

Fig. 11: Probability of null PRTVector for L = 25 .. 32

Fig. 12: P1 for L = 100 ... 33

Fig. 14: DSH principle [31] ... 35

Fig. 15: GFS subsets hierarchy .. 36

Fig. 16: Main principles of AP ... 37

Fig. 17: Example of one and two hidden layer ANN .. 39

Fig. 18: Translation of a GP chromosome into ANN ... 43

Fig. 19: Principle of the evolutionary scanning ... 44

Fig. 20: AN transfer function for various w, λ, ϕ settings .. 45

Fig. 21: Graphical example of AN ... 45

Fig. 22: Graphical example of plus operator ... 46

Fig. 23: Graphical example of weighted input ... 46

Fig. 24: Translation of an individual into ANN ... 46

Fig. 25: Learning of a synthesized ANN ... 47

Fig. 26: Example of GFS reinforcement process between two ANN evolution loops 48

Fig. 27: Example of CF for classification .. 49

Fig. 28: Asynchronous processing of a migration loop by different threads 51

Fig. 29: Proportional comparison of transferred information amounts neededed for

one CF computation within different EA .. 52

Fig. 30: Asynchronous individual processing .. 53

- 11 -

Fig. 31: Asynchronous parallel movement of SOMA individuals 53

Fig. 32: Approximation of (37) by synthetized ANN .. 58

Fig. 33: Time saved by asynchronous evaluation .. 60

Fig. 34: Synthesized ANN according AN usage ... 61

Fig. 35: Graphical interpretation of resulting ANN .. 62

Fig. 36: Test functions performing better for PRT  <0.005; 0.7> 64

Fig. 37: Test functions performing better for PRT  <0.1; 0.3> 64

Fig. 38: Relationship between a heating plant (red), an agglomeration (green),

atmospheric conditions (blue) and other events (black) 68

Fig. 39: Basic scheme of the central heating plant system Komořany – Most 69

Fig. 40: Predictive function ftime (t)... 71

Fig. 41: Predictive function fEGH1 (t) for τ=3.6 ... 72

Fig. 42: Predictive function fEGH2 (t) for τ=-3.0 ... 72

Fig. 43: Predictive function fP (t, ϑex)[kW] .. 73

Fig. 44: Relationship between heating plant (red), ANN (green) and atmospheric

condition (blue) ... 73

Fig. 45: First evolution loop of synthetized ANN (52)(in red) ... 75

Fig. 46: Second evolution loop of synthetized ANN (54)(in green) 75

Fig. 47: Third evolution loop of synthetized ANN (56)(in blue) 76

Fig. 48: Fourth evolution loop of synthetized ANN (58)(in yellow) 77

Fig. 49: Fifth evolution loop of synthetized ANN (59)(in purple) 77

Fig. 50: Sixth evolution loop of synthetized ANN (60)(in gray) 78

Fig. 51: Seventh evolution loop of synthetized ANN (61)(in brown) 78

Fig. 52: Exponential downgrade of migration loop significance for precision 80

Fig. 53: Matlab Neural Network Toolbox .. 80

Fig. 54: BP regression ... 81

Fig. 55: HLP by standard ANN .. 81

Fig. 56: ANN resulting from GFS containing arithmetical functions 82

Fig. 57: Surface of HLA function provided by synthesized ANN – areas significantly

corrected in comparison with formal function are depicted in red 83

Fig. 58: Predicted and actual curve of agglomeration heat load 84

Fig. 59: XOR classification problem .. 85

- 12 -

Fig. 60: Minimal XOR solving ANN ... 85

Fig. 61: Minimal ANN generated by GPNN that performs the XOR problem 86

Fig. 62: First evolution loop of the resulting ANN ... 88

Fig. 63: Resulting ANN1 structural evolution .. 88

Fig. 64: Probability of terminal occurrence for different GFS .. 89

Fig. 65: SOMA controll parameters setting ... 90

Fig. 66: ANN synthetized using (85) .. 92

Fig. 67: Asychronous SOMA results form .. 94

Fig. 68: ANN synthesis software forms .. 96

Fig. 69: Optimal computation division on eight processors .. 96

Fig. 70: Ackley (27) 3D visualization ... 116

Fig. 71: Ackley (27) 2D visualization ... 116

Fig. 72: EggHolder (28) 3D visualization .. 117

Fig. 73 EggHolder (28) 2D visualization ... 117

Fig. 74: Michalewicz (29) 3D visualization ... 117

Fig. 75: Michalewicz (29) 2D visualization ... 118

Fig. 76: Masters (30) 3D visualization .. 118

Fig. 77: Masters (30) 2D visualization .. 118

Fig. 78: Michalewicz (31) 3D visualization ... 119

Fig. 79: Michalewicz (31) 2D visualization ... 119

Fig. 80: Rana (32) 3D visualization ... 119

Fig. 81: Rana (32) 2D visualization ... 120

Fig. 82: Rastrigin (33) 3D visualization .. 120

Fig. 83: Rastrigin (33) 2D visualization .. 120

Fig. 84: Rosenbrock (34) 3D visualization .. 121

Fig. 85: Rosenbrock (34) 2D visualization .. 121

Fig. 86: Schwefel (35) 2D visualization ... 121

Fig. 87: Schwefel (35) 2D visualization ... 122

Fig. 88: SineWave (36) 3D visualization .. 122

Fig. 89: SineWave (36) 2D visualization .. 122

Fig. 90: Test functions providing the best results for PRT  <0.005; 0.07> 123

Fig. 91: Test functions providing the best results for PRT  <0.1; 0.3> 123

- 13 -

Fig. 92: Super Micro server ... 132

Fig. 93: Super Micro server motherboard ... 132

LIST OF TABLES

Table 1. GA individuals coded to chromosomes .. 21

Table 2: An example of PRTVector for 4 parameters individual with PRT = 0.3 28

Table 3: SOMA parameters and their recommended domain .. 30

Table 4: Probability of null PRTVector for L = 100 .. 31

Table 5: Probability of null PRTVector for L = 25 .. 31

Table 6: P1 for L = 100 .. 33

Table 7: Example of GFS and its subsets ... 36

Table 8: Test functions, ML and borders ... 56

Table 9: SOMA average results.. 57

Table 10: SOMA best results .. 57

Table 11: Setting of SOMA used as EA for AP ... 59

Table 12: Setting of SOMA used to optimize Kn .. 59

Table 13: Time saved by asynchronous evaluation ... 60

Table 14: PRT strategy for AP handling .. 65

Table 15: PRT strategy for Kn estimation... 66

Table 16: Synchronous and asynchronous SOMA performance 67

Table 17: ANN performance for different EA .. 67

Table 18: ANN mean testing classification error ... 87

Table 19: Best results for different cost functions and PRT settings 124

Table 20: Normalized best results for different cost functions and PRT settings 125

Table 21: Average results for different cost functions and PRT settings 126

Table 22: Normalized average results for different cost functions and PRT settings 127

Table 23: Super Micro server technical specification .. 133

- 14 -

LIST OF IMPORTANT TERMS AND ABBREVIATIONS

AN Artificial Neuron

ANN Artificial Neural Network

AP Analytic Programming

BNF Backus Naur Form

CF Cost Function

CR DE control parameter

DE Differential Evolution

depth parameter of individual in AP

EA Evolutionary Algorithm

EGH
Gaussian Hybrid and truncated Exponential

function

F DE control parameter

GA Genetic Algorithm

GE Grammatical Evolution

GFS General Function Set

GFS0arg
Functions with 0 arguments in GFS, i.e.

constants and variables

GFS1arg
Functions with 1 argument in GFS (e.g.

Sin, Cos, Tan..)

GFS2arg
Functions with 2 arguments in GFS

(e.g. +,-,/….)

GFS3arg Functions with 3 arguments in GFS

GFSAll
Set of all functions in general functional

space

- 15 -

GP Genetic Programming

GPNN ANN design using GP

Height border of random range (Low; Height)

HLP Head Load Prediction

Kn constants to estimate in AP

L PRTVector’s length

Low border of random range (Low; Height)

ML Migration Loop

NP population size

NRMSD Normalised Rood Mean Square Deviance

PathLength SOMA control parameter

PRT SOMA control parameter

Po probability of null PRTVector

P1
probability of PRTVector which contains 1

only ones

PSO Particle Swarm Optimization

RMSD Rood Mean Square Deviance

SOMA Self-Organizing Migration Algorithm

specimen SOMA control parameter

Step SOMA control parameter

- 16 -

1 INTRODUCTION

This thesis describes a feed forward Artificial Neural Network (ANN) synthesis

(chapter 5.3) via an Analytic Programming (AP) (chapter 4.3) by means of the ANN

creation, learning and optimization. This process encompasses four different fields:

Evolutionary Algorithms (EA) (chapter 3), Symbolic Regression (chapter 4), ANN

(chapter 5) and parallel computing (chapter 6) to successfully synthetize a suitable ANN

within a reasonable time.

Fig. 1: Neural network synthesis intersection with connected scientific disciplines

There are well-known methods: Genetic Programming (chapter 4.1) and

Grammatical Evolution (chapter 4.2), which can both symbolically regress using the

evolutionary algorithm. However, this thesis is aimed at a more recent and flexible

procedure called AP. (chapter 4.3)

AP performed well in many separate cases (for example [1],[2]) together with

different evolutionary algorithms (EA) as its “engine”. A direct asynchronous

parallelization of the SOMA – Self-Organizing Migration Algorithm [3] (chapter 6.2) is

applied here to boost the AP with unusual efficiency.

SOMA (chapter 3.4) is based on the self-organizing behavior of groups of

individuals in a “social environment”. It can also be classified as an evolutionary algorithm

[4], despite the fact that no new generations of individuals are created during a search (due

to the philosophy of this algorithm). Only the positions of individuals in the searched space

EVOLUTIONARY
ALGORITHMS

SYMBOLIC
REGRESSION

NEURAL
NETWORKS

DISTRIBUTED
COMPUTATION

NEURAL
NETWORK
SYNTHESIS

- 17 -

are changed during one generation called a “migration loop”. The algorithm was published

in journals and books, presented at international conferences and symposiums and

mentioned in numerous introductory presentations, for example [5], [6], [7].

The direct asynchronously parallel SOMA distribution is experimentally tested and

statistically evaluated in chapter 7 and its suitability for the AP is proved. Chapter 8

describes an ANN synthesis usage for a function approximation and shows that the

optimized and suitable ANN is easily found by the presented method while the innovative

PRT (SOMA control parameter) adaptive strategy is employed. The statistical evaluation

of the impact of this strategy on the AP performance is evaluated in chapter 9.

In this chapter, a total of 10 ANN synthesis abilities to successfully synthetize the

ANN capable of predicting are tested on a real life problem of a heating plant. The ANN

synthesis method is applied in order to optimize the Heat Load Prediction function of the

heating plant in Komořany (Czech Republic).

To statistically evaluate the ANN synthesis’ ability to successfully generate an

ANN performing classification, the ANN synthesis was compared with GP solving an

XOR problem in chapter 11.1 while the chapter 11.2 describes the ANN synthesis usage

for a real life cancer classification problem and its comparison with other methods.

Software for the ANN synthesis support was developed under .NET Framework

3.5 and source codes were written in C#. The software was used and debugged while

performing experiments in chapters 6 to 11.

The ANN synthesis proves to be a useful and efficient tool for nonlinear modeling

in comparison with competitive methods as described in chapter 13 which contains a final

conclusion.

The following chapter 2 introduces the main aims of this thesis.

- 18 -

2 THE AIMS OF THE DISSERTATION

The main aim of the dissertation is a development of the Neural Network

Synthesis method based on AP (chapter 4.3) and SOMA (chapter 3.4) algorithms; these are

theoretically described in chapter 5.3 as a useful and efficient tool for nonlinear modeling.

An important part of this process is the application of the method to the

specifically chosen tasks of the function approximation, prediction and classification of

problems considering real life data as well as standardized benchmarks.

To support the ANN synthesis exploration, software capable of the ANN synthesis

needs to be developed in order to conduct experiments and measure different approaches

statistically. The obtained experimental results have to be evaluated in order to find

optimal parameters for the application of the ANN synthesis to the given tasks.

These aims are further described as follows:

 To apply the ANN synthesis for ANN creation and optimization based on the given

problem of:

o function approximation (chapter 8)

o prediction (chapter 10)

o classification (chapter 11)

 To statistically explore:

o different structures of the GFS (chapter 10.5 and 11.2.4)

o SOMA control parameters setting for AP handling (chapter 9.1.2)

o SOMA control parameters setting for Kn estimation (chapter 9.1.3)

o individuals' behavior invoked by the implementation of (25) (chapter 9.2)

 To develope software:

o which automatically and efficiently distributes computation to all available

processors (chapter 7)

o which will automatically synthetize and/or optimize the ANN based on the

data provided by the user within a reasonable time (chapter 12)

- 19 -

THEORETICAL FRAMEWORK

- 20 -

3 EVOLUTIONARY ALGORITHMS

In recent years, a broad class of algorithms has been developed for stochastic

optimization, i.e. for optimizing systems where the functional relationship between the

independent input variables x and the output (objective function) y of a system S is not

known. Using stochastic optimization algorithms such as Genetic Algorithms (GA)

(chapter 3.1), Differential Evolution (DE) (chapter 3.2), Particle Swarm Optimization

(PSO) (chapter 3.3) and SOMA (chapter 3.4) the system is confronted with a random input

vector and its response is measured. This response is then used by the algorithm to tune the

input vector in such a way that the system produces the desired output or target value in an

iterative process.

Fig. 2: Main principle of EA

3.1 Genetic Algorithms

GA belong to a group of methods, which are used to solve search and optimization

problems. [8] The foundations of the GA were laid down in 1975 by John H. Holland [9].

- 21 -

Several different GA versions have been developed; however, the most important GA

principle, coding of individuals into chromosomes, is common to all of them. [10]

The chromosome should in some way contain information about the solution,

which it represents. The most used way of encoding is a binary string. The chromosome

then could look like this:

Table 1. GA individuals coded to chromosomes

Chromosome 1 11101001000

Chromosome 2 00001010101

Simple generational genetic algorithm pseudo code [11] :

 Choose the initial population of individuals

 Evaluate the fitness of each individual in that population

 Repeat within this generation until termination: (time limit, sufficient fitness achieved,

etc.)

 Select the best-fit individuals for reproduction

 Breed new individuals through crossover and mutation operations to give birth to an

offspring

 Evaluate the individual fitness of new individuals

 Replace the least-fit population with new individuals

3.1.1 Crossover

Crossover selects genes from parent chromosomes and creates a new offspring.

The simplest way how to do this is to randomly choose some crossover point and copy

everything before this point from the first parent and then copy everything after the

crossover point from the second parent.

- 22 -

Fig. 3: GA crossover of individuals

3.1.2 Mutation

Mutation randomly changes the new offspring.

Fig. 4: Mutation of GA individuals

- 23 -

3.2 Differential Evolution

DE has been known in the scientific world since 1995. Fathers of DE are Ken

Price and Rainer Storm, [13]. DE is robust, fast, and effective with a global optimization

ability [14].

Let x ∈ ℝn
 designate a candidate solution (individual) in the population. The basic

DE algorithm can then be described as follows [15]:

 Initialize all individuals x with random positions in the search-space.

 Until a termination criterion is met (e.g. number of iterations performed, or adequate

fitness reached), repeat the following:

 For each individual x in the population do:

 Pick three individuals a, b, and c from the population at random, they must be

distinct from each other as well as from the individual x

 Pick a random index R ∈ {1, ..., n}, where the highest possible value n is the

dimensionality of the problem to be optimized

 Compute the individual's potentially new position y = [y1, ..., yn] by iterating

over each i ∈ {1, ..., n} as follows:

 Pick ri~(0,1) uniformly from the open range (0,1)

 If (i=R) or (ri<CR) let yi = ai + F(bi − ci), otherwise let yi = xi

 If (f(y) < f(x)) then replace the individual in the population with the improved

candidate solution, that is, set x = y in the population.

 Pick the individual from the population that has the lowest fitness and return it as the

best found candidate solution.

Note that F ∈ <0,2> is called the differential weight and CR ∈ <0,1> is called

the crossover probability, both these parameters are selectable by a practitioner along with

the population size NP > 3, see below.

- 24 -

Fig. 5: DE example

- 25 -

3.3 Particles Swarm Optimization

PSO is originally attributed to Kennedy, Eberhart and Shi (1995) [4], [16] and was

primarilyintended for social behavior simulation.

Let S be the number of particles (individuals) in the swarm, each having a position

x ∈ ℝn
 in the search-space and a velocity vi ∈ ℝn

. Let pi be the best known position of

particle i and let g be the best known position of the entire swarm. A basic PSO algorithm

is then [17]:

 For each particle i = 1, ..., S do:

 Initialize the particle's position with a uniformly distributed random vector: xi ~

U(Low, High), where blo and bup are the lower and upper boundaries of the search-

space.

 Initialize the particle's best known position to its initial position: pi ← xi

 If (f(pi) < f(g)) update the swarm's best known position: g ← pi

 Initialize the particle's velocity: vi ~ (-|Hight - Low|; |Hight - Low|)

 Until a termination criterion is met (e.g. number of iterations performed, or adequate

fitness reached), repeat:

 For each particle i = 1, ..., S do:

 Pick random numbers: rp, rg ~ (0,1)

 Update the particle's velocity: vi ← ω vi + φp rp (pi-xi) + φg rg (g-xi)

 Update the particle's position: xi ← xi + vi

 If (f(xi) < f(pi)) do:

 Update the particle's best known position: pi ← xi

 If (f(pi) < f(g)) update the swarm's best known position: g ← pi

 Now g holds the best found solution.

The parameters ω, φp, and φg are selected by the practitioner and control the

behavior and efficacy of the PSO method. [18]

- 26 -

3.4 Self-Organizing Migration Algorithm

SOMA is based on a self-organizing behavior of groups of individuals in a “social

environment”. It can also be classified as an evolutionary algorithm [4], despite the fact

that no new generations of individuals are created during the search (due to the philosophy

of this algorithm). Only the positions of individuals in the searched space are changed

during one generation called a “migration loop”. The algorithm was published in journals

and books, presented at international conferences and symposiums and mentioned in

numerous introductory presentations, for example [5], [6], [7].

Although several different versions of SOMA exist, this thesis is focused on the

most common All-to-One version, which is suitable for the asynchronous parallel

implementation. This chapter describes all basic All-to-One SOMA principles.

Fig. 6: All-to-One SOMA migration loop

3.4.1 Parameter definition

Before starting the algorithm, SOMA’s parameters: Step, PathLength, PopSize,

PRT and Cost Function need to be defined. The Cost Function is simply the function

which returns a scalar that can directly serve as a measure of fitness. In this case, Cost

Function is provided by AP.

- 27 -

3.4.2 Creation of Population

Population of individuals is randomly generated. Each parameter for each

individual has to be chosen randomly from a Specimen which defines a range <Low,

High> and a value type (integer, double) for each individual’s dimension.

3.4.3 Migration loop

Each individual from a population (PopSize) is evaluated by the Cost Function and

the Leader (individual with the highest fitness) is chosen for the current migration loop.

Then, all other individuals begin to jump, (according to the Step definition) towards the

Leader. Each individual is evaluated after each jump by using the Cost Function. Jumping

continues until a new position defined by the PathLength is reached. The new position xi,j

after each jump is calculated by (1) as is shown graphically in Fig. 7. Later on, the

individual returns to the position on its path, where it found the best fitness.

, , , , , ,()MLnew ML ML ML

i j i j start L j i j start jx x x x tPRTVector  

where t  <0, by Step to, PathLegth>

and ML is actual migration loop

(1)

Before an individual begins jumping towards the Leader, a random number rnd is

generated (for each individual’s component), and then compared with PRT. If the

generated random number is larger than PRT, then the associated component of the

individual is set to 0 using PRTVector.

rndj < PRT then PRTVectorj = 0 else 1

where rnd  <0, 1>

and j = 1, … nparam

(2)

- 28 -

Table 2: An example of PRTVector for 4 parameters individual with PRT = 0.3

J rndj PRTVector

1 0.234 1

2 0,545 0

3 0,865 0

4 0,012 1

Fig. 7: PRTVector and its action on individual movement

Hence, the individual moves in the N-k dimensional subspace which is

perpendicular to the original space. This fact establishes a higher robustness of the

algorithm. Earlier experiments demonstrated that without the use of PRT, SOMA tends to

determine a local optimum rather than a global one. [19]

3.4.4 Test for stopping condition

If a stopping condition (time limit, sufficient fitness achieved, number of ML, etc.)

is archived, stop and recall the best solution(s) found during the search.

.

- 29 -

Fig. 8: SOMA example

- 30 -

3.4.5 SOMA Recommended Settings

Based on a huge number of experiments, the author of SOMA (prof. Zelinka)

recommended the optimal setting for the algorithm’s control parameters. [19]

Table 3: SOMA parameters and their recommended domain

Parameter name Recommended range

PathLenght <1.1 ;3>

Step <0.11, PathLength>

PRT <0,1>

PopSize <10, up to user>

As can been seen in Fig. 9 , a PRT parameter was tested within the range <0.1;

0.9> and performed best when PRT  <0.1; 0.3>.

By contrast, this thesis explores SOMA’s behavior within a much wider range

PRT  <0.005, 0.1>. The reasons why this possibility has never been explored before are

described in the next chapter.

Fig. 9: SOMA dependence on PRT size [19]

3.4.6 Null PRTVector Problem Definition

All the experiments mentioned in [19] were performed on Cost Functions with 100

parameters. Naturally, the PRTVector’s length (L) was also 100. The probability Po that

generated the PRTVector is a null vector (vector which contains nulls only, see also (1))

that is very low for PRT  <0.1; 0.3>.

- 31 -

 P0 = (1 – PRT) (3)

Table 4: Probability of null PRTVector for L = 100

PRT P0

0,005 0,60577

0,01 0,366032

0,03 0,047553

0,05 0,005921

0,07 0,000705

0,1 2,66E-05

0,2 2,04E-10

0,3 3,23E-16

Fig. 10: Probability of null PRTVector for L = 100

However, P0 increases dramatically if L or PRT value decreases.

Table 5: Probability of null PRTVector for L = 25

PRT P0

0,005 0,886654

0,01 0,785678

0,03 0,481417

0,05 0,291989

0,07 0,175223

0,1 0,079766

0,2 0,004722

0,3 0,000192

0

0,1

0,2

0,3

0,4

0,5

0,6

0 0,1 0,2 0,3

P
0

PRT

- 32 -

Fig. 11: Probability of null PRTVector for L = 25

If the null PRTVector is generated, the individual does not move during the actual

migration loop and the Cost Function is always evaluated with the very same parameters.

For example, 27 evaluations are wasted if Step = 0.11 and PathLength = 3. This waste of

computation time is highly improbable when L = 100 and also very low if the theoretical

test functions (see chapter 7) are computed.

Let us consider a real life problem of the heating-plant parameters optimization.

[20] (see also chapter 10.1). L = 24 means that one parameter for every hour during the

day has to be optimized. If PRT = 0.1, P0 = 0.79, almost 8% of the Cost Function

evaluations are wasted. In doing so, one evaluation of the Cost Function is very time

demanding (even in a range of minutes [21]) as a waste database has to be processed.

Such conditions approve an institution of a simple null PRTVector repair

mechanism:

If PRTVector is the null vector,

a new PRTVector is generated instead.

(4)

Consequently, P0 is always 0. Instead of P0, probability P1 of the PRTVector which

contains 1 only ones can be considered.

 P1 = (1 – PRT)
L
+ L * PRT * (1 - PRT)

(L - 1)¨
(5)

0

0,1

0,2

0,3

0,4

0,5

0,6

0 0,1 0,2 0,3

P
0

PRT

- 33 -

Table 6: P1 for L = 100

PRT P1

0,005 0,910178

0,01 0,735762

0,03 0,194622

0,05 0,037081

0,07 0,006013

0,1 0,000322

0,2 5,3E-09

0,3 1,42E-14

Fig. 12: P1 for L = 100

The application of (4) into SOMA allows the PRT parameter to be set within the

range (0; 0.1> which was previously unreachable due to high values of P0.

More detailed information considering the null PRT vector problem can be found

in [22].

0

0,2

0,4

0,6

0,8

1

0 0,1 0,2 0,3

P
1

PRT

- 34 -

4 SYMBOLIC REGRESSION

The term symbolic regression represents a process in which measured data is fitted

by a suitable mathematical formula such as x
2
 + C, sin(x) + e

x
, etc. This process is quite

well-known and can be used when data of an unknown process is obtained.

There are two well-known methods: GP and GE, which can both symbolically

regress the usage of the evolutionary algorithm; however, this thesis uses another more

flexible method called Analytic Programming, which can be implemented on the arbitrary

EA. A comprehensive survey of the symbolic regression methods can be found in [23].

4.1 Genetic Programming

GP was introduced at the end of the 1980s by John Koza [24], [25]. He suggested a

modification to a genetic algorithm (see chapter 3.1) and he called it Genetic

Programming. In this concept a new population is not bred in the common numerical way

but in the analytical way. It means that the solution of such breeding is not values of

parameters but the function itself. [26]

Fig. 13: Mutation in Genetic Programming

- 35 -

4.2 Grammatical Evolution

Grammatical evolution (GE) is another tool for doing symbolic regression by

computers. The advantage of this tool, compared to GP, is that GE can evolve complete

programs in an arbitrary programming language [27], [28] using a variable-length binary

string. It uses a Backus Naur Form (BNF) grammar definition for mapping a process to a

program. GE performs the whole process on variable-length binary strings. The mapping

process is employed to generate programs in any language by using the binary strings to

select production rules in the BNF definition. The result is the construction of a

syntactically correct program from a binary string that can then be evaluated by a fitness

function. [29]

4.3 Analytic Programming

The main principle (core) of AP is based on a discrete set handling (DSH) (Fig.

14) and is inspired by GE. DSH shows itself as a universal interface between the EA and

the symbolically solved problem. This is why AP can be used almost by any EA (see

chapter 3). [30]

Fig. 14: DSH principle [31]

Briefly stated, in AP, individuals consist of non-numerical expressions (operators,

functions,…) which are represented within the evolutionary process by their integer

indexes. Each index then serves as a pointer into the set of expressions and AP uses it to

synthesize the resulting function-program for the Cost Function evaluation.

- 36 -

All simple functions and operators are in the so called General Function Set (GFS)

divided into groups according to the number of arguments which can be inserted during the

evolutionary process to create subsets GFS3, GFS2...GFS0.

Table 7: Example of GFS and its subsets

GFS Degree Contains

GFSall f(x1, x2, x3), +, -, *, /, Power, Abs, Round, Sin, Cos, t, K, τ, 1, 2

GFS3 f(x1, x2, x3)

GFS2 +, -, *, /, Power

GFS1 Abs, Round, Sin, Cos

GFS0 t, K, τ, 1, 2

Fig. 15: GFS subsets hierarchy

- 37 -

 The functionality of AP can be seen in the specific example in Fig. 16:

Fig. 16: Main principles of AP

The individual consists of 6 arguments (indices, pointers to GFS). The first index

is 3, meaning that it is taken from the set of functions GFSall. The function minus has two

arguments; therefore indexes 7 and 9 are arguments of minus.

 6 + 7 (6)

Index 7 is then replaced by Abs and index 9 by Sin.

 Abs + Sin (7)

Abs and Sin are one-argument functions. Then, index 9 follows index 11, which is

replaced by t.

 Abs(t) + Sin (8)

Sin is also a one-argument function. Then, after index 11, the individual takes

index 9, which is replaced by Sin and this Sin becomes an argument of the previous Sin.

 Sin(Tan) + Sin(Sin((9)

The last index is 2, but in this case there is the function Plus. Plus needs two

arguments to work properly. AP will not allow this, as there is not any other free pointer to

be used as the argument. Instead of Plus, AP will jump into the subspace, in this case

- 38 -

directly to the GFS0arg. In the GFS0arg it finds the second element, which is K. And by doing

so, we get (10).

 Abs(t) + Sin(Sin(K)) (10)

 The number of pointers actually used from an individual before the synthesized

expression is closed is called depth. This example is based on the relevant and previously

published work in [23].

- 39 -

5 NEURAL NETWORKS OPTIMISATION

Artificial neural networks are a widely used tool for nonlinear modeling, function

approximation, prediction, classification and association [34], [35], [36]. This thesis is

focused specifically on the feed forward ANN (see Fig. 17).

The network function f (x) is defined as a composition of other functions gi(x)

which can further be defined as a composition of other functions. This can be conveniently

represented as a network structure, with arrows depicting the dependencies between

variables. The widely used type of composition is the nonlinear weighted sum,

 () (∑ ())

 (11)

where F (commonly referred to as the activation function) is some predefined function,

such as the hyperbolic tangent (see (17)). [38]

Fig. 17: Example of one and two hidden layer ANN

 What has attracted the most interest in ANN is the possibility of learning (see

chapter 5.3.1). Given a specific task to solve, and a class of functions, F (in this case GFS,

see chapter 5.3), learning means using a set of observation to find f* F which solves the

task in some optimal sense. This entails defining a Cost Function C:Fℝ such that, for the

- 40 -

optimal solution f*, C(f*)≤ C(f) f F (i.e., no solution has a cost less than the cost of the

optimal solution). [39]

5.1 Evolutionary Designed Neural Network

The development of evolutionary methods aiming to design the ANN structure and

weight values experienced boom at the end of the millennium with the introduction of

sufficiently fast computers into common scientific practice. A comprehensive survey

considering history of evolutionary computation methods of designing the ANN structure

can be found in [40].

According to [41] these methods can be used in the field of the ANN in several

ways:

 to train the weights of the ANN

 to analyze the ANN

 to generate the architecture of the ANN

 to generate both the ANN’s architecture and weights

The problem often encountered with GA is that they are quite slow in fine-tuning

once they are close to a solution. Therefore, hybridization of GA and back propagation

algorithm [42] (BP), where BP is used to fine-tune a near-optimal solution found GA, has

proven to be successful [43]. In [44] a GA is used to evolve the ecological ANN that can

adapt to their changing environment. This is achieved by letting the fitness function, which

in this case is seen as individual for every gene, to co-evolve with the weights of the ANN.

De Garis [45] uses a method, which is based on the fully self-connected ANN

modules. It is shown that by using this approach a network can be taught a task even

though the time-dependent input changes so fast that the ANN never settles down.

In [46] and [47], GA is used in a fixed three layer feed forward ANN to find the

optimal mapping from the input to a hidden layer. It is suggested that the hidden target

space might have more optima than the weight space and that finding the optimum will

therefore be easier.

- 41 -

[48], [49] and [50] used chromosomes with real-valued genes instead of binary

coded chromosomes. Satisfactory results are reported using a Genitor type Steady State

Genetic Algorithm with relatively small population size of 50.

An alternative approach is to use GA, where the topology and weights are encoded

as variable-length binary strings [51]. In [52] a structured GA is used that simultaneously

optimizes the ANN topology and the values of weights.

In [53] feed forward ANN are generated with GA, using a direct encoding scheme

where every gene in a chromosome represents a connection between two neurons. This

Approach is also known as restrictive mating. [54]

Jacob and Rehder [55] use a grammar-based genetic system, where the topology

creation, neuron functionality and weight creation are split into three different modules,

each using a separate GA. Similarly, Happel and Murre [56] report an approach, where

modular ANN are generated using the direct encoding scheme.

Angeline at al. [57] implemented a system based on evolutionary programming

where ANN evolve using both parametric mutation and structural mutation and in [58]

evolutionary programming is used where the initial network is a three-layered fully

connected feed forward ANN and the evolutionary programming algorithm is used to

prune the connection.

In [54] a modular design approach is used, where a distinction is made between the

structure, connectivity and weights optimization. Kitano [59], [60] uses a GA-based matrix

grammar approach with chromosome code grammar rewriting rules that can be used to

build a connectivity matrix. Gruau [61], [62] uses a graph grammar system called Cellular

Encoding. The graph grammar rules work directly with neurons and their connections and

include various kinds of cell divisions and connection pruning rules. Boers and Kuiper [63]

use a graph grammar system based on a class of fractals called L-system. The

chromosomes used in the GA code the production rules in this grammar.

In [64] and [65] a quite different approach is presented. The ANN is used to model

organisms living in a two-dimensional world in which they can move in search for food

and water.

- 42 -

5.2 ANN Generating by Genetic Programming

GP offers an approach to the direct encoding scheme. The approach that consists

of directly encoding ANN in the genetic tree structure used by GP is described in [24].

According to [25] the ANN topology as well as the values of the weights are

defined within one structure and no distinction is made between learning of the ANN

topology and its weights. The terminal set is made up of the data inputs to the network (D)

and a random floating point constant atom (R). This atom is the source of all the numerical

constants in the ANN and these constants are used to represent the values of the weights.

 T = {D, R} (12)

[25] also proposed a function set F consisting up to six functions; F = {AN, W, +,-,

* , %} however [41] proves that GP works much better for

 F = {AN, W} (13)

where the arithmetic functions are omitted.

 The title given to this implementation of the ANN design using GP is the GPNN

[65]. An example of a chromosome generated by the GPNN is the following ANN, which

perform the XOR function (see also chapter 11.1).

(AN (W (AN (W -0.65625 D1) (W 1.59375 D0)) 1.01562))

(W 1.45312 (P (W 1.70312 D1) (W –0.828125 D0))))
(14)

 The graphical representation of (14) and the corresponding ANN are shown in Fig.

18. In a similar way, the GE can be used to successfully design the ANN. Such an

approach can be found for example in [66] or [67].

- 43 -

Fig. 18: Translation of a GP chromosome into ANN

5.3 Neural Network Synthesis

Development of the ANN synthesis as a successfully and effective method for the

ANN designing is the main aim of the thesis. This chapter explains what can be understood

under the term ANN synthesis and how the method works.

 Clause: Let there be a set of all neural networks with a forward running propagation

ANNall = {ANN1, ANN2, ..., ANNi, ...} and a set of all functions Fall = {f1, f2, ..., fk, ...}. Then

for each ANNi  ANNall there exists a function fk  Fall, alternatively a set of functions Fk

 Fall such, that holds ANNi  fk, alternatively ANNi  Fk.

- 44 -

 The Kolmonogorov theorem further shows the validity of the inverse clause: For

every continuous function fk  Fall there exists ANNi  ANNall such, that holds fk  ANNi.

 Task: Design an algorithm, which will by the means of the symbolic regression

methods, evolutionarily scan a set Fall in order to find:

a) fk  ANNi

b) fk, whose at least some subfunctions {f1, f2, ...}  {ANNn, ANNm, ...}

which solves the particular problem P with a global error ET < , where  is the user

defined biased tolerance threshold.

Fig. 19: Principle of the evolutionary scanning

AP can perform such evolutionary scanning above Fall set and provide the

possibility to synthetize the ANN with an almost infinitely variable structure, complexity

and scope. There is a very easy way of using AP for the ANN synthesis. [68] The most

important part is to define items of which the ANN will be composed. In this case the GFS

contains only three items.

- 45 -

 GFSall = {+, AN, K*x} (15)

Most important item of (15) is an Artificial Neuron (AN) (16) with a weighted

hyperbolic tangent as a transfer function (17). The weight of output, steepness and

thresholds are computed as K in AP (18).

 GFS1 = {AN} (16)

 ()
 ()

 ()
 (17)

 ()
 ()

 ()
 (18)

Fig. 20: AN transfer function for various w, λ, ϕ settings

Fig. 21: Graphical example of AN

To allow more inputs into one ANN a simple plus operator (19) is used.

- 46 -

 GFS2 = {+} (19)

Fig. 22: Graphical example of plus operator

Finally, (20) represents the weighted input data.

 GFS0 = K*x (20)

Fig. 23: Graphical example of weighted input

Under such circumstances, translation of an individual into the ANN can be easily

grasped from Fig. 24.

Fig. 24: Translation of an individual into ANN

- 47 -

The whole process is cyclical. Individuals provided by the EA are translated into

ANN. ANN are evaluated in accordance with a training data set and their global errors are

used to set the fitness of these individuals. Consequently, a new generation is chosen and

the whole process is repeated in the next migration loop.

The introduced approach is not the only one possible. Different settings of the GFS

were successfully used to synthetize the ANN performing classification. [33]

5.3.1 Constant Processing

The synthesized ANN, programs or formulas may also contain constants “K”,

which can be defined in the GFS0 or be a part of other functions included in the GFSall.

When the program is synthesized, all Ks are indexed, so K1, K2, …, Kn, are obtained and

then all Kn are estimated. Several versions of AP exist in accordance with Kn estimation.

[32] In most cases, the Nonlinear Regression of Toolbox of Mathematica software is used.

This approach provides fast results; however, the source code of this toolbox is not an open

source and its inner function is not sufficiently clarified, so the resulting algorithm is not

fully described and this solution cannot be used without the Mathematica software [23].

Fig. 25: Learning of a synthesized ANN

- 48 -

In this case, the asynchronous implementation of SOMA (inside another SOMA,

which operates AP) is used to estimate Kn. This is especially convenient for the ANN

synthesis. Kn can be referred to as various weights and thresholds and their optimization by

SOMA as ANN learning (see Fig. 25). [33]

5.3.2 Reinforced Evolution

The Reinforced Evolution is a common part of AP. [32] If the ANN of adequate

quality cannot be obtained during AP run, AP puts the best ANN it found as a sub ANN

into the GFS0 and starts over.

This arrangement considerably improves AP ability to find the ANN with

desirable parameters. For the purpose of this thesis one AP between the GFS

reinforcements is called an evolution loop. The term evolution loop should not be mistaken

for the migration loop. (For the migration loop see the chapter 3.4.3.)

Fig. 26: Example of GFS reinforcement process between two ANN evolution loops

5.3.3 Cost Function Specification

As the synthetized ANN are produced to the EA, which needs to evaluate them,

the Cost Function (CF) has to be specified prior to the beginning of the synthesis.

The CF specification depends on the purpose of the ANN synthesis (the solved

problem) and differs for approximation (chapter 8) or prediction (chapter 10) and

classification (chapter 11).

- 49 -

In the case of prediction or approximation, the CF can be defined as a Rood Mean

Square Divergence (RMSD) (21) or a Normalized RMSD (22) (NRMSD).

 1
1 2

(() ())

(,)

n

i i

i

ANN X y X

RMSD
n

  






(21)

max min

100%
RMSD

NRMSD
y y




 (22)

For classification tasks, the CF has to be designed as (23). To favor smaller ANN,

the fraction depth parameter (for depth meaning see chapter 4.3) of an individual can be

added.

CF = number of wrongly classficed examples +

depth/100;
(23)

Fig. 27: Example of CF for classification

To obtain a smoother profile of the CF (23) can be developed into (24).

 ∑

 ()
 (

)

 (24)

For the practical implementation of (24) see (87) in chapter 12.

- 50 -

6 DISTRIBUTED COMPUTATION

The basic idea of most parallel programs is to divide a task into chunks and to

solve the chunks simultaneously using multiple processors. This divide-and-conquer

approach can be applied to the EA in many ways and literature contains an inexhaustible

number of examples of successful parallel implementations. Some parallelization methods

use a single population, while others divide the population into several relatively isolated

subpopulations. Some methods can massively exploit parallel computer architectures,

while others are better suited for computers with fewer but more powerful CPUs. [69]

A comprehensive survey of the EA distribution can be found in [70] together with

two following successful Island Model [71] SOMA distributions.

6.1 Island Distribution of SOMA

This approach suits parallel SOMA running in the above described cluster

platform very well. At each computation node, a randomly initialized subpopulation is

created according to the configuration given by a master node. The node performs one

SOMA migration and sends a local leader to the server.

6.1.1 Synchronous Island Model

When the migration loop is done on all terminals, the server compares cost values

of all received local leaders and chooses a global leader. This leader is then sent back to

the terminals and replaces the worst individual in local populations. This process is

repeated until the termination conditions are satisfied.

6.1.2 Asynchronous Island Model

To avoid time delays in the former parallelization approach, the synchronism of

sharing and selecting the best individual was removed. When the terminal finishes its

migration loop, the local leader is sent to the server. The task of the master node is to

maintain the global leader – every time it receives the leader from a subordinated node, it

compares its cost value with the value of the global leader and stores the better one.

- 51 -

Consequently, the global leader is passed back to the terminal node, where next migration

loop is started. Again, this process is repeated until stop conditions are met. This

parallelization approach is also used outside the cluster platform.

6.2 Direct Asynchronous Distribution of SOMA

Chapter 5.3 explains the process during which a huge number of very different

ANN can be synthesized. Therefore, an actual population, which needs to be evaluated,

contains individuals with various numbers for Kn. This means that the algorithm is very

time demanding and furthermore, computation of every individual consumes different

amounts of computation time. [3]

Fortunately, in these days, standard computers are more often equipped with more

than one processor. However, if the individuals are evenly divided between available

processors for every migration loop, the large amount of computation time is lost due to

their unevenly distributed complexity.

To overcome this set-back, a small but very important change to SOMA

mechanism was made inspired by the Asynchronous Island Model (chapter 6.1.2). The

individuals no longer work in the migration loops (see. chapter 3.4.3). On the contrary:

Every individual is compared with the Leader just after it

finishes its jumping and a new Leader is selected immediately
(25)

Fig. 28: Asynchronous processing of a migration loop by different threads

- 52 -

This makes SOMA distribution work asynchronously. All the individuals do their

migrations independently and some may even move much faster than others.

The main reason why SOMA as an algorithm is especially convenient for the

direct distribution approach lies in the fact that every individual needs to communicate

with the leader only once per twenty-seven evaluations of the CF (depending on SOMA

control parameters), so the amount of information transferred between individuals during

computation is relatively low in comparison with other GA as can be seen in Fig. 29.

Fig. 29: Proportional comparison of transferred information amounts neededed for one

CF computation within different EA

As there is no synchronization point anymore to evaluate the stop condition

(chapter 3.4.4), the condition is evaluated once after n evaluations of the Cost Function.

 n = period * number of individuals * mass / step (26)

The strategy proposed by (25) can result in interesting behavior of individuals

provided each individual occupies its own thread or process as described in Fig. 30.

In such a case, a huge individual (the ANN with more AN) moves on a N-k hyper

plane slower than small agile individuals (the ANN with less AN) as can be seen in Fig.

31. This can positively influence the ANN optimization.

- 53 -

Fig. 30: Asynchronous individual processing

Fig. 31: Asynchronous parallel movement of SOMA individuals

- 54 -

PRACTICAL PART

- 55 -

7 ASYNCHRONOUS SOMA PERFORMANCE

To statistically explore the efficiency of SOMA direct asynchronous distribution

proposed in chapter 6.2, ten different test functions were chosen for the experiment. All

these functions as well as other SOMA control parameter settings were based on [19] and

used in the same way as done by prof. Zelinka when initially testing the SOMA.

    

2 2
1 1

1
0.2 0.5 0.5 cos(2) cos 2

1

20 20
i x i i

Dim
x x x x

i

e e e
  


   



 
   

 


(27)

  
1

1 1 1

1

sin | (47) | (47)sin 47
2

Dim
i

i i i i i

i

x
x x x x x



  



  
        

  
  

 (28)

2

1 1

1 cos
4000

DimDim
i i

i i

x x

i 

 
   

 
  (29)

  
2 2

1 1(0.5)1
2 28

1 1

1

cos 4 0.5
i i i xx x x xDim

i i i i

i

e x x x x
   

 



 
   

 
 


(30)

20 20
2 21

1
1

1

2
1 sin()sin sin()sin

Dim
i i

i i

i

x x
x x

 








        
         

             

 (31)

 
1

1

1

sin()cos() (1)sin()cos()
Dim

i i

i

x a b x a b






 

where 1| 1 |i ia x x   and 1| 1 |i ib x x  

(32)

  2

1

10 10cos(2)
Dim

i i

i

Dim x 


 (33)

  
1

2 2 2 2 2

1

1

100() (1)
Dim

i i i

i

x x x






   (34)

- 56 -

  
1

1

sin | |
Dim

i i

i

x x




 (35)

     
1

0.25 2
2 2 2 2 0.1

1 1

1

sin 50() 1
Dim

i i i i

i

x x x x


 



   
(36)

PopSize = 60, PathLength = 3, Step = 0.11, PRT = 0.1 and a number of parameters

= 100 are constant for all these functions. The number of migration loops and borders of

the function’s parameters vary in accordance with Table 8.

2D and 3D visualizations of test functions (27) - (36) are available in Appendix I.

Table 8: Test functions, ML and borders

Function ML Low Hight

Ackley (27) 400 -30 30

EggHolder (28) 800 -512 512

Griewangk (29) 200 -100 100

Masters (30) 400 -5 5

Michalewicz (31) 200 0 3,1415

Rana (32) 125 -500 500

Rastrigin (33) 400 -5,12 5,12

Rosenbrock (34) 125 -2,048 2,048

Schwefel (35) 400 -512 512

SineWave (36) 400 -10 10

Every test function was optimized 100 times by linear SOMA and 100 times by

SOMA direct asynchronous parallelization (25) distributed among 8 independent

processors of a Super Micro server (see Appendix IV). In total 1.1 * 10
9
 Cost Function

evaluations were computed during 2,000 separate SOMA runs.

7.1 Results

Table 9 and Table 10 show the average and best results from the previously

proposed experiment for all test functions (27) to (36).

- 57 -

Table 9: SOMA average results

Function Linear Asynchronous

Ackley (27) 3368,098 3370,429

EggHolder (28) -63855,5 -63605,3

Griewangk (29) 0,872625 0,885898

Masters (30) -77,7542 -77,9066

Michalewicz (31) -97,9913 -97,6051

Rana (32) -21400,8 -21486,4

Rastrigin (33) -958457 -950512

Rosenbrock (34) 335,933 369,7812

Schwefel (35) -40531,1 -40241,7

SineWave (36) -519,919 -518,877

Table 10: SOMA best results

Function Linear Asynchronous

Ackley (27) 3366,142 3366,184

EggHolder (28) -68130,2 -67268,8

Griewangk (29) 0,625381 0,580481

Masters (30) -83,9028 -84,3382

Michalewicz (31) -98,9955 -99,0905

Rana (32) -24067 -25117,7

Rastrigin (33) -977084 -968021

Rosenbrock (34) 234,7636 254,7049

Schwefel (35) -41423,7 -41305,1

SineWave (36) -530,483 -530,24

SOMA parallelization (25) introduced in chapter 6.2 proved to be highly effective.

Considering the average results (25) was in 2 cases better than linear. Furthermore, for the

best results (25) was better in 4 cases and its efficiency is almost 100%.

(25) efficiency for the average results is 98.6%, which is even better than the

efficiency of the asynchronous island model published in [70]. (25) excellent performance

convincingly demonstrates its usage as the EA for AP.

- 58 -

8 ANN SYNTHESIS FOR FUNCTION APROXIMATION

In order to statistically evaluate the ANN synthesis’ ability to successfully solve

the function approximation problem (chapter 5.3), the function (37) proposed by [24] as an

appropriate approximation benchmark was chosen to be approximated by the ANN.

y = xi
5
 – 2 xi

3
 + xi

where xi  <-1,by the step 0.04 ,1>

(37)

Fig. 32 (automatically generated by ANN synthesis software, see chapter 12)

shows an example of synthetized ANN approximating (37). The difference between the

ANN and (37) is depicted as a red area which could be minimized by the process of

synthesis.

Fig. 32: Approximation of (37) by synthetized ANN

The CF of the synthetized ANN is mathematically formulated in accordance with

the chapter 5.3.3 as a RMSD (21).

AP was executed 100 times (physically on 8 cores of the Super Micro Server, see

Appendix IV) to produce an ANN with the RMSD < 0.005. The main intention was to

- 59 -

find such an ANN which met this condition and which simultaneously used as few AN as

possible.

 The setting of Asynchronous SOMA used as the EA for AP can be seen in Table

11 and SOMA setting used for ANN learning in Table 12.

Table 11: Setting of SOMA used as EA for AP

Number of Individuals 48

Individual Parameters 100

Low 0

High 3

PathLength 3

Step 0,11

PRT 1/ depth

Divergence 0.01

Period 1

Table 12: Setting of SOMA used to optimize Kn

Number of Individuals
number of Kn * 0.5

(at least 10)

Individual Parameters 100

Low -10

High 10

PathLength 3

Step 0,11

PRT 1 / number of Kn

Divergence 0.01

Period 6

- 60 -

8.1 Results

A total of 921,937 evaluations of AP individual fitness was done during 100 AP

executions and a separate SOMA run was performed for all of them to set their Kn value.

The time needed for all these evaluations was approximately 5 hours and 24 minutes.

The average time for 1 evaluation was 558 ms, however tmax = 136,369 ms while

98% of measured times t < tmax / 10. Such results prove that the vast amount of the

computation time can be saved by asynchronous distribution (26) (see chapter 6.2). The

way these values increase with a growing number of processors used is described in Table

13 and Fig. 33.

Table 13: Time saved by asynchronous evaluation

Number of

processors used

Percentage of

saved time

2 23,7 %

4 47,3 %

8 67,2 %

16 81,2 %

Fig. 33: Time saved by asynchronous evaluation

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

2 7 12

Sa
ve

d
 t

im
e

Procesors

- 61 -

All 100 AP runs successfully synthesized the ANN with the RMSD < 0,005. The

average number of the AN used was 9. Nevertheless, the optimization task in order to find

the ANN with the lowest number of AN was the most successful in 4 cases, which

employed only 2 AN. All these cases led to a similar ANN structure.

Fig. 34: Synthesized ANN according AN usage

The example of a successfully optimized ANN is shown here as (38) and its sub

ANN as (39):

 ANN0 = x + AN[x] (38)

 ANN1 = ANN0 + AN[ANN0] + ANN0 (39)

After successful optimization of Kn by SOMA (38), (39) lead to (40), (41).

ANN0 = -0,972628914257888 * x + 0,960043432203328 * AN[0,303565531015147

* (7,00172920571721 * x + -0,00454216333835794)]
(40)

ANN1 = ANN0 + 0,40897485611192 *

AN[-2,77100775198393 * (ANN0 + 0,000305134718869929)] + ANN0
(41)

(42) and (43) translated (38), (39) into the mathematical formulation.

0

5

10

15

20

25

30

0 5 10 15 20 25

C
as

e
s

Number of used AN

- 62 -

 ()

 ()
 (42)

 ((

 ()

 ()
))

 ((

 ()

 ()
))

 ()

 ()

(43)

The ANN described as (38), (39) can be graphically interpreted (Fig. 35).

Fig. 35: Graphical interpretation of resulting ANN

8.2 Conclusion

Asynchronous distributions (25) proved to be crucially important for the successful

AP implementation. For example, if 8 processors are used (as they were in the

experiment), more than 67% of computation time (which would be wasted otherwise) can

be saved. With respect to the experiment, approximately 3 hours of computation time were

saved.

AP also exercised the ability to synthesize the ANN affectively and quickly with

the help of asynchronous SOMA distribution (0.5 s for 1 ANN on average).

The very small ANN containing only two ANs was automatically found and

solved the given problem with the satisfactory RMSD. This success reveals AP as an

exceptionally useful tool for ANN synthesis and optimization. [72]

- 63 -

9 ANN SYNTHESIS STRATEGY EXPLORATION

To boost the AP performance and to obtain better and faster results of the ANN

synthesis, two adaptive approaches of the PRT setting were developed (chapters 9.1.2 and

9.1.3) and applied in the experiment described in chapter 8. In order to measure their

impact on the AP performance statically the very same experiment was performed without

the proposed improvements and subsequently compared with the original results.

Chapters 9.2 and 9.3 explore the asynchronous SOMA dependence on the ANN

synthesis efficiency and the possibility of other EA employment.

9.1 Adaptive PRT Strategy

The PRT adaptive approach is possible only with the application of (4) discussed

in chapter 3.4.6. Experimental confirmation of such an approach is statistically processed

in chapter 9.1.1.

9.1.1 Adaptive PRT Strategy Test on Test Functions

The following experiment was designed to explore SOMA efficiency for PRT 

(0; 0.1> and compare it with results obtained for PRT  <0.1; 0.3>. In other words, this

experiment measured the dependence of P1 on SOMA behavior (see chapter 3.4.6).

The main aim of the experiment was to statistically approve the widening of the

PRT parameter into PRT  (0; 1> as a necessary assumption for strategies applied in

chapters 9.1.2 and 9.1.3.

Test functions (26) - (37) were chosen for the experiment. PopSize = 60,

PathLength = 3, Step = 0.11 and the number of parameters = 100 are constant for all of

these functions. (see also Table 3) The number of migration loops and borders of the

function’s parameters vary in accordance with Table 8.

For each test function, the optimization (the search for a global minimum) via

SOMA was repeated 100 times for different PRT = {0.005, 0.01, 0.03, 0.05, 0.07, 0.1, 0.2,

0.3}. The overall 8000 repetitions were made (test functions * PRT variants * 100).

- 64 -

996.3 * 10
6
 evaluations of the Cost Function were computed in total.

evaluations = (Round(PathLength/Step) * ML * PopSize * 100 * test functions) (44)

(4) was applied in all cases.

The final results were normalized: The best case for the given test function was

set as 0 (base) and all other cases were expressed as percent divergence.

Fig. 36 and Fig. 37 graphically show the values describing SOMA behavior based

on various test functions and PRT settings. More specific results are included in Appendix

II (see Fig. 90, Fig. 91 and Table 20, Table 21, Table 22, Table 23).

Fig. 36: Test functions performing better for PRT  <0.005; 0.7>

Fig. 37: Test functions performing better for PRT  <0.1; 0.3>

0

0,05

0,1

0,15

0,2

0,25

0,3

0 0,1 0,2 0,3

N
o

rm
. a

ve
ra

ge

PRT

Ackley

Michalewicz

Rastrigin

Schwefel

SineWave

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0 0,1 0,2 0,3

N
o

rm
. a

ve
ra

ge

PRT

EggHolder

Griewangk

Masters

Rana

Rosenbrock

- 65 -

5 out of 10 test functions employed in the experiment (see Fig. 36) achieved better

results for PRT  <0.005; 0.7> and the other 5 (see Fig. 37) for PRT  <0.1; 0.3>. This

conclusion represents a significant breakthrough in the PRT setting strategy. The

previously recommended range PRT  <0.1; 0.3> can be extended to PRT  <0.01; 0.3>;

furthermore, around 50% of the functions can be optimized by SOMA more effectively if

PRT  <0.01; 0.7>. An increasing value of P1 can positively influence the obtained results

[73]. However, SOMA efficiency always decline if P1 > 0.74.

Based on this conclusion, strategies described in chapters 9.1.2 and 9.1.3 using

PRT  (0; 1> can be recommended for the experimental validation.

9.1.2 Adaptive PRT Strategy for AP Handling

The adaptive strategy for AP handling consists in the replacement of a static PRT

value by a value which depends inversely on the individual’s depth. This approach ensures

(together with (4)) that the PRT influence is projected into an active part of the individual.

Table 14: PRT strategy for AP handling

 PRT = 1/depth PRT = 0.1

Average time needed for synthesis 194 s 373 s

Average number of used AN 9 13

A total of 1,189,870 evaluations of AP individual fitness were completed during

100 AP executions while the PRT was set to 0.1 and the separate SOMA run was

performed for all of them to set their Kn value. Without the adaptive PRT, AP was able to

find an optimal ANN in only 1 case in comparison with 4 successful cases in the original

experiment.

- 66 -

9.1.3 Adaptive PRT Strategy for Kn Estimation

The adaptive strategy for Kn estimation consists in replacement of the static PRT

value by the value which inversely depends on Kn dimension with the application of (4).

Table 15: PRT strategy for Kn estimation

PRT =

1 / number of Kn
PRT = 0.1

Average time needed for synthesis 194 s 505 s

Average number of used AN 9 15

A total of 672,779 evaluations of AP individual fitness were completed during 100

AP executions and the separate SOMA run was performed for all of them to set their Kn

value while PRT was set to 0.1 and (4) was omitted. However, under such conditions, in 7

cases AP was not able to find a sufficient ANN at all.

9.1.4 Conclusion

The introduced adaptive PRT strategy proved to be highly effective as its

application to AP handling works 48% faster and 16% more efficiently (computed on 8

cores of the Super Micro server, see Appendix IV). For Kn the estimation considered

strategy works 61% faster and 42% more efficient. Furthermore, without it, AP was not

able to successfully synthetize the ANN in 7 cases.

The adaptive PRT strategy proved to be crucial for the successful ANN synthesis.

9.2 Comparison of synchronous and asynchronous synthesis

In order to explore the impact of individual’s asynchronous movement (discussed

in chapter 6.2, see especially Fig. 31) on the ANN synthesis efficiency, the experiment

considered in chapter 8 was repeated with synchronous behavior of the participated EA

individuals.

- 67 -

Table 16: Synchronous and asynchronous SOMA performance

 Asynchronous Synchronous

Average time needed for synthesis 194 s 212 s

Average number of used AN 9 11

 The experiment results recorded in Table 16 show that the asynchronous

movement is 8.5% faster and, interestingly, the synthetized ANN lacks 2 AN on average.

Such results successfully proved the adaptation of asynchronous individual behavior

(chapter 6.2) into the ANN synthesis.

9.3 ANN synthesis running with different EA

A comparison of different EA performances is a complex issue as each EA needs

its specific control parameters settings which often vary from task to task. Nevertheless,

the purpose of the experiment recorded in Table 17 is not to compare different EA with

each other, but to prove that the ANN synthesis can be successfully done with the use of

the DE (chapter 3.2),PSO (chapter 3.3) or SOMA.

The experiment from chapter 8 was repeated under the same conditions with the

DE or PSO as AP animator as well as ANN learning tools. The recommended control

parameters settings were taken from [74] for the DE and from [75] for the PSO. As parallel

versions of this EA were not available, the experiment was performed on a serial version

of the EA.

Table 17: ANN performance for different EA

 DE PSO

Average time needed for synthesis 3296 s 3876 s

Average number of used AN 15 14

 Both EA were principally able to successfully synthetize the ANN. As can be seen

in Table 17 the DE is slightly faster but the PSO provides fewer ANN. Longer

computational times are understandable as both EA work serially. The DE as well as PSO

provide deeper ANN on average; however, any of these EA are not tuned as suitable as

SOMA in chapters 6.2, 9.1.2 and 9.1.3 .

- 68 -

10 ANN SYNTHESIS FOR PREDICTION

In this chapter the ANN synthesis ability to successfully synthetize the ANN

capable of prediction is tested on a real life problem of a heating plant. The method

described in Chapter 5.3 is applied in order to optimize the Heat Load Prediction (HLP)

function of the heating plant in Komořany (Czech Republic). The function is later used to

predict the heat load of Most agglomeration in order to provide valuable information for

the heating plant control.

Fig. 38: Relationship between a heating plant (red), an agglomeration (green),

atmospheric conditions (blue) and other events (black)

The interface between the heating plant and the agglomeration as can be seen in

Fig. 28 is a highly complex system. The heating plant provides heat in the form of hot

water with variable temperature and flow rates for the agglomeration while cooled water

returns with a variable transfer delay. As the flow and temperature are independent

variables set up by the heating plant staff or by an automatic regulator, the only unknown

variable for the interface modeling is the temperature of the returned water. However, the

process of prediction of the returned water temperature is not only affected by the past

values of the input temperature and the flow but also by a set of various external factors.

Undoubtedly, themost important value of the external factor is the past values of

atmospheric temperature. Nevertheless, the weather conditions such as humidity or wind

Heating

plant

Agglomeration

requesting unknown value of

heat load, P?

Heated water

Flow

Cooled water

ϑex
 O t h e

Unknown

Social Errors

- 69 -

speed should also be considered. In addition, different sociological factors, such as time

when people wake-up, can also play significant roles.

In the heating plant located in Komořany, Czech Republic, owned by the United

Energy a.s., the heat load is (48) and it is only predicted on the basis of the atmospheric

temperature and time because the data on humidity and wind speed are not measured or are

unavailable [68]. The complex situation is further complicated by the existence of the

secondary and tertiary distribution networks (illustrated in Fig. 39 published in [76]) and

their interactions with the primary network.

Fig. 39: Basic scheme of the central heating plant system Komořany – Most

The correct approximation of the heating power consumption, dependent on time and

atmospheric temperature, is an important presumption for the heating plant’s successful

control, so the HLP optimization was one of the most important tasks for the National

Research Program II No. 2C06007.

 As the HLP precision of standard prediction methods (described in chapter 10.1)

is considered to be insufficient [77], the ANN can be designed to improve the prediction

accuracy.

- 70 -

10.1 Heat Load Prediction

The heating plant uses (45) to predict the heat load by a sum of time-dependent

and temperature dependent components. [4]

 (,) () ()p ex time temp exf t f t f   (45)

Where

()timef t is the time dependent component,

0t is the time offset,

ex is the outdoor temperature,

()temp exf  is the outdoor temperature

10.1.1 Temperature dependent component

The temperature dependent component is approximated by using the generalized

logistics function.

1

()

()

(1)ex

temp ex

B M v

K A
f A

Qe



 


 



 (46)

Where

A is the lower asymptote,

K is the upper asymptote,

Q is the dependent on the value (0)tempf

B is the growth rate,

v indicates near which asymptote the maximum growth occurs,

M is the time of maximum growth if Q = v.

- 71 -

Fig. 40: Predictive function ftime (t)

10.1.2 Time dependent component

The time dependent component is approximated by a sum of two peak functions.

The Gaussian Hybrid and the truncated exponential function (EGH) [6] were selected as

the most convenient functions. The Gaussian Hybrid and truncated exponential function

are defined as follows:

 22 ()md t t   

2()
() exp() 0 0m

EGH

t t
f t H if d else

d

 
 

(47)

Where

H

 is the peak height,

 is the standard deviation of the parent Gaussian peak,

 is the time constant of the precursor exponential decay,

Lk

 is the parameter of the speed of the fall of the leading trail,

mt is the time of the peak.

- 72 -

Fig. 41: Predictive function fEGH1 (t) for τ=3.6

Fig. 42: Predictive function fEGH2 (t) for τ=-3.0

Than ()timef t is a sum of the two EGH functions:

1 2() () ()time EGH EGHf t f t f t  (48)

1

()

(,) ()

(1)ex

p ex time

B M v

K A
f t f t A

Qe



 


  



(49)

- 73 -

Fig. 43: Predictive function fP (t, ϑex)[kW]

10.2 ANN Synthesis for HLP

The task of the ANN synthesis here is to create an ANN that provides the HLP

with data containing measured heat load, time and external temperature. Data covering the

period from Nov 3, 2009 to Dec 31, 2009 includes 1,416 samples taken in one-hour steps.

The formal HLP function (see chapter 10.1) resulted in 4.28% NRMSD (22) within the

provided data. Therefore, the ANN with the lower NRMSD is desirable.

Fig. 44: Relationship between heating plant (red), ANN (green) and atmospheric

condition (blue)

The used data was normalized into a <0; 1> interval and divided into training,

validation and test sets. The whole experiment was conducted in accordance with rules

proposed in [79].

Heating plant
Komořany

t

P

ϑex

ANN

- 74 -

A simple but effective GFS structure was used for the ANN synthesis during this

experiment:

ex { , , * , * }allGFS AN K K t  (50)

The computation of the CF was extended from (21) to (51) and then normalized again

into (22).

0min (() (()mod 24, ,)p ex

ANN
t

P t f t t ANN  (51)

Where

ANN

is a vector of the ANN structure,

weight and biases,

P is a measured value of head load

In case the best-synthesized ANN does not improve its CF by at least 0,001%, then

the breeding is stopped.

The setting of Asynchronous SOMA used as the EA for AP can be seen in Table

11 while the Table 12 shows the setting of SOMA used for ANN learning.

10.3 Results

In 100 cases AP was always able to synthesize the ANN with the NRMSD =

3.46%; however, final results vary in a number of AN used. On average, the ANN with 31

AN was produced, however, the first 15 AN produced were enough to determine the HLP

function more precisly (see Fig. 52).

One example of the typically obtained ANN structure is shown on the following

pages with different evolution loops depicted in colors (for the evolution loop meaning see

the chapter 5.3.2). Evolution loops are described functionally (52), (54), (56), (58) - (73);

mathematically (53), (55), (57), (59), (91) - (94) and graphically from Fig. 45 to Fig. 51.

- 75 -

 ANN0 = AN[t] +
ex (52)

Fig. 45: First evolution loop of synthetized ANN (52)(in red)

 ()

 ()
 ex (53)

 ANN1 = ANN0 + AN[t] (54)

Fig. 46: Second evolution loop of synthetized ANN (54)(in green)

 ()

 ()

 ()

 ()

 ex

(55)

- 76 -

 ANN2 = ANN1 + AN[AN[t] + t + AN[AN[t]]] (56)

Fig. 47: Third evolution loop of synthetized ANN (56)(in blue)

 ()

 ()

 ()

 ()

 (
 ()

 ()

 (

 ()

 ()

)

 (

 ()

 ()
)

)

 (
 ()

 ()

 (

 ()

 ()
)

 (

 ()

 ()
)

)

 ex

(57)

Mathematical descriptions (91) - (94) of the following four evolution loops (58) -

(61) are included in Appendix III.

- 77 -

 ANN3 = AN[AN[t]] + ANN2 (58)

Fig. 48: Fourth evolution loop of synthetized ANN (58)(in yellow)

 ANN4 = ANN3 + AN[AN[
ex] + AN[

ex] + t] (59)

Fig. 49: Fifth evolution loop of synthetized ANN (59)(in purple)

- 78 -

 ANN5 = AN[AN[AN[t] +
ex]] + ANN4 (60)

Fig. 50: Sixth evolution loop of synthetized ANN (60)(in gray)

 ANN6 = ANN5 + AN[t + AN[t] +
ex] (61)

Fig. 51: Seventh evolution loop of synthetized ANN (61)(in brown)

- 79 -

Twelve evolution loops, which added a less significant AN follow:

 ANN7 = AN[t + AN[AN[
ex]]] + ANN6 (62)

 ANN8 = AN[AN[AN[
ex]] + h] + ANN7 (63)

 ANN9 = AN[AN[t]] + ANN8 (64)

 ANN10 = ANN9 + AN[t] (65)

 ANN11 = AN[
ex] + ANN10 + AN[ANN10] (66)

 ANN12 = AN[t] + ANN11 (67)

 ANN13 = AN[t] + ANN12 (68)

 ANN14 = AN[t] + ANN13 (69)

 ANN15 = AN[t] + ANN14 (70)

 ANN16 = AN[t +
ex] + ANN15 (71)

ANN17 = ANN16 + AN[AN[
ex + AN[ANN16 + t +

ANN16] + t + AN[t] + ANN16 + AN[t] + ANN16]]
(72)

 ANN18 = ANN17 + AN[AN[t +
ex]] (73)

In these cases, AP used 18 sub ANN to form the final ANN. The synthetized ANN

have non-trivial structures, nevertheless, they can be easily simplified, if necessary, by

cutting thelater sub ANN with positive influence on the ANN computation speed. For

example, (41) benefit for the ANN accuracy is only 0.001%. The exponential downgrade

of the migration loop significance can be seen in Fig. 52.

- 80 -

Fig. 52: Exponential downgrade of migration loop significance for precision

10.4 Prediction by Standard Feedforward ANN

In the previous studies [68] Matlab Neural Network Toolbox [80] (Fig. 53) was

used to create the standard feedforward ANN for the HLP and train it with the help of the

BP (Fig. 54).

Fig. 53: Matlab Neural Network Toolbox

- 81 -

Fig. 54: BP regression

Using a comparable number of the ANN Matlab produced a 7% worse one-hidden

layer ANN and a 9% worse two-hidden layer ANN (for the ANN with hidden layers see

Fig. 17) than the experiment in chapter 10.2. Interestingly even ANN learning was slower

as Matlab was not able to parallelize this process between more server cores.

Fig. 55: HLP by standard ANN

- 82 -

10.5 Arithmetical approach to GFS structure formulation

Inspired by [78] the experiment from chapter 10.2 was repeated with a different

GFS setting:

 GFS = {+, *, hTan, t, ϑex, K} (74)

Such approach is partially similar to the F set, whose content was proposed in [25]

(see chapter 5.2). The implementation of (73) produced interesting partially neural

structures, as can be seen for example in Fig. 56.

Fig. 56: ANN resulting from GFS containing arithmetical functions

- 83 -

Nevertheless, the ANN synthetized implementing (73) is of significantly worse quality

than ANN obtained from the experiment in chapter 10.2. This determination is also in

agreement with [41].

10.6 Conclusion

AP was able to synthesize the ANN with the NRMSD 3.46%. This success

represents a 19% improvement in comparison with the commonly used HLP function (49).

The synthesized ANN provides a 7% better result than the HLP function modeling with a

help of the standard ANN organized into layers and taught by the BP and 5% better result

than the ANN optimized via the GA [81] .

Fig. 57: Surface of HLA function provided by synthesized ANN – areas significantly

corrected in comparison with formal function are depicted in red

The application of this method to the real case of the heating plant was possible

only due to a successful distribution method described in chapter 6.2. The algorithm ran on

24 of the Super Micro Server (see Appendix IV). Each core was occupied by two

individuals of the algorithm. In this configuration, one algorithm’s run took approximately

14 minutes, which resulted in the whole experiment lasting less than 24 hours.

- 84 -

The synthesized ANN was used as a part of the National Research Program II No.

2C06007; it successfully defended project the solution and can positively influence a

quality control in the Komořany heating plant (see Fig. 2)

Fig. 58: Predicted and actual curve of agglomeration heat load

AP proved its ability to successfully synthesize the ANN in dynamic and irregular

environments of real life problem situations. The implementation of the presented method

was accepted for publication in [82].

- 85 -

11 ANN SYNTHESIS FOR CLASS CLASSIFICATION

To statistically evaluate the ANN synthesis’ ability to successfully generate the

ANN performing classification, the ANN synthesis was compared with the GPNN solving

the XOR problem in chapter 11.1. Chapter 11.2 describes an example of the ANN

synthesis usage for a real life cancer classification problem and its comparison with other

methods.

11.1 XOR Classification Problem

Inspired by [25] the GPNN was used to solve an XOR classification problem

which is the simplest nonlinearly separable classification problem (see Fig. 59) with a

known minimal network depicted in Fig. 60.

Fig. 59: XOR classification problem

Fig. 60: Minimal XOR solving ANN

- 86 -

 The GPNN was performed with the help of the GPC++ [25] software and minimal

the ANN described in Fig. 61 was found.

Fig. 61: Minimal ANN generated by GPNN that performs the XOR problem

According to [41] the GPNN cannot generate the ANN from Fig. 60 simply

because the P function is only allowed to have two arguments, while for this particular

ANN the output AN has three inputs. To overcome this problem the GPNN has to consider

implementation of another function P2(x1,x2,x3).

On the contrary, the ANN synthesis method (chapter 5.3) can synthesize the AN

with almost unlimited number of inputs and with a usage of the simple GFS it was able to

synthetize the minimal ANN (Fig. 60) nine times out of ten attempts.

11.2 Cancer Classification Problem

Breast cancer diagnosis is a classification problem introduced in [79]. The ANN

tries to classify a tumor as either benign or malignant based on cell descriptions gathered

by a microscopic examination.

Input attributes are, for instance, the clump thickness, the uniformity of cell size

and cell shape, the amount of marginal adhesion, and the frequency of bare nuclei.

The dataset includes 699 examples with 9 inputs and 2 outputs. All inputs are

continuous; 65.5% of the examples are benign. This makes for entropy of 0.93 bits per

example.

This dataset was created based on the "breast cancer Wisconsin" problem from the

UCI repository of machine learning databases originally provided by Dr. William H.

Wolberg from the University of Wisconsin Hospitals, Madison, USA [83].

- 87 -

 For the purpose of the executed experiment cancer1 set was chosen. Based on

[84], four ANN optimization methods provide a dissimilar mean test classification error

dealing with cancer1:

Table 18: ANN mean testing classification error

de Falco et al. [85] 2.46%

Prechelt [79] 1.38%

Brameier and Banzhaf [86] 2.18%

The CMAC NN classifier [84] 3.94%

11.2.1 Experiment Set Up

To synthetize the optimal ANN, AP used the GFS with equal rates of neurons,

connections and inputs:

GFS = {+, AN, K*x0, +, AN, K*x1, +, AN, K*x2, +,

AN, K*x3, +, AN, K*x4, +, AN, K*x5, +, AN, K*x6, +, AN,

K*x7, +, AN, K*x8}

(75)

while the CF was formulated in acordance with (23) and (24).

Such approach ensured finding the best possible ANN as well as ANN with the

minimal structure.

 The setting of Asynchronous SOMA is depicted in Table 11 and Table 12.

11.2.2 Results

During 100 runs of the algorithm ANN structurally described as (76), (77) was

found to be the best solution for the given classification problem with a test classification

error of 1.14%. Two wrongly classified examples within the test set were on positions 81

and 87.

 ANN0 = AN[x5] + x0 + x2 + x3 + AN[x7] (76)

- 88 -

 ANN1 = AN[ANN0 + x3] + x8 (77)

Functions (78) and (79) described the learned ANN, which can be easily tested on

cancer1 publicly provided by [79]:

ANN0 = -2,97309632219583 * AN[-1,46365223054944 * (-

5,03444335192183 * x5 + 1,76603626076413)] + -7,40609983802126 * x0 +

-5,46830267210878 * x2 + -6,94991567402608 * x3 + -5,99052909574962 *

AN[1,59467356605207 * (3,68066486608268 * x7 + -3,61373674292757)]

(78)

ANN1 = -2,83643286341635 * AN[-0,179040669733212 * (ANN0 +

0,796079062345568 * x3 + 0,670777686792787)] + -2,95757076519615 *

x8

(79)

The structural evolution of the resulting ANN can be seen in Fig. 62 and Fig. 63 .

Fig. 62: First evolution loop of the resulting ANN

Fig. 63: Resulting ANN1 structural evolution

- 89 -

11.2.3 Conclusion

AP proves its ability to synthetize and, at the same time, optimize the ANN, which

effectively classifies the given task while its structure is minimized.

The best obtained ANN had even 0.28% better test classification error than the

mean test classification error of the best competing method [79]; however, the ANN (77)

contains only three AN and is totally omitting inputs x1 and x4 causing the ANN’s

inability to extend a performance with respect to cancer2 and cancer3 sets. Nevertheless,

the experiment’s performance ratifies AP as an efficient tool for the ANN synthesis [87].

11.2.4 Terminals Density Comparison for Different GFS

Finally, the experiment from chapter 11.2.1 was repeated with the application of

(80), (81) and (82). To explore the influence of terminals (for terminal meaning see

chapter 4.3). The probability that a position within a vector of an individual is occupied by

the terminal is depicted in

GFSa = {+, AN, K*x0, K*x1, +, AN, K*x2, K*x3, +, AN, K*x4,

+, AN, K*x5, K*x6, +, AN, K*x7, K*x8}
(80)

 GFSb = {+, AN, K*x0, K*x1, K*x2, K*x3, K*x4, +, AN, K*x5,

K*x6, K*x7, K*x8}
(81)

 GFSc = {+, AN, K*x0, K*x1, K*x2, K*x3, K*x4, K*x5, K*x6,

K*x7, K*x8}

(82)

Fig. 64: Probability of terminal occurrence for different GFS

In comparison with (75) the ANN resulting from (81), (82) and (83) show a lower

level of generalization as a number of the employed input was generally smaller.

- 90 -

12 ANN SYNTHESIS SOFTWARE

Software for the ANN synthesis support was developed under .NET Framework

3.5 [88] and source codes were written in C#. The software was used and debugged

performing experiments in chapters 6 to 11.

Input data is supposed to be formatted as a csv file or an Excel sheet. After

opening the file, a user is invited to choose between approximation, prediction or

classification of the problem. The data is then automatically validated in a sense of

consistency, it is normalized and divided into learning, validation and test sets in

accordance with [79].

The experiment is then computed within implicit control parameters proposed and

proved in the practical part of the thesis. The user can also adjust both control parameters

and the GFS content as can be seen, for example, in Fig. 65.

Fig. 65: SOMA controll parameters setting

Technically, all functions contained in the GFS set have to be inherited an from

abstract class APFunction (83).

- 91 -

public abstract class APFunction
{
 public abstract double evaluate(ref Token token);

 public abstract String toString(ref Token token);

 public abstract int countConst(ref Token token);

 public int operNumber;
}

(83)

The particular implementation of (16) by inheritance from (83) and redefinition of

the abstract method evaluate as is described in (84).

public override double evaluate(ref Token token)
{
token.left -= operNumber;

 double sum = AP.next(ref token);

 sum += token.constants[token.conPointer++];

 sum *= token.constants[token.conPointer++];

 return token.constants[token.conPointer++] * (Math.Pow
(Math.E, 2 * sum) - 1) / (Math.Pow(Math.E, 2 * sum) + 1);
}

(84)

In (85) two instances of class Neuron containing (84) an evaluate method

definition are added into the GFS set (together with Plus (19) and WeighInput (20)

instances) is defined as a generic collection List.

List<APFunction> GFS = new List<APFunction>();
GFS.Add(new Plus());
GFS.Add(new Neuron());
GFS.Add(new WeighInput(0, "x1"));
GFS.Add(new Plus());
GFS.Add(new Neuron());
GFS.Add(new WeighInput(1, "x2"));

(85)

- 92 -

The example of the synthetized ANN using the GFS defined in (85) can be seen in

Fig. 66.

Fig. 66: ANN synthetized using (85)

(86) describes a reinforced evolution process of adding a subANN (chapter 5.3.2)

defined as an instance of an APPart class into the GFS. All available input data located in

a dataList is pre-counted and saved to the solved collection in order to boost the ANN

synthesis performance. Then, a new evolution loop is started by a calling static method

DISOMA.start.

apPart = new APPart(new Token(results.finalLeader.position,
oldGFS, null, results.finalLeader.constants), "ANN" +
pocitadlo.ToString());

for (int i = 0; i < dataList.Count; i++)
{
apPart.solved.Add(dataList[i].inputs, AP.evaluate(new
Token(results.finalLeader.position,
GFS,dataList[i].inputs,results.finalLeader.constants)).value);
}

GFS.Add(apPart);

results = DISOMA.start(new AP(GFS, dataList.ToArray(),
dataListValid.ToArray()), specimen, 50, long.MaxValue, 0.01,
3, 0.11, 3);

(86)

- 93 -

 The overrated method costFunction (87) defines the CF described theoretically as

(24) in chapter 5.3.3. The head of the costFunction is prescribed by an interface

CostFunction and needs to be implemented to allow AP to be operated by the EA.

 To prevent exceptions caused by Double type overflowing, an apReturn.value is

tested on a Duble.IsNaN (not a number) condition.

public override Individual costFunction(double[]
position)
 {
 double sum = 0;
 APReturn apReturn = evaluate(new Token(pointers, GFS,
data[0].inputs, position));

 if (data[0].output == 0)
 {
 if (apReturn.value > 0) sum += apReturn.value + 1;
 }
 else
 {
 if (apReturn.value <= 0) sum +=
Math.Abs(apReturn.value) + 1;
 }
 if (Double.IsNaN(apReturn.value)) sum += 10000;

 for (int i = 1; i < data.Length; i++)
 {
 apReturn = evaluate(new Token(pointers, GFS,
data[i].inputs, position));
 if (data[i].output == 0)

 {
 if (apReturn.value > 0) sum += apReturn.value + 1;
 }

 else
 {

 if (apReturn.value <= 0) sum +=
Math.Abs(apReturn.value) + 1;
 }

 if (Double.IsNaN(apReturn.value)) sum += 10000;

 }
 return new Individual(position, sum, apReturn.deep);
 }

(87)

- 94 -

 The complete code of the direct asynchronous SOMA implementation (see chapter

3.4 and 6.2) used within AP for the ANN synthesis can be accessed in Appendix V. Fig.

67 is a screenshot of an asynchronous SOMA result form based on the Windows Form

technology [88].

Fig. 67: Asychronous SOMA results form

To protect SOMA leader position consistency (as can be seen in Fig. 30),

ReaderWriterLock class is used to lock the leader position while a thread is reading this

value:

leaderLock.AcquireReaderLock(Timeout.Infinite);

if (leader.Equals(population[i]))
{
 leaderLock.ReleaseReaderLock();
 continue;
}

(88)

A similar implementation is used in (89) while the thread is attempting to update

the leader position.

- 95 -

leaderLock.AcquireReaderLock(Timeout.Infinite);

if (population[i].costValue < leader.costValue)
{
leaderLock.ReleaseReaderLock();

leaderLock.AcquireWriterLock(Timeout.Infinite);

if (population[i].costValue < leader.costValue)

leader = population[i];

leaderLock.ReleaseWriterLock();

}
else
{
leaderLock.ReleaseReaderLock();
}

(89)

The process of equal distribution of individuals between available processors is

described in (90). This division is by default determined by a numberOfProcessors

obtained from a

 System.Environment.GetEnvironmentVariable("NUMBER_OF_PROCESSORS").

int sequel = 0;

while (true)
{
 individuals[sequel]++;
 sequel++;
 if (sequel == numberOfProcessors) sequel = 0;
 if (individuals.Sum() == NP) break;
}

for (int i = 0; i < numberOfProcessors; i++)
{
 threads[i] = new Thread(new
ParameterizedThreadStart(DISOMAWork));
 threads[i].Start(new Parameters(individuals[i],
random.Next()));
}

for (int i = 0; i < numberOfProcessors; i++)
{
 threads[i].Join();
}

(90)

- 96 -

 The ANN synthesis software can be run on any arbitrary platform. It only requires

installation of .NET Framework 3.5. The ANN synthesis was tested on the Super Micro

server (see Appendix IV).

Fig. 68: ANN synthesis software forms

 Individual instances of the Thread class are automatically operated by the

framework to distribute computation load equally.

Fig. 69: Optimal computation division on eight processors

The obtained results are then saved via an interoperable XML format as can be

seen in Appendix VI.

- 97 -

13 FINAL CONCLUSION

The Neural Network Synthesis was developed on the basis of AP (chapter 4.3) and

SOMA (chapter 3.4) algorithms and theoretically described in chapter 5.3.

The method was successfully tested on the real life problems [67], [76] as well as

on widely recognized benchmark functions [19], [24], [41] with respect to the function

approximation (chapter 8), prediction (chapter 10) and (chapter 11) problems.

The ANN synthesis software was designed based on .NET Framework technology

(chapter 12). The resulting software is capable of automatic synthesis and optimizing the

ANN based on the user-given data within a reasonable time. Such performance has to be

supported by efficiently distributed computation proposed in chapter 6.2 that was

statistically proven in chapter 7.

The ANN synthesis proves to be a useful and efficient tool for nonlinear modeling

in comparison with competing methods [4], [25], [79], [84], [85] and [86] while the

optimal strategy of its control parameter settings (chapter 9.1.2 and 9.1.3) and the GFS

composition were developed (chapter 10.5 and 11.2.4).

The ANN optimized by the ANN synthesis was practically deployed within “The

intelligent system controlling an energetic framework of an urban agglomeration”, the final

technical report of the National Research Program II. These results together with the

theoretical background of the method were also accepted for publication by Springer [82].

Furthermore, the ANN synthesis proves its ability to synthetize smaller ANN than

the GPNN as can be seen in chapter 11.1. Simultaneously, an almost infinitely complex

ANN can be synthetized when using evolution loops (chapter 5.3.2). This process can also

produce an ANN with feedforward branching (for example in (72)), which is a quality

unavailable for the GPNN.

For particular conclusions of experimental results see chapters 7.1, 8.2, 9.1.4, 10.6

and 11.2.3.

- 98 -

14 REFERENCES

[1] OPLATKOVÁ Z., ZELINKA I. Creating evolutionary algorithms by means of

analytic programming - design of new cost function. In ECMS 2007, European

Council for Modelling and Simulation, 2007, p. 271-276. ISBN/ISSN: 978-0-

9553018-2-7

[2] OPLATKOVÁ Z., ZELINKA I.,. Investigation on Artificial Ant using Analytic

Programming. In Genetic and Evolutionary Computation Conference, 2006, p.

949-950. ISBN/ISSN: 1-59593-186-4.

[3] VAŘACHA P., ZELINKA I., Distributed Self-Organizing Migrating Algorithm

Application and Evolutionary Scanning. In Proceedings of the 22nd European

Conference on Modelling and Simulation ECMS 2008 Nicosia, 2008. p. 201-206.

ISBN/ISSN: 0-9553018-5-8.

[4] KRÁL E., ET AL., Usage of PSO Algorithm for Parameters Identification of

District Heating Network Simulation Model. In 14th WSEAS International

Conference on Systems. Latest Trands on Systems.Volume II, Rhodes, WSEAS

Press (GR) , 2010. p. 657-659. ISBN/ISSN: 978-960-474-214-1.

[5] ČERVENKA M., ZELINKA I., Application of Evolutionary Algorithm on

Aerodynamic Wing Optimisation. In Proceedings of the 2nd European Computing

Conference, Venice, WSEAS Press (IT), 2008, ISBN/ISSN: 978-960-474-002-4

[6] OPLATKOVÁ Z., ZELINKA I., Investigation on Shannon - Kotelnik Theorem

Impact on SOMA Algorithm Performance. In European Simulation

Multiconference, 2005, Riga, ESM , 2005. p. 66-71. ISBN/ISSN: 1-84233-112-4.

[7] ŠENKEŘÍK R., ZELINKA I., Optimization and Evolutionary Control of Chemical

Reactor. In 10th International Research/Expert Conference Trends in the

Development of Machinery and Associated Technology, TMT, Zenica, Bosna and

Hercegovina, 2006, p. 1171-1174. ISBN/ISSN: 9958-617-30-7.

[8] SAXENA S., ET AL., Strategy for a generic resistance to, geminiviruses infecting

tomato and papaya through in silico siRNA search, VIRUS GENES Volume: 43

Issue: 3, 2011, p. 409-434, Springer ISSN: 0920-8569

- 99 -

[9] HOLLAND J. H., Genetic Algorithms, Scientific American, July 1992, p. 44 – 50

[10] BEASLEY D., BULL D. R., MARTIN R. R., An Overview of Genetic

Algorithms, Part 1, Fundamentals, University Computing, 1993, p. 58 – 69

[11] OBITKO M., Genetic Algorithms [online]. 1998 [cit. 2011-03-02]. Operators of

GA. WWW: <http://www.obitko.com/tutorials/genetic-algorithms/operators.php>.

[12] SCHMITT, LOTHAR M., Theory of Genetic Algorithms, Theoretical Computer

Science 259: 1–61, 2001

[13] LAMPINEN J., ZELINKA I., New Ideas in Optimization – Mechanical

Engineering Design Optimization by Differential Devolution, Volume 1. London:

McGraw-hill, 1999, 20 p., ISBN 007-709506-5

[14] ELSAYED S., SACKER R., ESSAM D., Multi-operator based evolutionary

algorithms for solving constrained optimization problems, COMPUTERS &

OPERATIONS RESEARCH Volume: 38 Issue: 12, 2011, p. 1877-1896 ISSN:

0305-0548

[15] PRICE K., STORN R. M., LAMPINEN J. A., Differential Evolution : A Practical

Approach to Global Optimization (Natural Computing Series), Springer; 1 edition,

2005, ISBN: 3540209506

[16] KENNEDY J., EBERHART R., Particle Swarm Optimization. Proceedings of

IEEE International Conference on Neural Networks. IV., 1995 p. 1942–1948.

[17] SHI Y., EBERHART R.C., A modified particle swarm optimizer". Proceedings of

IEEE International Conference on Evolutionary Computation. 1998, p. 69–73.

[18] CHEN S., CHIEN C., Solving the traveling salesman problem based on the genetic

simulated annealing ant colony system with particle swarm optimization

techniques, EXPERT SYSTEMS WITH APPLICATIONS Volume: 38 Issue:

12, 2011, p, 14439-14450 ISSN: 0957-4174

[19] ZELINKA I., Studies in Fuzziness and Soft Computing, New York : Springer-

Verlag, 2004.

[20] KRÁL E., ET AL. Usage of PSO Algorithm for Parameters Identification of

District Heating Network Simulation Model. In 14th WSEAS International

- 100 -

Conference on Systems. Latest Trands on Systems.Volume II Rhodes : WSEAS

Press (GR) , 2010. p. 657-659. ISBN/ISSN: 978-960-474-214-1.

[21] CHRAMCOV B., Heat Demand Forecasting for Concrete District Heating System.

International Journal of Mathematical Models and Methods in Applied Sciences

Volume 4, Issue 4, 2010, ISSN 1998-0140

[22] VAŘACHA P., Innovative strategy of SOMA control parameter setting. In Recent

Researches in Neural Networks, Fuzzy Systems, Evolutionary Computing and

Automation: Proceedings of the 12th WSEAS international conference on Neural

networks, fuzzy systems, evolutionary computing & automation (NNECFSIC´12).

Brasov, WSEAS Press, 2011, p. 70-75. ISBN 978-960-474-292-9

[23] OPLATKOVÁ Z., Metaevolution - Synthesis of Evolutionary Algorithms by

means of Symbolic Regression. Zlín, Czech Republic, 2007. 97 p. Dissertation.

University of Tomas Bata in Zlín.

[24] KOZA J. R., Genetic Programming, MIT Press, 1998, ISBN 0-262-11189-6

[25] KOZA J. R. ET AL., Genetic Programming III; Darwinian Invention and problem

Solving, Morgan Kaufmann Publisher, 1999, ISBN 1-55860-543-6.

[26] GALVAN-LOPEZ E., ET AL., Defining locality as a problem difficulty measure

in genetic programming, GENETIC PROGRAMMING AND EVOLVABLE

MACHINES Volume: 12 Issue: 4 , 2011, p. 365-401 ISSN: 1389-2576

[27] O’NEILL M., RYAN C., Grammatical Evolution. Evolutionary Automatic

Programming in an Arbitrary Language, Kluwer Academic Publishers, 2003,

ISBN 1402074441

[28] O'SULLIVAN J., RYAN C., An Investigation into the Use of Different Search

Strategies with Grammatical Evolution, Proceedings of the 5th European

Conference on Genetic Programming, p.268 - 277, 2002, Springer-Verlag London,

UK, ISBN: 3-540-43378-3.

[29] CHEN L ., Macro-grammatical evolution for nonlinear time series modeling-a

case study of reservoir inflow forecasting, ENGINEERING WITH COMPUTERS

Volume: 27 Issue: 4, 2011, p. 393-404, ISSN: 0177-0667

- 101 -

[30] PELETEIRO M., EPMAS: Evolutionary Programming Multi-Agent Systems

Proceedings of the 24th European Conference on Modeling and Simulation

ECMS, 2010, p. 27-33, ISBN: 978-0-9564944-0-5

[31] OPLATKOVÁ Z, ZELINKA I., Creating evolutionary algorithms by means of

analytic programming - design of new cost function. In ECMS 2007, European

Council for Modelling and Simulation, 2007, p. 271-276. ISBN/ISSN: 978-0-

9553018-2-7

[32] OPLATKOVÁ Z., ZELINKA I., Investigation on Artificial Ant using Analytic

Programming. In Genetic and Evolutionary Computation Conference,. USA : The

Association for Computing Machinery, 2006. ISBN/ISSN: 1-59593-186-4.

[33] Wolfram Mathematica Documentation Center [online]. 2011 [cit. 2011-03-02].

Nonlinear Regression Package. WWW : <http://reference.wolfram.com/

mathematica/NonlinearRegression/guide/NonlinearRegressionPackage.html>.

[34] SIDHU G., ET AL., Determination of volume fraction of bainite in low carbon

steels using artificial neural networks COMPUTATIONAL MATERIALS

SCIENCE Volume: 50 Issue: 12, 2011, ISSN: 0927-025

[35] CEVOLI C., ET AL., Classification of Pecorino cheeses using electronic nose

combined with artificial neural network and comparison with GC-MS analysis of

volatile compounds FOOD CHEMISTRY, Volume: 129 Issue: 3, 2011, p.

1315-1319, ISSN: 0308-8146

[36] SHABANI M.O., MAZAHERY A., The ANN application in FEM modeling of

mechanical properties of Al-Si alloy APPLIED MATHEMATICAL

MODELLING Volume: 35, Issue: 12, 2011, ISSN: 0307-904X

[37] VAŘACHA, P. a ZELINKA, I. Synthesis of artificial neural networks by the

means of evolutionary scanning - preliminary study. In ECMS 2007, Germany :

European Council for Modelling and Simulation , 2007. p. 265-270. ISBN/ISSN:

978-0-9553018-2-7.

[38] BISHOP C.M., Neural Networks for Pattern Recognition, Oxford: Oxford

University Press. 1995, ISBN 0-19-853849-9 (hardback) or ISBN 0-19-853864-2

(paperback)

- 102 -

[39] GURNEY K., An Introduction to Neural Networks London: Routledge. 1997,

ISBN 1-85728-673-1 (hardback) or ISBN 1-85728-503-4 (paperback)

[40] VONK E., ET AL., Integrated Evolutionary Computation with Neural Networks,

Electronic Technology Directions to the year 2000, IEEE Computer Society Press,

1995, p. 135-141

[41] VONK E., JAIN L.C., JOHNSON R.P., Automatic Generation of Neural Network

Architecture Using Evolutionary Computation, Advances in Fuzzy Systems –

Applications and Theory, Volume 14, 1997, World Science, ISBN: 981-02-3106-7

[42] GISARIO A., ET AL., Springback control in sheet metal bending by laser-assisted

bending: Experimental analysis, empirical and neural network modelling, OPTICS

AND LASERS IN ENGINEERING, Volume: 49 Issue: 12, 2011, ISSN: 0143-

8166

[43] LOHMANN R., Structure Evolution in Neural Systems, Dynamic, Genetic and

Chaotic Programming, Chapter 15, 1992, p. 1992

[44] LUND H.H, PARISI D., Simulations with an Evolvable Fitness Formula,

Technical Report PCIA-1-94, C.N.R, 1994, Rome

[45] GARIS H., Genetic Programming Building Nanobrains with Genetically

Programmed Neural Network Modules, IEEE International Joint Conference on

Neural Networks, Volume 3, 1990, New York, p. 511-516

[46] HASSOUN M.H., Fundamentals of Artificial Neural Networks, MIT Press, 1995

[47] MUNRO P.W., Genetic Search for Optimal Representations in Neural Networks,

international Conference on Artificial Neural Nets and Genetic Algorithms

(ANNGA93), 1993, p. 628-634, Innsbruck, Austria

[48] MONTANA D.J., Automated Parameter Tuning for Interpretation of Synthetic

Images, Handbook of Genetic Algorithms, 1991, p. 202-221

[49] MONTANA D.J., DAVIS L., Training Feedforward Neural Networks Using

Genetic Algorithm, Proceedings of the International Conference on Artificial

Intelligence, 1989, p. 762-767

- 103 -

[50] WHITLEY D., STARKWEATHER T., BOGARD C., Genetic Algorithms and

Neural Networks: Optimizing Connections and Connectivity, Parallel Computing,

Volume 14, 1990, p. 347-361

[51] MANIEZZO V., Genetic Evolution of the Topology and Weight Distribution of

Neural Networks, IEEE Transaction on Neural Networks, Volume 5, 1994

[52] DASGUPTA D., McGREGOR D., R., sGA: A Structured Genetic Algorithm,

Technical Report: IKBS-11-93, 1993, Department of Computer Science,

University of Strathclyde, Glasgow

[53] BRAUN H., WEISBOROD J., Evolving Neural Feedforward Networks,

International Conference on Artificial Neural Nets and Genetic Algorithms,

(ANNGA93), 1993, p. 25-32, Innsbruck, Austria

[54] NIX A.E, VOSE M.D., Modelling Genetic Algorithms with Markov Chains,

Annals of Mathematics and Artificial Inteligence, Volume 5, 1992, p. 79-88

[55] TURNER E., JACOBSON D.J., TAYLO, J.W., Genetic Architecture of a

Reinforced, Postmating, Reproductive Isolation Barrier between Neurospora

Species Indicates Evolution via Natural Selection, PLOS GENETICS Volume: 7

Issue: 8, 2011 ISSN: 1553-7390 32

[56] HAPPEL B.L.M., MURRE J.M.J., Deign and Evolution of Modular Neural

Network Architectures, Neural Networks, Volume 7, 1994, p. 985-1004

[57] ANGELIA P.J., SAUNDERS G.M., POLLACK J.M., An Evolutionary Algorithm

that Constructs Recurrent Neural Networks, IEEE Transactions on Neural

Networks, Volume 5, 1994

[58] McDONNELL J.R., WAAGEN D., Evolving Neural Network Connectivity, IEE

International Conference on Neural Networks, 1993, San Francisco

[59] KITANO H., Designing Neural Networks Using Genetic Algorithms with Graph

Generation System, Complex Systems, Volume 4, 1990, p. 461-576

[60] KITANO H., Neurogenetic Learning: An Integrated Method of Designing and

Training Neural Networks Using Genetic Algorithms, Physica D, Volume 75,

1994, p. 225-228

- 104 -

[61] GRUAU F., Genetic Synthesis of Boolean Neural Networks with a Cell Rewiting

Development Process, IEEE International Workshop on Combinations of Genetic

Algorithms and Neural Networks (DOGAN-92), 1992, Baltimore, p. 55-74

[62] GRUAU F., Genetic Microprogramming of Neural Networks, Advances in

Genetic Programming, 1994, MIT Press

[63] BOERS E.J.W., KUIPER H., Biological Metaphors and Design of Modular

Artificial Neural Networks, Technical report, Department of Computer Science

and Experimental and Theoretical Psychology, 1992, Leiden University, The

Netherlands

[64] CANGELOSI A., PARISI D., NOLFI S., Cell Division and Migration on a

‘Genotype’ for Neural Networks, Networks: computation in neural systems

[65] HU X., Applications of the general projection neural network in solving extended

linear-quadratic programming problems with linear constraints,

NEUROCOMPUTING, Volume: 72, 2009, p. 1131-1137 ISSN: 0925-2312

[66] TSOULOS I., GAVRILIS D., GLAVAS E., Neural network construction and

training using grammatical evolution, Neurocomputing Volume 72 Issue 1-3,

December, 2008 Pages 269-277 Publisher Elsevier Science Publishers B. V.

Amsterdam, The Netherlands, The Netherlands ISSN: 0925-2312

[67] TURNER, ET AL, Grammatical Evolution of Neural Networks for Discovering

Epistasis among Quantitative Trait Loci Evolutionary Computation, Machine

Learning and Data Mining in Bioinformatics Book Series Title: Lecture Notes in

Computer Science 2010 Publisher: Springer Berlin / Heidelberg, p: 86 – 97.

[68] VAŘACHA P., Impact of Weather Inputs on Heating Plant - Agglomeration

Modeling. In Proceedings of the 10th WSEAS Ing. Conf. on Neural Networks,

Athens, WSEAS World Science and Engineering Academy and Science , 2009. p.

159-162. ISBN/ISSN: 978-960-474-065-9.

[69] CANTÚ, PAZ, Efficient and Accurate Parallel Genetic Algorithms. Kluwer

Academic Publishers, 162, 2000.

[70] ČERVENKA M. Distributed Evolutionary Algorithms. Zlín, Czech Republic,

2006. 114 p. Dissertation. University of Tomas Bata in Zlín.

- 105 -

[71] XIAO N., ARMSTRONG M., A Specialized Island Model and Its Application in

Multiobjective Optimization. Proceedings of the Genetic and Evolutionary

Computation Conference, pp:1530-540, Chicago, IL, 2003.

[72] VAŘACHA, Pavel. Neural Network Synthesis via Asynchronous Analytic

Programming. In Recent Researches in Neural Networks, Fuzzy Systems,

Evolutionary Computing and Automation: Proceedings of the 12th WSEAS

international conference on Neural networks, fuzzy systems, evolutionary

computing & automation (NNECFSIC´12). Brasov: WSEAS Press, 2011, 2011. s.

70-75. ISBN 978-960-474-292-9

[73] VAŘACHA, Pavel. Innovative strategy of SOMA control parameter setting.

Proceedings of the 12th WSEAS international conference on Neural networks,

fuzzy systems, evolutionary computing & automation (NNECFSIC´12). Brasov:

WSEAS Press, 2011, 2011. s. 70-75. ISBN 978-960-474-292-9

[74] MAGNUS E., HVASS P., Laboratories, Good Parameters for Differential

Evolution Technical Report no. HL1002 2010

[75] KAPP N., SABOURIN R., MAUPIN P., A Dynamic Optimization Approach for

Adaptive Incremental Learning NTERNATIONAL JOURNAL OF

INTELLIGENT SYSTEMS, Volume: 26, Issue: 11, 2001, p. 1101-1124

ISSN: 0884-8173

[76] VAŠEK L., ET. AL., The intelligent system controlling an energetic framework of

an urban agglomeration, final technical report of National Research Program II

No. 2C06007

[77] VAŘACHA P., JAŠEK R., ANN synthesis for an agglomeration heating power

consumption approximation. Proceedings of the 13th WSEAS international

conference on Automatic control, modelling & simulation (ACMOS). Lanzarote:

WSEAS Press, 2011. p. 239-244. ISBN 978-1-61804-004-6

[78] ZELINKA I., VAŘACHA P., Synthesis of artificial neural networks by of

evolutionary methods. In Workshop ETID 2007 in DEXA 2007 , Germany :

IEEE Computer Society, 2007, p. 153-157. ISBN/ISSN: 978-0-7695-2932-5

- 106 -

[79] PRECHELT L., Proben1—A Set of Neural Network Benchmark Problems and

Benchmarking Rules, Universität Karlsruhe, 1994, Germany

[80] MathWorld Works, Neural Network Toolbox, 2011, [cit. 2011-03-02]. Operators

of GA. WWW: <http://www.mathworks.com/products/neuralnet/index.html>.

[81] VAŘACHA P., JAŠEK R., ANN synthesis for an agglomeration heating power

consumption approximation. Proceedings of the 13th WSEAS international

conference on Automatic control, modelling & simulation (ACMOS). Lanzarote:

WSEAS Press, 2011. p. 239-244. ISBN 978-1-61804-004-6

[82] VAŘACHA P., KRÁL E., HORÁK T., Asynchronous Synthesis of a Neural

Network, Handbook of Optimization, Springer, accepted for publication, 2011

[83] MANGARIANM O.L., WOLBERG W.H., Cancer diagnosis via linear

programming, SIAM News, Volume 23, Number 5, 1990, p. 1-18

[84] JUI-YU W., MIMO CMAC neural network classifier for solving classification

problems, Applied Soft Computing, Volume 11, Issue 2, The Impact of Soft

Computing for the Progress of Artificial Intelligence, 2011, p. 2326-2333, ISSN

1568-4946

[85] FALCO D.I., CIOPPA E., Tarantino, Discovering interesting classification rules

with genetic programming, Applied Soft Computing 1, 2002 p. 257–269.

[86] M. Brameier, W. Banzhaf, A comparison of linear genetic programming and

neural networks in medical data mining, IEEE Transactions on Evolutionary

[87] VAŘACHA, Pavel. Neural network synthesis dealing with classification problem.

In Recent Researches in Automatic Control: Proceedings of the 13th WSEAS

international conference on Automatic control, modelling & simulation (ACMOS).

Lanzarote: WSEAS Press, 2011. pp. 377-382. ISBN 978-1-61804-004-6.

[88] Microsof [online]. 2011 [cit. 2011-03-02]. .NET Framework. WWW:

<http://msdn.microsoft.com/cs-cz/netframework

[89] ZELINKA I., [online]. 2011 [cit. 2011-03-02]. Benchmark test function for EA.

WWW: <http://www.fai.utb.cz/people/zelinka/soma/>

- 107 -

15 LIST OF AUTHOR’S PUBLICATION ACTIVITIES

2004

VAŘACHA, P. Paradoxes in mathematical logic. Zlín, 2004. 60 p. Bachelor thesis.

Tomas Bata University in Zlin.

2006

ZELINKA I., ET AL. STRUCTURAL SYNTHESIS OF NEURAL NETWORK

BY MEANS OF ANALYTIC PROGRAMMING. In 12th International Conference on

Soft Computing , ČR : Fakulta strojního inženýrství, VUT Brno , 2006. p. 25-30.

ISBN/ISSN: 80-214-3195-4

VAŘACHA P., Artificial neuron network synthesis using symbolic regression.

Zlín, 2006. 80 p. Master thesis. Tomas Bata University in Zlin.

2007

VAŘACHA P., ZELINKA I., Synthesis of the neural networks by the means of the

symbolic regression method. In WETDAP 2007 - Znalosti 2007 , Ostrava : Vysoká škola

báňská - Technická univerzita , 2007. p. 11-22. ISBN/ISSN: 978-80-248-1332-5.

ZELINKA I., VAŘACHA P., Synthesis of artificial neural networks by of

evolutionary methods. In Workshop ETID 2007 in DEXA 2007 , Germany : IEEE

Computer Society , 2007. s. 153-157. ISBN/ISSN: 978-0-7695-2932-5.

VAŘACHA P., ZELINKA I. Synthesis of artificial neural networks by the means

of evolutionary scanning - preliminary study. In ECMS 2007, Germany: European Council

for Modelling and Simulation, 2007. p. 265-270. ISBN/ISSN: 978-0-9553018-2-7.

VAŘACHA, P., ZELINKA, I. DISTRIBUTED SELF-ORGANIZING

MIGRATING ALGORITHM (DISOMA). In 8 th International Carpathian Control

Conference , . vyd. Košice : Technická univerzita v Košiciach , 2007. s. 738-741.

ISBN/ISSN: 978-80-8073-805-1.

- 108 -

2008

VAŘACHA P., ZELINKA I. Analytic Programming Powered by Distributed Self-

Organizing Migrating Algorithm Application. In IEEE Proceedings 7th International

Conference Computer Information Systems and Industrial Management Applications

Ostrava : IEEE Computer Society , 2008. p. 99-100. ISBN/ISSN: 978-0-7695-3184-7.

VAŘACHA P., ZELINKA I., Distributed Self-Organizing Migrating Algorithm

Application and Evolutionary Scanning. In Proceedings of the 22nd European Conference

on Modelling and Simulation ECMS 2008 Nicosia : European Council of Modelling and

Simulation , 2008. p. 201-206. ISBN/ISSN: 0-9553018-5-8.

VAŘACHA P., Evaluation of mathematics textbooks on TBU in Zlin. Zlín, 2008.

57 p. Bachelor thesis. University of Tomas Bata in Zlín.

2009

VAŘACHA, P. ANN Simulation of Agglomeration/Heating Plant Interface. In

Internet, competitiveness and Organisational Security in Knowledge Society Zlín :

Univerzita Tomáše Bati ve Zlíně , 2009. s. 6. ISBN/ISSN: 978-80-7318-828-3.

VAŘACHA, P. Impact of Weather Inputs on Heating Plant - Agglomeration

Modeling. In Proceedings of the 10th WSEAS Ing. Conf. on Neural Networks Athens :

WSEAS World Science and Engineering Academy and Science , 2009. p. 159-162.

ISBN/ISSN: 978-960-474-065-9.

2010

KRÁL E., ET AL, Using PSO Algorithm for Parameter Identification of

Simulation Model of Heat Distribution and Consumption in Municipal Heating Network.

In Proceedings of the 21st International DAAAM Symposium "Intelligent Manufacturing

& Automation: Focus on Interdisciplinary Solutions" Vienna : DAAAM International

Vienna , 2010. p. 1043 - 1044. ISBN/ISSN: 978-3-901509-73-5.

- 109 -

KRÁL E., ET AL. Usage of PSO Algorithm for Parameters Identification of

District Heating Network Simulation Model. In 14th WSEAS International Conference on

Systems. Latest Trands on Systems.Volume II Rhodes : WSEAS Press (GR) , 2010. p.

657-659. ISBN/ISSN: 978-960-474-214-1.

VAŠEK L., ET AL. Software: Heat consumption predictor. Zlín : Tomas Bata

University in Zlín, Faculty of Applied Informatics, 2010.

VAŠEK L., ET AL Software: Simulation model of heat distribution.. Zlín : Tomas

Bata University in Zlín, Faculty of Applied Informatics , 2010.

VAŘACHA, P. Software: Distributed Asynchronou Self-Organising Migration

Algorithm (DASOMA) Provider. Tomas Bata University in Zlín, Faculty of Applied

Informatics, 2010.

2011

VAŘACHA P., Innovative strategy of SOMA control parameter setting. In Recent

Researches in Neural Networks, Fuzzy Systems, Evolutionary Computing and

Automation: Proceedings of the 12th WSEAS international conference on Neural

networks, fuzzy systems, evolutionary computing & automation (NNECFSIC´12). Brasov:

WSEAS Press, 2011, p. 70-75. ISBN 978-960-474-292-9

CHRAMCOV B., VAŘACHA P., Use of computer simulation with the aim of

achieving more efficient production in manufacturing systems. In 12th WSEAS

International Conference on Automation and information, Brasov, Romania, ISBN 978-

960-474-292-9

VAŘACHA P., Neural Network Synthesis via Asynchronous Analytic

Programming. In Recent Researches in Neural Networks, Fuzzy Systems, Evolutionary

Computing and Automation: Proceedings of the 12th WSEAS international conference on

Neural networks, fuzzy systems, evolutionary computing & automation (NNECFSIC´12).

Brasov: WSEAS Press, 2011, 2011. p. 70-75. ISBN 978-960-474-292-9

- 110 -

VAŘACHA, P., Innovative Strategy of SOMA Control Parameter Setting –

Consecutive Studies, Conference on Process Management and The Use of Modern

Technologies, Tomas Bata University in Zlín, Czech Republic

VAŘACHA P., JAŠEK, R,. ANN synthesis for an agglomeration heating power

consumption approximation. In Recent Researches in Automatic Control: Proceedings of

the 13th WSEAS international conference on Automatic control, modelling & simulation

(ACMOS). Lanzarote: WSEAS Press, 2011. p. 239-244. ISBN 978-1-61804-004-6

VAŘACHA, P. Neural network synthesis dealing with classification problem. In

Recent Researches in Automatic Control: Proceedings of the 13th WSEAS international

conference on Automatic control, modelling & simulation (ACMOS). Lanzarote: WSEAS

Press, 2011. pp. 377-382. ISBN 978-1-61804-004-6.

VAŠEK L., ET. AL., The intelligent system controlling an energetic framework of

an urban agglomeration, final technical report of National Research Program II No.

2C06007

VAŘACHA, P., Strategy of SOMA PRT Control Parameter Setting, Scientific

Journal Trilobit, Tomas Bata University in Zlín, Czech Republic, accepted for publication,

2011

VAŘACHA P., JAŠEK R., KRÁL E., ANN synthesis for an agglomeration

heating power consumption approximation.. International Journal of Mathematical Models

and Methods in Applied. ISSN 1998-0140, accepted for publication 2011

 VAŘACHA P., KRÁL E., HORÁK T., Asynchronous Synthesis of a Neural

Network, Handbook of Optimization, Springer, chapter in the book accepted for

publication 2011

Citations of the previous publications in journals and important conferences

Dolinay, V., Pálka, J., Vašek, L., Pivnièková, L.: Importance of sunny days for the

determination of heat consumption, North Atlantic University Union, International Journal

- 111 -

of Mathematical Models and Methods in Applied Science, London, 2010, 257-264, ISSN

1998-0140

CHRAMCOV, Bronislav. Heat Demand Forecasting for Concrete District Heating

System. International Journal of Mathematical Models and Methods in Applied Sciences

[online]. 2010, Volume 4, Issue 4, [cit. 2010-11-30]. Dostupný z WWW: <

http://www.naun.org/journals/m3as/ >. ISSN 1998-0140.

Vašek, L., Dolinay, V.: Simulation model of heat distribution and consumption in

municipal heating network, North Atlantic University Union, International Journal of

Mathematical Models and Methods in Applied Science, London, 2010, 240-248, ISSN

1998-0140

DOLINAY, Viliam, VASEK, Lubomir. Municipal heating network simulation

experiments based on days with similar temperature. In Recent Researches in Automatic

Control: Proceedings of the 13th WSEAS international conference on Automatic control,

modelling & simulation (ACMOS). Lanzarote: WSEAS Press, 2011. pp. 318-320. ISBN

978-1-61804-004-6.

VASEK, Lubomir, DOLINAY, Viliam. Simulation model of heat distribution and

consumption in practical use. In Recent Researches in Automatic Control: Proceedings of

the 13th WSEAS international conference on Automatic control, modelling & simulation

(ACMOS). Lanzarote: WSEAS Press, 2011. pp. 321-324. ISBN 978-1-61804-004-6.

Dolinay, V.; Vasek, L.; Pivnickova, L.; Palka, J.; Dolinay, J. Sunny Days And

Consumed Energy. 12th International Carpathian Control Conference (ICCC). 2011. Velke

Karlovice. Czech Republic. s. 78-83. IEEE Catalog Number: CFP1142L-CDR. ISBN: 978-

1-61284-359-9

KRÁL, Erik, et al. Usage of peak functions in heat load modeling of district

heating system. In Recent Researches in Automatic Control: Proceedings of the 13th

WSEAS international conference on Automatic control, modeling & simulation

(ACMOS). Lanzarote: WSEAS Press, 2011. pp. 404-406. ISBN 978-1-61804-004-6.

SVĚTINSKÁ, Martina VASEK, Lubomir. Prediction of the intensity of direct

solar irradiation. In Recent Researches in Automatic Control: Proceedings of the 13th

- 112 -

WSEAS international conference on Automatic control, modelling & simulation

(ACMOS.). Lanzarote: WSEAS Press, 2011. pp. 417-420. ISBN 978-1-61804-004-6.

CHRAMCOV B., Utilization of Mathematica environment for designing the

forecast model of heat demand, WSEAS TRANSACTIONS on HEAT and MASS

TRANSFE, WSEAS Press, 2011, ISSN: 1790-504

BUCKY R., CHRAMCOV B., Modelling and Simulation of the Order Realization

in the Serial Production System, INTERNATIONAL JOURNAL OF MATHEMATICAL

MODELS AND METHODS IN APPLIED SCIENCES, WSEAS Press, 2011

List of supervised and successfully defended master and bachelor thesis

No. Authors name Year B/M Title

1 Řehák Martin 2007 BT Security of the Windows XP system

2 Kociánová Gabriela 2007 MT Darabase system for the authority of ÚSP

Tichá

3 Šoman Robert 2007 MT Multimedia encyclopedia of machining

technology

4 Dohnal Jiří 2008 BT User guide of content management system

5 Halgaš Rostislav 2008 BT Description of principle measuring surface

material weight and material thickness.

Design of panel display

6 Hmirák Michal 2008 BT 3D visualization of Analytic Programming

7 Molnár Zbyněk 2008 BT 3D visualization of artificial intelligence

8 Hladík Michal 2008 MT Control of Mindstorm NXT robot via

Bluetooth technology

9 Kaspříková Eva 2008 MT Analytic Programming in C#

10 Navrátil Luděk 2008 MT Education support of GIS

- 113 -

11 Novotný Miroslav 2008 MT The GIS as the support of decision-making

at the public administration

12 Malinka Marek 2009 BT View of topology optimization methods

and learning optimization methods of

neural networks

13 Rympler Petr 2009 BT Communication system using Microsoft

.NET

14 Špico Jaromír 2009 BT Data mining in energetic industry

15 Hnilica Marek 2009 MT The use of GPS navigation and digital

communications environment PEGAS-

MATRA for AVL system for the exit of the

HZS ZLK

16 Hvožďara Martin 2010 BT Protection of the enterprise network against

the outer threats

17 Šálek Jiří 2010 BT Biometric identification and RFID in

operational of training polygon of The Fire

Brigade Rescue Corps of the Zlín region

18 Rympler Petr 2010 MT Distributed evolutionary algorithm using

.NET platform

19 Sládek Jan 2010 MT How to build secure PHP applications

20 Stavinoha Zdeněk 2010 MT Implementation of catholic protection

system of piping into GIS of company

Vodochody a kanalizace Vsetín, a.s.

21 Kolek Jan 2011 MT Asynchronous SOMA in Java

22 Malinka Marek 2011 MT Neural network synthesis

23 Semenský Jiří 2011 MT Data mining software tools analysis

- 114 -

16 CURRICULUM VITAE

PERSONAL PROFILE

Name Pavel Vařacha

Up to date photo

Nationality Czech

Date of birth 12 July 1981

Place of birth Uherské Hradiště, Czech Republic

Present address

Na Vyhlídce 1501

686 05 Uh. Hradiště

Czech Republic

Marital status married

Contact
phone: +420 777 567 135

e-mail: varacha@ fai.utb.cz

EDUCATION

1997 - 2001
Technical High School in Zlín, specialization: Technical lyceum GCE

in Czech language, Mathematics, Physics, Programming

2001-2004
TBU in Zlín, Faculty of technology, program Informatics Engineering,

specialization Information technology, bachelor degree.

2004-2006
TBU in Zlín, Faculty of applied informatics, program Informatics

Engineering, specialization Information technology, master degree.

2005-2008 TBU in Zlín, University institute, program Specialization in pedagogy,

- 115 -

specialization Teaching of technical subjects, bachelor degree

2006-present

TBU in Zlín, Faculty of applied informatics, program Chemical and

process engineering, specialization Information technology, doctoral

program

MEMBERSHIP

 IPC member of ECMS 2007 in Prague, Czech Republic

EMPLOYMENT

2006 - present

Lecturer at TBU in Zlín, Faculty of applied informatics

Lectures: .NET technology and C#

Seminars and laboratories: Java, .NET technology and C#,

Geographical Information Systems

Seminars and Laboratories in past: Basic Informatics, Applied

Informatics, Mathematical Informatics

13 master and 10 bachelor thesis successfully supervised

PROJECT

2006 – 2011

National Research Program II No. 2C06007

The intelligent system controlling an energetic framework of an

urban agglomeration

(co-investigator, successfully defended in October 2011)

COMPETITION

2011
Finalist of the Joseph Fourier Price 2011 (French embassy and

Bull s.r.o. contest)

PROFESSIONAL INTERESTS

Artificial intelligence

Nonlinear modeling

Parallel computations

- 116 -

17 APENDIX I TEST FUNCTION VISUALISATION

Appendix I contains 2D and 3D visualizations of the benchmark functions (27) -

(36) used in chapters 7 and 9.1.1. Each function is named in accordance with [89], where

more detailed information and visualizations can be accessed.

Fig. 70: Ackley (27) 3D visualization

Fig. 71: Ackley (27) 2D visualization

- 117 -

Fig. 72: EggHolder (28) 3D visualization

Fig. 73 EggHolder (28) 2D visualization

Fig. 74: Michalewicz (29) 3D visualization

- 118 -

Fig. 75: Michalewicz (29) 2D visualization

Fig. 76: Masters (30) 3D visualization

Fig. 77: Masters (30) 2D visualization

- 119 -

Fig. 78: Michalewicz (31) 3D visualization

Fig. 79: Michalewicz (31) 2D visualization

Fig. 80: Rana (32) 3D visualization

- 120 -

Fig. 81: Rana (32) 2D visualization

Fig. 82: Rastrigin (33) 3D visualization

Fig. 83: Rastrigin (33) 2D visualization

- 121 -

Fig. 84: Rosenbrock (34) 3D visualization

Fig. 85: Rosenbrock (34) 2D visualization

Fig. 86: Schwefel (35) 2D visualization

- 122 -

Fig. 87: Schwefel (35) 2D visualization

Fig. 88: SineWave (36) 3D visualization

Fig. 89: SineWave (36) 2D visualization

- 123 -

18 APPENDIX II ADAPTIVE PRT STRATEGY

Appendix II complements results connected with a PRT adaptive strategy study

discussed in chapter 9.1.1. The results produced by the test functions (27) - (36) (see also

Appendix I) are depicted in Fig. 90 (for functions, which prove better results for PRT 

<0.005; 0.07>) and Fig. 91 (functions, which prove better results for PRT  <0.1; 0.3>).

Fig. 90: Test functions providing the best results for PRT  <0.005; 0.07>

Fig. 91: Test functions providing the best results for PRT  <0.1; 0.3>

- 124 -

Table 19: Best results for different cost functions and PRT settings

Function, PRT: 0,005 0,01 0,03 0,05 0,07 0,1 0,2 0,3

Ackley (27)
3829,415 3473,757 3369,026 3369,049 3366,263 3366,142 3372,042 3426,071

EggHolder (28)
-54910,7 -58787,2 -60078,2 -59717,5 -65743,9 -68130,2 -59140,2 -53573

Griewangk (29)
21,23287 6,371556 1,112177 1,123117 0,754679 0,625381 0,531147 0,956176

Masters (30)
-59,1238 -68,7604 -73,0045 -72,9118 -78,6305 -83,9028 -76,8502 -69,5354

Michalewicz (31)
-70,2537 -86,3075 -98,671 -98,6997 -99,6452 -98,9955 -96,5857 -94,0024

Rana (32)
-23409,9 -27426,6 -28016,2 -28044,2 -24296,1 -24067 -35200,9 -35238,2

Rastrigin (33)
-818186 -973899 -999334 -999392 -989897 -977084 -923366 -902252

Rosenbrock (34)
12362,34 5749,791 1134,754 1107,528 329,3666 234,7636 140,0399 182,5677

Schwefel (35)
-35958,3 -41214,8 -41894,4 -41894,4 -41778,7 -41423,7 -37932,6 -35622,5

SineWave (36)
-621,61 -639,085 -621,393 -621,886 -560,68 -530,483 -479,456 -537,727

- 125 -

Table 20: Normalized best results for different cost functions and PRT settings

Function, PRT: 0,005 0,01 0,03 0,05 0,07 0,1 0,2 0,3

Ackley (27)
0,137627 0,03197 0,000857 0,000864 3,58E-05 0 0,001753 0,017803

EggHolder (28)
0,194033 0,137134 0,118185 0,123479 0,035025 0 0,131953 0,213668

Griewangk (29)
38,97551 10,99584 1,093916 1,114512 0,420847 0,177416 0 0,80021

Masters (30)
0,29533 0,180476 0,129891 0,130997 0,062838 0 0,084057 0,171238

Michalewicz (31)
0,294961 0,133852 0,009776 0,009488 0 0,006519 0,030703 0,056629

Rana (32)
0,335666 0,221679 0,204946 0,204153 0,310518 0,317019 0,001056 0

Rastrigin (33)
0,181316 0,025508 5,74E-05 0 0,0095 0,022322 0,076072 0,097199

Rosenbrock (34)
87,27727 40,05824 7,103078 6,908659 1,351949 0,676405 0 0,303684

Schwefel (35)
0,141692 0,016222 0 1,03E-06 0,002762 0,011235 0,094565 0,149709

SineWave (36)
0,027344 0 0,027684 0,026912 0,122684 0,169934 0,249778 0,158599

Functions providing better result for PRT  <0.005; 0.07> are marked in red and functions providing better results for PRT  <0.1;

0.3>) are marked in yellow.

- 126 -

Table 21: Average results for different cost functions and PRT settings

Function, PRT 0,005 0,01 0,03 0,05 0,07 0,1 0,2 0,3

Ackley (27)
3895,704 3499,265 3370,977 3370,963 3366,779 3368,098 3416,55 3533,109

EggHolder (28)
-53445,7 -57731,3 -58093,7 -58081,4 -55605,2 -63855,5 -53564,5 -48770,3

Griewangk (29)
25,14932 8,465231 1,191455 1,191591 0,972961 0,872625 0,978322 1,181165

Masters (30)
-55,9965 -66,5651 -70,3361 -70,2997 -71,631 -77,7542 -71,6636 -63,4593

Michalewicz (31)
-67,8213 -84,3369 -97,9382 -97,9319 -98,976 -97,9913 -94,088 -89,7736

Rana (32)
-22468,3 -26526,3 -27303,9 -27274 -23340,3 -21400,8 -32648,8 -33216,1

Rastrigin (33)
-760773 -959770 -997738 -998062 -980095 -958457 -892831 -838771

Rosenbrock (34)
15084,54 7097,92 1369,023 1386,179 471,804 335,933 250,1202 324,7303

Schwefel (35)
-35061,2 -40778,2 -41888,1 -41888,6 -41438,1 -40531,1 -36620,3 -33259

SineWave (36)
-609,751 -634,028 -614,379 -615,275 -549,637 -519,919 -463,773 -442,679

- 127 -

Table 22: Normalized average results for different cost functions and PRT settings

Functin, PRT 0,005 0,01 0,03 0,05 0,07 0,1 0,2 0,3

Ackley (27)
0,157101 0,039351 0,001247 0,001243 0 0,000392 0,014783 0,049403

EggHolder (28)
0,163021 0,095907 0,090232 0,090424 0,129203 0 0,161161 0,23624

Griewangk (29)
27,82032 8,700884 0,365369 0,365525 0,114982 0 0,121126 0,353577

Masters (30)
0,279826 0,143903 0,095404 0,095872 0,07875 0 0,078331 0,183847

Michalewicz (31)
0,31477 0,147905 0,010485 0,010549 0 0,009949 0,049385 0,092976

Rana (32)
0,323572 0,201402 0,177991 0,178892 0,29732 0,355711 0,017078 0

Rastrigin (33)
0,23775 0,038366 0,000324 0 0,018001 0,039682 0,105436 0,1596

Rosenbrock (34)
59,30918 27,37804 4,473462 4,542053 0,88631 0,343087 0 0,298297

Schwefel (35)
0,162988 0,026507 1,16E-05 0 0,010753 0,032406 0,125768 0,206013

SineWave (36)
0,038291 0 0,030992 0,029578 0,133104 0,179976 0,26853 0,301799

Functions providing better result for PRT  <0.005; 0.07> are marked in red and functions providing better results for PRT  <0.1;

0.3>) are marked in yellow.

- 128 -

19 APPENDIX III – ANN SYNTHESIS RESULTS

Appendix III contains mathematical descriptions (91) - (94) of the evolution loops

(58) - (61) discussed in chapter 10.3.

 Mathematical descriptions of (58):

(91)

- 129 -

Mathematical description of (59):

(92)

- 130 -

Mathematical description of (60):

(93)

- 131 -

Mathematical description of (61):

(94)

- 132 -

20 APPENDIX IV – SUPER MICRO SERVER

Appendix IV contains Super Micro server pictures and technical specification.

Fig. 92: Super Micro server

Fig. 93: Super Micro server motherboard

- 133 -

Table 23: Super Micro server technical specification

Product SKUs

AS-1042G-TF
A+ Server 1042G-

TF (Black)

Motherboard

Product SKUs Super H8QGi+-F

Form Factor SWTX

Dimensions
16.48" x 13"

(41.9cm x 33.0cm)

Processor/Chipset

CPU

Quad 1944-pin

Socket G34

Supports up to

four Twelve/Eight-

Core ready AMD

Opteron™ 6100

Series processors

Chipset HT3.0 Link support

System Memory

Memory

Capacity

Thirty-Two DIMM

sockets

Support up to 512GB

DDR3 Reg. ECC

1333/1066/800 MHz

memory or 128GB of

DDR3 Unb.

ECC/non-ECC

memory

Quad channel

memory bus

For Dual or Quad

CPUs: Recommended

that memory be

populated equally in

adjacent memory

banks

Memory Type

Registered ECC or

unb. ECC / non-ECC

DDR3 1333/1066/800

MHz SDRAM 72-bit,

240-pin gold-plated

DIMMs

DIMM Sizes
1GB, 2GB, 4GB,

8GB, 16GB

Memory

Voltage
1.35V or 1.5V

Error

Detection

Corrects single-bit

errors

Detects double-bit

errors (using ECC

- 134 -

memory)

On-Board Devices

SATA
AMD SP5100 (RAID 0,

1, 10)

IPMI

Support for Intelligent

Platform Management

Interface v.2.0

IPMI 2.0 with virtual

media over LAN and

KVM over LAN support

Winbond® WPCM450

BMC

Network

Controllers

Intel® 82576 controller,

Dual-Port

 Gigabit Ethernet

10/100/1000BASE-T

support

VGA
Matrox G200 16MB

DDR2 graphics

Super I/O Winbond® W83527 chip

Input / Output

SATA
6x SATA2.0 (3Gb/s)

Ports

LAN

2 RJ45 LAN ports

1 RJ45 Dedicated

LAN supports IPMI

USB

7x USB 2.0 ports

2x Rear, 4x internal

header, and 1x type A

Keyboard /

Mouse

PS/2 keyboard and

mouse ports

Serial Ports

1x Fast UART 16550

serial port

1x serial port header

Expansion Slots

PCI-Express 1x PCI-e 2.0 x16

System BIOS

BIOS Type

16Mb SPI Flash

ROM with AMI®

BIOS

BIOS Features

Plug and Play (PnP)

DMI 2.3

PCI 2.2

ACPI 2.0

USB Keyboard

Support

SMBIOS 2.3

Chassis

Form Factor 1U Rackmount

Model SC818TQ-1400LPB

http://www.supermicro.com/products/chassis/1U/818/SC818TQ-1400LP.cfm

- 135 -

Dimensions

Height 1.7" (43mm)

Width 17.2" (437mm)

Depth 27.75" (705mm)

Gross Weight 43 lbs (19.5 kg)

Available

Colors
Black

Front Panel

Buttons

Power On/Off button

System Reset button

LEDs

Power LED

Hard drive activity

LED

2x Network activity

LEDs

System Overheat

LED

Ports

2x Front USB Ports

1x Serial COM Port

Drive Bays

Hot-swap

3x 3.5" hot-swap

SATA drive bays

Enterprise SATA

HDD only

recommended

Peripheral Drives

DVD-ROM
Slim DVD-ROM

drive (optional)

Backplane

SAS HDD Backplane

with SES2

System Cooling

Fans

6x heavy-duty

counter-rotating

PWM fans with

optimal fan speed

control

Power Supply

1400W high-

efficiency power

supply with PMBus

AC Input

1200W: 100 - 140V,

50 - 60Hz, 10.5 - 14.7

Amp

1400W: 180 - 240V,

50 - 60Hz, 7.2 - 9.5

Amp

DC Output

+5V standby
4 Amp

DC Output

+12V

100 Amp @ 100-

140V

117 Amp @ 180-

- 136 -

240V

Certification

80 PLUS Gold

Certified

PC Health Monitoring

CPU

Monitors CPU Core

Voltages, +1.8V,

+3.3V, +5V, ±12V,

+3.3V Standby, -12V

Standby, VBAT, HT,

memory, chipset

CPU switching

voltage regulator

FAN

Up to 9-fan status

tachometer

monitoring

Up to nine 4-pin fan

headers

Status monitor for

speed control

3-pin fan support (w/o

speed control)

Low noise fan speed

control

 (4-pin fan only)

Pulse Width

Modulated (PWM)

fan connectors

Temperature

Monitoring for CPU

and chassis

environment

CPU Thermal Trip

Support

Thermal control for

9x fan connectors

I
2
C Temperature

Sensing Logic

LED

CPU / System

Overheat LED

+5V Standby Alert

LED

Other Features

Chassis Intrusion

Detection

Chassis Intrusion

Header

Management

Software

PMI (Intelligent

Platform Management

Interface) 2.0

Super Doctor III

Power ACPI Power

- 137 -

Configurations Management

Wake-On-LAN

(WOL) header

Keyboard Wakeup

from Soft-Off

Power-on mode

control for AC power

loss recovery

Operating Environment / Compliance

RoHS

RoHS Compliant

6/6, Pb Free

Environmental

Specifications

Operating

Temperature:

10°C to 35°C (50°F to

95°F)

Non-operating

Temperature:

 -40°C to 70°C (-

40°F to 158°F)

Operating Relative

Humidity:

 8% to 90% (non-

condensing)

Non-operating

Relative Humidity:

 5% to 95% (non-

condensing)

Regulatory

FCC
Passed to meet FCC

standard requirement

- 138 -

21 APPENTIX V – ASYNCHRONOUS SOMA IN C#

Appendix V contains a complete code of asynchronous SOMA in C# used through

the practical part of the thesis including the reader/writer lock mechanisms and other

thread connected arrangements.

static void DISOMAWork(Object _parameters)
{
 Parameters parameters = (Parameters)_parameters;
 int NP = parameters.NP;
 if (NP < 1) NP = 1;
 Random random = new Random(parameters.seed);
 Individual[] population = new Individual[NP];
 double[] randomPosition;
 double PRT;
 int sum;

 for (int i = 0; i < NP; i++)
 {
 randomPosition = new double[specimen.Length];
 for (int y = 0; y < specimen.Length; y++)
 {
 randomPosition[y] = random.NextDouble() * (specimen[y].max -
specimen[y].min) + specimen[y].min;
 }
 population[i] = model.costFunction(randomPosition);
 bestHistoryLock.AcquireReaderLock(Timeout.Infinite);
 if (population[i].costValue < bestHistory[0])
 {
 bestHistoryLock.ReleaseReaderLock();
 bestHistoryLock.AcquireWriterLock(Timeout.Infinite);
 if (population[i].costValue < bestHistory[0]) bestHistory[0] =
population[i].costValue;
 bestHistoryLock.ReleaseWriterLock();
 }
 else
 {
 bestHistoryLock.ReleaseReaderLock();
 }
 leaderLock.AcquireReaderLock(Timeout.Infinite);

 if (population[i].costValue < leader.costValue)
 {
 leaderLock.ReleaseReaderLock();
 leaderLock.AcquireWriterLock(Timeout.Infinite);
 if (population[i].costValue < leader.costValue) leader =
population[i];

- 139 -

 leaderString1 = AP.toString(new Token(leader.position, AP.GFS, null,
null));
 leaderString2 = AP.toString(new Token(leader.position, AP.GFS, null,
leader.constants));
 leaderValues = new List<double>();

 Double value;

 for (int k = 0; k < AP.dataValid.Length; k++)
 {
 value = AP.evaluate(new Token(leader.position, AP.GFS,
AP.dataValid[k].inputs, leader.constants)).value;
 if(value <= 0) leaderValues.Add(0);
 else leaderValues.Add(1);
 }
 leaderLock.ReleaseWriterLock();
 }
 else
 {
 leaderLock.ReleaseReaderLock();
 }
 }

 double[] distance = new double[specimen.Length];
 int[] PRTVector = new int[specimen.Length];
 double[] jump;
 double coordinate;
 Individual bestClone;
 Individual clone;
 while (true)
 {
 for (int i = 0; i < NP; i++)
 {
 leaderLock.AcquireReaderLock(Timeout.Infinite);
 if (leader.Equals(population[i]))
 {
 leaderLock.ReleaseReaderLock();
 continue;
 }

 for (int y = 0; y < specimen.Length; y++)
 {
 distance[y] = leader.position[y] - population[i].position[y];
 }
 leaderLock.ReleaseReaderLock();
 PRT = 1 / (double)population[i].deep + 1;
 for (int y = 0; y < specimen.Length; y++)
 {
 if (random.NextDouble() > PRT) PRTVector[y] = 0;
 else PRTVector[y] = 1;

- 140 -

 }
 sum = 0;

 for (int k = 0; k <= population[i].deep; k++)
 {
 sum += PRTVector[k];
 }
 while (sum == 0)
 {
 for (int y = 0; y < specimen.Length; y++)
 {
 if (random.NextDouble() > PRT) PRTVector[y] = 0;
 else PRTVector[y] = 1;
 }
 sum = 0;
 for (int k = 0; k <= population[i].deep; k++)
 {
 sum += PRTVector[k];
 }
 }
 bestClone = new Individual(null, population[i].costValue);
 for (int n = 1; n < (mass / step); n++)
 {
 jump = new double[specimen.Length];
 for (int y = 0; y < specimen.Length; y++)
 {
 coordinate = population[i].position[y] + (distance[y] * step *
PRTVector[y] * n);
 if ((coordinate < specimen[y].min) || (coordinate > specimen[y].max))
 {
 coordinate = random.NextDouble() * (specimen[y].max - specimen[y].min)
+ specimen[y].min;
 }
 jump[y] = coordinate;
 }

 clone = model.costFunction(jump);
 if (clone.costValue < bestClone.costValue) bestClone = clone;

 Interlocked.Increment(ref counter);
 Interlocked.Increment(ref interCounter);
 lock ("interCounter")
 {
 if (interCounter >= period * (DISOMA.NP - 1) * mass / step)
 {
 interCounter = 0;
 bestHistoryLock.AcquireWriterLock(Timeout.Infinite);
 leaderLock.AcquireReaderLock(Timeout.Infinite);
 bestHistory.Add(leader.costValue);
 leaderLock.ReleaseReaderLock();

- 141 -

 if (bestHistory[bestHistory.Count - 2] - bestHistory[bestHistory.Count
- 1] < divergence) end = true;
 bestHistoryLock.ReleaseWriterLock();
 }
 }

 if ((Interlocked.Read(ref counter) >= evaluations - numberOfProcessors +
1) || end)
 {
 lock ("finalPopulation")
 {
 finalPopulation.AddRange(population);
 }
 return;
 }
 }

 if (bestClone.costValue < population[i].costValue)
 {
 population[i] = bestClone;
 leaderLock.AcquireReaderLock(Timeout.Infinite);
 if (population[i].costValue < leader.costValue)
 {
 leaderLock.ReleaseReaderLock();
 leaderLock.AcquireWriterLock(Timeout.Infinite);
 if (population[i].costValue < leader.costValue) leader =
population[i];
 leaderString1 = AP.toString(new Token(leader.position, AP.GFS, null,
null));
 leaderString2 = AP.toString(new Token(leader.position, AP.GFS, null,
leader.constants));
 leaderValues = new List<double>();
 Double value;
 for (int k = 0; k < AP.dataValid.Length; k++)
 {
 value = AP.evaluate(new Token(leader.position, AP.GFS,
AP.dataValid[k].inputs, leader.constants)).value;
 if (value <= 0) leaderValues.Add(0);
 else leaderValues.Add(1);
 }
 leaderLock.ReleaseWriterLock();
 }
 else
 {
 leaderLock.ReleaseReaderLock();
 }
 }
 }
}

- 142 -

22 APPENDIX VI – XML RESULT FORMAT

Appendix VI contains a typical example of an asynchronous SOMA result saved in

the standard XML format:

<?xml version="1.0"?>

<Report xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <best>

 <algorithm>SOMA - All To One</algorithm>

 <finalLeader>

 <position>

 <double>0.0025934393220287959</double>

 <double>0.00012487152843137684</double>

 <double>-0.000336864255269125</double>

 <double>-0.00020993156585577457</double>

 .

 .

 .

 <double>0.00069229082615153859</double>

 <double>0.00083273363376060519</double>

 </position>

 <costValue>3368.0650139215759</costValue>

 </finalLeader>

 <finalEvaluations>648060</finalEvaluations>

 <model>costFunctions.Ackley</model>

- 143 -

 <NP>60</NP>

 <step>0.11</step>

 <mass>3</mass>

 <PRT>0.1</PRT>

 <numberOfProcessors>1</numberOfProcessors>

 </best>

 <worst>

 <algorithm>SOMA - All To One</algorithm>

 <finalEvaluations>648060</finalEvaluations>

 <model>costFunctions.Ackley</model>

 <NP>60</NP>

 <step>0.11</step>

 <mass>3</mass>

 <PRT>0.1</PRT>

 <numberOfProcessors>1</numberOfProcessors>

 </worst>

 <everage>3368.0650139215759</everage>

 <solutions>

 <double>3368.0650139215759</double>

 <double>3368.0650139215759</double>

 <double>3368.0650139215759</double>

 </solutions>

</Report>

