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SUMMARY 

This thesis describes a feed forward Artificial Neural Network (ANN) synthesis 

via an Analytic Programming (AP) by means of the ANN creation, learning and 

optimization. This process encompasses four different fields: Evolutionary Algorithms, 

Symbolic Regression, ANN and parallel computing to successfully synthetize a suitable 

ANN within a reasonable time. 

AP performes well in many separate cases together with different evolutionary 

algorithms as its “engine”. Direct asynchronous parallelization of SOMA – Self-

Organizing Migration Algorithm is applied here to boost AP with unusual efficiency. 

Direct asynchronously parallel SOMA distribution is experimentally tested and 

statistically evaluated and its suitability for AP is proved. The thesis describes an ANN 

synthesis used for function approximation and shows that an optimized and a suitable 

ANN is easily found by the presented method while the innovative PRT (SOMA control 

parameter) adaptive strategy is employed. Statistical evaluation of this strategy impact on 

AP performance is evaluated as well as different AP settings. 

The ANN synthesis method is applied to the real life problem of Heat Load 

Prediction function optimization of the heating plant in Komořany (Czech Republic) as 

well as on cancer classification problem and is compared with other methods. 

Software for the ANN synthesis support was developed under .NET Framework 

3.5 and source codes were written in C#.  

ANN synthesis proved to be a useful and efficient tool for nonlinear modeling and 

its results were applied to intelligent system controlling an energetic framework of an 

urban agglomeration. 

Furthermore, the ANN synthesis proved to have the ability to synthetize smaller 

ANN than the Genetic Programming (GP) while simultaneously almost infinitely complex 

ANN can be synthetized by the application of multiple evolution loops. This process can 

also produce ANN with feed forward branching, which is an unavailable quality for the 

GP. 

 



RESUMÉ 

Tato dizertační práce popisuje metodu syntézy dopředných umělých neuronových 

sítí (ANN) pomocí Analytického Programování (AP). Tento proces obsahuje vytvoření, 

učení i optimalizaci ANN. Syntéza ANN v sobě zahrnuje poznatky ze čtyř různých 

odvětví: evoluční algoritmy, symbolická regrese, ANN a paralelní výpočty. Díky tomu je 

možno úspěšně syntetizovat vhodné ANN v přijatelném čase. 

AP podává velmi dobré výsledky za použití nejrůznějších EA jako jeho „pohonu“. 

Přímá asynchronní paralelizace SOMA je zde použita k navýšení výkonu AP 

s neobyčejnou efektivitou.  

Tento přístup je experimentálně testován a jeho statistické zhodnocení opravňuje 

jeho použití s AP. Syntéza ANN je dále úspěšně nasazena k získání optimální ANN pro 

aproximaci dané funkce za použití adaptivní PRT (řídící parametr SOMA) strategie. 

Vyhodnocení dopadu této inovativní strategie společně s různými strategiemi GFS na 

výkon AP dokazuje její značný přínos.  

Syntéza ANN je prakticky aplikována na problémy reálného života, jako je 

optimalizace funkce predikující spotřebu tepla dodávaného teplárnou Komořany, nebo 

klasifikaci rakoviny. Dosažené výsledky jsou porovnány s konkurenčními metodami. 

 V rámci práce bylo vyvinuto softwarové řešení pro podporu syntézy ANN. 

Technologický základ tohoto software je postaven na principech .NET Framework 3.5 a 

jeho zdrojový kód je naprogramován v jazyce C#. 

Syntéza ANN prokázala svoji užitečnost a efektivitu jako nástroj nelineárního 

modelování a její výsledky byly využity v rámci Inteligentního systému pro řízení 

energetického systému městské aglomerace. 

Syntéza ANN navíc ukázala svoji schopnost syntetizovat menší sítě než algoritmus 

Genetického Programování (GP) a přitom současně umožňuje vytvořit téměř nekonečně 

komplexní ANN pomocí většího počtu evolučních kol. Tento proces může také vytvářet 

dopředně rozvětvené ANN, čehož GP není schopno. 
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1 INTRODUCTION  

This thesis describes a feed forward Artificial Neural Network (ANN) synthesis 

(chapter 5.3) via an Analytic Programming (AP) (chapter 4.3) by means of the ANN 

creation, learning and optimization. This process encompasses four different fields: 

Evolutionary Algorithms (EA) (chapter 3), Symbolic Regression (chapter 4), ANN 

(chapter 5) and parallel computing (chapter 6) to successfully synthetize a suitable ANN 

within a reasonable time. 

 

Fig.  1: Neural network synthesis intersection with connected scientific disciplines 

There are well-known methods: Genetic Programming (chapter 4.1) and 

Grammatical Evolution (chapter 4.2), which can both symbolically regress using the 

evolutionary algorithm. However, this thesis is aimed at a more recent and flexible 

procedure called AP. (chapter 4.3) 

AP performed well in many separate cases (for example [1],[2]) together with 

different evolutionary algorithms (EA) as its “engine”. A direct asynchronous 

parallelization of the SOMA – Self-Organizing Migration Algorithm [3] (chapter 6.2) is 

applied here to boost the AP with unusual efficiency. 

SOMA (chapter 3.4) is based on the self-organizing behavior of groups of 

individuals in a “social environment”. It can also be classified as an evolutionary algorithm 

[4], despite the fact that no new generations of individuals are created during a search (due 

to the philosophy of this algorithm). Only the positions of individuals in the searched space 
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are changed during one generation called a “migration loop”. The algorithm was published 

in journals and books, presented at international conferences and symposiums and 

mentioned in numerous introductory presentations, for example [5], [6], [7]. 

The direct asynchronously parallel SOMA distribution is experimentally tested and 

statistically evaluated in chapter 7 and its suitability for the AP is proved. Chapter 8 

describes an ANN synthesis usage for a function approximation and shows that the 

optimized and suitable ANN is easily found by the presented method while the innovative 

PRT (SOMA control parameter) adaptive strategy is employed. The statistical evaluation 

of the impact of this strategy on the AP performance is evaluated in chapter 9.  

In this chapter, a total of 10 ANN synthesis abilities to successfully synthetize the 

ANN capable of predicting are tested on a real life problem of a heating plant. The ANN 

synthesis method is applied in order to optimize the Heat Load Prediction function of the 

heating plant in Komořany (Czech Republic). 

To statistically evaluate the ANN synthesis’ ability to successfully generate an 

ANN performing classification, the ANN synthesis was compared with GP solving an 

XOR problem in chapter 11.1 while the chapter 11.2 describes the ANN synthesis usage 

for a real life cancer classification problem and its comparison with other methods. 

Software for the ANN synthesis support was developed under .NET Framework 

3.5 and source codes were written in C#. The software was used and debugged while 

performing experiments in chapters 6 to 11. 

The ANN synthesis proves to be a useful and efficient tool for nonlinear modeling 

in comparison with competitive methods as described in chapter 13 which contains a final 

conclusion. 

The following chapter 2 introduces the main aims of this thesis. 
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2 THE AIMS OF THE DISSERTATION 

The main aim of the dissertation is a development of the Neural Network 

Synthesis method based on AP (chapter 4.3) and SOMA (chapter 3.4) algorithms; these are 

theoretically described in chapter 5.3 as a useful and efficient tool for nonlinear modeling. 

An important part of this process is the application of the method to the 

specifically chosen tasks of the function approximation, prediction and classification of 

problems considering real life data as well as standardized benchmarks. 

To support the ANN synthesis exploration, software capable of the ANN synthesis 

needs to be developed in order to conduct experiments and measure different approaches 

statistically. The obtained experimental results have to be evaluated in order to find 

optimal parameters for the application of the ANN synthesis to the given tasks.  

These aims are further described as follows: 

 To apply the ANN synthesis for ANN creation and optimization based on the given 

problem of: 

o function approximation (chapter 8) 

o prediction (chapter 10) 

o classification (chapter 11) 

 To statistically explore:  

o different structures of the GFS (chapter 10.5 and 11.2.4) 

o SOMA control parameters setting for AP handling (chapter 9.1.2) 

o SOMA control parameters setting for Kn estimation (chapter 9.1.3) 

o individuals' behavior invoked by the implementation of (25) (chapter 9.2) 

 To develope software: 

o which automatically and efficiently distributes computation to all available 

processors (chapter 7) 

o which will automatically synthetize and/or optimize the ANN based on the  

data provided by the user within a reasonable time (chapter 12) 
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3 EVOLUTIONARY ALGORITHMS 

In recent years, a broad class of algorithms has been developed for stochastic 

optimization, i.e. for optimizing systems where the functional relationship between the 

independent input variables x and the output (objective function) y of a system S is not 

known. Using stochastic optimization algorithms such as Genetic Algorithms (GA) 

(chapter 3.1), Differential Evolution (DE) (chapter 3.2), Particle Swarm Optimization 

(PSO) (chapter 3.3) and SOMA (chapter 3.4) the system is confronted with a random input 

vector and its response is measured. This response is then used by the algorithm to tune the 

input vector in such a way that the system produces the desired output or target value in an 

iterative process. 

 

Fig.  2: Main principle of EA 

3.1 Genetic Algorithms 

GA belong to a group of methods, which are used to solve search and optimization 

problems. [8] The foundations of the GA were laid down in 1975 by John H. Holland [9]. 
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Several different GA versions have been developed; however, the most important GA 

principle, coding of individuals into chromosomes, is common to all of them. [10] 

The chromosome should in some way contain information about the solution, 

which it represents. The most used way of encoding is a binary string. The chromosome 

then could look like this: 

Table  1. GA individuals coded to chromosomes  

Chromosome 1 11101001000 

Chromosome 2 00001010101 

 

Simple generational genetic algorithm pseudo code [11] : 

 Choose the initial population of individuals  

 Evaluate the fitness of each individual in that population  

 Repeat within this generation until termination: (time limit, sufficient fitness achieved, 

etc.) 

 Select the best-fit individuals for reproduction 

 Breed new individuals through crossover and mutation operations to give birth to an 

offspring 

 Evaluate the individual fitness of new individuals 

 Replace the least-fit population with new individuals 

3.1.1 Crossover 

Crossover selects genes from parent chromosomes and creates a new offspring. 

The simplest way how to do this is to randomly choose some crossover point and copy 

everything before this point from the first parent and then copy everything after the 

crossover point from the second parent. 
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Fig.  3: GA crossover of individuals 

3.1.2 Mutation 

Mutation randomly changes the new offspring. 

 

Fig.  4: Mutation of GA individuals 
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3.2 Differential Evolution 

DE has been known in the scientific world since 1995. Fathers of DE are Ken 

Price and Rainer Storm, [13]. DE is robust, fast, and effective with a global optimization 

ability [14].  

Let x ∈ ℝn
 designate a candidate solution (individual) in the population. The basic 

DE algorithm can then be described as follows [15]: 

 Initialize all individuals x with random positions in the search-space. 

 Until a termination criterion is met (e.g. number of iterations performed, or adequate 

fitness reached), repeat the following: 

 For each individual x in the population do: 

 Pick three individuals a, b, and c from the population at random, they must be 

distinct from each other as well as from the individual x 

 Pick a random index R ∈ {1, ..., n}, where the highest possible value n is the 

dimensionality of the problem to be optimized 

 Compute the individual's potentially new position y = [y1, ..., yn] by iterating 

over each i ∈ {1, ..., n} as follows: 

 Pick ri~(0,1) uniformly from the open range (0,1) 

 If (i=R) or (ri<CR) let yi = ai + F(bi − ci), otherwise let yi = xi 

 If (f(y) < f(x)) then replace the individual in the population with the improved 

candidate solution, that is, set x = y in the population. 

 Pick the individual from the population that has the lowest fitness and return it as the 

best found candidate solution. 

Note that F ∈ <0,2> is called the differential weight and CR ∈ <0,1> is called 

the crossover probability, both these parameters are selectable by a practitioner along with 

the population size NP > 3, see below. 
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Fig.  5: DE example 
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3.3 Particles Swarm Optimization 

PSO is originally attributed to Kennedy, Eberhart and Shi (1995) [4], [16] and was 

primarilyintended for social behavior simulation. 

Let S be the number of particles (individuals) in the swarm, each having a position 

x ∈ ℝn
 in the search-space and a velocity vi ∈ ℝn

. Let pi be the best known position of 

particle i and let g be the best known position of the entire swarm. A basic PSO algorithm 

is then [17]: 

 For each particle i = 1, ..., S do: 

 Initialize the particle's position with a uniformly distributed random vector: xi ~ 

U(Low, High), where blo and bup are the lower and upper boundaries of the search-

space. 

 Initialize the particle's best known position to its initial position: pi ← xi 

 If (f(pi) < f(g)) update the swarm's best known position: g ← pi 

 Initialize the particle's velocity: vi ~ (-|Hight - Low|; |Hight - Low|) 

 Until a termination criterion is met (e.g. number of iterations performed, or adequate 

fitness reached), repeat: 

 For each particle i = 1, ..., S do: 

 Pick random numbers: rp, rg ~ (0,1) 

 Update the particle's velocity: vi ← ω vi + φp rp (pi-xi) + φg rg (g-xi) 

 Update the particle's position: xi ← xi + vi 

 If (f(xi) < f(pi)) do: 

 Update the particle's best known position: pi ← xi 

 If (f(pi) < f(g)) update the swarm's best known position: g ← pi 

 Now g holds the best found solution. 

The parameters ω, φp, and φg are selected by the practitioner and control the 

behavior and efficacy of the PSO method. [18] 
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3.4 Self-Organizing Migration Algorithm 

SOMA is based on a self-organizing behavior of groups of individuals in a “social 

environment”. It can also be classified as an evolutionary algorithm [4], despite the fact 

that no new generations of individuals are created during the search (due to the philosophy 

of this algorithm). Only the positions of individuals in the searched space are changed 

during one generation called a “migration loop”. The algorithm was published in journals 

and books, presented at international conferences and symposiums and mentioned in 

numerous introductory presentations, for example [5], [6], [7]. 

Although several different versions of SOMA exist,  this thesis is focused on the 

most common All-to-One version, which is suitable for the asynchronous parallel 

implementation. This chapter describes all basic All-to-One SOMA principles. 

 

Fig.  6: All-to-One SOMA migration loop 

3.4.1 Parameter definition 

Before starting the algorithm, SOMA’s parameters: Step, PathLength, PopSize, 

PRT and Cost Function need to be defined. The Cost Function is simply the function 

which returns a scalar that can directly serve as a measure of fitness. In this case, Cost 

Function is provided by AP. 
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3.4.2 Creation of Population 

Population of individuals is randomly generated. Each parameter for each 

individual has to be chosen randomly from a Specimen which defines a range <Low, 

High> and a value type (integer, double) for each individual’s dimension.  

3.4.3 Migration loop 

Each individual from a population (PopSize) is evaluated by the Cost Function and 

the Leader (individual with the highest fitness) is chosen for the current migration loop. 

Then, all other individuals begin to jump, (according to the Step definition) towards the 

Leader. Each individual is evaluated after each jump by using the Cost Function. Jumping 

continues until a new position defined by the PathLength is reached. The new position xi,j 

after each jump is calculated by (1) as is shown graphically in Fig.  7. Later on, the 

individual returns to the position on its path, where it found the best fitness.  

 

, , , , , ,( )MLnew ML ML ML

i j i j start L j i j start jx x x x tPRTVector    

where  t  <0, by Step to, PathLegth> 

and ML is actual migration loop 

(1) 

Before an individual begins jumping towards the Leader, a random number rnd is 

generated (for each individual’s component), and then compared with PRT. If the 

generated random number is larger than PRT, then the associated component of the 

individual is set to 0 using PRTVector.  

 

rndj < PRT then PRTVectorj = 0 else 1 

where  rnd  <0, 1> 

and  j = 1, … nparam 

(2) 
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Table  2:  An example of PRTVector for 4 parameters individual with PRT = 0.3 

J rndj PRTVector 

1 0.234 1 

2 0,545 0 

3 0,865 0 

4 0,012 1 

  

Fig.  7: PRTVector and its action on individual movement  

Hence, the individual moves in the N-k dimensional subspace which is 

perpendicular to the original space. This fact establishes a higher robustness of the 

algorithm. Earlier experiments demonstrated that without the use of PRT, SOMA tends to 

determine a local optimum rather than a global one. [19] 

3.4.4 Test for stopping condition 

If a stopping condition (time limit, sufficient fitness achieved, number of ML, etc.) 

is archived, stop and recall the best solution(s) found during the search. 

. 
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Fig.  8: SOMA example 
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3.4.5 SOMA Recommended Settings 

Based on a huge number of experiments, the author of SOMA (prof. Zelinka) 

recommended the optimal setting for the algorithm’s control parameters. [19] 

Table  3: SOMA parameters and their recommended domain 

Parameter name Recommended range 

PathLenght <1.1 ;3> 

Step <0.11, PathLength> 

PRT <0,1> 

PopSize <10, up to user> 

As can been seen in Fig.  9 , a PRT parameter was tested within the range  <0.1; 

0.9> and performed best when PRT   <0.1; 0.3>. 

By contrast, this thesis explores SOMA’s behavior within a much wider range 

PRT   <0.005, 0.1>. The reasons why this possibility has never been explored before are 

described in the next chapter. 

 

Fig.  9: SOMA dependence on PRT size [19] 

3.4.6  Null PRTVector Problem Definition 

All the experiments mentioned in [19] were performed on Cost Functions with 100 

parameters. Naturally, the PRTVector’s length (L) was also 100. The probability Po that 

generated the PRTVector is a null vector (vector which contains nulls only, see also (1)) 

that is very low for PRT  <0.1; 0.3>. 



- 31 - 

 P0 = (1 – PRT) (3) 

Table  4: Probability of null PRTVector for L = 100 

PRT P0 

0,005 0,60577 

0,01 0,366032 

0,03 0,047553 

0,05 0,005921 

0,07 0,000705 

0,1 2,66E-05 

0,2 2,04E-10 

0,3 3,23E-16 

 

Fig.  10: Probability of null PRTVector for L = 100 

However, P0 increases dramatically if L or PRT value decreases. 

Table  5: Probability of null PRTVector for L = 25 

PRT P0 

0,005 0,886654 

0,01 0,785678 

0,03 0,481417 

0,05 0,291989 

0,07 0,175223 

0,1 0,079766 

0,2 0,004722 

0,3 0,000192 

0

0,1

0,2

0,3

0,4

0,5

0,6

0 0,1 0,2 0,3

P
0 

PRT 
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Fig.  11: Probability of null PRTVector for L = 25 

If the null PRTVector is generated, the individual does not move during the actual 

migration loop and the Cost Function is always evaluated with the very same parameters. 

For example, 27 evaluations are wasted if Step = 0.11 and PathLength = 3. This waste of 

computation time is highly improbable when L = 100 and also very low if the theoretical 

test functions (see chapter 7) are computed. 

Let us consider a real life problem of the heating-plant parameters optimization. 

[20] (see also chapter 10.1 ). L = 24 means that one parameter for every hour during the 

day has to be optimized. If PRT = 0.1, P0 = 0.79, almost 8% of the Cost Function 

evaluations are wasted. In doing so, one evaluation of the Cost Function is very time 

demanding (even in a range of minutes [21]) as a waste database has to be processed. 

Such conditions approve an institution of a simple null PRTVector repair 

mechanism: 

 
If PRTVector is the null vector,  

a new PRTVector is generated instead. 

(4) 

Consequently, P0 is always 0. Instead of P0, probability P1 of the PRTVector which 

contains 1 only ones can be considered. 

 P1 = (1 – PRT)
L
+ L * PRT * (1 - PRT)

(L - 1)¨ 
(5) 
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Table  6: P1 for L = 100 

PRT P1 

0,005 0,910178 

0,01 0,735762 

0,03 0,194622 

0,05 0,037081 

0,07 0,006013 

0,1 0,000322 

0,2 5,3E-09 

0,3 1,42E-14 

 

Fig.  12: P1 for L = 100 

The application of (4) into SOMA allows the PRT parameter to be set within the 

range (0; 0.1> which was previously unreachable due to high values of P0.  

More detailed information considering the null PRT vector problem can be found 

in [22].  
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4 SYMBOLIC REGRESSION  

The term symbolic regression represents a process in which measured data is fitted 

by a suitable mathematical formula such as x
2
 + C, sin(x) + e

x
, etc. This process is quite 

well-known and can be used when data of an unknown process is obtained.   

There are two well-known methods: GP and GE, which can both symbolically 

regress the usage of the evolutionary algorithm; however, this thesis uses another more 

flexible method called Analytic Programming, which can be implemented on the arbitrary 

EA. A comprehensive survey of the symbolic regression methods can be found in [23]. 

4.1 Genetic Programming 

GP was introduced at the end of the 1980s by John Koza [24], [25]. He suggested a 

modification to a genetic algorithm (see chapter 3.1) and he called it Genetic 

Programming. In this concept a new population is not bred in the common numerical way 

but in the analytical way. It means that the solution of such breeding is not values of 

parameters but the function itself. [26] 

 

Fig.  13: Mutation in Genetic Programming 
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4.2 Grammatical Evolution 

Grammatical evolution (GE) is another tool for doing symbolic regression by 

computers. The advantage of this tool, compared to GP, is that GE can evolve complete 

programs in an arbitrary programming language [27], [28] using a variable-length binary 

string. It uses a Backus Naur Form (BNF) grammar definition for mapping a process to a 

program. GE performs the whole process on variable-length binary strings. The mapping 

process is employed to generate programs in any language by using the binary strings to 

select production rules in the BNF definition. The result is the construction of a 

syntactically correct program from a binary string that can then be evaluated by a fitness 

function. [29] 

4.3 Analytic Programming 

The main principle (core) of AP is based on a discrete set handling (DSH) (Fig.  

14) and is inspired by GE. DSH shows itself as a universal interface between the EA and 

the symbolically solved problem. This is why AP can be used almost by any EA (see 

chapter 3). [30] 

 

Fig.  14: DSH principle [31] 

Briefly stated, in AP, individuals consist of non-numerical expressions (operators, 

functions,…) which are represented within the evolutionary process by their integer 

indexes.  Each index then serves as a pointer into the set of expressions and AP uses it to 

synthesize the resulting function-program for the Cost Function evaluation. 
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All simple functions and operators are in the so called General Function Set (GFS) 

divided into groups according to the number of arguments which can be inserted during the 

evolutionary process to create subsets GFS3, GFS2...GFS0. 

Table  7: Example of GFS and its subsets 

GFS Degree Contains 

GFSall f(x1, x2, x3), +, -, *, /, Power, Abs, Round, Sin, Cos, t, K, τ, 1, 2 

GFS3 f(x1, x2, x3) 

GFS2 +, -, *, /, Power 

GFS1 Abs, Round, Sin, Cos 

GFS0 t, K, τ, 1, 2  

 

 

 

Fig.  15: GFS subsets hierarchy 
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 The functionality of AP can be seen in the specific example in Fig.  16: 

  

Fig.  16: Main principles of AP 

The individual consists of 6 arguments (indices, pointers to GFS). The first index 

is 3, meaning that it is taken from the set of functions GFSall. The function minus has two 

arguments; therefore indexes 7 and 9 are arguments of minus. 

 6 + 7 (6) 

Index 7 is then replaced by Abs and index 9 by Sin.  

 Abs + Sin (7) 

Abs and Sin are one-argument functions. Then, index 9 follows index 11, which is 

replaced by t.  

 Abs(t) + Sin (8) 

Sin is also a one-argument function. Then, after index 11, the individual takes 

index 9, which is replaced by Sin and this Sin becomes an argument of the previous Sin. 

 Sin(Tan) + Sin(Sin( (9) 

The last index is 2, but in this case there is the function Plus. Plus needs two 

arguments to work properly. AP will not allow this, as there is not any other free pointer to 

be used as the argument. Instead of Plus, AP will jump into the subspace, in this case 
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directly to the GFS0arg. In the GFS0arg it finds the second element, which is K. And by doing 

so, we get (10).  

 Abs(t) + Sin(Sin(K)) (10) 

     The number of pointers actually used from an individual before the synthesized 

expression is closed is called depth. This example is based on the relevant and previously 

published work in [23]. 
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5 NEURAL NETWORKS OPTIMISATION 

Artificial neural networks are a widely used tool for nonlinear modeling, function 

approximation, prediction, classification and association [34], [35], [36]. This thesis is 

focused specifically on the feed forward ANN (see Fig.  17). 

The network function f (x) is defined as a composition of other functions gi(x) 

which can further be defined as a composition of other functions. This can be conveniently 

represented as a network structure, with arrows depicting the dependencies between 

variables. The widely used type of composition is the nonlinear weighted sum, 

  ( )   ( ∑    ( ))

 

 (11) 

where F (commonly referred to as the activation function) is some predefined function, 

such as the hyperbolic tangent (see (17)). [38] 

 

Fig.  17: Example of one and two hidden layer ANN 

 What has attracted the most interest in ANN is the possibility of learning (see 

chapter 5.3.1). Given a specific task to solve, and a class of functions, F (in this case GFS, 

see chapter 5.3), learning means using a set of observation to find f* F which solves the 

task in some optimal sense. This entails defining a Cost Function C:Fℝ such that, for the 
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optimal solution f*, C(f*)≤ C(f) f F (i.e., no solution has a cost less than the cost of the 

optimal solution). [39] 

5.1 Evolutionary Designed Neural Network 

The development of evolutionary methods aiming to design the ANN structure and 

weight values experienced boom at the end of the millennium with the introduction of 

sufficiently fast computers into common scientific practice. A comprehensive survey 

considering history of evolutionary computation methods of designing the ANN structure 

can be found in [40]. 

According to [41] these methods can be used in the field of the ANN in several 

ways: 

 to train the weights of the ANN 

 to analyze the ANN 

 to generate the architecture of the ANN 

 to generate both the ANN’s architecture and weights 

The problem often encountered with GA is that they are quite slow in fine-tuning 

once they are close to a solution. Therefore, hybridization of GA and back propagation 

algorithm [42] (BP), where BP is used to fine-tune a near-optimal solution found GA, has 

proven to be successful [43]. In [44] a GA is used to evolve the ecological ANN that can 

adapt to their changing environment. This is achieved by letting the fitness function, which 

in this case is seen as individual for every gene, to co-evolve with the weights of the ANN. 

De Garis [45] uses a method, which is based on the fully self-connected ANN 

modules. It is shown that by using this approach a network can be taught a task even 

though the time-dependent input changes so fast that the ANN never settles down.  

In [46] and [47], GA is used in a fixed three layer feed forward ANN to find the 

optimal mapping from the input to a hidden layer. It is suggested that the hidden target 

space might have more optima than the weight space and that finding the optimum will 

therefore be easier. 
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[48], [49] and [50] used chromosomes with real-valued genes instead of binary 

coded chromosomes. Satisfactory results are reported using a Genitor type Steady State 

Genetic Algorithm with relatively small population size of 50. 

An alternative approach is to use GA, where the topology and weights are encoded 

as variable-length binary strings [51]. In [52] a structured GA is used that simultaneously 

optimizes the ANN topology and the values of weights.  

In [53] feed forward ANN are generated with GA, using a direct encoding scheme 

where every gene in a chromosome represents a connection between two neurons. This 

Approach is also known as restrictive mating. [54] 

Jacob and Rehder [55] use a grammar-based genetic system, where the topology 

creation, neuron functionality and weight creation are split into three different modules, 

each using a separate GA. Similarly, Happel and Murre [56]  report an approach, where 

modular ANN are generated using the direct encoding scheme. 

Angeline at al. [57] implemented a system based on evolutionary programming 

where ANN evolve using both parametric mutation and structural mutation and in [58] 

evolutionary programming is used where the initial network is a three-layered fully 

connected feed forward ANN and the evolutionary programming algorithm is used to 

prune the connection.  

In [54] a modular design approach is used, where a distinction is made between the 

structure, connectivity and weights optimization. Kitano [59], [60] uses a GA-based matrix 

grammar approach with chromosome code grammar rewriting rules that can be used to 

build a connectivity matrix. Gruau [61], [62] uses a graph grammar system called Cellular 

Encoding. The graph grammar rules work directly with neurons and their connections and 

include various kinds of cell divisions and connection pruning rules. Boers and Kuiper [63] 

use a graph grammar system based on a class of fractals called L-system. The 

chromosomes used in the GA code the production rules in this grammar. 

In [64] and [65] a quite different approach is presented. The ANN is used to model 

organisms living in a two-dimensional world in which they can move in search for food 

and water. 
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5.2 ANN Generating by Genetic Programming 

GP offers an approach to the direct encoding scheme. The approach that consists 

of directly encoding ANN in the genetic tree structure used by GP is described in [24].  

According to [25] the ANN topology as well as the values of the weights are 

defined within one structure and no distinction is made between learning of the ANN 

topology and its weights. The terminal set is made up of the data inputs to the network (D) 

and a random floating point constant atom (R). This atom is the source of all the numerical 

constants in the ANN and these constants are used to represent the values of the weights.   

 T = {D, R} (12) 

[25] also proposed a function set F consisting up to six functions; F = {AN, W, +,-, 

* , %} however  [41] proves that GP works much better for  

 F = {AN, W} (13) 

where the arithmetic functions are omitted. 

 The title given to this implementation of the ANN design using GP is the GPNN 

[65]. An example of a chromosome generated by the GPNN is the following ANN, which 

perform the XOR function (see also chapter 11.1). 

 

( AN ( W ( AN ( W -0.65625 D1 ) ( W 1.59375 D0 ) ) 1.01562 ) ) 

( W 1.45312 ( P ( W 1.70312 D1) ( W –0.828125 D0 ) ) ) ) 
(14) 

 The graphical representation of (14) and the corresponding ANN are shown in Fig.  

18. In a similar way, the GE can be used to successfully design the ANN. Such an 

approach can be found for example in [66] or [67].  
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Fig.  18: Translation of a GP chromosome into ANN 

5.3 Neural Network Synthesis 

Development of the ANN synthesis as a successfully and effective method for the 

ANN designing is the main aim of the thesis. This chapter explains what can be understood 

under the term ANN synthesis and how the method works.  

 Clause: Let there be a set of all neural networks with a forward running propagation 

ANNall = {ANN1, ANN2, ..., ANNi, ...} and a set of all functions Fall = {f1, f2, ..., fk, ...}. Then 

for each ANNi  ANNall there exists a function fk  Fall, alternatively a set of functions Fk 

 Fall such, that holds ANNi  fk, alternatively ANNi  Fk.  
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 The Kolmonogorov theorem further shows the validity of the inverse clause: For 

every continuous function fk  Fall there exists ANNi  ANNall such, that holds fk  ANNi. 

 

 Task: Design an algorithm, which will by the means of the symbolic regression 

methods, evolutionarily scan a set Fall in order to find: 

 

a) fk  ANNi 

 

b) fk, whose at least some subfunctions {f1, f2, ...}  {ANNn, ANNm, ...} 

 

which solves the particular problem P with a global error ET < , where  is the user 

defined biased tolerance threshold. 

 

 

Fig.  19: Principle of the evolutionary scanning 

 

AP can perform such evolutionary scanning above Fall set and provide the 

possibility to synthetize the ANN with an almost infinitely variable structure, complexity 

and scope. There is a very easy way of using AP for the ANN synthesis. [68]  The most 

important part is to define items of which the ANN will be composed. In this case the GFS 

contains only three items.   
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 GFSall = {+, AN, K*x} (15) 

Most important item of (15) is an Artificial Neuron (AN) (16) with a weighted 

hyperbolic tangent as a transfer function (17). The weight of output, steepness and 

thresholds are computed as K in AP (18).   

 GFS1 = {AN} (16) 

   ( )   
      (     )   

      (     )   
 (17) 

   ( )     
      (      )   

       (      )   
 (18) 

 

 

Fig.  20: AN transfer function for various w, λ, ϕ settings 

 

Fig.  21: Graphical example of AN 

To allow more inputs into one ANN a simple plus operator (19) is used. 
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 GFS2 = {+} (19) 

 

Fig.  22: Graphical example of plus operator 

Finally, (20) represents the weighted input data. 

 GFS0 = K*x (20) 

 

Fig.  23: Graphical example of weighted input 

Under such circumstances, translation of an individual into the ANN can be easily 

grasped from Fig.  24.  

 

Fig.  24: Translation of an individual into ANN 
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The whole process is cyclical. Individuals provided by the EA are translated into 

ANN. ANN are evaluated in accordance with a training data set and their global errors are 

used to set the fitness of these individuals. Consequently, a new generation is chosen and 

the whole process is repeated in the next migration loop. 

The introduced approach is not the only one possible. Different settings of the GFS 

were successfully used to synthetize the ANN performing classification. [33] 

5.3.1 Constant Processing 

The synthesized ANN, programs or formulas may also contain constants “K”, 

which can be defined in the GFS0 or be a part of other functions included in the GFSall. 

When the program is synthesized, all Ks are indexed, so K1, K2, …, Kn, are obtained and 

then all Kn are estimated. Several versions of AP exist in accordance with Kn estimation. 

[32] In most cases, the Nonlinear Regression of Toolbox of Mathematica software is used. 

This approach provides fast results; however, the source code of this toolbox is not an open 

source and its inner function is not sufficiently clarified, so the resulting algorithm is not 

fully described and this solution cannot be used without the Mathematica software [23]. 

 

Fig.  25: Learning of a synthesized ANN 
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In this case, the asynchronous implementation of SOMA (inside another SOMA, 

which operates AP) is used to estimate Kn. This is especially convenient for the ANN 

synthesis. Kn can be referred to as various weights and thresholds and their optimization by 

SOMA as ANN learning (see Fig.  25). [33] 

5.3.2 Reinforced Evolution 

The Reinforced Evolution is a common part of AP. [32] If the ANN of adequate 

quality cannot be obtained during AP run, AP puts the best ANN it found as a sub ANN 

into the GFS0 and starts over.  

This arrangement considerably improves AP ability to find the ANN with 

desirable parameters. For the purpose of this thesis one AP between the GFS 

reinforcements is called an evolution loop. The term evolution loop should not be mistaken 

for the migration loop. (For the migration loop see the chapter 3.4.3.) 

 

Fig.  26: Example of GFS reinforcement process between two ANN evolution loops 

5.3.3 Cost Function Specification 

As the synthetized ANN are produced to the EA, which needs to evaluate them, 

the Cost Function (CF) has to be specified prior to the beginning of the synthesis.  

The CF specification depends on the purpose of the ANN synthesis (the solved 

problem) and differs for approximation (chapter 8) or prediction (chapter 10) and 

classification (chapter 11).  
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In the case of prediction or approximation, the CF can be defined as a Rood Mean 

Square Divergence (RMSD) (21) or a Normalized RMSD (22) (NRMSD).  

 1
1 2
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 (22) 

For classification tasks, the CF has to be designed as (23). To favor smaller ANN, 

the fraction depth parameter (for depth meaning see chapter 4.3) of an individual can be 

added. 

 
CF = number of wrongly classficed examples + 

depth/100; 
(23) 

 

Fig.  27: Example of CF for classification 

To obtain a smoother profile of the CF (23) can be developed into (24). 

    ∑

   (                               ) 
      (              

                    )   

 

   

  (24) 

For the practical implementation of (24) see (87) in chapter 12. 
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6 DISTRIBUTED COMPUTATION 

The basic idea of most parallel programs is to divide a task into chunks and to 

solve the chunks simultaneously using multiple processors. This divide-and-conquer 

approach can be applied to the EA in many ways and literature contains an inexhaustible 

number of examples of successful parallel implementations. Some parallelization methods 

use a single population, while others divide the population into several relatively isolated 

subpopulations. Some methods can massively exploit parallel computer architectures, 

while others are better suited for computers with fewer but more powerful CPUs. [69] 

A comprehensive survey of the EA distribution can be found in [70] together with 

two following successful Island Model [71] SOMA distributions. 

6.1 Island Distribution of SOMA  

This approach suits parallel SOMA running in the above described cluster 

platform very well. At each computation node, a randomly initialized subpopulation is 

created according to the configuration given by a master node. The node performs one 

SOMA migration and sends a local leader to the server. 

6.1.1 Synchronous Island Model  

When the migration loop is done on all terminals, the server compares cost values 

of all received local leaders and chooses a global leader. This leader is then sent back to 

the terminals and replaces the worst individual in local populations. This process is 

repeated until the termination conditions are satisfied. 

6.1.2 Asynchronous Island Model 

To avoid time delays in the former parallelization approach, the synchronism of 

sharing and selecting the best individual was removed. When the terminal finishes its 

migration loop, the local leader is sent to the server. The task of the master node is to 

maintain the global leader – every time it receives the leader from a subordinated node, it 

compares its cost value with the value of the global leader and stores the better one. 
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Consequently, the global leader is passed back to the terminal node, where next migration 

loop is started. Again, this process is repeated until stop conditions are met. This 

parallelization approach is also used outside the cluster platform.  

6.2 Direct Asynchronous Distribution of SOMA 

Chapter 5.3 explains the process during which a huge number of very different 

ANN can be synthesized. Therefore, an actual population, which needs to be evaluated, 

contains individuals with various numbers for Kn. This means that the algorithm is very 

time demanding and furthermore, computation of every individual consumes different 

amounts of computation time. [3]        

Fortunately, in these days, standard computers are more often equipped with more 

than one processor. However, if the individuals are evenly divided between available 

processors for every migration loop, the large amount of computation time is lost due to 

their unevenly distributed complexity.  

To overcome this set-back, a small but very important change to SOMA 

mechanism was made inspired by the Asynchronous Island Model (chapter 6.1.2). The 

individuals no longer work in the migration loops (see. chapter 3.4.3). On the contrary:  

 
Every individual is compared with the Leader just after it 

finishes its jumping and a new Leader is selected immediately 
(25) 

 

Fig.  28: Asynchronous processing of a migration loop by different threads 
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This makes SOMA distribution work asynchronously. All the individuals do their 

migrations independently and some may even move much faster than others. 

The main reason why SOMA as an algorithm is especially convenient for the 

direct distribution approach lies in the fact that every individual needs to communicate 

with the leader only once per twenty-seven evaluations of the CF (depending on SOMA 

control parameters), so the amount of information transferred between individuals during 

computation is relatively low in comparison with other GA as can be seen in Fig.  29.  

 

Fig.  29: Proportional comparison of transferred information amounts neededed for one 

CF computation within different EA 

As there is no synchronization point anymore to evaluate the stop condition 

(chapter 3.4.4), the condition is evaluated once after n evaluations of the Cost Function. 

 n = period * number of individuals *  mass / step (26) 

The strategy proposed by (25) can result in interesting behavior of individuals 

provided each individual occupies its own thread or process as described in Fig.  30. 

In such a case, a huge individual (the ANN with more AN) moves on a N-k hyper 

plane slower than small agile individuals (the ANN with less AN) as can be seen in Fig.  

31. This can positively influence the ANN optimization.  
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Fig.  30: Asynchronous individual processing 

 

 

Fig.  31: Asynchronous parallel movement of SOMA individuals 
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7 ASYNCHRONOUS SOMA PERFORMANCE 

To statistically explore the efficiency of SOMA direct asynchronous distribution 

proposed in chapter 6.2, ten different test functions were chosen for the experiment. All 

these functions as well as other SOMA control parameter settings were based on [19] and 

used in the same way as done by prof. Zelinka  when initially testing the SOMA.  
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PopSize = 60, PathLength = 3, Step = 0.11, PRT = 0.1 and a number of parameters 

= 100 are constant for all these functions. The number of migration loops and borders of 

the function’s parameters vary in accordance with Table  8. 

2D and 3D visualizations of test functions (27) - (36) are available in Appendix I.  

Table  8: Test functions, ML and borders 

Function ML Low Hight 

Ackley (27) 400 -30 30 

EggHolder (28) 800 -512 512 

Griewangk (29) 200 -100 100 

Masters (30) 400 -5 5 

Michalewicz (31) 200 0 3,1415 

Rana (32) 125 -500 500 

Rastrigin (33) 400 -5,12 5,12 

Rosenbrock (34) 125 -2,048 2,048 

Schwefel (35) 400 -512 512 

SineWave (36) 400 -10 10 

Every test function was optimized 100 times by linear SOMA and 100 times by 

SOMA direct asynchronous parallelization (25) distributed among 8 independent 

processors of a Super Micro server (see Appendix IV). In total 1.1 * 10
9
 Cost Function 

evaluations were computed during 2,000 separate SOMA runs. 

7.1 Results 

Table  9 and Table  10 show the average and best results from the previously 

proposed experiment for all test functions (27) to (36). 
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Table  9: SOMA average results 

Function Linear Asynchronous 

Ackley (27) 3368,098 3370,429 

EggHolder (28) -63855,5 -63605,3 

Griewangk (29) 0,872625 0,885898 

Masters (30) -77,7542 -77,9066 

Michalewicz (31) -97,9913 -97,6051 

Rana (32) -21400,8 -21486,4 

Rastrigin (33) -958457 -950512 

Rosenbrock (34) 335,933 369,7812 

Schwefel (35) -40531,1 -40241,7 

SineWave (36) -519,919 -518,877 

Table  10: SOMA best results 

Function Linear Asynchronous 

Ackley (27) 3366,142 3366,184 

EggHolder (28) -68130,2 -67268,8 

Griewangk (29) 0,625381 0,580481 

Masters (30) -83,9028 -84,3382 

Michalewicz (31) -98,9955 -99,0905 

Rana (32) -24067 -25117,7 

Rastrigin (33) -977084 -968021 

Rosenbrock (34) 234,7636 254,7049 

Schwefel (35) -41423,7 -41305,1 

SineWave (36) -530,483 -530,24 

SOMA parallelization (25) introduced in chapter 6.2 proved to be highly effective. 

Considering the average results (25) was in 2 cases better than linear. Furthermore, for the 

best results (25) was better in 4 cases and its efficiency is almost 100%.  

(25) efficiency for the average results is  98.6%, which is even better than the 

efficiency of the asynchronous island model published in [70]. (25) excellent performance 

convincingly demonstrates its usage as the EA for AP. 
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8 ANN SYNTHESIS FOR FUNCTION APROXIMATION 

In order to statistically evaluate the ANN synthesis’ ability to successfully solve 

the function approximation problem (chapter 5.3), the function (37) proposed by [24] as an 

appropriate approximation benchmark was chosen to be approximated by the ANN.  

 

y = xi
5
 – 2 xi

3
 + xi 

where xi   <-1,by the step 0.04 ,1> 

(37) 

Fig.  32 (automatically generated by ANN synthesis software, see chapter 12) 

shows an example of synthetized ANN approximating (37). The difference between the 

ANN and (37) is depicted as a red area which could be minimized by the process of 

synthesis.  

 

Fig.  32: Approximation of (37) by synthetized ANN 

The CF of the synthetized ANN is mathematically formulated in accordance with 

the chapter 5.3.3 as a RMSD (21). 

AP was executed 100 times (physically on 8 cores of the Super Micro Server, see 

Appendix IV) to produce an ANN with the RMSD  < 0.005. The main intention was to 
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find such an ANN which met this condition and which simultaneously used as few AN as 

possible. 

 The setting of Asynchronous SOMA used as the EA for AP can be seen in Table  

11 and SOMA setting used for ANN learning in Table  12. 

Table  11: Setting of SOMA used as EA for AP 

Number of Individuals 48 

Individual Parameters 100 

Low 0 

High 3 

PathLength 3 

Step 0,11 

PRT 1/ depth 

Divergence 0.01 

Period 1 

 

Table  12: Setting of SOMA used to optimize Kn 

Number of Individuals 
number of Kn * 0.5 

(at least 10) 

Individual Parameters 100 

Low -10 

High 10 

PathLength 3 

Step 0,11 

PRT 1 / number of Kn 

Divergence 0.01 

Period 6 
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8.1 Results 

A total of 921,937 evaluations of AP individual fitness was done during 100 AP 

executions and a separate SOMA run was performed for all of them to set their Kn  value. 

The time needed for all these evaluations was approximately 5 hours and 24 minutes.  

The average time for 1 evaluation was 558 ms, however tmax = 136,369 ms while 

98% of measured times t < tmax / 10. Such results prove that the vast amount of the 

computation time can be saved by asynchronous distribution (26) (see chapter 6.2). The 

way these values increase with a growing number of processors used is described in Table 

13 and Fig.  33. 

 

Table 13: Time saved by asynchronous evaluation 

Number of 

processors used 

Percentage of 

saved time 

2 23,7 % 

4 47,3 % 

8 67,2 % 

16 81,2 % 

 

 

Fig.  33: Time saved by asynchronous evaluation 
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All 100 AP runs successfully synthesized the ANN with the RMSD < 0,005. The 

average number of the AN used was 9. Nevertheless, the optimization task in order to find 

the ANN with the lowest number of AN was  the most successful in 4 cases, which 

employed only 2 AN. All these cases led to a similar ANN structure.  

 

Fig.  34: Synthesized ANN according AN usage 

The example of a successfully optimized ANN is shown here as (38) and its sub 

ANN as (39): 

 ANN0 = x + AN[x] (38) 

 ANN1 = ANN0 + AN[ANN0] + ANN0 (39) 

After successful optimization of Kn by SOMA (38), (39) lead to (40), (41).  

 
ANN0 = -0,972628914257888 * x + 0,960043432203328 * AN[0,303565531015147 

* (7,00172920571721 * x + -0,00454216333835794)] 
(40) 

 
ANN1 = ANN0 + 0,40897485611192 *                                             

AN[-2,77100775198393 * (ANN0 + 0,000305134718869929)] + ANN0 
(41) 

(42) and (43) translated (38), (39) into the mathematical formulation. 
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The ANN described as (38), (39) can be graphically interpreted (Fig. 35).  

 

Fig. 35: Graphical interpretation of resulting ANN 

8.2 Conclusion 

Asynchronous distributions (25) proved to be crucially important for the successful 

AP implementation. For example, if 8 processors are used (as they were in the 

experiment), more than 67% of computation time (which would be wasted otherwise) can 

be saved. With respect to the experiment, approximately 3 hours of computation time were 

saved. 

AP also exercised the ability to synthesize the ANN affectively and quickly with 

the help of asynchronous SOMA distribution (0.5 s for 1 ANN on average).  

The very small ANN containing only two ANs was automatically found and 

solved the given problem with the satisfactory RMSD. This success reveals AP as an 

exceptionally useful tool for ANN synthesis and optimization. [72] 
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9 ANN SYNTHESIS STRATEGY EXPLORATION 

To boost the AP performance and  to obtain better and faster results of the ANN 

synthesis, two adaptive approaches of the PRT setting were developed (chapters 9.1.2 and 

9.1.3) and applied in the experiment described in chapter 8. In order to measure their 

impact on the AP performance statically the very same experiment was performed without 

the proposed improvements and subsequently compared with the original results. 

Chapters 9.2 and 9.3 explore the asynchronous SOMA dependence on the ANN 

synthesis efficiency and the possibility of other EA employment. 

9.1 Adaptive PRT Strategy 

The PRT adaptive approach is possible only with the application of (4) discussed 

in chapter 3.4.6. Experimental confirmation of such an approach is statistically processed 

in chapter 9.1.1.   

9.1.1 Adaptive PRT Strategy Test on Test Functions 

The following experiment was designed to explore SOMA efficiency for PRT  

(0; 0.1> and compare it with results obtained for PRT  <0.1; 0.3>. In other words, this 

experiment measured the dependence of P1 on SOMA behavior (see chapter 3.4.6).  

The main aim of the experiment was to statistically approve the widening of the 

PRT parameter into PRT  (0; 1>  as a necessary assumption for strategies applied in 

chapters 9.1.2 and 9.1.3. 

Test functions (26) - (37) were chosen for the experiment. PopSize = 60, 

PathLength = 3, Step = 0.11 and the number of parameters = 100 are constant for all of 

these functions. (see also Table  3) The number of migration loops and borders of the 

function’s parameters vary in accordance with Table  8.  

For each test function, the optimization (the search for a global minimum) via 

SOMA was repeated 100 times for different PRT = {0.005, 0.01, 0.03, 0.05, 0.07, 0.1, 0.2, 

0.3}. The overall 8000 repetitions were made (test functions * PRT variants * 100).  
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996.3 * 10
6
 evaluations of the Cost Function were computed in total. 

evaluations = (Round(PathLength/Step) * ML * PopSize * 100 * test functions) (44) 

(4) was applied in all cases. 

The final results were normalized: The best case for the given test function  was 

set as 0 (base) and all other cases were expressed as percent divergence. 

Fig.  36 and Fig.  37 graphically show the values describing SOMA behavior based 

on various test functions and PRT settings. More specific results are included in Appendix 

II (see Fig.  90, Fig.  91 and  Table  20, Table  21, Table  22, Table  23).  

 

Fig.  36: Test functions performing better for PRT  <0.005; 0.7> 

 

Fig.  37: Test functions performing better for PRT  <0.1; 0.3> 
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5 out of 10 test functions employed in the experiment (see Fig.  36) achieved better 

results for PRT  <0.005; 0.7> and the other 5 (see Fig.  37) for PRT  <0.1; 0.3>. This 

conclusion represents a significant breakthrough in the PRT setting strategy. The 

previously recommended range PRT  <0.1; 0.3> can be extended to PRT  <0.01; 0.3>; 

furthermore, around 50% of the functions can be optimized by SOMA more effectively if 

PRT  <0.01; 0.7>. An increasing value of P1 can positively influence the obtained results 

[73].  However, SOMA efficiency always decline if P1 > 0.74. 

Based on this conclusion, strategies described in chapters 9.1.2 and 9.1.3 using 

PRT  (0; 1> can be recommended for the experimental validation. 

9.1.2 Adaptive PRT Strategy for AP Handling  

The adaptive strategy for AP handling consists in the replacement of a static PRT 

value by a value which depends inversely on the individual’s depth. This approach ensures 

(together with (4)) that the PRT influence is projected into an active part of the individual.  

 

Table  14: PRT strategy for AP handling 

 PRT = 1/depth PRT = 0.1 

Average time needed for synthesis 194 s 373 s 

Average number of used AN 9 13 

 

A total of 1,189,870 evaluations of AP individual fitness were completed during 

100 AP executions while the PRT was set to 0.1 and the separate SOMA run was 

performed for all of them to set their Kn value. Without the adaptive PRT, AP was able to 

find an optimal ANN in only 1 case in comparison with 4 successful cases in the original 

experiment. 
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9.1.3 Adaptive PRT Strategy for Kn Estimation 

The adaptive strategy for Kn estimation consists in replacement of the static PRT 

value by the value which inversely depends on Kn dimension with the application of (4). 

 

Table  15: PRT strategy for Kn estimation 

 
PRT =                 

1 / number of Kn 
PRT = 0.1 

Average time needed for synthesis 194 s 505 s 

Average number of used AN 9 15 

 

A total of 672,779 evaluations of AP individual fitness were completed during 100 

AP executions and the separate SOMA run was performed for all of them to set their Kn 

value while PRT was set to 0.1 and (4) was omitted. However, under such conditions, in 7 

cases AP was not able to find a sufficient ANN at all. 

9.1.4 Conclusion 

The introduced adaptive PRT strategy proved to be highly effective as its 

application to AP handling works 48% faster and 16% more efficiently (computed on 8 

cores of the Super Micro server, see Appendix IV). For Kn the estimation considered 

strategy works 61% faster and 42% more efficient. Furthermore, without it, AP was not 

able to successfully synthetize the ANN in 7 cases.  

The adaptive PRT strategy proved to be crucial for the successful ANN synthesis. 

9.2 Comparison of synchronous and asynchronous synthesis 

In order to explore the impact of individual’s asynchronous movement (discussed 

in chapter 6.2, see especially Fig.  31) on the ANN synthesis efficiency, the experiment 

considered in chapter 8 was repeated with synchronous behavior of the participated EA 

individuals. 
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Table  16: Synchronous and asynchronous SOMA performance 

 Asynchronous Synchronous 

Average time needed for synthesis 194 s 212 s 

Average number of used AN 9 11 

 The experiment results recorded in Table  16 show that the asynchronous 

movement is 8.5% faster and, interestingly, the synthetized ANN lacks 2 AN on average. 

Such results successfully proved the adaptation of asynchronous individual behavior 

(chapter 6.2) into the ANN synthesis. 

9.3 ANN synthesis running with different EA  

A comparison of different EA performances is a complex issue as each EA needs 

its specific control parameters settings which often vary from task to task. Nevertheless, 

the purpose of the experiment recorded in Table  17  is not to compare different EA with 

each other, but to prove that the ANN synthesis can be successfully done with the use of 

the DE (chapter 3.2),PSO (chapter 3.3) or SOMA. 

The experiment from chapter 8 was repeated under the same conditions with the 

DE or PSO as AP animator as well as ANN learning tools. The recommended control 

parameters settings were taken from [74] for the DE and from [75] for the PSO. As parallel 

versions of this EA were not available, the experiment was performed on a serial version 

of the EA. 

Table  17: ANN performance for different EA 

 DE PSO 

Average time needed for synthesis 3296 s 3876 s 

Average number of used AN 15 14 

 Both EA were principally able to successfully synthetize the ANN. As can be seen 

in Table  17 the DE is slightly faster but the PSO provides fewer ANN. Longer 

computational times are understandable as both EA work serially. The DE as well as PSO 

provide deeper ANN on average; however, any of these EA are not tuned as suitable as 

SOMA in chapters 6.2, 9.1.2 and 9.1.3 . 
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10 ANN SYNTHESIS FOR PREDICTION 

In this chapter the ANN synthesis ability to successfully synthetize the ANN 

capable of prediction is tested on a real life problem of a heating plant. The method 

described in Chapter 5.3 is applied in order to optimize the Heat Load Prediction (HLP) 

function of the heating plant in Komořany (Czech Republic). The function is later used to 

predict the heat load of Most agglomeration in order to provide valuable information for 

the heating plant control.  

 

Fig. 38: Relationship between a heating plant (red), an agglomeration (green), 

atmospheric conditions (blue) and other events (black) 

The interface between the heating plant and the agglomeration as can be seen in 

Fig.  28 is a highly complex system. The heating plant provides heat in the form of hot 

water with variable temperature and flow rates for the agglomeration while cooled water 

returns with a variable transfer delay. As the flow and temperature are independent 

variables set up by the heating plant staff or by an automatic regulator, the only unknown 

variable for the interface modeling is the temperature of  the returned water. However, the 

process of prediction of the returned water temperature is not only affected by the past 

values of the input temperature and the flow but also by a set of various external factors. 

Undoubtedly, themost important value of  the external factor is the past values of 

atmospheric temperature. Nevertheless, the weather conditions such as humidity or wind 
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speed should also be considered. In addition, different sociological factors, such as time 

when people wake-up, can also play significant roles.  

In the heating plant located in Komořany, Czech Republic, owned by the United 

Energy a.s., the heat load is (48) and it is only predicted on the basis of the atmospheric 

temperature and time because the data on humidity and wind speed are not measured or are 

unavailable [68]. The complex situation is further complicated by the existence of the 

secondary and tertiary distribution networks (illustrated in Fig. 39 published in [76]) and 

their interactions with the primary network.  

 

Fig. 39: Basic scheme of the central heating plant system Komořany – Most 

The correct approximation of the heating power consumption, dependent on time and 

atmospheric temperature, is an important presumption for the heating plant’s successful 

control, so the HLP optimization was one of the most important tasks for the National 

Research Program II No. 2C06007. 

 As the HLP precision of standard prediction methods (described in chapter 10.1) 

is considered to be insufficient [77], the ANN can be designed to improve the prediction 

accuracy. 
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10.1 Heat Load Prediction 

The heating plant uses (45) to predict the heat load by a sum of time-dependent 

and temperature dependent components. [4] 

 ( , ) ( ) ( )p ex time temp exf t f t f    (45) 

Where 

( )timef t   is the time dependent component, 

0t   is the time offset, 

ex   is the outdoor temperature, 

( )temp exf    is the outdoor temperature 

10.1.1 Temperature dependent component 

The temperature dependent component is approximated by using the generalized 

logistics function. 

 

1
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(1 )ex

temp ex

B M v

K A
f A

Qe



 


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

 (46) 

Where 

A   is the lower asymptote, 

K   is the upper asymptote, 

Q   is the dependent on the value (0)tempf  

B   is the growth rate, 

v   indicates near which asymptote the maximum growth occurs, 

M   is the time of maximum growth if Q = v. 
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Fig.  40: Predictive function ftime (t) 

10.1.2 Time dependent component 

The time dependent component is approximated by a sum of two peak functions. 

The Gaussian Hybrid and the truncated exponential function (EGH) [6] were selected as 

the most convenient functions. The Gaussian Hybrid and truncated exponential function 

are defined as follows: 

 22 ( )md t t     

2( )
( ) exp( ) 0 0m

EGH

t t
f t H if d else

d

 
   

(47) 

Where 

H
 

 is the peak height, 

   is the standard deviation of the parent Gaussian peak, 

   is the time constant of the precursor exponential decay, 

Lk

 
 is the parameter of the speed of the fall of the leading trail, 

mt   is the time of the peak. 
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Fig.  41: Predictive function fEGH1 (t) for τ=3.6 

 

Fig.  42: Predictive function fEGH2 (t) for τ=-3.0 

 

Than ( )timef t  is a sum of the two EGH functions: 

 

 
1 2( ) ( ) ( )time EGH EGHf t f t f t   (48) 

  

1

( )

( , ) ( )

(1 )ex

p ex time

B M v

K A
f t f t A

Qe



 


  


 

 

(49) 
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Fig.  43: Predictive function fP (t, ϑex )[kW] 

10.2 ANN Synthesis for HLP 

The task of the ANN synthesis here is to create an ANN that provides the HLP 

with data containing measured heat load, time and external temperature. Data covering the 

period from Nov 3, 2009 to Dec 31, 2009 includes 1,416 samples taken in one-hour steps. 

The formal HLP function (see chapter 10.1) resulted in 4.28% NRMSD (22) within the 

provided data. Therefore, the ANN with the lower NRMSD is desirable.  

 

Fig.  44: Relationship between heating plant (red), ANN (green) and atmospheric 

condition (blue) 

The used data was normalized into a <0; 1> interval and divided into training, 

validation and test sets. The whole experiment was conducted in accordance with rules 

proposed in [79].  

Heating plant 
Komořany 

t 

P 

ϑex
 

ANN 
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A simple but effective GFS structure was used for the ANN synthesis during this 

experiment: 

 
ex { ,  ,  * ,  * }allGFS AN K K t   (50) 

The computation of  the CF was extended from (21) to (51) and then normalized again 

into (22). 

 
0min ( ( ) (( )mod 24, , )p ex

ANN
t

P t f t t ANN   (51) 

Where 

ANN  
 

is a vector of the ANN structure, 

weight and biases, 

P   is a measured value of head load 

In case the best-synthesized ANN does not improve its CF by at least 0,001%, then 

the breeding is stopped. 

The setting of Asynchronous SOMA used as the EA for AP can be seen in Table  

11 while the Table  12 shows the setting of SOMA used for ANN learning.  

10.3 Results 

In 100 cases AP was always able to synthesize the ANN with the NRMSD = 

3.46%; however, final results vary in a number of AN used. On average, the ANN with 31 

AN was produced, however, the first 15 AN produced were enough to determine the HLP 

function more precisly (see Fig.  52).  

One example of the typically obtained ANN structure is shown on the following 

pages with different evolution loops depicted in colors (for the evolution loop meaning see 

the chapter 5.3.2). Evolution loops are described functionally (52), (54), (56), (58) - (73); 

mathematically (53), (55), (57), (59), (91) - (94) and graphically from Fig.  45 to Fig.  51. 
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 ANN0 = AN[t] +  
ex  (52) 

 

Fig.  45: First evolution loop of synthetized ANN (52)(in red) 

 

        

       (         )   

       (        )   
   ex  (53) 

 

 ANN1 = ANN0 + AN[t] (54) 

 

Fig.  46: Second evolution loop of synthetized ANN (54)(in green) 

 

       

       (         )   

       (        )   
    

       (         )   

       (        )   

   ex  

(55) 
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 ANN2 = ANN1 + AN[AN[t] + t + AN[AN[t]]] (56) 

 

 

Fig.  47: Third evolution loop of synthetized ANN (56)(in blue) 
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(57) 

 

Mathematical descriptions (91) - (94) of the following four evolution loops (58) - 

(61) are included in Appendix III. 
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 ANN3 = AN[AN[t]] + ANN2 (58) 

 

 

Fig.  48: Fourth evolution loop of synthetized ANN (58)(in yellow) 

 

 ANN4 = ANN3 + AN[AN[
ex ] + AN[

ex ] + t] (59) 

 

 

Fig.  49: Fifth evolution loop of synthetized ANN (59)(in purple) 
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 ANN5 = AN[AN[AN[t] +  
ex ]] + ANN4 (60) 

 

 

Fig.  50: Sixth evolution loop of synthetized ANN (60)(in gray) 

 

 ANN6 = ANN5 + AN[t + AN[t] + 
ex ] (61) 

 

 

Fig.  51: Seventh evolution loop of synthetized ANN (61)(in brown) 
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Twelve evolution loops, which added a less significant AN follow:  

 

 ANN7 = AN[t + AN[AN[
ex ]]] + ANN6 (62) 

 ANN8 = AN[AN[AN[
ex ]] + h] + ANN7 (63) 

 ANN9 = AN[AN[t]] + ANN8 (64) 

 ANN10 = ANN9 + AN[t] (65) 

 ANN11 = AN[
ex ] + ANN10 + AN[ANN10] (66) 

 ANN12 = AN[t] + ANN11 (67) 

 ANN13 = AN[t] + ANN12 (68) 

 ANN14 = AN[t] + ANN13 (69) 

 ANN15 = AN[t] + ANN14 (70) 

 ANN16 = AN[t + 
ex ] + ANN15 (71) 

 

ANN17 = ANN16 + AN[AN[ 
ex  + AN[ANN16 + t + 

ANN16] + t + AN[t] + ANN16 + AN[t] + ANN16]] 
(72) 

 ANN18 = ANN17 + AN[AN[t + 
ex ]] (73) 

 

In these cases, AP used 18 sub ANN to form the final ANN. The synthetized ANN 

have non-trivial structures, nevertheless, they can be easily simplified, if necessary, by 

cutting thelater sub ANN with positive influence on the ANN computation speed. For 

example, (41) benefit for the ANN accuracy is only 0.001%. The exponential downgrade 

of the migration loop significance can be seen in Fig.  52. 
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Fig.  52: Exponential downgrade of migration loop significance for precision 

10.4 Prediction by Standard Feedforward ANN 

In the previous studies [68] Matlab Neural Network Toolbox [80] (Fig.  53) was 

used to create the standard feedforward ANN for the HLP and train it with the help of the 

BP (Fig.  54). 

 

Fig.  53: Matlab Neural Network Toolbox 
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Fig.  54: BP regression 

Using a comparable number of the ANN Matlab produced a 7% worse one-hidden 

layer ANN and a 9% worse two-hidden layer ANN (for the ANN with hidden layers see 

Fig.  17) than the experiment in chapter 10.2. Interestingly even ANN learning was slower 

as Matlab was not able to parallelize this process between more server cores. 

 

Fig.  55: HLP by standard ANN 
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10.5 Arithmetical approach to GFS structure formulation 

Inspired by [78] the experiment from chapter 10.2 was repeated with a different 

GFS setting: 

 GFS = {+, *, hTan, t, ϑex, K} (74) 

Such approach is partially similar to the F set, whose content was proposed in [25] 

(see chapter 5.2). The implementation of (73) produced interesting partially neural 

structures, as can be seen for example in Fig.  56.  

 

Fig.  56: ANN resulting from GFS containing arithmetical functions 
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Nevertheless, the ANN synthetized implementing (73) is of significantly worse quality 

than ANN obtained from the experiment in chapter 10.2. This determination is also in 

agreement with [41]. 

10.6 Conclusion 

AP was able to synthesize the ANN with the NRMSD 3.46%. This success 

represents a 19% improvement in comparison with the commonly used HLP function (49). 

The synthesized ANN provides a 7% better result than the HLP function modeling with a 

help of the standard ANN organized into layers and taught by the BP and 5% better result 

than the ANN optimized via the GA [81] . 

 

Fig.  57: Surface of HLA function provided by synthesized ANN – areas significantly 

corrected in comparison with formal function are depicted in red 

 

The application of this method to the real case of the heating plant was possible 

only due to a successful distribution method described in chapter 6.2. The algorithm ran on 

24 of the Super Micro Server (see Appendix IV). Each core was occupied by two 

individuals of the algorithm. In this configuration, one algorithm’s run took approximately 

14 minutes, which resulted in the whole experiment lasting less than 24 hours. 



- 84 - 

The synthesized ANN was used as a part of the National Research Program II No. 

2C06007; it successfully defended project the solution and can positively influence a 

quality control in the Komořany heating plant (see Fig. 2)  

 

 

Fig.  58: Predicted and actual curve of agglomeration heat load 

 

AP proved its ability to successfully synthesize the ANN in dynamic and irregular 

environments of real life problem situations. The implementation of the presented method 

was accepted for publication in [82]. 
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11 ANN SYNTHESIS FOR CLASS CLASSIFICATION 

To statistically evaluate the ANN synthesis’ ability to successfully generate the 

ANN performing classification, the ANN synthesis was compared with the GPNN solving 

the XOR problem in chapter 11.1. Chapter 11.2 describes an example of the ANN 

synthesis usage for a real life cancer classification problem and its comparison with other 

methods.   

11.1 XOR Classification Problem 

Inspired by [25] the GPNN was used to solve an XOR classification problem 

which is the simplest nonlinearly separable classification problem (see Fig.  59) with a 

known minimal network depicted in Fig.  60. 

 

Fig.  59: XOR classification problem 

 

Fig.  60: Minimal XOR solving ANN 
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 The GPNN was performed with the help of the GPC++ [25] software and minimal 

the ANN described in Fig.  61 was found.  

 

Fig.  61: Minimal ANN generated by GPNN that performs the XOR problem 

According to [41] the GPNN cannot generate the ANN from Fig.  60 simply 

because the P function is only allowed to have two arguments, while for this particular 

ANN the output AN has three inputs. To overcome this problem the GPNN has to consider 

implementation of another function P2(x1,x2,x3).  

On the contrary, the ANN synthesis method (chapter 5.3) can synthesize the AN 

with almost unlimited number of inputs and with a usage of the simple GFS it was able to 

synthetize the minimal ANN (Fig.  60) nine times out of ten attempts. 

11.2 Cancer Classification Problem 

Breast cancer diagnosis is a classification problem introduced in [79]. The ANN 

tries to classify a tumor as either benign or malignant based on cell descriptions gathered 

by a microscopic examination.  

Input attributes are, for instance, the clump thickness, the uniformity of cell size 

and cell shape, the amount of marginal adhesion, and the frequency of bare nuclei. 

The dataset includes 699 examples with 9 inputs and 2 outputs. All inputs are 

continuous; 65.5% of the examples are benign. This makes for entropy of 0.93 bits per 

example. 

This dataset was created based on the "breast cancer Wisconsin" problem from the 

UCI repository of machine learning databases originally provided by Dr. William H. 

Wolberg from the University of Wisconsin Hospitals, Madison, USA [83].  
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 For the purpose of the executed experiment cancer1 set was chosen. Based on 

[84], four ANN optimization methods provide a dissimilar mean test classification error 

dealing with cancer1: 

Table  18: ANN mean testing classification error 

de Falco et al. [85] 2.46% 

Prechelt [79] 1.38% 

Brameier and Banzhaf [86] 2.18% 

The CMAC NN classifier [84] 3.94% 

11.2.1 Experiment Set Up 

To synthetize the optimal ANN, AP used the GFS with equal rates of neurons, 

connections and inputs: 

 

GFS = {+, AN, K*x0, +, AN, K*x1, +, AN, K*x2, +, 

AN, K*x3, +, AN, K*x4, +, AN, K*x5, +, AN, K*x6, +, AN, 

K*x7, +, AN, K*x8} 

(75) 

while the CF was formulated in acordance with (23) and (24). 

Such approach ensured finding the best possible ANN as well as ANN with the 

minimal structure. 

 The setting of Asynchronous SOMA is depicted in Table  11 and Table  12. 

11.2.2 Results 

During 100 runs of the algorithm ANN structurally described as (76), (77) was 

found to be the best solution for the given classification problem with a test classification 

error of 1.14%. Two wrongly classified examples within the test set were on positions 81 

and 87. 

 ANN0 = AN[x5] + x0 + x2 + x3 + AN[x7] (76) 
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 ANN1 = AN[ANN0 + x3] + x8 (77) 

Functions (78) and (79) described the learned ANN, which can be easily tested on 

cancer1 publicly provided by [79]: 

 

ANN0 = -2,97309632219583 * AN[-1,46365223054944 * (-

5,03444335192183 * x5 + 1,76603626076413)] + -7,40609983802126 * x0 + 

-5,46830267210878 * x2 + -6,94991567402608 * x3 + -5,99052909574962 * 

AN[1,59467356605207 * (3,68066486608268 * x7 + -3,61373674292757)] 

(78) 

 

 

ANN1 = -2,83643286341635 * AN[-0,179040669733212 * (ANN0 + 

0,796079062345568 * x3 + 0,670777686792787)] + -2,95757076519615 * 

x8 

(79) 

The structural evolution of the resulting ANN can be seen in Fig.  62 and Fig.  63 . 

 

Fig.  62: First evolution loop of the resulting ANN 

 

Fig.  63: Resulting ANN1 structural evolution 
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11.2.3 Conclusion 

AP proves its ability to synthetize and, at the same time, optimize the ANN, which 

effectively classifies the given task while its structure is minimized. 

The best obtained ANN had even 0.28% better test classification error than the 

mean test classification error of the best competing method [79]; however, the ANN (77) 

contains only three AN and is totally omitting inputs x1 and x4 causing the ANN’s 

inability to extend a performance with respect to cancer2 and cancer3 sets. Nevertheless, 

the experiment’s performance ratifies AP as an efficient tool for the ANN synthesis [87]. 

11.2.4 Terminals Density Comparison for Different GFS  

Finally, the experiment from chapter 11.2.1 was repeated with the application of 

(80), (81) and (82). To explore the influence of terminals (for terminal meaning see 

chapter 4.3). The probability that a position within a vector of an individual is occupied by 

the terminal is depicted in  

 
GFSa = {+, AN, K*x0, K*x1, +, AN, K*x2, K*x3, +, AN, K*x4, 

+, AN, K*x5, K*x6, +, AN, K*x7, K*x8} 
(80) 

 GFSb = {+, AN, K*x0, K*x1, K*x2, K*x3,  K*x4, +, AN, K*x5, 

K*x6, K*x7, K*x8} 
(81) 

 GFSc = {+, AN, K*x0, K*x1, K*x2, K*x3,  K*x4, K*x5, K*x6, 

K*x7, K*x8} 

(82) 

 

Fig.  64: Probability of terminal occurrence for different GFS 

In comparison with (75) the ANN resulting from (81), (82) and (83) show a lower 

level of generalization as a number of the employed input was generally smaller. 
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12 ANN SYNTHESIS SOFTWARE 

Software for the ANN synthesis support was developed under .NET Framework 

3.5 [88] and source codes were written in C#. The software was used and debugged 

performing experiments in chapters 6 to 11. 

Input data is supposed to be formatted as a csv file or an Excel sheet. After 

opening the file, a user is invited to choose between approximation, prediction or 

classification of the problem. The data is then automatically validated in a sense of 

consistency, it is normalized and divided into learning, validation and test sets in 

accordance with [79]. 

The experiment is then computed within implicit control parameters proposed and 

proved in the practical part of the thesis. The user can also adjust both control parameters 

and the GFS content as can be seen, for example, in Fig.  65. 

 

Fig.  65: SOMA controll parameters setting 

Technically, all functions contained in the GFS set have to be inherited an from 

abstract class APFunction (83). 
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public abstract class APFunction 
{ 
  public abstract double evaluate(ref Token token); 
 
  public abstract String toString(ref Token token); 
 
  public abstract int countConst(ref Token token); 
 
  public int operNumber; 
} 

(83) 

The particular implementation of (16) by inheritance from (83) and redefinition of 

the abstract method evaluate as is described in (84).  

 

public override double evaluate(ref Token token) 
{ 
token.left -= operNumber; 
 
  double sum = AP.next(ref token); 
 
  sum += token.constants[token.conPointer++]; 
 
  sum *= token.constants[token.conPointer++]; 
 
  return token.constants[token.conPointer++] * (Math.Pow    
(Math.E, 2 * sum) - 1) / (Math.Pow(Math.E, 2 * sum) + 1); 
} 

(84) 

 

In (85) two instances of class Neuron containing (84) an evaluate method 

definition are added into the GFS set (together with Plus (19) and WeighInput (20) 

instances) is defined as a generic collection List. 

 

List<APFunction> GFS = new List<APFunction>(); 
GFS.Add(new Plus()); 
GFS.Add(new Neuron()); 
GFS.Add(new WeighInput(0, "x1")); 
GFS.Add(new Plus()); 
GFS.Add(new Neuron()); 
GFS.Add(new WeighInput(1, "x2")); 

(85) 
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The example of the synthetized ANN using the GFS defined in (85) can be seen in 

Fig.  66. 

 

Fig.  66: ANN synthetized using (85) 

(86) describes a reinforced evolution process of adding a subANN (chapter 5.3.2) 

defined as an instance of an APPart class into the GFS. All available input data located in 

a dataList is pre-counted and saved to the solved collection in order to boost the ANN 

synthesis performance. Then, a new evolution loop is started by a calling static method 

DISOMA.start. 

  

apPart = new APPart(new Token(results.finalLeader.position, 
oldGFS, null, results.finalLeader.constants), "ANN" + 
pocitadlo.ToString()); 
 
for (int i = 0; i < dataList.Count; i++) 
{                            
apPart.solved.Add(dataList[i].inputs, AP.evaluate(new 
Token(results.finalLeader.position, 
GFS,dataList[i].inputs,results.finalLeader.constants)).value); 
} 
 
GFS.Add(apPart); 
 
results = DISOMA.start(new AP(GFS, dataList.ToArray(), 
dataListValid.ToArray()), specimen, 50, long.MaxValue, 0.01, 
3, 0.11, 3); 

(86) 
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 The overrated method costFunction  (87) defines the CF described theoretically as 

(24) in chapter 5.3.3. The head of  the costFunction is prescribed by an interface 

CostFunction and needs to be implemented to allow AP to be operated by the EA. 

 To prevent exceptions caused by Double type overflowing, an apReturn.value is 

tested on a Duble.IsNaN (not a number) condition. 

 

public override Individual costFunction(double[] 
position) 
 { 
  double sum = 0; 
  APReturn apReturn = evaluate(new Token(pointers, GFS, 
data[0].inputs, position)); 
 
  if (data[0].output == 0) 
  { 
   if (apReturn.value > 0) sum += apReturn.value + 1; 
   } 
  else 
   { 
   if (apReturn.value <= 0) sum += 
Math.Abs(apReturn.value) + 1; 
   } 
  if (Double.IsNaN(apReturn.value)) sum += 10000;    
        
  for (int i = 1; i < data.Length; i++) 
  { 
   apReturn = evaluate(new Token(pointers, GFS, 
data[i].inputs, position)); 
   if (data[i].output == 0) 
 
   { 
    if (apReturn.value > 0) sum += apReturn.value + 1; 
   } 
 
   else 
   { 
 
   if (apReturn.value <= 0) sum += 
Math.Abs(apReturn.value) + 1; 
   } 
 
   if (Double.IsNaN(apReturn.value)) sum += 10000; 
 
  } 
  return new Individual(position, sum, apReturn.deep); 
 } 

(87) 
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 The complete code of the direct asynchronous SOMA implementation (see chapter 

3.4 and 6.2 ) used within AP for the ANN synthesis can be accessed in Appendix V. Fig.  

67 is a screenshot of an asynchronous SOMA result form based on the Windows Form 

technology [88].  

 

 

Fig.  67: Asychronous SOMA results form 

 

To protect SOMA leader position consistency (as can be seen in Fig.  30), 

ReaderWriterLock class is used to lock the leader position while a thread is reading this 

value:  

 

leaderLock.AcquireReaderLock(Timeout.Infinite); 
 
if (leader.Equals(population[i])) 
{ 
  leaderLock.ReleaseReaderLock(); 
  continue; 
} 

(88) 

A similar implementation is used in (89) while the thread is attempting to update 

the leader position. 
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leaderLock.AcquireReaderLock(Timeout.Infinite); 
 
if (population[i].costValue < leader.costValue) 
{ 
leaderLock.ReleaseReaderLock(); 
                       
leaderLock.AcquireWriterLock(Timeout.Infinite); 
 
if (population[i].costValue < leader.costValue)  
 
leader = population[i]; 
 
leaderLock.ReleaseWriterLock(); 
 
} 
else 
{ 
leaderLock.ReleaseReaderLock(); 
} 

(89) 

The process of equal distribution of individuals between available processors is 

described in (90). This division is by default determined by a numberOfProcessors 

obtained from a 

 System.Environment.GetEnvironmentVariable("NUMBER_OF_PROCESSORS"). 

 

int sequel = 0; 
 
while (true) 
{ 
  individuals[sequel]++; 
  sequel++; 
  if (sequel == numberOfProcessors) sequel = 0; 
  if (individuals.Sum() == NP) break; 
} 
 
 
for (int i = 0; i < numberOfProcessors; i++) 
{ 
  threads[i] = new Thread(new 
ParameterizedThreadStart(DISOMAWork)); 
  threads[i].Start(new Parameters(individuals[i], 
random.Next())); 
} 
 
for (int i = 0; i < numberOfProcessors; i++) 
{ 
  threads[i].Join(); 
} 

(90) 
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 The ANN synthesis software can be run on any arbitrary platform. It only requires 

installation of .NET Framework 3.5. The ANN synthesis was tested on the Super Micro 

server (see Appendix IV). 

 

Fig.  68: ANN synthesis software forms 

 Individual instances of the Thread class are automatically operated by the 

framework to distribute computation load equally. 

 

Fig.  69: Optimal computation division on eight processors 

 

The obtained results are then saved via an interoperable XML format as can be 

seen in Appendix VI. 
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13 FINAL CONCLUSION 

The Neural Network Synthesis was developed on the basis of AP (chapter 4.3) and 

SOMA (chapter 3.4) algorithms and theoretically described in chapter 5.3. 

The method was successfully tested on the real life problems [67], [76] as well as 

on widely recognized benchmark functions [19], [24], [41] with respect to the function 

approximation (chapter 8), prediction (chapter 10) and (chapter 11) problems.  

The ANN synthesis software was designed based on .NET Framework technology 

(chapter 12). The resulting software is capable of automatic synthesis and optimizing the 

ANN based on the user-given data within a reasonable time. Such performance has to be 

supported by efficiently distributed computation proposed in chapter 6.2 that was 

statistically proven in chapter 7. 

The ANN synthesis proves to be a useful and efficient tool for nonlinear modeling 

in comparison with competing methods [4], [25], [79], [84], [85] and [86] while the 

optimal strategy of its control parameter settings (chapter 9.1.2 and 9.1.3) and the GFS 

composition were developed (chapter 10.5 and 11.2.4). 

The ANN optimized by the ANN synthesis was practically deployed within “The 

intelligent system controlling an energetic framework of an urban agglomeration”, the final 

technical report of the National Research Program II. These results together with the 

theoretical background of the method were also accepted for publication by Springer [82].  

Furthermore, the ANN synthesis proves its ability to synthetize smaller ANN than 

the GPNN as can be seen in chapter 11.1. Simultaneously, an almost infinitely complex 

ANN can be synthetized when using evolution loops (chapter 5.3.2). This process can also 

produce an ANN with feedforward branching (for example in (72)), which is a quality 

unavailable for the GPNN. 

For particular conclusions of experimental results see chapters 7.1, 8.2, 9.1.4, 10.6 

and 11.2.3. 
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.NET 

14 Špico  Jaromír 2009 BT Data mining in energetic industry 

15 Hnilica  Marek  2009 MT The use of GPS navigation and digital 

communications environment PEGAS-

MATRA for AVL system for the exit of the 

HZS ZLK  

16 Hvožďara  Martin 2010 BT Protection of the enterprise network against 

the outer threats 

17 Šálek  Jiří 2010 BT Biometric identification and RFID in 

operational of training polygon of The Fire 

Brigade Rescue Corps of the Zlín region 

18 Rympler Petr 2010 MT Distributed evolutionary algorithm using 

.NET platform 

19 Sládek  Jan 2010 MT How to build secure PHP applications 

20 Stavinoha Zdeněk 2010 MT Implementation of catholic protection 

system of piping into GIS of company 

Vodochody a kanalizace Vsetín, a.s. 

21 Kolek Jan 2011 MT Asynchronous SOMA in Java 

22 Malinka Marek  2011 MT Neural network synthesis 

23 Semenský Jiří 2011 MT Data mining software tools analysis 
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17 APENDIX I TEST FUNCTION VISUALISATION 

Appendix I contains 2D and 3D visualizations of the benchmark functions (27) - 

(36) used in chapters 7 and 9.1.1. Each function is named in accordance with [89], where 

more detailed information and visualizations can be accessed. 

 

 

Fig.  70: Ackley (27) 3D visualization 

 

Fig.  71: Ackley (27) 2D visualization 
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Fig.  72: EggHolder (28) 3D visualization 

 

Fig.  73 EggHolder (28) 2D visualization 

 

Fig.  74: Michalewicz (29) 3D visualization 
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Fig.  75: Michalewicz (29) 2D visualization 

 

Fig.  76: Masters (30) 3D visualization 

 

Fig.  77: Masters (30) 2D visualization 
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Fig.  78: Michalewicz (31) 3D visualization 

 

Fig.  79: Michalewicz (31) 2D visualization 

 

Fig.  80: Rana (32) 3D visualization 
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Fig.  81: Rana (32) 2D visualization 

 

Fig.  82: Rastrigin (33) 3D visualization 

 

Fig.  83: Rastrigin (33) 2D visualization 
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Fig.  84: Rosenbrock (34) 3D visualization 

 

Fig.  85: Rosenbrock (34) 2D visualization 

 

Fig.  86: Schwefel (35) 2D visualization 
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Fig.  87: Schwefel (35) 2D visualization 

 

Fig.  88: SineWave (36) 3D visualization 

 

Fig.  89: SineWave (36) 2D visualization 

 



- 123 - 

18 APPENDIX II ADAPTIVE PRT STRATEGY 

Appendix II complements results connected with a PRT adaptive strategy study 

discussed in chapter 9.1.1. The results produced by the test functions (27) - (36) (see also 

Appendix I) are depicted in Fig.  90 (for functions, which prove better results for PRT  

<0.005; 0.07>) and Fig.  91 (functions, which prove better results for PRT  <0.1; 0.3>). 

 

Fig.  90: Test functions providing the best results for PRT  <0.005; 0.07> 

 

 

Fig.  91: Test functions providing the best results for PRT  <0.1; 0.3> 
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Table  19: Best results for different cost functions and PRT settings 

Function, PRT: 0,005 0,01 0,03 0,05 0,07 0,1 0,2 0,3 

Ackley (27) 
3829,415 3473,757 3369,026 3369,049 3366,263 3366,142 3372,042 3426,071 

EggHolder (28) 
-54910,7 -58787,2 -60078,2 -59717,5 -65743,9 -68130,2 -59140,2 -53573 

Griewangk (29) 
21,23287 6,371556 1,112177 1,123117 0,754679 0,625381 0,531147 0,956176 

Masters (30) 
-59,1238 -68,7604 -73,0045 -72,9118 -78,6305 -83,9028 -76,8502 -69,5354 

Michalewicz (31) 
-70,2537 -86,3075 -98,671 -98,6997 -99,6452 -98,9955 -96,5857 -94,0024 

Rana (32) 
-23409,9 -27426,6 -28016,2 -28044,2 -24296,1 -24067 -35200,9 -35238,2 

Rastrigin (33) 
-818186 -973899 -999334 -999392 -989897 -977084 -923366 -902252 

Rosenbrock (34) 
12362,34 5749,791 1134,754 1107,528 329,3666 234,7636 140,0399 182,5677 

Schwefel (35) 
-35958,3 -41214,8 -41894,4 -41894,4 -41778,7 -41423,7 -37932,6 -35622,5 

SineWave (36) 
-621,61 -639,085 -621,393 -621,886 -560,68 -530,483 -479,456 -537,727 
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Table  20: Normalized best results for different cost functions and PRT settings 

Function, PRT: 0,005 0,01 0,03 0,05 0,07 0,1 0,2 0,3 

Ackley (27) 
0,137627 0,03197 0,000857 0,000864 3,58E-05 0 0,001753 0,017803 

EggHolder (28) 
0,194033 0,137134 0,118185 0,123479 0,035025 0 0,131953 0,213668 

Griewangk (29) 
38,97551 10,99584 1,093916 1,114512 0,420847 0,177416 0 0,80021 

Masters (30) 
0,29533 0,180476 0,129891 0,130997 0,062838 0 0,084057 0,171238 

Michalewicz (31) 
0,294961 0,133852 0,009776 0,009488 0 0,006519 0,030703 0,056629 

Rana (32) 
0,335666 0,221679 0,204946 0,204153 0,310518 0,317019 0,001056 0 

Rastrigin (33) 
0,181316 0,025508 5,74E-05 0 0,0095 0,022322 0,076072 0,097199 

Rosenbrock (34) 
87,27727 40,05824 7,103078 6,908659 1,351949 0,676405 0 0,303684 

Schwefel (35) 
0,141692 0,016222 0 1,03E-06 0,002762 0,011235 0,094565 0,149709 

SineWave (36) 
0,027344 0 0,027684 0,026912 0,122684 0,169934 0,249778 0,158599 

Functions providing better result for PRT  <0.005; 0.07> are marked in red and functions providing better results for PRT  <0.1; 

0.3>) are marked in yellow. 
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Table  21: Average results for different cost functions and PRT settings 

Function, PRT 0,005 0,01 0,03 0,05 0,07 0,1 0,2 0,3 

Ackley (27) 
3895,704 3499,265 3370,977 3370,963 3366,779 3368,098 3416,55 3533,109 

EggHolder (28) 
-53445,7 -57731,3 -58093,7 -58081,4 -55605,2 -63855,5 -53564,5 -48770,3 

Griewangk (29) 
25,14932 8,465231 1,191455 1,191591 0,972961 0,872625 0,978322 1,181165 

Masters (30) 
-55,9965 -66,5651 -70,3361 -70,2997 -71,631 -77,7542 -71,6636 -63,4593 

Michalewicz (31) 
-67,8213 -84,3369 -97,9382 -97,9319 -98,976 -97,9913 -94,088 -89,7736 

Rana (32) 
-22468,3 -26526,3 -27303,9 -27274 -23340,3 -21400,8 -32648,8 -33216,1 

Rastrigin (33) 
-760773 -959770 -997738 -998062 -980095 -958457 -892831 -838771 

Rosenbrock (34) 
15084,54 7097,92 1369,023 1386,179 471,804 335,933 250,1202 324,7303 

Schwefel (35) 
-35061,2 -40778,2 -41888,1 -41888,6 -41438,1 -40531,1 -36620,3 -33259 

SineWave (36) 
-609,751 -634,028 -614,379 -615,275 -549,637 -519,919 -463,773 -442,679 
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Table  22: Normalized average results for different cost functions and PRT settings 

Functin, PRT 0,005 0,01 0,03 0,05 0,07 0,1 0,2 0,3 

Ackley (27) 
0,157101 0,039351 0,001247 0,001243 0 0,000392 0,014783 0,049403 

EggHolder (28) 
0,163021 0,095907 0,090232 0,090424 0,129203 0 0,161161 0,23624 

Griewangk (29) 
27,82032 8,700884 0,365369 0,365525 0,114982 0 0,121126 0,353577 

Masters (30) 
0,279826 0,143903 0,095404 0,095872 0,07875 0 0,078331 0,183847 

Michalewicz (31) 
0,31477 0,147905 0,010485 0,010549 0 0,009949 0,049385 0,092976 

Rana (32) 
0,323572 0,201402 0,177991 0,178892 0,29732 0,355711 0,017078 0 

Rastrigin (33) 
0,23775 0,038366 0,000324 0 0,018001 0,039682 0,105436 0,1596 

Rosenbrock (34) 
59,30918 27,37804 4,473462 4,542053 0,88631 0,343087 0 0,298297 

Schwefel (35) 
0,162988 0,026507 1,16E-05 0 0,010753 0,032406 0,125768 0,206013 

SineWave (36) 
0,038291 0 0,030992 0,029578 0,133104 0,179976 0,26853 0,301799 

Functions providing better result for PRT  <0.005; 0.07> are marked in red and functions providing better results for PRT  <0.1; 

0.3>) are marked in yellow.
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19 APPENDIX III – ANN SYNTHESIS RESULTS 

Appendix III contains mathematical descriptions (91) - (94) of the evolution loops 

(58) - (61) discussed in chapter 10.3.  

 Mathematical descriptions of (58): 

 

 

 

 

(91) 
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Mathematical description of (59): 

 

 

 

(92) 

  



- 130 - 

Mathematical description of (60): 

 

 

(93) 
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Mathematical description of (61): 

 

(94) 
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20 APPENDIX IV – SUPER MICRO SERVER 

Appendix IV contains Super Micro server pictures and technical specification.   

 

 

Fig.  92: Super Micro server 

 

 

Fig.  93: Super Micro server motherboard 
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Table  23: Super Micro server technical specification 

Product SKUs 

AS-1042G-TF 
A+ Server 1042G-

TF (Black) 

Motherboard 

Product SKUs Super H8QGi+-F 

Form Factor SWTX 

Dimensions 
16.48" x 13" 

(41.9cm x 33.0cm) 

Processor/Chipset 

CPU 

Quad 1944-pin 

Socket G34 

Supports up to 

four Twelve/Eight-

Core ready AMD 

Opteron™ 6100 

Series processors 

 

Chipset HT3.0 Link support 

System Memory 

Memory 

Capacity 

Thirty-Two DIMM 

sockets 

Support up to 512GB 

DDR3 Reg. ECC 

1333/1066/800 MHz 

memory or 128GB of 

DDR3 Unb. 

ECC/non-ECC 

memory 

Quad channel 

memory bus 

For Dual or Quad 

CPUs: Recommended 

that memory be 

populated equally in 

adjacent memory 

banks 

Memory Type 

Registered ECC or 

unb. ECC / non-ECC 

DDR3 1333/1066/800 

MHz SDRAM 72-bit, 

240-pin gold-plated 

DIMMs 

DIMM Sizes 
1GB, 2GB, 4GB, 

8GB, 16GB 

Memory 

Voltage 
1.35V or 1.5V 

Error 

Detection 

Corrects single-bit 

errors 

 
Detects double-bit 

errors (using ECC 
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memory) 

On-Board Devices 

SATA 
AMD SP5100 (RAID 0, 

1, 10) 

IPMI 

Support for Intelligent 

Platform Management 

Interface v.2.0 

IPMI 2.0 with virtual 

media over LAN and 

KVM over LAN support 

Winbond® WPCM450 

BMC 

Network 

Controllers 

Intel® 82576 controller, 

Dual-Port  

  Gigabit Ethernet 

10/100/1000BASE-T 

support 

VGA 
Matrox G200 16MB 

DDR2 graphics 

Super I/O Winbond® W83527 chip 

Input / Output 

SATA 
6x SATA2.0 (3Gb/s) 

Ports 

LAN 

2 RJ45 LAN ports 

1 RJ45 Dedicated 

LAN supports IPMI 

USB 

7x USB 2.0 ports 

2x Rear, 4x internal 

header, and 1x type A 

Keyboard / 

Mouse 

PS/2 keyboard and 

mouse ports 

Serial Ports 

1x Fast UART 16550 

serial port 

1x serial port header 

Expansion Slots 

PCI-Express 1x PCI-e 2.0 x16 

System BIOS 

BIOS Type 

16Mb SPI Flash 

ROM with AMI® 

BIOS 

BIOS Features 

Plug and Play (PnP) 

DMI 2.3 

PCI 2.2 

ACPI 2.0 

USB Keyboard 

Support 

SMBIOS 2.3 

Chassis 

Form Factor 1U Rackmount 

Model SC818TQ-1400LPB 

http://www.supermicro.com/products/chassis/1U/818/SC818TQ-1400LP.cfm
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Dimensions 

Height 1.7" (43mm) 

Width 17.2" (437mm) 

Depth 27.75" (705mm) 

Gross Weight 43 lbs (19.5 kg) 

Available 

Colors 
Black 

Front Panel 

Buttons 

Power On/Off button 

System Reset button 

LEDs 

Power LED 

Hard drive activity 

LED 

2x Network activity 

LEDs 

System Overheat 

LED 

Ports 

2x Front USB Ports 

1x Serial COM Port 

Drive Bays 

Hot-swap 

3x 3.5" hot-swap 

SATA drive bays 

Enterprise SATA 

HDD only 

recommended 

Peripheral Drives 

DVD-ROM 
Slim DVD-ROM 

drive (optional) 

Backplane 

 
SAS HDD Backplane 

with SES2 

System Cooling 

Fans 

6x heavy-duty 

counter-rotating 

PWM fans with 

optimal fan speed 

control 

Power Supply 

 

1400W high-

efficiency power 

supply with PMBus 

AC Input 

1200W: 100 - 140V, 

50 - 60Hz, 10.5 - 14.7 

Amp 

1400W: 180 - 240V, 

50 - 60Hz, 7.2 - 9.5 

Amp 

DC Output 

+5V standby 
4 Amp 

DC Output 

+12V 

100 Amp @ 100-

140V 

117 Amp @ 180-
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240V 

Certification 

80 PLUS Gold 

Certified 

 

PC Health Monitoring 

CPU 

Monitors CPU Core 

Voltages, +1.8V, 

+3.3V, +5V, ±12V, 

+3.3V Standby, -12V 

Standby, VBAT, HT, 

memory, chipset 

CPU switching 

voltage regulator 

FAN 

Up to 9-fan status 

tachometer 

monitoring 

Up to nine 4-pin fan 

headers 

Status monitor for 

speed control 

3-pin fan support (w/o 

speed control) 

Low noise fan speed 

control  

 (4-pin fan only) 

Pulse Width 

Modulated (PWM) 

fan connectors 

Temperature 

Monitoring for CPU 

and chassis 

environment 

CPU Thermal Trip 

Support 

Thermal control for 

9x fan connectors 

I
2
C Temperature 

Sensing Logic 

LED 

CPU / System 

Overheat LED 

+5V Standby Alert 

LED 

Other Features 

Chassis Intrusion 

Detection 

Chassis Intrusion 

Header 

Management 

Software 

PMI (Intelligent 

Platform Management 

Interface) 2.0 

Super Doctor III 

Power ACPI Power 
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Configurations Management 

Wake-On-LAN 

(WOL) header 

Keyboard Wakeup 

from Soft-Off 

Power-on mode 

control for AC power 

loss recovery 

Operating Environment / Compliance 

RoHS 

RoHS Compliant 

6/6, Pb Free 

 

Environmental 

Specifications 

Operating 

Temperature: 

10°C to 35°C (50°F to 

95°F) 

Non-operating 

Temperature: 

   -40°C to 70°C (-

40°F to 158°F) 

Operating Relative 

Humidity: 

   8% to 90% (non-

condensing) 

Non-operating 

Relative Humidity: 

   5% to 95% (non-

condensing) 

Regulatory 

FCC 
Passed to meet FCC 

standard requirement 
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21 APPENTIX V – ASYNCHRONOUS SOMA IN C# 

Appendix V contains a complete code of asynchronous SOMA in C# used through 

the practical part of the thesis including the reader/writer lock mechanisms and other 

thread connected arrangements. 

static void DISOMAWork(Object _parameters) 
{ 
 Parameters parameters = (Parameters)_parameters; 
 int NP = parameters.NP; 
 if (NP < 1) NP = 1; 
 Random random = new Random(parameters.seed); 
 Individual[] population = new Individual[NP]; 
 double[] randomPosition; 
 double PRT; 
 int sum; 
 
 for (int i = 0; i < NP; i++) 
 { 
  randomPosition = new double[specimen.Length]; 
  for (int y = 0; y < specimen.Length; y++) 
  { 
   randomPosition[y] = random.NextDouble() * (specimen[y].max - 
specimen[y].min) + specimen[y].min; 
  } 
  population[i] = model.costFunction(randomPosition); 
  bestHistoryLock.AcquireReaderLock(Timeout.Infinite); 
  if (population[i].costValue < bestHistory[0]) 
  { 
   bestHistoryLock.ReleaseReaderLock(); 
   bestHistoryLock.AcquireWriterLock(Timeout.Infinite); 
   if (population[i].costValue < bestHistory[0]) bestHistory[0] = 
population[i].costValue; 
   bestHistoryLock.ReleaseWriterLock(); 
  } 
  else 
  { 
   bestHistoryLock.ReleaseReaderLock(); 
  } 
  leaderLock.AcquireReaderLock(Timeout.Infinite); 
 
  if (population[i].costValue < leader.costValue) 
  { 
   leaderLock.ReleaseReaderLock(); 
   leaderLock.AcquireWriterLock(Timeout.Infinite); 
   if (population[i].costValue < leader.costValue) leader = 
population[i]; 
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  leaderString1 = AP.toString(new Token(leader.position, AP.GFS, null, 
null)); 
  leaderString2 = AP.toString(new Token(leader.position, AP.GFS, null, 
leader.constants)); 
  leaderValues = new List<double>(); 
 
  Double value; 
                     
  for (int k = 0; k < AP.dataValid.Length; k++) 
  {  
   value = AP.evaluate(new Token(leader.position, AP.GFS, 
AP.dataValid[k].inputs, leader.constants)).value; 
   if(value <= 0) leaderValues.Add(0); 
   else leaderValues.Add(1); 
  } 
  leaderLock.ReleaseWriterLock(); 
  } 
  else 
  { 
   leaderLock.ReleaseReaderLock(); 
  } 
 } 
 
 double[] distance = new double[specimen.Length]; 
 int[] PRTVector = new int[specimen.Length]; 
 double[] jump; 
 double coordinate; 
 Individual bestClone; 
 Individual clone; 
 while (true) 
 { 
  for (int i = 0; i < NP; i++) 
  { 
   leaderLock.AcquireReaderLock(Timeout.Infinite); 
   if (leader.Equals(population[i])) 
   { 
    leaderLock.ReleaseReaderLock(); 
    continue; 
   } 
 
   for (int y = 0; y < specimen.Length; y++) 
   { 
    distance[y] = leader.position[y] - population[i].position[y]; 
   } 
   leaderLock.ReleaseReaderLock(); 
  PRT = 1 / (double)population[i].deep + 1; 
  for (int y = 0; y < specimen.Length; y++) 
  { 
   if (random.NextDouble() > PRT) PRTVector[y] = 0; 
   else PRTVector[y] = 1; 
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  } 
  sum = 0; 
 
  for (int k = 0; k <= population[i].deep; k++) 
  { 
   sum += PRTVector[k]; 
  } 
  while (sum == 0) 
  { 
   for (int y = 0; y < specimen.Length; y++) 
   { 
    if (random.NextDouble() > PRT) PRTVector[y] = 0; 
    else PRTVector[y] = 1; 
   } 
   sum = 0; 
   for (int k = 0; k <= population[i].deep; k++) 
   { 
    sum += PRTVector[k]; 
   } 
  } 
  bestClone = new Individual(null, population[i].costValue); 
  for (int n = 1; n < (mass / step); n++) 
  { 
  jump = new double[specimen.Length]; 
  for (int y = 0; y < specimen.Length; y++) 
  { 
  coordinate = population[i].position[y] + (distance[y] * step * 
PRTVector[y] * n); 
  if ((coordinate < specimen[y].min) || (coordinate > specimen[y].max)) 
  { 
  coordinate = random.NextDouble() * (specimen[y].max - specimen[y].min) 
+ specimen[y].min; 
  } 
  jump[y] = coordinate; 
 } 
  
 clone = model.costFunction(jump); 
 if (clone.costValue < bestClone.costValue) bestClone = clone; 
 
 Interlocked.Increment(ref counter); 
 Interlocked.Increment(ref interCounter); 
 lock ("interCounter") 
 { 
  if (interCounter >= period * (DISOMA.NP - 1) * mass / step) 
  { 
   interCounter = 0; 
   bestHistoryLock.AcquireWriterLock(Timeout.Infinite); 
   leaderLock.AcquireReaderLock(Timeout.Infinite); 
   bestHistory.Add(leader.costValue); 
   leaderLock.ReleaseReaderLock(); 
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   if (bestHistory[bestHistory.Count - 2] - bestHistory[bestHistory.Count 
- 1] < divergence) end = true; 
   bestHistoryLock.ReleaseWriterLock(); 
  } 
 } 
 
 if ((Interlocked.Read(ref counter) >= evaluations - numberOfProcessors + 
1) || end) 
 { 
  lock ("finalPopulation") 
  { 
   finalPopulation.AddRange(population); 
  } 
   return; 
  } 
 } 
 
 if (bestClone.costValue < population[i].costValue) 
 { 
  population[i] = bestClone; 
  leaderLock.AcquireReaderLock(Timeout.Infinite); 
  if (population[i].costValue < leader.costValue) 
  { 
   leaderLock.ReleaseReaderLock(); 
   leaderLock.AcquireWriterLock(Timeout.Infinite); 
   if (population[i].costValue < leader.costValue) leader = 
population[i]; 
   leaderString1 = AP.toString(new Token(leader.position, AP.GFS, null, 
null)); 
   leaderString2 = AP.toString(new Token(leader.position, AP.GFS, null, 
leader.constants)); 
   leaderValues = new List<double>(); 
   Double value; 
   for (int k = 0; k < AP.dataValid.Length; k++) 
   { 
    value = AP.evaluate(new Token(leader.position, AP.GFS, 
AP.dataValid[k].inputs, leader.constants)).value; 
    if (value <= 0) leaderValues.Add(0); 
    else leaderValues.Add(1); 
   } 
    leaderLock.ReleaseWriterLock(); 
   } 
   else 
   { 
    leaderLock.ReleaseReaderLock(); 
   } 
  } 
 } 
} 
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22 APPENDIX VI –  XML RESULT FORMAT 

Appendix VI contains a typical example of an asynchronous SOMA result saved in 

the standard XML format: 

<?xml version="1.0"?> 

<Report xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 

  <best> 

    <algorithm>SOMA - All To One</algorithm> 

    <finalLeader> 

      <position> 

        <double>0.0025934393220287959</double> 

        <double>0.00012487152843137684</double> 

        <double>-0.000336864255269125</double> 

        <double>-0.00020993156585577457</double> 

        . 

    . 

         .  

        <double>0.00069229082615153859</double> 

        <double>0.00083273363376060519</double> 

      </position> 

      <costValue>3368.0650139215759</costValue> 

    </finalLeader> 

    <finalEvaluations>648060</finalEvaluations> 

    <model>costFunctions.Ackley</model> 
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    <NP>60</NP> 

    <step>0.11</step> 

    <mass>3</mass> 

    <PRT>0.1</PRT> 

    <numberOfProcessors>1</numberOfProcessors> 

  </best> 

  <worst> 

    <algorithm>SOMA - All To One</algorithm> 

    <finalEvaluations>648060</finalEvaluations> 

    <model>costFunctions.Ackley</model> 

    <NP>60</NP> 

    <step>0.11</step> 

    <mass>3</mass> 

    <PRT>0.1</PRT> 

    <numberOfProcessors>1</numberOfProcessors> 

  </worst> 

  <everage>3368.0650139215759</everage> 

  <solutions> 

    <double>3368.0650139215759</double> 

    <double>3368.0650139215759</double> 

    <double>3368.0650139215759</double> 

  </solutions> 

</Report> 

 


