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SUMMARY

This thesis describes a feed forward Artificial Neural Network (ANN) synthesis
via an Analytic Programming (AP) by means of the ANN creation, learning and
optimization. This process encompasses four different fields: Evolutionary Algorithms,
Symbolic Regression, ANN and parallel computing to successfully synthetize a suitable

ANN within a reasonable time.

AP performes well in many separate cases together with different evolutionary
algorithms as its “engine”. Direct asynchronous parallelization of SOMA - Self-

Organizing Migration Algorithm is applied here to boost AP with unusual efficiency.

Direct asynchronously parallel SOMA distribution is experimentally tested and
statistically evaluated and its suitability for AP is proved. The thesis describes an ANN
synthesis used for function approximation and shows that an optimized and a suitable
ANN is easily found by the presented method while the innovative PRT (SOMA control
parameter) adaptive strategy is employed. Statistical evaluation of this strategy impact on
AP performance is evaluated as well as different AP settings.

The ANN synthesis method is applied to the real life problem of Heat Load
Prediction function optimization of the heating plant in Komotany (Czech Republic) as

well as on cancer classification problem and is compared with other methods.

Software for the ANN synthesis support was developed under .NET Framework

3.5 and source codes were written in C#.

ANN synthesis proved to be a useful and efficient tool for nonlinear modeling and
its results were applied to intelligent system controlling an energetic framework of an
urban agglomeration.

Furthermore, the ANN synthesis proved to have the ability to synthetize smaller
ANN than the Genetic Programming (GP) while simultaneously almost infinitely complex
ANN can be synthetized by the application of multiple evolution loops. This process can
also produce ANN with feed forward branching, which is an unavailable quality for the
GP.



RESUME

Tato dizertacni prace popisuje metodu syntézy dopiednych umélych neuronovych
siti (ANN) pomoci Analytického Programovani (AP). Tento proces obsahuje vytvofeni,
uceni i optimalizaci ANN. Syntéza ANN v sob¢ zahrnuje poznatky ze ctyf rtznych
odvétvi: evolucni algoritmy, symbolicka regrese, ANN a paralelni vypocty. Diky tomu je

mozno uspésné syntetizovat vhodné ANN v pfijatelném Case.

AP podavé velmi dobré vysledky za pouziti nejriznéjSich EA jako jeho ,,pohonu®.
Pfima asynchronni paralelizace SOMA je zde pouzita knavySeni vykonu AP

s neobycejnou efektivitou.

Tento pristup je experimentalné testovan a jeho statistické zhodnoceni opraviuje
jeho pouziti s AP. Syntéza ANN je dale uspésné nasazena k ziskani optimalni ANN pro
aproximaci dané funkce za pouziti adaptivni PRT (fidici parametr SOMA) strategie.
Vyhodnoceni dopadu této inovativni strategie spolecné s rtznymi strategiemi GFS na

vykon AP dokazuje jeji znacny piinos.

Syntéza ANN je prakticky aplikovana na problémy realného zivota, jako je
optimalizace funkce predikujici spotfebu tepla dodavaného teplarnou Komorany, nebo

klasifikaci rakoviny. Dosazené vysledky jsou porovnany s konkurenénimi metodami.

V ramci prace bylo vyvinuto softwarové feSeni pro podporu syntézy ANN.
Technologicky zaklad tohoto software je postaven na principech .NET Framework 3.5 a

jeho zdrojovy kod je naprogramovan v jazyce C#.

Syntéza ANN prokézala svoji uziteCnost a efektivitu jako néstroj nelinearniho
modelovani a jeji vysledky byly vyuzity vramci Inteligentniho systému pro fizeni

energetického systému méstské aglomerace.

Syntéza ANN navic ukazala svoji schopnost syntetizovat mensi sit€ nez algoritmus
Genetického Programovani (GP) a pfitom soucasné umoziuje vytvofit témeét nekonecné
komplexni ANN pomoci vétsiho poctu evolucnich kol. Tento proces miize také vytvaiet

doptedné rozveétvené ANN, ¢ehoz GP neni schopno.
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1 INTRODUCTION

This thesis describes a feed forward Artificial Neural Network (ANN) synthesis
(chapter 5.3) via an Analytic Programming (AP) (chapter 4.3) by means of the ANN
creation, learning and optimization. This process encompasses four different fields:
Evolutionary Algorithms (EA) (chapter 3), Symbolic Regression (chapter 4), ANN
(chapter 5) and parallel computing (chapter 6) to successfully synthetize a suitable ANN

within a reasonable time.

EVOLUTIONARY SYMBOLIC
ALGORITHMS REGRESSION

NEURAL
NETWORK
SYNTHESIS

NEURAL DISTRIBUTED
NETWORKS COMPUTATION

Fig. 1: Neural network synthesis intersection with connected scientific disciplines
There are well-known methods: Genetic Programming (chapter 4.1) and
Grammatical Evolution (chapter 4.2), which can both symbolically regress using the
evolutionary algorithm. However, this thesis is aimed at a more recent and flexible

procedure called AP. (chapter 4.3)

AP performed well in many separate cases (for example [1],[2]) together with
different evolutionary algorithms (EA) as its “engine”. A direct asynchronous
parallelization of the SOMA - Self-Organizing Migration Algorithm [3] (chapter 6.2) is
applied here to boost the AP with unusual efficiency.

SOMA (chapter 3.4) is based on the self-organizing behavior of groups of
individuals in a “social environment”. It can also be classified as an evolutionary algorithm
[4], despite the fact that no new generations of individuals are created during a search (due
to the philosophy of this algorithm). Only the positions of individuals in the searched space
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are changed during one generation called a “migration loop”. The algorithm was published
in journals and books, presented at international conferences and symposiums and
mentioned in numerous introductory presentations, for example [5], [6], [7].

The direct asynchronously parallel SOMA distribution is experimentally tested and
statistically evaluated in chapter 7 and its suitability for the AP is proved. Chapter 8
describes an ANN synthesis usage for a function approximation and shows that the
optimized and suitable ANN is easily found by the presented method while the innovative
PRT (SOMA control parameter) adaptive strategy is employed. The statistical evaluation
of the impact of this strategy on the AP performance is evaluated in chapter 9.

In this chapter, a total of 10 ANN synthesis abilities to successfully synthetize the
ANN capable of predicting are tested on a real life problem of a heating plant. The ANN
synthesis method is applied in order to optimize the Heat Load Prediction function of the

heating plant in Komotany (Czech Republic).

To statistically evaluate the ANN synthesis’ ability to successfully generate an
ANN performing classification, the ANN synthesis was compared with GP solving an
XOR problem in chapter 11.1 while the chapter 11.2 describes the ANN synthesis usage

for a real life cancer classification problem and its comparison with other methods.

Software for the ANN synthesis support was developed under .NET Framework
3.5 and source codes were written in C#. The software was used and debugged while

performing experiments in chapters 6 to 11.

The ANN synthesis proves to be a useful and efficient tool for nonlinear modeling
in comparison with competitive methods as described in chapter 13 which contains a final

conclusion.

The following chapter 2 introduces the main aims of this thesis.
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2 THE AIMS OF THE DISSERTATION

The main aim of the dissertation is a development of the Neural Network
Synthesis method based on AP (chapter 4.3) and SOMA (chapter 3.4) algorithms; these are

theoretically described in chapter 5.3 as a useful and efficient tool for nonlinear modeling.

An important part of this process is the application of the method to the
specifically chosen tasks of the function approximation, prediction and classification of

problems considering real life data as well as standardized benchmarks.

To support the ANN synthesis exploration, software capable of the ANN synthesis
needs to be developed in order to conduct experiments and measure different approaches
statistically. The obtained experimental results have to be evaluated in order to find
optimal parameters for the application of the ANN synthesis to the given tasks.

These aims are further described as follows:

o To apply the ANN synthesis for ANN creation and optimization based on the given
problem of:
o function approximation (chapter 8)
o prediction (chapter 10)
o classification (chapter 11)
o To statistically explore:
o different structures of the GFS (chapter 10.5 and 11.2.4)
o SOMA control parameters setting for AP handling (chapter 9.1.2)
o SOMA control parameters setting for K, estimation (chapter 9.1.3)
o individuals' behavior invoked by the implementation of (25) (chapter 9.2)
o To develope software:
o which automatically and efficiently distributes computation to all available
processors (chapter 7)
o which will automatically synthetize and/or optimize the ANN based on the

data provided by the user within a reasonable time (chapter 12)
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3 EVOLUTIONARY ALGORITHMS

In recent years, a broad class of algorithms has been developed for stochastic
optimization, i.e. for optimizing systems where the functional relationship between the
independent input variables x and the output (objective function) y of a system S is not
known. Using stochastic optimization algorithms such as Genetic Algorithms (GA)
(chapter 3.1), Differential Evolution (DE) (chapter 3.2), Particle Swarm Optimization
(PSO) (chapter 3.3) and SOMA (chapter 3.4) the system is confronted with a random input
vector and its response is measured. This response is then used by the algorithm to tune the
input vector in such a way that the system produces the desired output or target value in an
iterative process.

Crossover
Selection 7' \ Mutation

P

Replacement

Stopplng condition satisfied
=> ending algorithm

Fig. 2: Main principle of EA

3.1  Genetic Algorithms

GA belong to a group of methods, which are used to solve search and optimization
problems. [8] The foundations of the GA were laid down in 1975 by John H. Holland [9].
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Several different GA versions have been developed; however, the most important GA

principle, coding of individuals into chromosomes, is common to all of them. [10]

The chromosome should in some way contain information about the solution,
which it represents. The most used way of encoding is a binary string. The chromosome
then could look like this:

Table 1. GA individuals coded to chromosomes
Chromosome 1 11101001000

Chromosome 2 00001010101

Simple generational genetic algorithm pseudo code [11] :

= Choose the initial population of individuals
= Evaluate the fitness of each individual in that population
= Repeat within this generation until termination: (time limit, sufficient fitness achieved,
etc.)
= Select the best-fit individuals for reproduction
= Breed new individuals through crossover and mutation operations to give birth to an
offspring
= Evaluate the individual fitness of new individuals

= Replace the least-fit population with new individuals

3.1.1 Crossover

Crossover selects genes from parent chromosomes and creates a new offspring.
The simplest way how to do this is to randomly choose some crossover point and copy
everything before this point from the first parent and then copy everything after the

crossover point from the second parent.
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Crossover

mask

One point

11111000000
crossover

, S

Two points

crossover

Even

10011010011
crossover

Fig. 3: GA crossover of individuals

3.1.2 Mutation

Mutation randomly changes the new offspring.

Randomly
generated

Formal

individual mutation mask

One parameter

mutation 00100000000
More parameters
mutation 10000011000

Fig. 4: Mutation of GA individuals
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3.2 Differential Evolution

DE has been known in the scientific world since 1995. Fathers of DE are Ken

Price and Rainer Storm, [13]. DE is robust, fast, and effective with a global optimization

ability [14].

Let x € R" designate a candidate solution (individual) in the population. The basic

DE algorithm can then be described as follows [15]:

= Initialize all individuals x with random positions in the search-space.

= Until a termination criterion is met (e.g. number of iterations performed, or adequate

fitness reached), repeat the following:

= For each individual x in the population do:

Pick three individuals a, b, and ¢ from the population at random, they must be
distinct from each other as well as from the individual x

Pick a random index R € {1, ..., n}, where the highest possible value n is the
dimensionality of the problem to be optimized

Compute the individual's potentially new positiony = [yi, ..., ¥»] by iterating
over each i € {1, ..., n} as follows:

*  Pick ri~(0,1) uniformly from the open range (0,1)

= If (i=R) or (ri<CR) let y; = a; + F(b; — c;), otherwise let y; = X;

If (f(y) <f(x)) then replace the individual in the population with the improved
candidate solution, that is, set x =y in the population.

» Pick the individual from the population that has the lowest fitness and return it as the

best found candidate solution.

Note that F € <0,2> is called the differential weight and CR € <0,1> is called
the crossover probability, both these parameters are selectable by a practitioner along with

the population size NP > 3, see below.
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Fig. 5: DE example

=24 -



3.3  Particles Swarm Optimization

PSO is originally attributed to Kennedy, Eberhart and Shi (1995) [4], [16] and was

primarilyintended for social behavior simulation.

Let S be the number of particles (individuals) in the swarm, each having a position
x € R" in the search-space and a velocity v; € R". Let p; be the best known position of
particle i and let g be the best known position of the entire swarm. A basic PSO algorithm
is then [17]:

= Foreach particlei=1, ..., Sdo:
= Initialize the particle's position with a uniformly distributed random vector: x; ~
U(Low, High), where blo and bup are the lower and upper boundaries of the search-
space.
= Initialize the particle's best known position to its initial position: p; < X;
= If (f(pi) < f(g)) update the swarm's best known position: g < p;
= Initialize the particle's velocity: v; ~ (-|Hight - Low|; [Hight - Low|)
= Until a termination criterion is met (e.g. number of iterations performed, or adequate
fitness reached), repeat:
= Foreach particlei=1, ..., Sdo:
= Pick random numbers: rp, rg ~ (0,1)
= Update the particle's velocity: vi < o v; + op rp (pi-Xi) + ¢g rg (9-X;)
= Update the particle's position: X; < X; + Vv;
= If (f(x;) <f(p)) do:
= Update the particle's best known position: p; < X;
= If (f(pi) < f(g)) update the swarm's best known position: g « p;

= Now g holds the best found solution.

The parameters ®, @p, and ¢g are selected by the practitioner and control the
behavior and efficacy of the PSO method. [18]
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3.4  Self-Organizing Migration Algorithm

SOMA is based on a self-organizing behavior of groups of individuals in a “social
environment”. It can also be classified as an evolutionary algorithm [4], despite the fact
that no new generations of individuals are created during the search (due to the philosophy
of this algorithm). Only the positions of individuals in the searched space are changed
during one generation called a “migration loop”. The algorithm was published in journals
and books, presented at international conferences and symposiums and mentioned in

numerous introductory presentations, for example [5], [6], [7].

Although several different versions of SOMA exist, this thesis is focused on the
most common All-to-One version, which is suitable for the asynchronous parallel

implementation. This chapter describes all basic All-to-One SOMA principles.

Fig. 6: All-to-One SOMA migration loop

3.4.1 Parameter definition

Before starting the algorithm, SOMA’s parameters: Step, PathLength, PopSize,
PRT and Cost Function need to be defined. The Cost Function is simply the function
which returns a scalar that can directly serve as a measure of fitness. In this case, Cost
Function is provided by AP.
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3.4.2 Creation of Population

Population of individuals is randomly generated. Each parameter for each
individual has to be chosen randomly from a Specimen which defines a range <Low,

High> and a value type (integer, double) for each individual’s dimension.

3.4.3 Migration loop

Each individual from a population (PopSize) is evaluated by the Cost Function and
the Leader (individual with the highest fitness) is chosen for the current migration loop.
Then, all other individuals begin to jump, (according to the Step definition) towards the
Leader. Each individual is evaluated after each jump by using the Cost Function. Jumping
continues until a new position defined by the PathLength is reached. The new position X;;
after each jump is calculated by (1) as is shown graphically in Fig. 7. Later on, the
individual returns to the position on its path, where it found the best fitness.

X = X an (XU — X IPRTVector,
where t e <0, by Step to, PathLegth> )
and ML is actual migration loop

Before an individual begins jumping towards the Leader, a random number rnd is
generated (for each individual’s component), and then compared with PRT. If the
generated random number is larger than PRT, then the associated component of the

individual is set to 0 using PRTVector.
rnd; < PRT then PRTVector; = 0 else 1
where rnd e <0, 1> (2

and j =1, ... Nparam
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Table 2: Anexample of PRTVector for 4 parameters individual with PRT = 0.3

J rnd; PRTVector
1 0.234 1
2 0,545 0
3 0,865 0
4 0,012 1
X:
Steps

Individual /\ PRTVector = {1,0}

*—0—0 0>

Position
given by
PathLenght

Leader

PRTVector = {1,1}

Xi

Cost Function

Xi

Fig. 7: PRTVector and its action on individual movement
Hence, the individual moves in the N-k dimensional subspace which is
perpendicular to the original space. This fact establishes a higher robustness of the
algorithm. Earlier experiments demonstrated that without the use of PRT, SOMA tends to

determine a local optimum rather than a global one. [19]

3.4.4 Test for stopping condition

If a stopping condition (time limit, sufficient fitness achieved, number of ML, etc.)

is archived, stop and recall the best solution(s) found during the search.
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PopSize 50
Randomely generated PRT Vector
— yd g
Individual
: -~ transformed
xm"’(x!._xmn)t'l’"v' 278 | fort ™ step

Xeare T (Xp — Xggre JU- prtV’

individual pass to
next generation

J48  J49 IS0

J1

Fig. 8: SOMA example
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3.45 SOMA Recommended Settings

Based on a huge number of experiments, the author of SOMA (prof. Zelinka)

recommended the optimal setting for the algorithm’s control parameters. [19]

Table 3: SOMA parameters and their recommended domain

Parameter name | Recommended range
PathLenght <1.1:3>

Step <0.11, PathLength>
PRT <0,1>

PopSize <10, up to user>

As can been seen in Fig. 9, a PRT parameter was tested within the range <0.1;

0.9> and performed best when PRT e <0.1; 0.3>.

By contrast, this thesis explores SOMA’s behavior within a much wider range
PRT e <0.005, 0.1>. The reasons why this possibility has never been explored before are

described in the next chapter.

-6000

-8oo00

-10000

-12000

-14000

-16000 [

Fig. 9: SOMA dependence on PRT size [19]

3.4.6 Null PRTVector Problem Definition

All the experiments mentioned in [19] were performed on Cost Functions with 100
parameters. Naturally, the PRTVector’s length (L) was also 100. The probability P, that
generated the PRTVector is a null vector (vector which contains nulls only, see also (1))

that is very low for PRT e <0.1; 0.3>.
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Py = (1-PRT)

Table 4: Probability of null PRTVector for L = 100

PRT | Py
0,005|0,60577
0,01 |0,366032
0,03 |0,047553
0,05 |0,005921
0,07 [0,000705

0,1 |2,66E-05
0,2 |2,04E-10
0,3 |[3,23E-16
0,6
0,5
0,4
n_o 0,3 \
0,2 \
0,1 \
0
0 0,11 0,2 0,3
PRT

Fig. 10: Probability of null PRTVector for L = 100

However, P, increases dramatically if L or PRT value decreases.

Table 5: Probability of null PRTVector for L = 25

PRT Po

0,005 0,886654
0,01 0,785678
0,03 0,481417
0,05 0,291989
0,07 0,175223

0,1 0,079766
0,2 0,004722
0,3 0,000192
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0,6
0s |\
0,4 \

a
\

0,2
o1 \

PRT

Fig. 11: Probability of null PRTVector for L = 25
If the null PRTVector is generated, the individual does not move during the actual
migration loop and the Cost Function is always evaluated with the very same parameters.
For example, 27 evaluations are wasted if Step = 0.11 and PathLength = 3. This waste of
computation time is highly improbable when L = 100 and also very low if the theoretical

test functions (see chapter 7) are computed.

Let us consider a real life problem of the heating-plant parameters optimization.
[20] (see also chapter 10.1 ). L = 24 means that one parameter for every hour during the
day has to be optimized. If PRT = 0.1, P, = 0.79, almost 8% of the Cost Function
evaluations are wasted. In doing so, one evaluation of the Cost Function is very time

demanding (even in a range of minutes [21]) as a waste database has to be processed.

Such conditions approve an institution of a simple null PRTVector repair

mechanism:

If PRTVector is the null vector, @)

a new PRTVector is generated instead.

Consequently, Py is always 0. Instead of Py, probability P; of the PRTVector which

contains 1 only ones can be considered.

P,=(1-PRT)*+L*PRT*(1-PRT)" " (5)
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Table 6: P, for L =100

PRT |P,
0,005  [0,910178
0,01 0,735762
0,03 0,194622
0,05 0,037081
0,07 0,006013

0,1 0,000322
0,2 5,3E-09
0,3 1,42E-14

\
0,8
o6 [\
o 1
0,2 \
NN

0 0,1 PRT 0,2 0,3

Fig. 12: P, for L = 100
The application of (4) into SOMA allows the PRT parameter to be set within the
range (0; 0.1> which was previously unreachable due to high values of P,.

More detailed information considering the null PRT vector problem can be found
in [22].
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4 SYMBOLIC REGRESSION

The term symbolic regression represents a process in which measured data is fitted
by a suitable mathematical formula such as x* + C, sin(x) + €, etc. This process is quite

well-known and can be used when data of an unknown process is obtained.

There are two well-known methods: GP and GE, which can both symbolically
regress the usage of the evolutionary algorithm; however, this thesis uses another more
flexible method called Analytic Programming, which can be implemented on the arbitrary

EA. A comprehensive survey of the symbolic regression methods can be found in [23].

4.1  Genetic Programming

GP was introduced at the end of the 1980s by John Koza [24], [25]. He suggested a
modification to a genetic algorithm (see chapter 3.1) and he called it Genetic
Programming. In this concept a new population is not bred in the common numerical way
but in the analytical way. It means that the solution of such breeding is not values of

parameters but the function itself. [26]

Point of mutation o

Mutation e °
T
© 09 @
9 @

Randomly generated string

Fig. 13: Mutation in Genetic Programming
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4.2 Grammatical Evolution

Grammatical evolution (GE) is another tool for doing symbolic regression by
computers. The advantage of this tool, compared to GP, is that GE can evolve complete
programs in an arbitrary programming language [27], [28] using a variable-length binary
string. It uses a Backus Naur Form (BNF) grammar definition for mapping a process to a
program. GE performs the whole process on variable-length binary strings. The mapping
process is employed to generate programs in any language by using the binary strings to
select production rules in the BNF definition. The result is the construction of a
syntactically correct program from a binary string that can then be evaluated by a fitness
function. [29]

4.3  Analytic Programming

The main principle (core) of AP is based on a discrete set handling (DSH) (Fig.
14) and is inspired by GE. DSH shows itself as a universal interface between the EA and
the symbolically solved problem. This is why AP can be used almost by any EA (see
chapter 3). [30]
Discrete set of parameters

{AND, OR, XOR.....}
{1.1234, - 5.12, 9, 332.11,.....}

Y

YES
Individual={1, 2, }
Integer index
e CostValue=CostFunction(x1, x2, x3, x4)
NO I

Fig. 14: DSH principle [31]
Briefly stated, in AP, individuals consist of non-numerical expressions (operators,
functions,...) which are represented within the evolutionary process by their integer
indexes. Each index then serves as a pointer into the set of expressions and AP uses it to

synthesize the resulting function-program for the Cost Function evaluation.
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All simple functions and operators are in the so called General Function Set (GFS)
divided into groups according to the number of arguments which can be inserted during the
evolutionary process to create subsets GFSs;, GFS,...GFS,.

Table 7: Example of GFS and its subsets

GFS Degree | Contains
GFSa f(X1, X2, X3), +, -, *, /, Power, Abs, Round, Sin, Cos, t, K, 1, 1,2
GFS; (X1, X2, X3)
GFS, +, -, *, /, Power
GFS; Abs, Round, Sin, Cos
GFSo t K112
GFSail

Fig. 15: GFS subsets hierarchy
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The functionality of AP can be seen in the specific example in Fig. 16:

GFSall = {f(x1, x2, x3) , +, -, *, /, Power, Abs, Round, Sin, Cos, t, K, e, 1, 2}

\

Individual = {3,7, 9, 11, 9, 2}

Rusulting Function by AP = {Abs(t) - Sin(Sin(K))}

GFSoarg = {t, K, €, 1, 2}

Fig. 16: Main principles of AP
The individual consists of 6 arguments (indices, pointers to GFS). The first index
is 3, meaning that it is taken from the set of functions GFS,,. The function minus has two

arguments; therefore indexes 7 and 9 are arguments of minus.
6+7 (6)
Index 7 is then replaced by Abs and index 9 by Sin.
Abs + Sin @)

Abs and Sin are one-argument functions. Then, index 9 follows index 11, which is

replaced by t.
Abs(t) + Sin (8)

Sin is also a one-argument function. Then, after index 11, the individual takes

index 9, which is replaced by Sin and this Sin becomes an argument of the previous Sin.
Sin(Tan) + Sin(Sin( 9)

The last index is 2, but in this case there is the function Plus. Plus needs two
arguments to work properly. AP will not allow this, as there is not any other free pointer to

be used as the argument. Instead of Plus, AP will jump into the subspace, in this case
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directly to the GFSqarg. In the GFSpq it finds the second element, which is K. And by doing
so, we get (10).

Abs(t) + Sin(Sin(K)) (10)

The number of pointers actually used from an individual before the synthesized
expression is closed is called depth. This example is based on the relevant and previously
published work in [23].
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3) NEURAL NETWORKS OPTIMISATION

Artificial neural networks are a widely used tool for nonlinear modeling, function
approximation, prediction, classification and association [34], [35], [36]. This thesis is

focused specifically on the feed forward ANN (see Fig. 17).

The network function f (x) is defined as a composition of other functions g;(x)
which can further be defined as a composition of other functions. This can be conveniently
represented as a network structure, with arrows depicting the dependencies between

variables. The widely used type of composition is the nonlinear weighted sum,
fG) = FC) wigi(x)) (11)
i

where F (commonly referred to as the activation function) is some predefined function,
such as the hyperbolic tangent (see (17)). [38]

Fig. 17: Example of one and two hidden layer ANN
What has attracted the most interest in ANN is the possibility of learning (see
chapter 5.3.1). Given a specific task to solve, and a class of functions, F (in this case GFS,
see chapter 5.3), learning means using a set of observation to find f* e F which solves the

task in some optimal sense. This entails defining a Cost Function C:F—R such that, for the
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optimal solution f*, C(f*)< C(f)V fe F (i.e., no solution has a cost less than the cost of the

optimal solution). [39]

5.1 Evolutionary Designed Neural Network

The development of evolutionary methods aiming to design the ANN structure and
weight values experienced boom at the end of the millennium with the introduction of
sufficiently fast computers into common scientific practice. A comprehensive survey
considering history of evolutionary computation methods of designing the ANN structure
can be found in [40].

According to [41] these methods can be used in the field of the ANN in several

ways:

e to train the weights of the ANN
e toanalyze the ANN
e to generate the architecture of the ANN

e to generate both the ANN’s architecture and weights

The problem often encountered with GA is that they are quite slow in fine-tuning
once they are close to a solution. Therefore, hybridization of GA and back propagation
algorithm [42] (BP), where BP is used to fine-tune a near-optimal solution found GA, has
proven to be successful [43]. In [44] a GA is used to evolve the ecological ANN that can
adapt to their changing environment. This is achieved by letting the fitness function, which

in this case is seen as individual for every gene, to co-evolve with the weights of the ANN.

De Garis [45] uses a method, which is based on the fully self-connected ANN
modules. It is shown that by using this approach a network can be taught a task even

though the time-dependent input changes so fast that the ANN never settles down.

In [46] and [47], GA is used in a fixed three layer feed forward ANN to find the
optimal mapping from the input to a hidden layer. It is suggested that the hidden target
space might have more optima than the weight space and that finding the optimum will

therefore be easier.
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[48], [49] and [50] used chromosomes with real-valued genes instead of binary
coded chromosomes. Satisfactory results are reported using a Genitor type Steady State
Genetic Algorithm with relatively small population size of 50.

An alternative approach is to use GA, where the topology and weights are encoded
as variable-length binary strings [51]. In [52] a structured GA is used that simultaneously
optimizes the ANN topology and the values of weights.

In [53] feed forward ANN are generated with GA, using a direct encoding scheme
where every gene in a chromosome represents a connection between two neurons. This

Approach is also known as restrictive mating. [54]

Jacob and Rehder [55] use a grammar-based genetic system, where the topology
creation, neuron functionality and weight creation are split into three different modules,
each using a separate GA. Similarly, Happel and Murre [56] report an approach, where

modular ANN are generated using the direct encoding scheme.

Angeline at al. [57] implemented a system based on evolutionary programming
where ANN evolve using both parametric mutation and structural mutation and in [58]
evolutionary programming is used where the initial network is a three-layered fully
connected feed forward ANN and the evolutionary programming algorithm is used to

prune the connection.

In [54] a modular design approach is used, where a distinction is made between the
structure, connectivity and weights optimization. Kitano [59], [60] uses a GA-based matrix
grammar approach with chromosome code grammar rewriting rules that can be used to
build a connectivity matrix. Gruau [61], [62] uses a graph grammar system called Cellular
Encoding. The graph grammar rules work directly with neurons and their connections and
include various kinds of cell divisions and connection pruning rules. Boers and Kuiper [63]
use a graph grammar system based on a class of fractals called L-system. The

chromosomes used in the GA code the production rules in this grammar.

In [64] and [65] a quite different approach is presented. The ANN is used to model
organisms living in a two-dimensional world in which they can move in search for food

and water.
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5.2  ANN Generating by Genetic Programming

GP offers an approach to the direct encoding scheme. The approach that consists
of directly encoding ANN in the genetic tree structure used by GP is described in [24].

According to [25] the ANN topology as well as the values of the weights are
defined within one structure and no distinction is made between learning of the ANN
topology and its weights. The terminal set is made up of the data inputs to the network (D)
and a random floating point constant atom (R). This atom is the source of all the numerical

constants in the ANN and these constants are used to represent the values of the weights.
T={D,R} (12)

[25] also proposed a function set F consisting up to six functions; F = {AN, W, +,-,

*, %} however [41] proves that GP works much better for

F ={AN, W} (13)
where the arithmetic functions are omitted.
The title given to this implementation of the ANN design using GP is the GPNN

[65]. An example of a chromosome generated by the GPNN is the following ANN, which
perform the XOR function (see also chapter 11.1).

(AN (W (AN (W -0.65625 D1 ) (W 1.59375 D0 ) ) 1.01562 ) )
(14)
(W 1.45312 (P (W 1.70312 D1) (W —0.828125D0))))
The graphical representation of (14) and the corresponding ANN are shown in Fig.
18. In a similar way, the GE can be used to successfully design the ANN. Such an

approach can be found for example in [66] or [67].
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1.07 D1-0.83 DO ‘ -0.66 D1 1.60 DO

Fig. 18: Translation of a GP chromosome into ANN

5.3  Neural Network Synthesis

Development of the ANN synthesis as a successfully and effective method for the
ANN designing is the main aim of the thesis. This chapter explains what can be understood

under the term ANN synthesis and how the method works.

Clause: Let there be a set of all neural networks with a forward running propagation
ANNg; = {ANNy, ANN_, ..., ANN;, ...} and a set of all functions Fy, = {fy, f,, ..., f, ...}. Then
for each ANNi e ANNgy, there exists a function f, e Fy, alternatively a set of functions Fy

< F4i such, that holds ANN; < fy, alternatively ANN; < F.
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The Kolmonogorov theorem further shows the validity of the inverse clause: For

every continuous function fy e F,there exists ANN; € ANN,, such, that holds f, < ANNi.

Task: Design an algorithm, which will by the means of the symbolic regression
methods, evolutionarily scan a set Fy, in order to find:

a) fre ANN,

b) f., whose at least some subfunctions {f;, f,, ...} < {ANN,, ANN,,, ...}

which solves the particular problem P with a global error Er < & where & is the user

defined biased tolerance threshold.

input

problem
P

symbolic regression

evolutionary rocess
scanning P
output
set successful solution
Fa\l ANNI

Fig. 19: Principle of the evolutionary scanning

AP can perform such evolutionary scanning above Fg set and provide the
possibility to synthetize the ANN with an almost infinitely variable structure, complexity
and scope. There is a very easy way of using AP for the ANN synthesis. [68] The most
important part is to define items of which the ANN will be composed. In this case the GFS

contains only three items.
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GFS, = {+, AN, K*X}

(15)

Most important item of (15) is an Artificial Neuron (AN) (16) with a weighted

hyperbolic tangent as a transfer function (17). The weight of output, steepness and

thresholds are computed as K in AP (18).
GFS1 = {AN}

e2A (S+9) _ 1

ANGS) =W

2K, (S+K3) _q

AN(S) = Ky e2Ka (S+K3) 4 1

Fig. 20: AN transfer function for various w, 4, ¢ settings

Fig. 21: Graphical example of AN

To allow more inputs into one ANN a simple plus operator (19) is used.
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GFS; = {+} (19)

A

Fig. 22: Graphical example of plus operator

Finally, (20) represents the weighted input data.

GFS, = K*x (20)

W

X

Fig. 23: Graphical example of weighted input
Under such circumstances, translation of an individual into the ANN can be easily

grasped from Fig. 24.
GFSan = <:| individual
= (+, AN, K*X) = {2:1:2:2:3=3}

e

ANN = AN[AN[x] + AN[x]]

Fig. 24: Translation of an individual into ANN
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The whole process is cyclical. Individuals provided by the EA are translated into
ANN. ANN are evaluated in accordance with a training data set and their global errors are
used to set the fitness of these individuals. Consequently, a new generation is chosen and
the whole process is repeated in the next migration loop.

The introduced approach is not the only one possible. Different settings of the GFS
were successfully used to synthetize the ANN performing classification. [33]

5.3.1 Constant Processing

The synthesized ANN, programs or formulas may also contain constants “K”,
which can be defined in the GFS, or be a part of other functions included in the GFSy,.
When the program is synthesized, all Ks are indexed, so Ky, K, ..., K,, are obtained and
then all K, are estimated. Several versions of AP exist in accordance with K, estimation.
[32] In most cases, the Nonlinear Regression of Toolbox of Mathematica software is used.
This approach provides fast results; however, the source code of this toolbox is not an open
source and its inner function is not sufficiently clarified, so the resulting algorithm is not

fully described and this solution cannot be used without the Mathematica software [23].

SOMA used as EA for AP SOMA used to learn ANN

Individual = {1, 2, 3, 4}

Constants ={K1, Kz, K3, K+, K5} {w, X, &, w,w} + CostFunction

P D
W '
2 Specimen =
@ o |w {double, double, double, double, double}
w .
Individual 1 = {1,1;-12; 2,73; 0,87, -1,1}
t 82){

GFSar = {+, AN, K*3ex, K*t) Individual n = {7,32; 1,33 ..}

GFSO = {K*S'ex, K*I}

Fig. 25: Learning of a synthesized ANN
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In this case, the asynchronous implementation of SOMA (inside another SOMA,
which operates AP) is used to estimate K,. This is especially convenient for the ANN
synthesis. K, can be referred to as various weights and thresholds and their optimization by
SOMA as ANN learning (see Fig. 25). [33]

5.3.2 Reinforced Evolution

The Reinforced Evolution is a common part of AP. [32] If the ANN of adequate
quality cannot be obtained during AP run, AP puts the best ANN it found as a sub ANN
into the GFS, and starts over.

This arrangement considerably improves AP ability to find the ANN with
desirable parameters. For the purpose of this thesis one AP between the GFS
reinforcements is called an evolution loop. The term evolution loop should not be mistaken

for the migration loop. (For the migration loop see the chapter 3.4.3.)

Individual = {1, 2, 3, 4} Individual = {1, 5, 2, 4}
Constants = {K;, Kz K, K4, K5} Constants = {Ks, Ks, K7, Ks} p
> ;
t ae)l
t ae){
GFSai = {+, AN, K*Sex, K*t) GESu = {+, AN, K*3ex, K*t, {{1,2,3,4}, {K1, KoK Ko, K511}
GFSs = {K*3es, K*1) GFSs = {K*Sex, K*1, {{1,2,3,4), K1, Ko, K5, K, K5}})

Fig. 26: Example of GFS reinforcement process between two ANN evolution loops

5.3.3 Cost Function Specification

As the synthetized ANN are produced to the EA, which needs to evaluate them,
the Cost Function (CF) has to be specified prior to the beginning of the synthesis.

The CF specification depends on the purpose of the ANN synthesis (the solved
problem) and differs for approximation (chapter 8) or prediction (chapter 10) and
classification (chapter 11).
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In the case of prediction or approximation, the CF can be defined as a Rood Mean
Square Divergence (RMSD) (21) or a Normalized RMSD (22) (NRMSD).

Z(ANN(X|)_y(X|)) (21)
RMSD(6,, 6,) = |2
n
NRMSD = RMSD 100% (22)
ymax - ymin

For classification tasks, the CF has to be designed as (23). To favor smaller ANN,
the fraction depth parameter (for depth meaning see chapter 4.3) of an individual can be
added.

CF = number of wrongly classficed examples +

(23)
depth/100;

Fig. 27: Example of CF for classification
To obtain a smoother profile of the CF (23) can be developed into (24).

if (sample; is classified correctly)0
CF = else p(ANN[sample; ], (24)
correct class border) + 1
i=1
For the practical implementation of (24) see (87) in chapter 12.
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6 DISTRIBUTED COMPUTATION

The basic idea of most parallel programs is to divide a task into chunks and to
solve the chunks simultaneously using multiple processors. This divide-and-conquer
approach can be applied to the EA in many ways and literature contains an inexhaustible
number of examples of successful parallel implementations. Some parallelization methods
use a single population, while others divide the population into several relatively isolated
subpopulations. Some methods can massively exploit parallel computer architectures,

while others are better suited for computers with fewer but more powerful CPUs. [69]

A comprehensive survey of the EA distribution can be found in [70] together with
two following successful Island Model [71] SOMA distributions.

6.1 Island Distribution of SOMA

This approach suits parallel SOMA running in the above described cluster
platform very well. At each computation node, a randomly initialized subpopulation is
created according to the configuration given by a master node. The node performs one

SOMA migration and sends a local leader to the server.

6.1.1 Synchronous Island Model

When the migration loop is done on all terminals, the server compares cost values
of all received local leaders and chooses a global leader. This leader is then sent back to
the terminals and replaces the worst individual in local populations. This process is

repeated until the termination conditions are satisfied.

6.1.2 Asynchronous Island Model

To avoid time delays in the former parallelization approach, the synchronism of
sharing and selecting the best individual was removed. When the terminal finishes its
migration loop, the local leader is sent to the server. The task of the master node is to
maintain the global leader — every time it receives the leader from a subordinated node, it
compares its cost value with the value of the global leader and stores the better one.
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Consequently, the global leader is passed back to the terminal node, where next migration
loop is started. Again, this process is repeated until stop conditions are met. This
parallelization approach is also used outside the cluster platform.

6.2  Direct Asynchronous Distribution of SOMA

Chapter 5.3 explains the process during which a huge number of very different
ANN can be synthesized. Therefore, an actual population, which needs to be evaluated,
contains individuals with various numbers for Kn. This means that the algorithm is very
time demanding and furthermore, computation of every individual consumes different

amounts of computation time. [3]

Fortunately, in these days, standard computers are more often equipped with more
than one processor. However, if the individuals are evenly divided between available
processors for every migration loop, the large amount of computation time is lost due to

their unevenly distributed complexity.

To overcome this set-back, a small but very important change to SOMA
mechanism was made inspired by the Asynchronous Island Model (chapter 6.1.2). The
individuals no longer work in the migration loops (see. chapter 3.4.3). On the contrary:

Every individual is compared with the Leader just after it (25)
finishes its jumping and a new Leader is selected immediately

Migration
loopn+2

Thread k\ \
y- - /4

Time frame

Fig. 28: Asynchronous processing of a migration loop by different threads
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This makes SOMA distribution work asynchronously. All the individuals do their

migrations independently and some may even move much faster than others.

The main reason why SOMA as an algorithm is especially convenient for the
direct distribution approach lies in the fact that every individual needs to communicate
with the leader only once per twenty-seven evaluations of the CF (depending on SOMA
control parameters), so the amount of information transferred between individuals during

computation is relatively low in comparison with other GA as can be seen in Fig. 29.

B 10,00

9,00

8,00

7,00

6,00

5,00

4,00

3,00

2,00

1,00

0,04
0,00 . .

GA DE P50 SOMA

Fig. 29: Proportional comparison of transferred information amounts neededed for one
CF computation within different EA

As there is no synchronization point anymore to evaluate the stop condition
(chapter 3.4.4), the condition is evaluated once after n evaluations of the Cost Function.

n = period * number of individuals * mass / step (26)

The strategy proposed by (25) can result in interesting behavior of individuals
provided each individual occupies its own thread or process as described in Fig. 30.

In such a case, a huge individual (the ANN with more AN) moves on a N-k hyper
plane slower than small agile individuals (the ANN with less AN) as can be seen in Fig.
31. This can positively influence the ANN optimization.
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Fig. 30: Asynchronous individual processing

Cost Function

Leader X1

Fig. 31: Asynchronous parallel movement of SOMA individuals
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PRACTICAL PART
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7 ASYNCHRONOUS SOMA PERFORMANCE

To statistically explore the efficiency of SOMA direct asynchronous distribution
proposed in chapter 6.2, ten different test functions were chosen for the experiment. All
these functions as well as other SOMA control parameter settings were based on [19] and

used in the same way as done by prof. Zelinka when initially testing the SOMA.

Dim-1
Z (20 L e—20e 0.2 /O 5( x+1) _ e—0.5(cos(27rxi )+cos(2;zx,+1))j 27)

i=1
X, +47+ %‘ D (28)

Dim Dim
29
> oo 11 ) @

Dim-1[ —( +x0170.5% X,1)

- e 8 cos(4\/x +x2,+0. 5x,x,+1) (30)
i=1

Dil —lisin(xi)sin[(x—jJ ]+S|n(x,+l)sin((zx7'2”j D (31)

Dim-1

) L_Xi sin (1 = (s +47) 1) = (% +47)sin{

i=1

Dim-1

> (x sin(a)cos(b) + (X, +1)sin(a) cos(b) )
i1 (32)

where azﬂjl X, +1—X | and b=4/| Xy +1+X |
10Dimmzm(xi2 ~10cos(27,)) (33)
Dizmll(100(xi2 —x ) +(1- xf)z) (34)

i=1
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—X sin( | X. |) (35)

Dim-1

-3 (% + xiil)o'25 (sin (500 + xiil)o'l)2 +1) (36)
i=1

PopSize = 60, PathLength = 3, Step = 0.11, PRT = 0.1 and a number of parameters
= 100 are constant for all these functions. The number of migration loops and borders of

the function’s parameters vary in accordance with Table 8.
2D and 3D visualizations of test functions (27) - (36) are available in Appendix .

Table 8: Test functions, ML and borders

Function ML Low Hight

Ackley (27) 400 -30 30
EggHolder (28) 800 -512 512
Griewangk (29) 200 -100 100
Masters (30) 400 -5 5
Michalewicz (31) 200 0| 3,1415
Rana (32) 125 -500 500
Rastrigin (33) 400 -5,12 5,12
Rosenbrock (34) 125 -2,048 2,048
Schwefel (35) 400 -512 512
SineWave (36) 400 -10 10

Every test function was optimized 100 times by linear SOMA and 100 times by
SOMA direct asynchronous parallelization (25) distributed among 8 independent
processors of a Super Micro server (see Appendix V). In total 1.1 * 10° Cost Function

evaluations were computed during 2,000 separate SOMA runs.

7.1 Results

Table 9 and Table 10 show the average and best results from the previously

proposed experiment for all test functions (27) to (36).
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Table 9: SOMA average results

Function Linear Asynchronous
Ackley (27) 3368,098 3370,429
EggHolder (28) -63855,5 -63605,3
Griewangk (29) 0,872625 0,885898
Masters (30) -77,7542 -77,9066
Michalewicz (31) -97,9913 -97,6051
Rana (32) -21400,8 -21486,4
Rastrigin (33) -958457 -950512
Rosenbrock (34) 335,933 369,7812
Schwefel (35) -40531,1 -40241,7
SineWave (36) -519,919 -518,877
Table 10: SOMA best results
Function Linear Asynchronous
Ackley (27) 3366,142 3366,184
EggHolder (28) -68130,2 -67268,8
Griewangk (29) 0,625381 0,580481
Masters (30) -83,9028 -84,3382
Michalewicz (31) -98,9955 -99,0905
Rana (32) -24067 -25117,7
Rastrigin (33) -977084 -968021
Rosenbrock (34) 234,7636 254,7049
Schwefel (35) -41423,7 -41305,1
SineWave (36) -530,483 -530,24

SOMA parallelization (25) introduced in chapter 6.2 proved to be highly effective.
Considering the average results (25) was in 2 cases better than linear. Furthermore, for the

best results (25) was better in 4 cases and its efficiency is almost 100%.

(25) efficiency for the average results is 98.6%, which is even better than the
efficiency of the asynchronous island model published in [70]. (25) excellent performance

convincingly demonstrates its usage as the EA for AP.
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8 ANN SYNTHESIS FOR FUNCTION APROXIMATION

In order to statistically evaluate the ANN synthesis’ ability to successfully solve
the function approximation problem (chapter 5.3), the function (37) proposed by [24] as an
appropriate approximation benchmark was chosen to be approximated by the ANN.

Y =X -2 X% +X
37)
where x; € <-1,by the step 0.04 ,1>

Fig. 32 (automatically generated by ANN synthesis software, see chapter 12)
shows an example of synthetized ANN approximating (37). The difference between the
ANN and (37) is depicted as a red area which could be minimized by the process of
synthesis.

i ]

AM[R] + %

-1.02305613477335 " AM[0,224435520462836 * [-3,11728677953835 & + 0,07193014803533124)] + -1,03332319792235 " &

Leader Costvalue: 0,0110081082318404

0.4
T
) \
oL ~
0.2 \'\ /
-
e

0.4

0 20 40

Fig. 32: Approximation of (37) by synthetized ANN
The CF of the synthetized ANN is mathematically formulated in accordance with

the chapter 5.3.3 as a RMSD (21).

AP was executed 100 times (physically on 8 cores of the Super Micro Server, see

Appendix 1V) to produce an ANN with the RMSD < 0.005. The main intention was to
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find such an ANN which met this condition and which simultaneously used as few AN as

possible.

The setting of Asynchronous SOMA used as the EA for AP can be seen in Table
11 and SOMA setting used for ANN learning in Table 12.

Table 11: Setting of SOMA used as EA for AP

Number of Individuals 48
Individual Parameters 100
Low 0
High 3
PathLength 3
Step 0,11
PRT 1/ depth
Divergence 0.01
Period 1

Table 12: Setting of SOMA used to optimize Kn

Number of Individuals number of Ky * 0.5

(at least 10)
Individual Parameters 100
Low -10
High 10
PathLength 3
Step 0,11
PRT 1/ number of K,
Divergence 0.01
Period 6
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8.1 Results

A total of 921,937 evaluations of AP individual fitness was done during 100 AP
executions and a separate SOMA run was performed for all of them to set their K, value.
The time needed for all these evaluations was approximately 5 hours and 24 minutes.

The average time for 1 evaluation was 558 ms, however t.x = 136,369 ms while
98% of measured times t < ty. / 10. Such results prove that the vast amount of the
computation time can be saved by asynchronous distribution (26) (see chapter 6.2). The
way these values increase with a growing number of processors used is described in Table
13 and Fig. 33.

Table 13: Time saved by asynchronous evaluation

Number of Percentage of
processors used saved time
2 23,7 %
4 47,3 %
8 67,2 %
16 81,2 %

100,00%

80,00% /
60,00%

(]
E
-
O
S 40,00% /
© U0 /
(7]

20,00%

0,00%
2 7 12

Procesors

Fig. 33: Time saved by asynchronous evaluation
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All 100 AP runs successfully synthesized the ANN with the RMSD < 0,005. The
average number of the AN used was 9. Nevertheless, the optimization task in order to find
the ANN with the lowest number of AN was the most successful in 4 cases, which
employed only 2 AN. All these cases led to a similar ANN structure.

30

. [\
s [ERWA
N A VAR
S B
) —

0 5 10 15 20 25
Number of used AN

Cases

0

Fig. 34: Synthesized ANN according AN usage
The example of a successfully optimized ANN is shown here as (38) and its sub
ANN as (39):

ANNO = x + AN[x] (38)
ANN1 = ANNO + ANJANNO] + ANNO (39)
After successful optimization of K, by SOMA (38), (39) lead to (40), (41).

ANNO = -0,972628914257888 * x + 0,960043432203328 * AN[0,303565531015147

40
* (7,00172920571721 * x + -0,00454216333835794)] (40)

ANN1 = ANNO + 0,40897485611192 *

41
AN[-2,77100775198393 * (ANNO + 0,000305134718869929)] + ANNO (41)

(42) and (43) translated (38), (39) into the mathematical formulation.
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62/11 (wix+¢) _ 1

ANNO = w + wax (42)

2022 Wix+4) 4 q

e2M (Wwix+41)_q

22, (W4(erz PP CZEET R twsx) + ¢,) 1
ANN1 = wg S 021 (W1x+¢1)_1+w o+ )
e 2 WA A Wit 3 2 11 (43)
e2 M1 (Wix+¢) _ 1
+ wsx

twy o2 WX+ 1 q

The ANN described as (38), (39) can be graphically interpreted (Fig. 35).
Yy
w
ad
w
o) |-
w

X

Fig. 35: Graphical interpretation of resulting ANN

8.2 Conclusion

Asynchronous distributions (25) proved to be crucially important for the successful
AP implementation. For example, if 8 processors are used (as they were in the
experiment), more than 67% of computation time (which would be wasted otherwise) can
be saved. With respect to the experiment, approximately 3 hours of computation time were

saved.

AP also exercised the ability to synthesize the ANN affectively and quickly with
the help of asynchronous SOMA distribution (0.5 s for 1 ANN on average).

The very small ANN containing only two ANs was automatically found and
solved the given problem with the satisfactory RMSD. This success reveals AP as an

exceptionally useful tool for ANN synthesis and optimization. [72]
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9 ANN SYNTHESIS STRATEGY EXPLORATION

To boost the AP performance and to obtain better and faster results of the ANN
synthesis, two adaptive approaches of the PRT setting were developed (chapters 9.1.2 and
9.1.3) and applied in the experiment described in chapter 8. In order to measure their
impact on the AP performance statically the very same experiment was performed without

the proposed improvements and subsequently compared with the original results.

Chapters 9.2 and 9.3 explore the asynchronous SOMA dependence on the ANN

synthesis efficiency and the possibility of other EA employment.

9.1 Adaptive PRT Strategy

The PRT adaptive approach is possible only with the application of (4) discussed
in chapter 3.4.6. Experimental confirmation of such an approach is statistically processed
in chapter 9.1.1.

9.1.1 Adaptive PRT Strategy Test on Test Functions

The following experiment was designed to explore SOMA efficiency for PRT e
(0; 0.1> and compare it with results obtained for PRT e <0.1; 0.3>. In other words, this

experiment measured the dependence of P; on SOMA behavior (see chapter 3.4.6).

The main aim of the experiment was to statistically approve the widening of the
PRT parameter into PRT < (0; 1> as a necessary assumption for strategies applied in
chapters 9.1.2 and 9.1.3.

Test functions (26) - (37) were chosen for the experiment. PopSize = 60,
PathLength = 3, Step = 0.11 and the number of parameters = 100 are constant for all of
these functions. (see also Table 3) The number of migration loops and borders of the

function’s parameters vary in accordance with Table 8.

For each test function, the optimization (the search for a global minimum) via
SOMA was repeated 100 times for different PRT = {0.005, 0.01, 0.03, 0.05, 0.07, 0.1, 0.2,

0.3}. The overall 8000 repetitions were made (test functions * PRT variants * 100).
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996.3 * 10° evaluations of the Cost Function were computed in total.
evaluations = (Round(PathLength/Step) * ML * PopSize * 100 * test functions)  (44)
(4) was applied in all cases.

The final results were normalized: The best case for the given test function was
set as 0 (base) and all other cases were expressed as percent divergence.

Fig. 36 and Fig. 37 graphically show the values describing SOMA behavior based
on various test functions and PRT settings. More specific results are included in Appendix
Il (see Fig. 90, Fig. 91 and Table 20, Table 21, Table 22, Table 23).
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: ki
5 0,1 Rastrigin
2 05 1\
0,05 \ Schwefel
o U SineWave
0 0,1 0,2 0,3
PRT
Fig. 36: Test functions performing better for PRT e <0.005; 0.7>
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Fig. 37: Test functions performing better for PRT  <0.1; 0.3>
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5 out of 10 test functions employed in the experiment (see Fig. 36) achieved better
results for PRT e <0.005; 0.7> and the other 5 (see Fig. 37) for PRT € <0.1; 0.3>. This
conclusion represents a significant breakthrough in the PRT setting strategy. The
previously recommended range PRT e <0.1; 0.3> can be extended to PRT € <0.01; 0.3>;
furthermore, around 50% of the functions can be optimized by SOMA more effectively if
PRT e <0.01; 0.7>. An increasing value of P, can positively influence the obtained results
[73]. However, SOMA efficiency always decline if P, > 0.74.

Based on this conclusion, strategies described in chapters 9.1.2 and 9.1.3 using

PRT e (0; 1> can be recommended for the experimental validation.

9.1.2 Adaptive PRT Strategy for AP Handling

The adaptive strategy for AP handling consists in the replacement of a static PRT
value by a value which depends inversely on the individual’s depth. This approach ensures

(together with (4)) that the PRT influence is projected into an active part of the individual.

Table 14: PRT strategy for AP handling
PRT =1/depth | PRT=0.1

Average time needed for synthesis 194's 373s

Average number of used AN 9 13

A total of 1,189,870 evaluations of AP individual fitness were completed during
100 AP executions while the PRT was set to 0.1 and the separate SOMA run was
performed for all of them to set their K, value. Without the adaptive PRT, AP was able to
find an optimal ANN in only 1 case in comparison with 4 successful cases in the original

experiment.
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9.1.3 Adaptive PRT Strategy for K,, Estimation

The adaptive strategy for K, estimation consists in replacement of the static PRT

value by the value which inversely depends on K, dimension with the application of (4).

Table 15: PRT strategy for K, estimation

PRT =
PRT =0.1
1/ number of K,
Average time needed for synthesis 194 s 505 s
Average number of used AN 9 15

A total of 672,779 evaluations of AP individual fitness were completed during 100
AP executions and the separate SOMA run was performed for all of them to set their K,
value while PRT was set to 0.1 and (4) was omitted. However, under such conditions, in 7

cases AP was not able to find a sufficient ANN at all.

9.1.4 Conclusion

The introduced adaptive PRT strategy proved to be highly effective as its
application to AP handling works 48% faster and 16% more efficiently (computed on 8
cores of the Super Micro server, see Appendix IV). For K, the estimation considered
strategy works 61% faster and 42% more efficient. Furthermore, without it, AP was not

able to successfully synthetize the ANN in 7 cases.

The adaptive PRT strategy proved to be crucial for the successful ANN synthesis.

9.2  Comparison of synchronous and asynchronous synthesis

In order to explore the impact of individual’s asynchronous movement (discussed
in chapter 6.2, see especially Fig. 31) on the ANN synthesis efficiency, the experiment
considered in chapter 8 was repeated with synchronous behavior of the participated EA

individuals.
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Table 16: Synchronous and asynchronous SOMA performance
Asynchronous Synchronous

Average time needed for synthesis 194 s 212's

Average number of used AN 9 11

The experiment results recorded in Table 16 show that the asynchronous
movement is 8.5% faster and, interestingly, the synthetized ANN lacks 2 AN on average.
Such results successfully proved the adaptation of asynchronous individual behavior
(chapter 6.2) into the ANN synthesis.

9.3  ANN synthesis running with different EA

A comparison of different EA performances is a complex issue as each EA needs
its specific control parameters settings which often vary from task to task. Nevertheless,
the purpose of the experiment recorded in Table 17 is not to compare different EA with
each other, but to prove that the ANN synthesis can be successfully done with the use of
the DE (chapter 3.2),PSO (chapter 3.3) or SOMA.

The experiment from chapter 8 was repeated under the same conditions with the
DE or PSO as AP animator as well as ANN learning tools. The recommended control
parameters settings were taken from [74] for the DE and from [75] for the PSO. As parallel
versions of this EA were not available, the experiment was performed on a serial version
of the EA.

Table 17: ANN performance for different EA

DE PSO
Average time needed for synthesis 3296 s 3876 s
Average number of used AN 15 14

Both EA were principally able to successfully synthetize the ANN. As can be seen
in Table 17 the DE is slightly faster but the PSO provides fewer ANN. Longer
computational times are understandable as both EA work serially. The DE as well as PSO
provide deeper ANN on average; however, any of these EA are not tuned as suitable as
SOMA in chapters 6.2,9.1.2 and 9.1.3 .
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10 ANN SYNTHESIS FOR PREDICTION

In this chapter the ANN synthesis ability to successfully synthetize the ANN
capable of prediction is tested on a real life problem of a heating plant. The method
described in Chapter 5.3 is applied in order to optimize the Heat Load Prediction (HLP)
function of the heating plant in Komotany (Czech Republic). The function is later used to
predict the heat load of Most agglomeration in order to provide valuable information for

the heating plant control.

3
R
) Heated water ( Agglomeration \
Heating
requesting unknown value of
plant Flow

heat load, P?
Cooled water \ )

/me

Fig. 38: Relationship between a heating plant (red), an agglomeration (green),
atmospheric conditions (blue) and other events (black)

The interface between the heating plant and the agglomeration as can be seen in
Fig. 28 is a highly complex system. The heating plant provides heat in the form of hot
water with variable temperature and flow rates for the agglomeration while cooled water
returns with a variable transfer delay. As the flow and temperature are independent
variables set up by the heating plant staff or by an automatic regulator, the only unknown
variable for the interface modeling is the temperature of the returned water. However, the
process of prediction of the returned water temperature is not only affected by the past
values of the input temperature and the flow but also by a set of various external factors.
Undoubtedly, themost important value of the external factor is the past values of

atmospheric temperature. Nevertheless, the weather conditions such as humidity or wind
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speed should also be considered. In addition, different sociological factors, such as time

when people wake-up, can also play significant roles.

In the heating plant located in Komotany, Czech Republic, owned by the United
Energy a.s., the heat load is (48) and it is only predicted on the basis of the atmospheric
temperature and time because the data on humidity and wind speed are not measured or are
unavailable [68]. The complex situation is further complicated by the existence of the
secondary and tertiary distribution networks (illustrated in Fig. 39 published in [76]) and

their interactions with the primary network.

Base Heat Secondary Heating
Source Exchanger

‘ Segnent #3
Primary Heating Primary Network

Exchanger

Secondary Segnent #N
Heating
Xchanger

Segnent #1 econda
Heating Network

Heating
Substation

Heating
Substation

Fig. 39: Basic scheme of the central heating plant system Komorany — Most
The correct approximation of the heating power consumption, dependent on time and

atmospheric temperature, is an important presumption for the heating plant’s successful
control, so the HLP optimization was one of the most important tasks for the National
Research Program 11 No. 2C06007.

As the HLP precision of standard prediction methods (described in chapter 10.1)
is considered to be insufficient [77], the ANN can be designed to improve the prediction
accuracy.
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10.1 Heat Load Prediction

The heating plant uses (45) to predict the heat load by a sum of time-dependent

and temperature dependent components. [4]

f %)= fine )+ ferpy (4,) (45)
Where
fime () is the time dependent component,
t, is the time offset,
9, is the outdoor temperature,
fremo (%) is the outdoor temperature

10.1.1 Temperature dependent component

The temperature dependent component is approximated by using the generalized

logistics function.

K-A

fromp (G) = A+ T (46)
(1+ Qe Bt%Myy
Where
A is the lower asymptote,
K is the upper asymptote,
Q is the dependent on the value f, (0)
B is the growth rate,
Vv indicates near which asymptote the maximum growth occurs,
M is the time of maximum growth if Q = v.
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Fig. 40: Predictive function fie (1)

10.1.2 Time dependent component

The time dependent component is approximated by a sum of two peak functions.
The Gaussian Hybrid and the truncated exponential function (EGH) [6] were selected as
the most convenient functions. The Gaussian Hybrid and truncated exponential function

are defined as follows:

d=2c"+z(t-t)

—(t—t )2 (47)
me0%=HeﬂX——Eﬂ—) if d>0 else O
Where
H is the peak height,
o is the standard deviation of the parent Gaussian peak,
T is the time constant of the precursor exponential decay,
ky is the parameter of the speed of the fall of the leading trail,
t, is the time of the peak.
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Fig. 41: Predictive function feg; (t) for z=3.6
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Fig. 42: Predictive function fggp, (t) for =-3.0

Than f, . (t) is a sum of the two EGH functions:

ftime (t) = fEGHl(t) + fEGH 2 (t) (48)

K—-A (49)

fo(t,9y) = fime () + A+

time

1
(1+ Qe’B(‘gefo))V
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Fig. 43: Predictive function fp (2, e ) [KW]

10.2 ANN Synthesis for HLP

The task of the ANN synthesis here is to create an ANN that provides the HLP
with data containing measured heat load, time and external temperature. Data covering the
period from Nov 3, 2009 to Dec 31, 2009 includes 1,416 samples taken in one-hour steps.
The formal HLP function (see chapter 10.1) resulted in 4.28% NRMSD (22) within the
provided data. Therefore, the ANN with the lower NRMSD is desirable.

~ ) 4 )
Heating plant AN N

Komorany

\_ Y, N\ Y,

Fig. 44: Relationship between heating plant (red), ANN (green) and atmospheric
condition (blue)

The used data was normalized into a <0; 1> interval and divided into training,
validation and test sets. The whole experiment was conducted in accordance with rules

proposed in [79].
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A simple but effective GFS structure was used for the ANN synthesis during this

experiment:
GFS,, = {+, AN, K*&4 , K*t} (50)
The computation of the CF was extended from (21) to (51) and then normalized again
into (22).

rpNiQZ(P(t)— f,((t—t,) mod 24, 4,, ANN) (51)

Where

ANN is a vector of the ANN structure,
weight and biases,

P is a measured value of head load

In case the best-synthesized ANN does not improve its CF by at least 0,001%, then
the breeding is stopped.

The setting of Asynchronous SOMA used as the EA for AP can be seen in Table
11 while the Table 12 shows the setting of SOMA used for ANN learning.

10.3 Results

In 100 cases AP was always able to synthesize the ANN with the NRMSD =
3.46%; however, final results vary in a number of AN used. On average, the ANN with 31
AN was produced, however, the first 15 AN produced were enough to determine the HLP
function more precisly (see Fig. 52).

One example of the typically obtained ANN structure is shown on the following
pages with different evolution loops depicted in colors (for the evolution loop meaning see
the chapter 5.3.2). Evolution loops are described functionally (52), (54), (56), (58) - (73);
mathematically (53), (55), (57), (59), (91) - (94) and graphically from Fig. 45 to Fig. 51.
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ANNO = AN[t] + 9, (52)

P

t 891
Fig. 45: First evolution loop of synthetized ANN (52)(in red)

e2M (wit+¢) _q

ANNO = w, e2M1 wit+4) 4 q

+ ws 198)( (53)

ANNL1 = ANNO + AN[t] (54)

t 8EX

Fig. 46: Second evolution loop of synthetized ANN (54)(in green)

p2 M1 (Wit+¢) _q p2 2z (Wst+¢) _ 1
ANN1 = w,

o2 Wit o) 11 T WA 2a st v dp) 4 (55)

+w3 9,
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ANN2 = ANN1 + AN[AN]t] + t + AN[AN[t]] (56)

Fig. 47: Third evolution loop of synthetized ANN (56)(in blue)

ANN2

62/11 (W1t+¢1)_1 62/12 (W5t+¢2)_1

=Wz 62/11 (w1t + ¢)) +1 T Wy eZ)lz (W5t+¢2) + 1°

223 (w7t +¢3)_
e 3 1+¢5)

e214 (W9t+¢4)_1 eZAS (W6e213 (W7t+¢3)+1 -1
2 g (Wsezl4 (Wot+d3) 11 W10 22 o243 (W7t+¢3)_1+¢ ) ) 57
wel > T T 8-1
e o We Z A wrta i, T _1 (57)
T Wi . 243 (W7t+d3)_;
e2Aa (Wot+¢,)_4 e2 5 (WGezA3 W7t+d3) ., +¢5)_1
22¢ (W8e2’14 Wot+d)pq | Wio 273 (Wit v dy) t de)
245 W6 275 wrt ¥ gy, T 0
e e e 3/+1 +1 +1
+ws 8,

Mathematical descriptions (91) - (94) of the following four evolution loops (58) -
(61) are included in Appendix IlI.
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ANN3 = AN[AN[t]] + ANN2 (58)

(AN)

8ex t

Fig. 48: Fourth evolution loop of synthetized ANN (58)(in yellow)

ANN4 = ANN3 + AN[AN[ 9, ] + AN[ g, ] + 1] (59)

Fig. 49: Fifth evolution loop of synthetized ANN (59)(in purple)
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ANNS = AN[ANJAN[t] + & ]] + ANN4 (60)

Fig. 50: Sixth evolution loop of synthetized ANN (60)(in gray)

ANNG = ANN5 + AN[t + AN[t] + 9, ] (61)

Fex t

Fig. 51: Seventh evolution loop of synthetized ANN (61)(in brown)
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Twelve evolution loops, which added a less significant AN follow:

ANN7 = AN[t + AN[AN[ 9, ]I] + ANN6 (62)
ANNS = AN[AN[AN[ ¢, ]] + h] + ANN7 (63)
ANN9 = AN[AN[t]] + ANN8 (64)
ANN10 = ANN9 + AN[{] (65)
ANN11 = AN[ g, ] + ANN10 + AN[ANN10] (66)
ANN12 = AN[t] + ANN11 (67)
ANN13 = AN[t] + ANN12 (68)
ANN14 = AN[t] + ANN13 (69)
ANN15 = AN[t] + ANN14 (70)
ANN16 = AN[t + g, ] + ANN15 (71)

ANN17 = ANN16 + AN[AN[ 9, + AN[ANN16 +t +
ANN16] + t + AN[t] + ANN16 + AN[t] + ANN16]] (72
ANN18 = ANN17 + AN[AN[t + 4 ]] (73)

In these cases, AP used 18 sub ANN to form the final ANN. The synthetized ANN
have non-trivial structures, nevertheless, they can be easily simplified, if necessary, by
cutting thelater sub ANN with positive influence on the ANN computation speed. For
example, (41) benefit for the ANN accuracy is only 0.001%. The exponential downgrade

of the migration loop significance can be seen in Fig. 52.
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Fig. 52: Exponential downgrade of migration loop significance for precision

10.4 Prediction by Standard Feedforward ANN

In the previous studies [68] Matlab Neural Network Toolbox [80] (Fig. 53) was
used to create the standard feedforward ANN for the HLP and train it with the help of the
BP (Fig. 54).

A Neural Network Training (nntraintool) E‘E@‘ gl
Neural Network
Layer Layer
Ihput Output
j esults
& Samples MSE R
Training: 143 1.51668e-3 9,99594e-1

Algorithms Validation: El 7.22887e-1 9.50687e-1
Training: Levenberg-Marquardt (trainlm) Testing: 30 3.72574e-1 9.64614e-1

Perfarmance: Mean Squared Error (im:e)

Data Division:  Random (dividerand)

Plot Fit ] [ Plot Regression

Progress

Epoch: 0 [ i iterations 1000

Time: 0:00:13 Mean Squared Error is the average squared difference

Performance: 435 I: 0.00 between outputs and targets. Lower values are better. Zero

means no error.

Gradient: 1.00 Ll1le-12 L00e-10

M 0.00100 1.00e-00 1.00e+10 Regression R Values measure the correlation between

Validation Checks: 0 i 5 outputs ar.1d targets, An Rvalt.ne of 1 means a close

relationship, 0 a random relationship.
Plots
LRefarmance | (plosperform)
Training State (plottrainstate)
Fit (plotfit)

(plotregression)

Plot Interval: D lepachs
v Minimum gradient reached

g [ ®@Back || ®Net | [ @ cancel |

Fig. 53: Matlab Neural Network Toolbox
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Fig. 54: BP regression
Using a comparable number of the ANN Matlab produced a 7% worse one-hidden

layer ANN and a 9% worse two-hidden layer ANN (for the ANN with hidden layers see
Fig. 17) than the experiment in chapter 10.2. Interestingly even ANN learning was slower

as Matlab was not able to parallelize this process between more server cores.

P [%] ﬁ

M AR
) . | !

S VP AR YY

o | M \ -l

v
wlt] ~ gy
0 E’a 1‘0 1‘5 2‘0 '2’5 3’0 3‘5 4‘0 4‘5 5’0 t

Fig. 55: HLP by standard ANN

-81-



10.5 Arithmetical approach to GFS structure formulation

Inspired by [78] the experiment from chapter 10.2 was repeated with a different

GFS setting:

GFS ={+, *, hTan, t, 9, K} (74)

Such approach is partially similar to the F set, whose content was proposed in [25]

(see chapter 5.2). The implementation of (73) produced interesting partially neural

structures, as can be seen for example in Fig. 56.

y

9. t g9 t(*) &, °

9 (JF L 4.

ex

t

Fig. 56: ANN resulting from GFS containing arithmetical functions
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Nevertheless, the ANN synthetized implementing (73) is of significantly worse quality
than ANN obtained from the experiment in chapter 10.2. This determination is also in

agreement with [41].

10.6 Conclusion

AP was able to synthesize the ANN with the NRMSD 3.46%. This success
represents a 19% improvement in comparison with the commonly used HLP function (49).
The synthesized ANN provides a 7% better result than the HLP function modeling with a
help of the standard ANN organized into layers and taught by the BP and 5% better result
than the ANN optimized via the GA [81] .

100000

50000

Fig. 57: Surface of HLA function provided by synthesized ANN — areas significantly
corrected in comparison with formal function are depicted in red

The application of this method to the real case of the heating plant was possible
only due to a successful distribution method described in chapter 6.2. The algorithm ran on
24 of the Super Micro Server (see Appendix IV). Each core was occupied by two
individuals of the algorithm. In this configuration, one algorithm’s run took approximately

14 minutes, which resulted in the whole experiment lasting less than 24 hours.
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The synthesized ANN was used as a part of the National Research Program I No.
2C06007; it successfully defended project the solution and can positively influence a
quality control in the Komotany heating plant (see Fig. 2)

P[]
70

69

56
55

64

63

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00
time [hours]

Fig. 58: Predicted and actual curve of agglomeration heat load

AP proved its ability to successfully synthesize the ANN in dynamic and irregular
environments of real life problem situations. The implementation of the presented method
was accepted for publication in [82].
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11 ANN SYNTHESIS FOR CLASS CLASSIFICATION

To statistically evaluate the ANN synthesis’ ability to successfully generate the
ANN performing classification, the ANN synthesis was compared with the GPNN solving
the XOR problem in chapter 11.1. Chapter 11.2 describes an example of the ANN

synthesis usage for a real life cancer classification problem and its comparison with other

methods.

11.1 XOR Classification Problem
Inspired by [25] the GPNN was used to solve an XOR classification problem
which is the simplest nonlinearly separable classification problem (see Fig. 59) with a

known minimal network depicted in Fig. 60.

0.5

I

AL,
23

0.
O O L I
) =] 0 1 2

Fig. 59: XOR classification problem

DO D1

Fig. 60: Minimal XOR solving ANN
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The GPNN was performed with the help of the GPC++ [25] software and minimal
the ANN described in Fig. 61 was found.

1.07 D1-0.83 DO -0.66 D1 1.60 DO

Fig. 61: Minimal ANN generated by GPNN that performs the XOR problem

According to [41] the GPNN cannot generate the ANN from Fig. 60 simply
because the P function is only allowed to have two arguments, while for this particular
ANN the output AN has three inputs. To overcome this problem the GPNN has to consider

implementation of another function P,(X1,X5,X3).

On the contrary, the ANN synthesis method (chapter 5.3) can synthesize the AN
with almost unlimited number of inputs and with a usage of the simple GFS it was able to

synthetize the minimal ANN (Fig. 60) nine times out of ten attempts.

11.2 Cancer Classification Problem

Breast cancer diagnosis is a classification problem introduced in [79]. The ANN
tries to classify a tumor as either benign or malignant based on cell descriptions gathered

by a microscopic examination.

Input attributes are, for instance, the clump thickness, the uniformity of cell size

and cell shape, the amount of marginal adhesion, and the frequency of bare nuclei.

The dataset includes 699 examples with 9 inputs and 2 outputs. All inputs are
continuous; 65.5% of the examples are benign. This makes for entropy of 0.93 bits per

example.

This dataset was created based on the "breast cancer Wisconsin® problem from the
UCI repository of machine learning databases originally provided by Dr. William H.
Wolberg from the University of Wisconsin Hospitals, Madison, USA [83].
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For the purpose of the executed experiment cancerl set was chosen. Based on
[84], four ANN optimization methods provide a dissimilar mean test classification error
dealing with cancerl:

Table 18: ANN mean testing classification error

de Falco et al. [85] 2.46%
Prechelt [79] 1.38%
Brameier and Banzhaf [86] 2.18%
The CMAC NN classifier [84] 3.94%

11.2.1 Experiment Set Up

To synthetize the optimal ANN, AP used the GFS with equal rates of neurons,

connections and inputs:

GFS = {+, AN, K*x0, +, AN, K*x1, +, AN, K*x2, +,
AN, K*x3, +, AN, K*x4, +, AN, K*x5, +, AN, K*x6, +, AN,  (75)
K*x7, +, AN, K*x8}

while the CF was formulated in acordance with (23) and (24).

Such approach ensured finding the best possible ANN as well as ANN with the
minimal structure.

The setting of Asynchronous SOMA is depicted in Table 11 and Table 12.

11.2.2 Results

During 100 runs of the algorithm ANN structurally described as (76), (77) was
found to be the best solution for the given classification problem with a test classification
error of 1.14%. Two wrongly classified examples within the test set were on positions 81
and 87.

ANNO = AN[5] + X0 + X2 + x3 + AN[x7] (76)
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ANN1 = AN[ANNO + x3] + x8 (77

Functions (78) and (79) described the learned ANN, which can be easily tested on
cancerl publicly provided by [79]:

ANNO = -2,97309632219583 * AN[-1,46365223054944 * (-
5,03444335192183 * x5 + 1,76603626076413)] + -7,40609983802126 * x0 +
-5,46830267210878 * x2 + -6,94991567402608 * x3 + -5,99052909574962 *

AN[1,59467356605207 * (3,68066486608268 * X7 + -3,61373674292757)]

ANN1 =-2,83643286341635 * AN[-0,179040669733212 * (ANNO +
0,796079062345568 * x3 + 0,670777686792787)] + -2,95757076519615 *  (79)
X8

The structural evolution of the resulting ANN can be seen in Fig. 62 and Fig. 63.

ANNO

x0 x2 x3 x5 X7

Fig. 62: First evolution loop of the resulting ANN
ANN1

&
@ @

X0 x2 x3 x5 x7 x8

Fig. 63: Resulting ANN1 structural evolution
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11.2.3 Conclusion

AP proves its ability to synthetize and, at the same time, optimize the ANN, which

effectively classifies the given task while its structure is minimized.

The best obtained ANN had even 0.28% better test classification error than the
mean test classification error of the best competing method [79]; however, the ANN (77)
contains only three AN and is totally omitting inputs x1 and x4 causing the ANN’s
inability to extend a performance with respect to cancer2 and cancer3 sets. Nevertheless,

the experiment’s performance ratifies AP as an efficient tool for the ANN synthesis [87].

11.2.4 Terminals Density Comparison for Different GFS

Finally, the experiment from chapter 11.2.1 was repeated with the application of
(80), (81) and (82). To explore the influence of terminals (for terminal meaning see
chapter 4.3). The probability that a position within a vector of an individual is occupied by

the terminal is depicted in

GFS, = {+, AN, K*x0, K*x1, +, AN, K*x2, K*x3, +, AN, K*x4, (80)
+, AN, K*X5, K*x6, +, AN, K*x7, K*x8}
GFS, = {+, AN, K*x0, K*x1, K*x2, K*x3, K*x4, +, AN, K*x5, (81)
K*x6, K*x7, K*x8}
GFS, = {+, AN, K*x0, K*x1, K*x2, K*x3, K*x4, K*x5, K*x8, (82)
K*x7, K*x8}
Poo
0.8
0,7
0,6
0,5
0,4
0,3
0,2
0,1
0 T T T T T |
(79) (80) (81) (82)

Fig. 64: Probability of terminal occurrence for different GFS
In comparison with (75) the ANN resulting from (81), (82) and (83) show a lower

level of generalization as a number of the employed input was generally smaller.
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12 ANN SYNTHESIS SOFTWARE

Software for the ANN synthesis support was developed under .NET Framework
3.5 [88] and source codes were written in C#. The software was used and debugged

performing experiments in chapters 6 to 11.

Input data is supposed to be formatted as a csv file or an Excel sheet. After
opening the file, a user is invited to choose between approximation, prediction or
classification of the problem. The data is then automatically validated in a sense of
consistency, it is normalized and divided into learning, validation and test sets in

accordance with [79].

The experiment is then computed within implicit control parameters proposed and
proved in the practical part of the thesis. The user can also adjust both control parameters

and the GFS content as can be seen, for example, in Fig. 65.

Cost Function NP
- 60
Borders Step
Min Max on
512 512 Mass
Dimension 3
100 PRT
0.1
Evaluations: 643696
Divergence: 0
Control Period: 1
Start
Repetitions: 1000
Save to File:

=)

Fig. 65: SOMA controll parameters setting
Technically, all functions contained in the GFS set have to be inherited an from

abstract class APFunction (83).
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public abstract class APFunction

{

public abstract double evaluate(ref Token token);
public abstract String toString(ref Token token); (83)
public abstract int countConst(ref Token token);

public int operNumber;

¥
The particular implementation of (16) by inheritance from (83) and redefinition of

the abstract method evaluate as is described in (84).

public override double evaluate(ref Token token)

{

token.left -= operNumber;

double sum = AP.next(ref token);

(84)

sum += token.constants[token.conPointer++];
sum *= token.constants[token.conPointer++];

return token.constants[token.conPointer++] * (Math.Pow
(Math.E, 2 * sum) - 1) / (Math.Pow(Math.E, 2 * sum) + 1);

}

In (85) two instances of class Neuron containing (84) an evaluate method
definition are added into the GFS set (together with Plus (19) and Weighinput (20)
instances) is defined as a generic collection List.

List<APFunction> GFS = new List<APFunction>();

GFS.Add(new Plus());

GFS.Add(new Neuron()); (85)
GFS.Add(new WeighInput(@, "x1"));

GFS.Add(new Plus());

GFS.Add(new Neuron());

GFS.Add(new WeighInput(1l, "x2"));
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The example of the synthetized ANN using the GFS defined in (85) can be seen in
Fig. 66.

APForm !El E
AN =+ AMN[=]

AMRT = ANMNO + AMMO + AN[ANMNO] + 2
AN + AMAMN[R] + = + ANMT]
ANMO = -0,982104762561233  » + -0,96613434 2543805 * AN

[-0.61757247533683 * [3,45464636802887 “x + -
0,000:310435333373655]]

AMNMNT = ANMND + AMNMND + -0,409884510286997 ~ AN ;I
MM oOdORC7TA0D000 21 * (ARIKO . N ONNcC? 21 0740 4FR9FR1 OFR11 .
0.4
0.2
0
0.2
0.4
0 20 40

Fig. 66: ANN synthetized using (85)

(86) describes a reinforced evolution process of adding a SUbANN (chapter 5.3.2)
defined as an instance of an APPart class into the GFS. All available input data located in
a datalList is pre-counted and saved to the solved collection in order to boost the ANN
synthesis performance. Then, a new evolution loop is started by a calling static method
DISOMA .start.

apPart = new APPart(new Token(results.finallLeader.position,

0ldGFS, null, results.finalleader.constants), "ANN" +
pocitadlo.ToString());

for (int i = @; i < dataList.Count; i++)

{

apPart.solved.Add(datalList[i].inputs, AP.evaluate(new
Token(results.finallLeader.position, (86)
GFS,datalList[i].inputs,results.finallLeader.constants)).value);

}

GFS.Add(apPart);
results = DISOMA.start(new AP(GFS, datalList.ToArray(),

datalistValid.ToArray()), specimen, 50, long.MaxValue, 0.01,
3, 0.11, 3);
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The overrated method costFunction (87) defines the CF described theoretically as
(24) in chapter 5.3.3. The head of the costFunction is prescribed by an interface
CostFunction and needs to be implemented to allow AP to be operated by the EA.

To prevent exceptions caused by Double type overflowing, an apReturn.value is
tested on a Duble.IsNaN (not a number) condition.

public override Individual costFunction(double[]
position)
{

double sum = 0;
APReturn apReturn = evaluate(new Token(pointers, GFS,
data[@].inputs, position));

if (data[@].output == 0)
{

if (apReturn.value > @) sum += apReturn.value + 1;

}

else

{

if (apReturn.value <= @) sum +=
Math.Abs(apReturn.value) + 1;

}
if (Double.IsNaN(apReturn.value)) sum += 10000;

for (int i = 1; i < data.Length; i++)
{ (87)
apReturn = evaluate(new Token(pointers, GFS,
data[i].inputs, position));
if (data[i].output == 0)

{

if (apReturn.value > @) sum += apReturn.value + 1;

}

else

{

if (apReturn.value <= @) sum +=
Math.Abs(apReturn.value) + 1;

}

if (Double.IsNaN(apReturn.value)) sum += 10000;
}

return new Individual(position, sum, apReturn.deep);

}
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The complete code of the direct asynchronous SOMA implementation (see chapter
3.4 and 6.2 ) used within AP for the ANN synthesis can be accessed in Appendix V. Fig.
67 is a screenshot of an asynchronous SOMA result form based on the Windows Form

technology [88].

g s -
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Best Results: -41065,863918264
Everage Results: -40277 0496401032
Worst Results: -39525,525010534
| 18/1000

Fig. 67: Asychronous SOMA results form

To protect SOMA leader position consistency (as can be seen in Fig. 30),
ReaderWriterLock class is used to lock the leader position while a thread is reading this

value:
leaderLock.AcquireReaderLock(Timeout.Infinite);

if (leader.Equals(population[i])) 88)
{

leaderLock.ReleaseReaderLock();
continue;

}
A similar implementation is used in (89) while the thread is attempting to update

the leader position.
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leaderLock.AcquireReaderLock(Timeout.Infinite);

if (population[i].costValue < leader.costValue)

{

leaderLock.ReleaseReaderLock();
leaderLock.AcquireWriterLock(Timeout.Infinite);

if (population[i].costValue < leader.costValue) (89)
leader = population[i];

leaderLock.ReleaselWriterLock();

}

else

{

leaderLock.ReleaseReaderLock();

¥
The process of equal distribution of individuals between available processors is

described in (90). This division is by default determined by a numberOfProcessors
obtained from a
System.Environment.GetEnvironmentVariable("NUMBER_OF_PROCESSORS").

int sequel = ©;

while (true)

{
individuals[sequel]++;
sequel++;
if (sequel == numberOfProcessors) sequel = 0;
if (individuals.Sum() == NP) break;
}

(90)

for (int i = @; 1 < numberOfProcessors; i++)

{

threads[i] = new Thread(new
ParameterizedThreadStart(DISOMAWork));

threads[i].Start(new Parameters(individuals[i],
random.Next()));

}

for (int i = @; i < numberOfProcessors; i++)

{
threads[i].Join();

}
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The ANN synthesis software can be run on any arbitrary platform. It only requires
installation of .NET Framework 3.5. The ANN synthesis was tested on the Super Micro
server (see Appendix 1V).

e R,
LANN1 = AN[x + AN[x] + ¥] + ANNO

ANN2 = ANNT + ANJAN[AN[x + ANNT] « ¥]]

LANN3 = AN[x] + ANN2

[« + ANN3 + ANJANN3 + ANN3] + ANN3

JANNO = -0.344817116657964 * AN[-0.52. 756 * (4 7 %+, 7711 + 0.95110227675707 * x

LANN1 = -0,0793516913141153 * AN[0.467485659973457 * (2.27405125846809 " x + -4, “ AN, * (29054185 * %+ 3,08443042396329)] + -2.15344832926316 * x + 3,3372259518555)] + ANNO
JANN2 = ANN1 + 2,82632430743611 * AN[-0,000332232756501925 * (-3,7628043300233 " AN[4,18576280145848 * (-5.40303487702469 * AN[-3,11848174255271 * (-2 *x+ANNT +-21 +051162602
5.67012814603286)) + 3,38405703409619))

JANN3 = 0,00350926469325337 * AN[9,85637196326791 * (:9.6851876210733 " x « 6.63593493367532)) + ANN2
0,00510111722873686 " x « ANN3 + 0,475050011891197 * AN[-1,16681235017341 " (ANN3 + ANN3 + 0,00123703882864138]] + ANN3

0.4— 8 Single TaskForm M= E3
0.008
Leader Cost Value: 0,00412389533653088
0.006
02— 0.004
0.002
0
0 1 2 3
0 — e 1344
0.2
04
0 20 40

Fig. 68: ANN synthesis software forms
Individual instances of the Thread class are automatically operated by the

framework to distribute computation load equally.

Fig. 69: Optimal computation division on eight processors

The obtained results are then saved via an interoperable XML format as can be

seen in Appendix VI.
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13 FINAL CONCLUSION

The Neural Network Synthesis was developed on the basis of AP (chapter 4.3) and
SOMA (chapter 3.4) algorithms and theoretically described in chapter 5.3.

The method was successfully tested on the real life problems [67], [76] as well as
on widely recognized benchmark functions [19], [24], [41] with respect to the function

approximation (chapter 8), prediction (chapter 10) and (chapter 11) problems.

The ANN synthesis software was designed based on .NET Framework technology
(chapter 12). The resulting software is capable of automatic synthesis and optimizing the
ANN based on the user-given data within a reasonable time. Such performance has to be
supported by efficiently distributed computation proposed in chapter 6.2 that was
statistically proven in chapter 7.

The ANN synthesis proves to be a useful and efficient tool for nonlinear modeling
in comparison with competing methods [4], [25], [79], [84], [85] and [86] while the
optimal strategy of its control parameter settings (chapter 9.1.2 and 9.1.3) and the GFS
composition were developed (chapter 10.5 and 11.2.4).

The ANN optimized by the ANN synthesis was practically deployed within “The
intelligent system controlling an energetic framework of an urban agglomeration”, the final
technical report of the National Research Program Il. These results together with the

theoretical background of the method were also accepted for publication by Springer [82].

Furthermore, the ANN synthesis proves its ability to synthetize smaller ANN than
the GPNN as can be seen in chapter 11.1. Simultaneously, an almost infinitely complex
ANN can be synthetized when using evolution loops (chapter 5.3.2). This process can also
produce an ANN with feedforward branching (for example in (72)), which is a quality
unavailable for the GPNN.

For particular conclusions of experimental results see chapters 7.1, 8.2, 9.1.4, 10.6
and 11.2.3.
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17 APENDIX I TEST FUNCTION VISUALISATION

Appendix | contains 2D and 3D visualizations of the benchmark functions (27) -
(36) used in chapters 7 and 9.1.1. Each function is hamed in accordance with [89], where

more detailed information and visualizations can be accessed.

Fig. 70: Ackley (27) 3D visualization
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Fig. 71: Ackley (27) 2D visualization
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Fig. 72: EggHolder (28) 3D visualization
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Fig. 73 EggHolder (28) 2D visualization

Fig. 74: Michalewicz (29) 3D visualization
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Fig. 75: Michalewicz (29) 2D visualization

Fig. 76: Masters (30) 3D visualization
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Fig. 77: Masters (30) 2D visualization
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Fig. 80: Rana (32) 3D visualization
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Fig. 82: Rastrigin (33) 3D visualization
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Fig. 83: Rastrigin (33) 2D visualization
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Fig. 84: Rosenbrock (34) 3D visualization
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Fig. 86: Schwefel (35) 2D visualization
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Fig. 87: Schwefel (35) 2D visualization

Fig.

88: SineWave (36) 3D visualization
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18 APPENDIX Il ADAPTIVE PRT STRATEGY

Appendix Il complements results connected with a PRT adaptive strategy study
discussed in chapter 9.1.1. The results produced by the test functions (27) - (36) (see also
Appendix 1) are depicted in Fig. 90 (for functions, which prove better results for PRT e
<0.005; 0.07>) and Fig. 91 (functions, which prove better results for PRT e <0.1; 0.3>).
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0 0,1 PRT

Fig. 90: Test functions providing the best results for PRT e <0.005; 0.07>
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Fig. 91: Test functions providing the best results for PRT & <0.1; 0.3>
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Table 19: Best results for different cost functions and PRT settings

Function, PRT: 0,005 0,01 0,03 0,05 0,07 0,1 0,2 0,3

3829,415|3473,757 | 3369,026 | 3369,049 | 3366,263 | 3366,142 | 3372,042 | 3426,071
Ackley (27)

-54910,7 | -58787,2 | -60078,2 | -59717,5| -65743,9| -68130,2 | -59140,2| -53573
EggHolder (28)

21,23287|6,371556|1,112177|1,123117|0,754679 | 0,625381 | 0,531147|0,956176
Griewangk (29)

-59,1238 | -68,7604 | -73,0045 | -72,9118 | -78,6305 | -83,9028 | -76,8502 | -69,5354
Masters (30)

-70,2537| -86,3075| -98,671| -98,6997 | -99,6452 | -98,9955| -96,5857 | -94,0024
Michalewicz (31)

-23409,9 | -27426,6 | -28016,2 | -28044,2 | -24296,1| -24067| -35200,9| -35238,2
Rana (32)

-818186 | -973899| -999334| -999392| -989897| -977084 | -923366| -902252
Rastrigin (33)

12362,34 | 5749,791 | 1134,754 | 1107,528 | 329,3666 | 234,7636 | 140,0399 | 182,5677
Rosenbrock (34)

-35958,3 | -41214,8 | -41894,4 | -41894,4 | -41778,7 | -41423,7 | -37932,6 | -35622,5
Schwefel (35)

-621,61| -639,085 | -621,393 | -621,886| -560,68| -530,483 | -479,456| -537,727

SineWave (36)
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Table 20: Normalized best results for different cost functions and PRT settings

Function, PRT: 0,005 0,01 0,03 0,05 0,07 0,1 0,2 0,3

0,137627| 0,03197| 0,000857 | 0,000864 | 3,58E-05 0|0,001753| 0,017803
Ackley (27)

0,194033| 0,137134| 0,118185| 0,123479 | 0,035025 0|0,131953| 0,213668
EggHolder (28)

38,97551| 10,99584 | 1,093916 | 1,114512 | 0,420847|0,177416 0 0,80021
Griewangk (29)

0,29533| 0,180476 | 0,129891 | 0,130997 | 0,062838 0| 0,084057| 0,171238
Masters (30)

0,294961| 0,133852 | 0,009776 | 0,009488 0,006519| 0,030703 | 0,056629
Michalewicz (31) -

0,335666 | 0,221679 | 0,204946 | 0,204153|0,310518|0,317019 | 0,001056 0
Rana (32)

0,181316| 0,025508 | 5,74E-05 0,0095|0,022322| 0,076072| 0,097199
Rastrigin (33) -

87,27727 | 40,05824 | 7,103078 | 6,908659 | 1,351949 | 0,676405 0| 0,303684
Rosenbrock (34)

0,141692 | 0,016222 1,03E-06 |0,002762 | 0,011235 | 0,094565 | 0,149709
Schwefel (35)

0,027344 0,027684|0,026912|0,122684 | 0,169934 | 0,249778 | 0,158599

SineWave (36)

0.3>) are marked in yellow.
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Table 21: Average results for different cost functions and PRT settings

Function, PRT 0,005 0,01 0,03 0,05 0,07 0,1 0,2 0,3

3895,704 | 3499,265 | 3370,977 | 3370,963 | 3366,779 | 3368,098 | 3416,55|3533,109
Ackley (27)

-53445,7 | -57731,3 | -58093,7 | -58081,4 | -55605,2 | -63855,5| -53564,5| -48770,3
EggHolder (28)

25,14932 | 8,465231|1,191455|1,191591|0,972961 | 0,872625 | 0,978322 | 1,181165
Griewangk (29)

-55,9965 | -66,5651 | -70,3361 | -70,2997| -71,631| -77,7542| -71,6636| -63,4593
Masters (30)

-67,8213 | -84,3369 | -97,9382 | -97,9319| -98,976| -97,9913| -94,088| -89,7736
Michalewicz (31)

-22468,3 | -26526,3 | -27303,9 -27274 | -23340,3 | -21400,8 | -32648,8 | -33216,1
Rana (32)

-760773 | -959770| -997738| -998062 | -980095| -958457| -892831| -838771
Rastrigin (33)

15084,54 | 7097,92|1369,023 |1386,179| 471,804 | 335,933 |250,1202 |324,7303
Rosenbrock (34)

-35061,2 | -40778,2 | -41888,1 | -41888,6 | -41438,1 | -40531,1 | -36620,3 -33259
Schwefel (35)

-609,751 | -634,028 | -614,379 | -615,275 | -549,637| -519,919 | -463,773 | -442,679
SineWave (36)
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Table 22: Normalized average results for different cost functions and PRT settings

Functin, PRT 0,005 0,01 0,03 0,05 0,07 0,1 0,2 0,3

0,157101| 0,039351| 0,001247| 0,001243 0,000392| 0,014783| 0,049403
Ackley (27)

0,163021| 0,095907| 0,090232| 0,090424| 0,129203 0| 0,161161| 0,23624
EggHolder (28)

27,82032| 8,700884| 0,365369| 0,365525| 0,114982 0| 0,121126| 0,353577
Griewangk (29)

0,279826| 0,143903| 0,095404| 0,095872| 0,07875 0| 0,078331| 0,183847
Masters (30)

0,31477| 0,147905| 0,010485 0,010549- 0,009949 | 0,049385| 0,092976
Michalewicz (31)

0,323572| 0,201402| 0,177991| 0,178892| 0,29732| 0,355711| 0,017078 0
Rana (32)

0,23775| 0,038366| 0,000324 0,018001| 0,039682| 0,105436|  0,1596
Rastrigin (33) -

59,30918| 27,37804| 4,473462| 4,542053| 0,88631| 0,343087 0| 0,298297
Rosenbrock (34)

0,162988| 0,026507| 1,16E-05 0,010753| 0,032406| 0,125768| 0,206013
Schwefel (35)

0,038291 0,030992| 0,029578| 0,133104| 0,179976| 0,26853| 0,301799
SineWave (36)

0.3>) are marked in yellow.
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19 APPENDIX 1 — ANN SYNTHESIS RESULTS

Appendix Il contains mathematical descriptions (91) - (94) of the evolution loops
(58) - (61) discussed in chapter 10.3.

Mathematical descriptions of (58):
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Mathematical description of (59):
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Mathematical description of (60):
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Mathematical description of (61):

Q2A (wt+ ) _q
ANNG6 = w

@ZA(wt+¢) 41

22 el A [wt + @)1 &

+ WOy + W

2.1|w

2wt + ) _q

@ZA(wt+ gl 41

g2 A (Wt + @) _4 . '#]
a2 A (Wt + @) 4 -1

ZA(wt+ P,

@

21(«
L o

L

Z A (WE+ 8] 1 +¢)

BN FER JER B

+ W

g2 AWt + @) 4 o

21(w

gl A [wt+ @) 4
el A [wt+ ), q

+¢)_1

a2 A (wt+ @) 4

g2 A (Wt + $)_q .
g2 A (Wt + @) 4

2.1|w
@
+ W

e2.1 (w

+

a2 A (wt+ @) 4 .
2 A (wt+ @) 4

¢)+1 +1

o) .

el A [wt + 9)_q
2 A (Wt + 9],

21(»;
@

e2 A [wWley + ) -1

+

¢]+1

g2 A [Wley + &) 4 (94)

24 |w + W
@ | @2‘1 [WGEH"' ¢]+1

+

eEl[wﬂex+¢"]+1+Wt+¢] -1

g2 A [wley + @)

g2 A (wlex + ) 3

+ W

2
® v eZ A [woey + @) 49

22

g2 A (Wt + @) _4

EEl[wﬂex+¢']+1+Wt+¢) +1

Wilay + W
e
24 |w

ooyt

el A [wt + ¢ _q

+ ¢

22a (wﬂex + W
e

ZA (Wt + )1

¢]+1

el A (Wt + $) 4 ]

21(wﬂex+w
21w E

2 A (Wt + P),q1

¢) .

22a [wﬂex + W

g2 A (Wt + ) 4

+ ¢

& &

.
L2 A (WE+ )

g2 A (Wt + Wiy ) _4

¢]+1 f+1

2A |Wt+‘h‘
@®
+ W

+
e A (Wt + Wyt $) g

),

g2 A [wh + Wiyt @) 1

2.1(wt+w
@

@2 A (WE + WOayt 8] 17

¢)+1

-131-



20 APPENDIX IV - SUPER MICRO SERVER

Appendix IV contains Super Micro server pictures and technical specification.
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Fig. 92: Super Micro server

Fig. 93: Super Micro server motherboard
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Table 23: Super Micro server technical specification

Product SKUs

AS-1042G-TF

A+ Server 1042G-
TF (Black)

Motherboard

Product SKUs

Super H8QGI+-F

Form Factor

SWTX

Dimensions

16.48" x 13"
(41.9cm x 33.0cm)

Processor/Chipset

Quad 1944-pin
Socket G34

Supports up to
four Twelve/Eight-
Core ready AMD

1333/1066/800 MHz
memory or 128GB of
DDR3 Unb.
ECC/non-ECC

memory

Quad channel

memory bus

For Dual or Quad
CPUs: Recommended
that memory be
populated equally in
adjacent memory

banks

Registered ECC or
unb. ECC / non-ECC
DDR3 1333/1066/800

Memory Type
y P MHz SDRAM 72-bit,
240-pin gold-plated
DIMMs
1GB, 2GB, 4GB,
DIMM Sizes
8GB, 16GB
Memory
1.35V or 1.5V
Voltage
Error Corrects single-bit
Detection errors

ChPU Opteron™ 6100
Series processors
OPTERON

PROCESSOR
AMDA1

Chipset HT3.0 Link support

System Memory
Thirty-Two DIMM
Memory sockets
Capacity

Support up to 512GB
DDR3 Reg. ECC

Detects double-bit
errors (using ECC
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memory)

On-Board Devices

SATA

AMD SP5100 (RAID 0,
1, 10)

uSB

7x USB 2.0 ports

2X Rear, 4x internal

header, and 1x type A

IPMI

Support for Intelligent
Platform Management

Interface v.2.0

Keyboard /
Mouse

PS/2 keyboard and

mouse ports

IPMI 2.0 with virtual
media over LAN and
KVM over LAN support

Serial Ports

1x Fast UART 16550

serial port

1x serial port header

Expansion Slots

Winbond® WPCM450
BMC

PCI-Express

1x PCl-e 2.0 x16

System BIOS

Network

Controllers

Intel® 82576 controller,
Dual-Port
Gigabit Ethernet

BIOS Type

16Mb SPI Flash
ROM with AMI®
BIOS

10/100/1000BASE-T
support

VGA

Matrox G200 16MB
DDR2 graphics

Super 1/O

Winbond® W83527 chip

Input / Output

SATA

6x SATA2.0 (3GbIs)

Ports

BIOS Features

Plug and Play (PnP)

DMI 2.3

PCI 2.2

ACPI 2.0

USB Keyboard
Support

SMBIOS 2.3

LAN

2 RJ45 LAN ports

Chassis

1 RJ45 Dedicated
LAN supports IPMI

Form Factor

1U Rackmount

Model

SC818TQ-1400LPB
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http://www.supermicro.com/products/chassis/1U/818/SC818TQ-1400LP.cfm

Dimensions Peripheral Drives
Height 1.7" (43mm) Slim DVD-ROM
DVD-ROM dri ol
Width 17.2" (437mm) rive (optional)
Depth 27.75" (705mm) Backplane
Gross Weight | 43 Ibs (19.5 kg) SAS HDD Backplane
with SES2
Available Black
ac ;
Colors System Cooling
Front Panel 6x heavy-duty
counter-rotating
Power On/Off button Fans PWM fans with
Buttons
System Reset button optimal fan speed
Power LED control
- — pply
Hard drive activity Power Suppl
LED 1400W high-
LEDs 2x Network activity eff|C|enc¥ power
LEDs supply with PMBus
System Overheat 1200W: 100 - 140V,
LED 50 - 60Hz, 10.5 - 14.7
Amp
2x Front USB Ports AC Input
Ports 1400W: 180 - 240V,
1x Serial COM Port 50 - 60Hz, 7.2 - 9.5
Drive Bays Amp
3x 3.5" hot-swap DC Output
4 Amp
SATA drive bays +5V standby
Hot-swap Enterprise SATA 100 Amp @ 100-
DC Output
HDD only 140V
+12V
recommended 117 Amp @ 180-
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240V

Certification

80 PLUS Gold
Certified

Pulse Width
Modulated (PWM)

fan connectors

PC Heal

th Monitoring

CPU

Monitors CPU Core
Voltages, +1.8V,
+3.3V, +5V, £12V,
+3.3V Standby, -12V
Standby, VBAT, HT,

memory, chipset

Temperature

Monitoring for CPU
and chassis

environment

CPU Thermal Trip
Support

Thermal control for

9x fan connectors

I°C Temperature

Sensing Logic

CPU switching

voltage regulator

FAN

Up to 9-fan status
tachometer

monitoring

LED

CPU / System
Overheat LED

+5V Standby Alert
LED

Up to nine 4-pin fan
headers

Status monitor for

speed control

Other Features

Chassis Intrusion

Detection

Chassis Intrusion

Header

Management

3-pin fan support (w/o

speed control)

Low noise fan speed
control

(4-pin fan only)

PMI (Intelligent

Platform Management

Software Interface) 2.0
Super Doctor Il
Power ACPI Power
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Configurations

Management

Wake-On-LAN
(WOL) header

Keyboard Wakeup
from Soft-Off

Power-on mode
control for AC power

loss recovery

Operating Envir

onment / Compliance

RoHS

RoHS Compliant
6/6, Pb Free
RoHS,

fa@.r

A

Temperature:
-40°C to 70°C (-
40°F to 158°F)

Operating Relative
Humidity:
8% to 90% (non-

condensing)

Non-operating
Relative Humidity:
5% to 95% (non-

condensing)

Regulatory

FCC

Passed to meet FCC

standard requirement

Environmental

Specifications

Operating
Temperature:

10°C to 35°C (50°F to
95°F)

Non-operating
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21  APPENTIXV - ASYNCHRONOUS SOMA IN C#

Appendix V contains a complete code of asynchronous SOMA in C# used through
the practical part of the thesis including the reader/writer lock mechanisms and other

thread connected arrangements.

static void DISOMAWork(Object _parameters)
{

Parameters parameters = (Parameters)_parameters;
int NP = parameters.NP;

if (NP < 1) NP = 1;

Random random = new Random(parameters.seed);
Individual[] population = new Individual[NP];
double[] randomPosition;

double PRT;

int sum;

for (int 1 = @; i < NP; i++)
{
randomPosition = new double[specimen.Length];
for (int y = 0; y < specimen.Length; y++)
{
randomPosition[y] = random.NextDouble() * (specimen[y].max -
specimen[y].min) + specimen[y].min;
}
population[i] = model.costFunction(randomPosition);
bestHistorylLock.AcquireReaderLock(Timeout.Infinite);
if (population[i].costValue < bestHistory[0])
{
bestHistorylLock.ReleaseReaderLock();
bestHistorylLock.AcquireWriterLock(Timeout.Infinite);
if (population[i].costValue < bestHistory[@]) bestHistory[0] =
population[i].costValue;
bestHistoryLock.ReleaseWriterLock();
}

else

{

bestHistoryLock.ReleaseReaderLock();

}

leaderLock.AcquireReaderLock(Timeout.Infinite);

if (population[i].costValue < leader.costValue)

{

leaderLock.ReleaseReaderLock();

leaderLock.AcquireWriterLock(Timeout.Infinite);

if (population[i].costValue < leader.costValue) leader =
population[i];
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leaderStringl
null));
leaderString2

AP.toString(new Token(leader.position, AP.GFS, null,

AP.toString(new Token(leader.position, AP.GFS, null,

leader.constants));
leaderValues = new List<double>();

Double value;

for (int k = @; k < AP.dataValid.Length; k++)

{

value = AP.evaluate(new Token(leader.position, AP.GFS,
AP.dataVvalid[k].inputs, leader.constants)).value;

if(value <= @) leaderValues.Add(9);

else leaderValues.Add(1);

}

leaderLock.ReleaseWriterLock();

}

else

{

leaderLock.ReleaseReaderLock();

}
}

double[] distance = new double[specimen.Length];
int[] PRTVector

double[] jump;

= new int[specimen.Length];

double coordinate;
Individual bestClone;

Individual clone;

while (true)

{

for (int i =

{

0; i < NP; i++)

leaderLock.AcquireReaderLock(Timeout.Infinite);
if (leader.Equals(population[i]))

{

leaderLock.ReleaseReaderLock();

continue;

}

for (int y = @; y < specimen.Length; y++)

{

distance[y] = leader.position[y] - population[i].position[y];

}

leaderLock.ReleaseReaderLock();
PRT = 1 / (double)population[i].deep + 1;
for (int y = @; y < specimen.Length; y++)

{

if (random.NextDouble() > PRT) PRTVector[y] = ©;
else PRTVector[y] = 1;
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}

sum = 9Q;

for (int k = @; k <= population[i].deep; k++)

{
sum += PRTVector[k];
}
while (sum == 0)
{
for (int y = @; y < specimen.Length; y++)
{
if (random.NextDouble() > PRT) PRTVector[y] = ©;
else PRTVector[y] = 1;
}
sum = 9;
for (int k = 0@; k <= population[i].deep; k++)
{
sum += PRTVector[k];
}
}

bestClone = new Individual(null, population[i].costValue);

for (int n = 1; n < (mass / step); n++)

{

jump = new double[specimen.Length];

for (int y = 0; y < specimen.Length; y++)

{

coordinate = population[i].position[y] + (distance[y] * step *
PRTVector[y] * n);

if ((coordinate < specimen[y].min) || (coordinate > specimen[y].max))

{

coordinate = random.NextDouble() * (specimen[y].max - specimen[y].min)
+ specimen[y].min;

}

jump[y] = coordinate;

clone = model.costFunction(jump);
if (clone.costValue < bestClone.costValue) bestClone

clone;

Interlocked.Increment(ref counter);
Interlocked.Increment(ref interCounter);
lock ("interCounter™)

{
if (interCounter >= period * (DISOMA.NP - 1) * mass / step)

{

interCounter = 0;
bestHistoryLock.AcquireWriterLock(Timeout.Infinite);
leaderLock.AcquireReaderLock(Timeout.Infinite);
bestHistory.Add(leader.costValue);
leaderLock.ReleaseReaderLock();
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if (bestHistory[bestHistory.Count - 2] - bestHistory[bestHistory.Count
- 1] < divergence) end = true;
bestHistorylLock.ReleaseWriterLock();

}
}
if ((Interlocked.Read(ref counter) >= evaluations - numberOfProcessors +
1) || end)
{
lock ("finalPopulation")
{finalPopulation.AddRange(population);
}
return;
}
}

if (bestClone.costValue < population[i].costValue)
{
population[i] = bestClone;
leaderLock.AcquireReaderLock(Timeout.Infinite);
if (population[i].costValue < leader.costValue)
{
leaderLock.ReleaseReaderLock();
leaderLock.AcquireWriterLock(Timeout.Infinite);
if (population[i].costValue < leader.costValue) leader =
population[i];
leaderStringl
null));
leaderString2 = AP.toString(new Token(leader.position, AP.GFS, null,
leader.constants));
leaderValues = new List<double>();
Double value;
for (int k = @; k < AP.datavalid.Length; k++)
{
value = AP.evaluate(new Token(leader.position, AP.GFS,
AP.dataValid[k].inputs, leader.constants)).value;
if (value <= @) leaderValues.Add(9);
else leaderValues.Add(1);
¥

leaderLock.ReleaseWriterLock();

}

else

{
leaderLock.ReleaseReaderLock();
}
}
}
}

AP.toString(new Token(leader.position, AP.GFS, null,
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22  APPENDIX VI - XML RESULT FORMAT

Appendix VI contains a typical example of an asynchronous SOMA result saved in
the standard XML format:

<?xml version="1.0"7?>

<Report xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<best>
<algorithm>SOMA - All To One</algorithm>
<finalleader>
<position>
<double>0.0025934393220287959</double>
<double>0.00012487152843137684</double>
<double>-0.000336864255269125</double>

<double>-0.00020993156585577457</double>

<double>0.00069229082615153859</double>
<double>0.00083273363376060519</double>
</position>
<costValue>3368.0650139215759</costValue>
</finalLeader>
<finalEvaluations>648060</finalEvaluations>
<model>costFunctions.Ackley</model>
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<NP>60</NP>

<step>0.11</step>

<mass>3</mass>

<PRT>0.1</PRT>

<numberOfProcessors>1</numberOfProcessors>
</best>
<worst>

<algorithm>SOMA - All To One</algorithm>

<finalEvaluations>648060</finalEvaluations>

<model>costFunctions.Ackley</model>

<NP>60</NP>

<step>0.11</step>

<mass>3</mass>

<PRT>0.1</PRT>

<numberOfProcessors>1</numberOfProcessors>
</worst>
<everage>3368.0650139215759</everage>
<solutions>

<double>3368.0650139215759</double>

<double>3368.0650139215759</double>

<double>3368.0650139215759</double>
</solutions>

</Report>
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