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ABSTRACT 

Polyolefin elastomers are a special class of polymers.  The most favorable 
property of polyolefin elastomers is their elasticity. Due to this, they find application 
in the field of foams, cushions, seals, automotive applications, footwear, cable 
insulation etc. Their field of application can be even widened through the process of 
cross-linking. Through cross-linking, the polymer chains are bonded together to 
form a cross-linked network. This will enhance their mechanical properties, 
especially, improved elastic properties. Simultaneously, their service temperature 
can also be increased through cross-linking. Cross-linking of saturated polymers can 
be carried out through a variety of techniques. Most commonly used techniques are 
peroxide cross-linking, silane-water cross-linking and irradiation cross-linking.  

Being a member of thermoplastic elastomer (TPE) group and having excellent 
elastic properties, ethylene-octene copolymer (EOC) has been selected for our 
studies. In this research work, peroxide and irradiation cross-linking techniques have 
been utilized to cross-link EOCs. Peroxide cross-linking of ethylene-octene 
copolymers was carried out using dicumyl peroxide (DCP) at different temperatures.  
For irradiation technique, different dosages of electron beam were selected. 

Effect of peroxide content (in range 0.2 - 0.7 wt. %) and temperature (in range 
150-200 °C) on EOC cross-linking has been subjected to study. It has been observed 
that as the peroxide content increases, cross-linking increases while increase in 
temperature accelerates the chain scission process (degradation). Less susceptible to 
chain scission are temperatures in range 150-170 °C and peroxide levels 0.2-0.5 
wt.%. Cross-linking of EOC using dicumyl peroxide was found to be a first order 
reaction. The highest cross-linking rate constant K was found for 0.6 wt. % of 
peroxide at 200 °C. The activation energy of cross-linking (EA) obtained by 
Arrhenius plot had the maximum at 0.5-0.6 wt. % of peroxide level. At higher 
temperatures (190-200 °C) and peroxide level (especially, 0.6-0.7 wt. % range) 
cross-linking is competing with degradation. Increase in peroxide content resulted in 
increase in gel content – in other words, cross-link network – and thus improvement 
in high-temperature mechanical properties were also observed. Dynamic mechanical 
analysis (DMA) also confirmed the above results. Two ethylene-octene copolymers 
were compared to investigate the effect of octene content on cross-linking. Cross-
linking efficiency of peroxide and degree of cross-linking were found to be 
increasing with decrease in octene content. EOC with high octene content was 
observed to be more vulnerable for degradation. Crystallinity of the cross-linked 
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EOCs was found to be decreasing with increasing octene content. Due to high extent 
of cross-linking, EOC with low octene content undergone lower creep compared to 
the high-octene one. Extent of cross-linking increases with radiation dosage also. 
This was confirmed through the high-temperature creep and elastic property 
analysis. Differential scanning calorimetry (DSC) analysis revealed the presence of 
high melting fraction formed during cross-linking. Tensile testing illustrates that the 
stress at break increases with radiation dosage while elongation at break decreases. 
Rheological property analysis showed that elastic property increases after irradiation 
cross-linking. Significant improvement in thermal stability was observed through 
thermogravimetric analysis. Both irradiation and peroxide cross-linking are efficient 
techniques for cross-linking ethylene-octene copolymers. 

 

Key words: 
Polyolefin elastomers, peroxide cross-linking, electron beam irradiation cross-
linking, cross-linking kinetics, creep, dynamic mechanical analysis (DMA), elastic 
properties, thermal properties. 
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ABSTRAKT 
Polyolefinové elastomery přispívají jako speciální třída polymerů. 

Nejvýhodnější vlastností polyolefinových elastomerů je jejich elasticita. Následkem 
toho najdou uplatnění v oblasti pěn, polštářů, těsnění, automobilových aplikací, 
obuvi, izolaci kabelů atd. Oblast jejich aplikací může být rozšířena procesem 
síťování. Prostřednictvím síťování jsou polymerní řetězce spojeny dohromady, čímž 
se vytvoří síť. Toto zlepší jejich mechanické vlastnosti, zvláště pak elastické 
vlastnosti. Současně může být síťováním zvýšena jejich maximální provozní teplota.  

Síťování může být provedeno nejrůznějšími způsoby. Nejčastěji používané 
způsoby jsou peroxidové síťování, síťovaní silanem a vodou a radiační síťování. 

Jakožto součást skupiny termoplastických elastomerů (TPE) a mající 
vynikající elastické vlastnosti etylen-oktenový kopolymer (EOC) byl vybrán pro 
naše studium. V této výzkumné práci bylo použito peroxidové a radiační síťování 
EOC. Peroxidové síťování etylen-oktenových kopolymerů bylo provedeno za 
použití dikumylperoxidu při různých teplotách. Pro metodu síťování ozařováním 
byly vybrány různé dávky elektronových paprsků. 

Vliv obsahu peroxidu (v rozmezí 0,2-0,7 hm.%) a teploty (v rozmezí 150-200 
°C) na síťování EOC byl podrobně zkoumán. Bylo pozorováno, že s rostoucím 
obsahem peroxidu se síťování zlepšuje, zatímco zvyšování teploty urychluje krácení 
řetězců (degradaci). Méně náchylná oblast ke krácení řetězců je teplota v rozmezí 
150-170 °C a koncentrace peroxidu 0,2-0,5%. Bylo zjištěno, že síťování EOC za 
použití dikumylperoxidu probíhá jako reakce prvního řádu. Nejvyšší rychlostní 
konstanta síťování K byla zjištěna pro 0,6 hm.% peroxidu při 200 °C. Aktivační 
energie síťování (EA) získaná za pomocí Arrheniovy rovnice měla maximum při 0,5-
0,6 hm.% peroxidu. Při vyšších teplotách (190-200 °C) a vyšších úrovních peroxidu 
(zvláště 0,6-0,7 hm.%) síťování soutěží s degradací. Zvýšený obsah peroxidu 
způsobil nárůst v obsahu gelu, jinými slovy, nárůst v síťové hustotě, a proto bylo 
také pozorováno zlepšení vysokoteplotních mechanických vlastností. Dynamická 
mechanická analýza (DMA) také potvrdila výše uvedené výsledky. Dva etylen-
oktenové kopolymery byly porovnány pro výzkum vlivu obsahu oktenu na síťování. 
Bylo zjištěno, že účinnost síťování peroxidem a stupeň zesíťování stoupají 
s klesajícím obsahem oktenu. Bylo pozorováno, že EOC s vyšším obsahem oktenu 
je náchylnější k degradaci. Bylo zjištěno, že krystalinitazesíťovaných EOC klesá se 
vzrůstajícím obsahem oktenu. Díky vysokému stupni zesíťování vykazoval EOC 
s nízkým obsahem oktenu menší tečení při krípovém testu ve srovnání s vysoko-
oktenovým EOC. 
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Stupeň zesíťování roste také s rostoucí dávkou radiace. Toto bylo potvrzeno 
zkouškou vysokoteplotního krípu a analýzou elastických vlastností. Diferenciální 
skenovací kalorimetrie (DSC) odhalila přítomnost frakce s vyšším bodem tání, která 
byla vytvořena během síťování. Zkouška pevnosti v tahu ukazuje, že napětí při 
přetržení roste s úrovní radiace, zatímco tažnost při přetržení klesá. Analýza 
reologických vlastností ukázala, že elastické vlastnosti se zlepšují po radiačním 
zesíťování. Významné zlepšení tepelné stability bylo pozorováno termografickou 
analýzou (TGA). Obě metody síťování, ozářením i peroxidem, jsou účinné pro 
etylen-oktenové kopolymery. 

 
Klíčová slova: 
Polyolefinové elastomery, peroxidové síťování, síťování ozářením elektronovými 
paprsky, kinetika síťování, kríp, dynamická mechanická analýza (DMA), elastické 
vlastnosti, tepelné vlastnosti. 
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Physical and chemical properties of TPEs can be controlled by varying the ratio of 
the monomers and the length of the hard and soft segments. These TPEs are 
normally phase separated systems which still retain unique features of its 
components such as good ultraviolet and ozone resistance, solvent resistance and 
high deformation temperature. Furthermore, they can be processed very easily to 
provide commercially attractive products that show the softness, extensibility and 
resilience of conventional thermoset rubbers [8].  

TPEs have both advantages and disadvantages in comparison with 
conventional vulcanized rubbers [9], 

Advantages: 

 They are suitable for methods of thermoplastic processing, such as injection 
moldings, blow molding, thermoforming, and heat welding 

 

 Scrap can be recycled and reused without significant deterioration in 
performance 

 

 Properties can very easily be manipulated for different requirements by just a 
change in the blend ratio. 

Disadvantages: 

 TPEs soften or melt at an elevated temperature, above which they lose their 
rubbery character that means article looses shape. 
 

 On extended use, TPEs show creep behavior. 

There are different types of TPEs; 

 Block copolymers 

 Blends and elastomeric alloys 

 Crystalline–amorphous block copolymers 

 Ionomers and 

 Miscellaneous 

Polyethylene/poly (-olefin) copolymers belong to the class of crystalline-
amorphous block copolymers [10]. Polyolefin-based TPEs have received 
considerable attention due to their chemical inertness, low density, and low cost 
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compared with other TPEs [11]. Since olefin copolymers became commercially 
available in the 1960s, a sizable effort has been expended to develop catalyst 
technology and structure-property relationships for very low crystallinity olefin 
copolymers. 

The development of metallocene catalysts in the field of polyolefins permits the 
production of new ethylene copolymers with very low density that constitutes a 
unique class of thermoplastic elastomers. Ethylene-octene copolymer (EOC) with 
the trade name ENGAGE® is a special copolymer developed by Dow chemical co. 
through their INSITETM constrained geometry catalyst technology (CGCT) [12]. A 
good control over polymer structure, molecular weight distribution and co-monomer 
composition helps ENGAGE® to have exceptional performance. EOC has several 
other advantages, including easy handling, better compound economy because of its 
reduced modifier levels and reduced weight via lower density products [13-15]. 
Table 1.1 shows their low density and wide range of physical/mechanical properties 
(using ASTM test methods). 

 
Table 1.1 Physical Properties of unfilled ENGAGE Polyolefin Elastomers [16]. 

Property Values 
Specific gravity, g/cm3 0.857–0.91 
100% modulus, lb/in2 (MPa) 145–725 (1–5) 
Elongation, % 700+ 
Hardness, Shore A 50–95 
Haze, %, 0.070 in (1.8 mm) injection-molded 
plaque 

<10–20 

Melt flow index, g/10 min 0.5–30 
Melting point, °F (°C) 91–225 (33–107) 

 

EOCs are having narrow molecular weight distribution, homogeneous 
comonomer distribution and homogeneous long chain branching structure [17]. This 
presents an opportunity to probe the limits imposed by branch concentration on 
miscibility of ethylene copolymer blends. Although solid state structure and 
properties change gradually with increasing comonomer content. EOCs have a 
saturated chain, providing inherent UV stability. Ethylene-octene copolymers are 
excellent materials for impact modification in hydrocarbon polymers such as 
polypropylene. 
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These polymers have a potentially wide range of applications and are of special 
interest for the automotive industry [16]. Typical applications are, 
  

i) foams and cushioning components 
ii) sandal and slipper bottoms 
iii) swim fins, winter and work boots 
iv) interior trim and rub strips 
v) automotive interior air ducts, mats and liners 
vi) extruded hose and tube 
vii) NVH applications 
viii) primary covering for wire and cable voltage insulation, appliance wires 
ix) semi conductive shields 
x) low smoke emission jackets and bedding compounds.  

 
 EOC is aimed at competing with conventional thermoplastic elastomers, such 
as ethylene propylene diene monomer (EPDM) in the automobile industry. Most of 
the uses in this field require a good balance of mechanical properties at high 
temperatures [18, 19]. Introduction of ethylene-octene copolymer in the commercial 
market gradually replaces the EPDM market in almost all fields of applications [20, 
21]. 

EOC exhibits strong disadvantages which are low thermomechanical stability 
and a large permanent distortion, linked to the melting of crystallites. These 
disadvantages prevent applications involving temperatures higher than Tm of EOC, 
in particular many textile applications. Cross-linking technology represents a highly 
effective way for improving thermal and chemical resistance of polyolefins and then 
extends their applications [2, 22]. The cross-linking of polymers leads to an 
improvement in the thermal stability. Moreover, it can increase the tensile strength 
of polymers and thus, at a reasonable yield of cross-linking, improve their 
mechanical properties [23, 24]. Over the last few years a growing interest has 
developed regarding the process of cross-linking conventional polymers to meet the 
demands of specialty applications. 
Now, we are going to discuss about cross-linking and various cross-linking 
techniques. 
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elastomer, at temperatures above the crystalline melting temperature of the 
thermoplastic. This valuable property is widely exploited commercially in the 
preparation of heat-shrinkable materials, wire and cable coating, hot water tubing 
and steam resistant food packaging, and so on [31-38]. 

Normally in rubber industry sulfur cross-linking is used for polymers with 
double bond. When the polymer does not have the double bond then one has to use 
other methods, such as irradiation [39-44], peroxides [45-48] and silane-water cross-
linking [49-51].  

1.3.1 Peroxide cross-linking 

Cross-linking of elastomers using peroxide has been known for more than 50 
years. The subject of peroxide curing has always been of interest to chemists and 
physicists working in the elastomer field because of its controlled decomposition 
rate, minimal side products, and economical process [52-56]. The more widely used 
vulcanization systems based upon sulfur or sulfur compounds are very much more 
complex in mechanism and produce more varied cross-links together with other 
chain modifications [52]. The activity of peroxide depends on the type of polymer 
and presence of other ingredients in the system [57]. The rate at which peroxide 
cross-linking takes place is dependent on the decomposition temperature of the 
selected peroxide, because the initial and rate determining step in the cross-linking 
process is the formation of free alkoxy radicals [58]. Cross-linking agents include 
ketone peroxides, peroxyketals, hyrdoperoxides, dialkyl peroxides, diacyl peroxides 
and so on. One advantage of peroxide cross-linking agents over sulfur compounds is 
that the former can be used to cross-link both saturated and unsaturated polymers. 
Some examples of unsaturated polymers that can be cross-linked using peroxides are 
unsaturated polyester resin, ethylene vinyl acetate copolymer, polystyrene, 
acrylonitrile-butadiene-styrene copolymer, and most rubbers [59]. The formation of 
strong C-C bonds provides substantial heat resistance and good compression set 
property without any discoloration. Peroxides which are generally being used for 
cross-linking are shown on Figure1.4. 
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3. Ability to cross-link saturated as well as unsaturated rubbers. 
4. High temperature resistance of the vulcanizates. 
5. Good compression set properties of the vulcanizates (elastic recovery) at elevated 

temperature. 
6. No moisture uptake, and 
7. No staining or discoloration of the finished products. 

One of the main disadvantages of DCP is rather strong odor. 

1.3.2 Radiation cross-linking 

Radiation cross-linking of rubbers has a number of technical advantages over 
thermal curing such as absence of various noxious chemical additives, high speed of 
curing process, effective penetration of radiation inside the sample and uniformity 
and ease of curing [43, 62, 63]. Radiation cross-linking is a well-established 
industrial process. Irradiation is usually applied to finished parts at room 
temperature [19, 64]. Irradiation is a very powerful form of energy treatment and 
produces deep effects on materials. Two of the most common industrial irradiation 
types used is gamma irradiation (γ) and electron beam (EB) irradiation. EB 
irradiation has limited penetration compared with gamma-rays; however, it is very 
energy-efficient because the entire amount of energy is deposited on the sample. As 
EB irradiation contains no radioactive isotope, it provides a significant advantage 
from a public acceptance point of view [65]. The degree of cross-linking is 
proportional to radiation dose. It does not require unsaturated or other more reactive 
groups. The mechanism of cross-linking generally varies with polymers.  

The universally accepted mechanism involves the cleavage of a C-H bond on 
one polymer chain to form a hydrogen atom, followed by abstraction of a second 
hydrogen atom from a neighboring chain to produce molecular hydrogen. Then, the 
two adjacent polymeric radicals combine to form a cross-link, leading to branched 
chains until ultimately a three-dimensional polymer network is formed when each 
polymer chain is linked to another chain. Cross-linking during electron irradiation 
occurs by a free radical process is probably very similar to that of peroxide cross-
linking [52]. 
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Chapter 3 deals with the effect of temperature and peroxide content on cross-
linking of ethylene-octene copolymer. ENGAGE 8842 (45 wt. % octene) was cross-
linked by dicumyl peroxide (DCP) at various temperatures (150-200 °C). Six 
concentrations of DCP in range 0.2-0.7 wt. % were investigated. Cross-linking and 
degradation were studied by rubber process analyzer (RPA). From RPA data 

analysis real part of elastic torque s’ and tan were investigated as a function of 

peroxide content and temperature. The highest s’max and the lowest tanwere found 
for 0.7 wt. % of DCP at 150 °C. Chain scission was analyzed by slope analysis of 
conversion ratio, X in times after reaching the maximum. Less susceptible to chain 
scission are temperatures in range 150-170 °C and peroxide levels 0.2-0.5 wt. %. 
Evaluation of scission/cross-linking ratio suggested to perform cross-linking in the 

150-170 C temperature range and 0.3-0.5 wt. % of peroxide level to avoid possible 
fast chain scission immediately following cross-linking. 
 

Chapter 4 focuses on cross-linking kinetic study and high temperature 
mechanical properties of peroxide cross-linked ethylene-octene copolymer. Rate 
constant K for all EOC/DCP system (mentioned in chapter 3) was calculated from 
RPA data. The quantitative analysis confirmed that the DCP-EOC cross-linking was 
occurring as first order reaction. The highest cross-linking kinetics constant K was 
found for 0.6 wt. % of peroxide at 200 °C. The activation energy of cross-linking EA 
obtained by Arrhenius plot had maximum at 0.5-0.6 wt. % of peroxide. While at 
190-200 °C temperature range there was no detectable degradation for 0.2 wt. % of 
peroxide, for 0.4-0.7 wt. % of peroxide there was increasing level of degradation 
with increasing peroxide content. Generally, at low temperatures (150-180 °C) the 
increasing peroxide content caused increase in cross-linking kinetics. However at 
higher temperatures (190-200 °C) increase in kinetics (for 0.2-0.5 wt. % of 
peroxide) was followed by decrease. Especially in 0.6-0.7 wt. % peroxide level 
range the cross-linking is in competition with degradation which lowers the overall 
cross-linking kinetics. Gel content of the cross-linked EOC samples was found to be 
increasing with increase in peroxide content, which is caused by the increased cross-
link network. Cross-linked samples were subjected to creep studies at elevated 
temperature (150 °C) and the result was found in agreement with the gel content and 

RPA results. Storage modulus and tanvalues obtained by dynamic mechanical 
analysis (DMA) also support the RPA results.  

 



35 
 

Chapter 5 deals with the comparison of two different peroxide cross-linked 
ethylene-octene copolymers (ENGAGE 8450 and ENGAGE 8452).  EOC with two 
different octene contents (20 and 35 wt. %) and the same melt flow index (3 g/10 
min) were cross-linked using various levels (0.3, 0.5 and 0.7 wt. %) of dicumyl 
peroxide (DCP) at different temperatures (150-200 °C). The highest s’max and the 

lowest tanwere found for EN8450 with low octene content (20 wt. %) at all cross-
linking temperatures. Lower cross-linking efficiency of peroxide was observed in 
the case of high-octene copolymer (35 wt. %). EOC with high octene content was 
found to be more vulnerable to degradation when compared to the low-octene one. 
From dynamic mechanical analysis, storage modulus (M’) and glass transition 

temperature (Tg) obtained from tanpeaks were found decreasing with increasing 
octene content. Differential scanning calorimetry (DSC) results show that increasing 
octene content has an inverse effect on crystallinity and melting point Tm due to the 
reduction in average number of consecutive ethylene units. Finally, mechanical 
properties above Tm (at 150 °C) were analyzed by high temperature creep 
measurement. The creep results confirmed the cross-linkability results obtained by 
RPA and the gel content analyses. 

Chapter 6 concerned with the effect of electron beam irradiation on thermal, 
mechanical and rheological properties of ethylene-octene copolymer. EOC was 
irradiated using electron beam irradiation at different dosages (30, 60, 90 and 120 
kGy). Gel content analysis revealed that degree of cross-linking increases with 
radiation dosage. This was reflected in the improvement of high-temperature creep 
and elastic properties. Effect of irradiation on melting temperature (Tm) was 
analyzed by DSC. As the extent of cross-linking increases, stress at break showed an 
increasing trend whereas irradiation dosage has an inverse effect on elongation at 
break. It was proved from the rheological analysis that elastic modulus (G’) and 

viscosity (*) increases with irradiation dosage while tanshowed a decreasing 
trend. Radiation dosage has positive effect on thermal stability. 
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Theoretical Background 

Burhin HG [94] suggested a way of cross-linking kinetics analysis. For first order 
reaction, Eq. (1) can be used 

݈݊ሺ1 െ ܺሻ ൌ ݂ሺݐሻ    (1) 

Where, t is the time in min and X is the percentage of achieved cross-linking (0.9 for 
90%) or the conversion variable. This mathematical function is linear for first order 
reaction and was derived from the reaction kinetics formula for any chemical 
process shown by Eq. (2).  

݀ܺ
ݐ݀

ൌ .ሺ௡ሻܭ	 ሺ1 െ ܺሻ௡ሺݐ ൐  ሺ2ሻ																								௜ሻݐ

Where, t is the time in min, dX/dt is the reaction rate, K(n)is the nth order conversion 
rate constant, n is the reaction order in respect of time, ti is the incubation time in 
min or the predicted time for the start of vulcanization (X=0). 

A linear regression of the Eq.(2) gives the slope K, the time value for a conversion 
variable (X) equal to zero or the time the vulcanization reaction starts, and the 
coefficient of regression. 

Considering the cross-linking reaction as a normal chemical reaction, we can apply 
the law of Arrhenius [95] which expresses the relationship of the conversion rate 
constant K (or the rate of reaction) with the temperature according to Eq. (3) and (4). 

ܭ ൌ .ܣ ݁ି
ாಲ
ோ்																																												ሺ3ሻ 

or 

 													݈݊ ܭ ൌ ܣ݈݊ െ	ாಲ		
ோ்
																																									(4) 

 
Where EA is the activation energy in J mol-1, R is the universal gas constant, 8.314 J 
mol-1 K-1, T is the absolute temperature in K, A is the pre-exponential factor. 

By carrying out a series of tests at various temperatures, the EA value can be 
calculated from the slope of the Eq.(5).    

݈݊ሺܭሻ ൌ ݂ሺ
ଵ

்
ሻ                                            (5) 

The linear regression of Eq.(5) gives EA. 
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2.2.3 Irradiation Cross-linking 

Ethylene-octene copolymer sheets (sample size was 12x6x0.2 mm) for beta 
(electron beam) irradiation were prepared using a compression molding machine at 
110 °C for 10 min. Beta irradiation was performed in normal air at room 
temperature, in Beta-Gamma-Service (BGS) GmbH, Germany. It was made sure that 
the temperature did not exceed 50 °C. Source of radiation was toroid electron 
accelerator Rhodotron (10 MeV, 200 kW). The irradiation was carried out in a 
tunnel on a continuously moving conveyer with the irradiation dosage ranging from 
30-120 kGy; in steps of 30 kGy per pass.  

2.2.4 Gel Content Analysis 

Gel content is the direct measure of extent of cross-linking. The gel content of 
the cross-linked EOC was evaluated by determination of the content of insoluble 
fraction of cross-linked material after solvent extraction according to ASTM D2765-
01. About 0.3 g of cross-linked sample was wrapped in a 120 mesh stainless steel 
cage and extracted in refluxing xylene which contained 1% of antioxidant (Irganox 
1010) for 6 h. Sample was then dried in vacuum at 55 °C and weighed. % gel 
content was calculated according to Eq. (6): 

 

Gel	content ൌ 		
୊୧୬ୟ୪	୵ୣ୧୥୦୲	୭୤	ୱୟ୫୮୪ୣ

୍୬୧୲୧ୟ୪	୵ୣ୧୥୦୲	୭୤	ୱୟ୫୮୪ୣ
	ൈ 100     (6) 

 

2.2.5 Differential Scanning Calorimetry (DSC) 

Differential scanning calorimetry (DSC) is a tool that helps us to study the 
thermal transitions, melting and crystallization behaviors of a polymer during their 
heating or cooling or during isothermal annealing. Percentage crystallinity (Xc) of 
polymers also can be measured using DSC [96]. 
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at different temperatures in a Memmert UFE 400 oven with digital temperature 
control. Creep of the samples was recorded through using a SONY SLT-A33 camera 
capable of HD 1920x1080 video (25 frames/sec). This video was later analyzed at 
proper time intervals. Effect of peroxide content, octene content, temperature and 
radiation dosage (at stress levels of 0.05 and 0.1 MPa) on creep behavior of cross-
linked EOCs was studied. 

In the case of peroxide cross-linking system sheets for dynamic mechanical 
analysis (25x3x0.7 mm) and creep measurements were prepared by cross-linking 
during compression molding at 170 °C for 15 min in a compression molding 
machine. 

Elastic properties of irradiated samples were measured by residual strain 
experiments conducted using an Alpha Tensometer 2000 instrument. Microtensile 
samples with dimensions according to ISO 12086 were used for tensile experiments. 
Hysteresis experiments for the residual strain evaluation were carried out at a cross-
head speed of 10 mm min-1, where the cross-head was allowed to return to the 
original position after reaching to a pre-set strain of 100%. Tensile experiments till 
rupture were carried out at a different cross-head speed of 100 mm min-1 and tensile 
modulus, stress at break and elongation at break was noted. 

To study the effect of irradiation cross-linking on elastic properties, residual 
strain experiments were also carried out above the melting temperature of the virgin 
copolymer. For this, the samples were stretched to 100% elongation for 5 min and 
kept in a hot air oven (Memmert UFE 400) maintained at 70 °C. The samples were 
then cooled to room temperature and the residual strain values were noted. 

2.2.8 Rheological Properties 

Advanced Rheometric Expansion System ARES 2000 (Rheometrics 
Scientific, USA) equipped with 25 mm parallel plates geometry was used to 

determine storage modulus G’, tan and complex viscosity (η*) of irradiation cross-
linked EOC samples in the frequency range 0.1 - 100 rad s-1 at constant temperature 
(150 °C) and strain (1%). 

2.2.9 Thermogravimetric Analysis (TGA) 

Thermal stability of cross-linked ENGAGE 8842 samples was studied using a 
TGA Q500 instrument (TA Instruments). Thermogravimetric analysis (TGA) 
experiments were carried out in nitrogen atmosphere at a heating rate of 20 °C min-1 
in the selected temperature range of 25-600 °C.  
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CHAPTER 3 

Effect of peroxide content and temperature on cross-
linking and degradation of EOC/DCP system 

 
3.1 Introduction 

 
In this chapter we have focused on peroxide cross-linking of ethylene-octene 

copolymer using various peroxide levels at various temperatures. For this study, we 
selected ethylene-octene copolymer with high octene content (45 wt. %) with trade 
name ENGAGE 8842. EOC was cross-linked by dicumyl peroxide at different 
temperatures in range 150-200 °C. The influence of peroxide was investigated for 
concentrations 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7 wt. %. Cross-linking and degradation 
was studied by rubber process analyzer. From RPA data analysis elastic torque s’ 

and tan were investigated as a function of peroxide content and temperature. Here, 
we also calculated t90 value (time in min required for the 90% of cross-linking 
reaction to be completed)  for all samples at all temperature. We have compared the 
effect of storage time on s’ during cross-linking at two temperatures also. 

 

3.2 Influence of Peroxide Level and Temperature on Cross-linking  
 

The raw data out of the RPA, more specifically real part of the elastic torque, 
s’ is shown in Figure 3.1. From this graph one can notice that with increasing 
peroxide content the s’ elastic torque increases to higher levels. That would support 
the idea of cross-linking rather than chain scission. Both the minimum and 
maximum values of s’ are growing with increasing peroxide content. The minimum 
of the s’ value represents processability and the maximum of the s’ contains 
information about mechanical properties after cross-linking. The peroxide was 
mixed into EOC carefully at low temperature (100 °C) to avoid premature cross-
linking. Apparently even at 100 °C some cross-linking happened. The minimum of 
s’ is quite peroxide level dependent. Figure 3.1 shows data just for one temperature: 
180 °C. 
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Figure 3.1 Plot of elastic torque (s’) vs. time at 180 °C for various peroxide 

contents. 
 
 

Figure 3.2 is mapping the maximum s’ (s’max) value as a function of peroxide 
level and temperature altogether in 3D plot. For all cross-linking temperatures, the 
s’max value increases with increasing peroxide content. On the other hand, with 
increasing temperature the s’max values decrease for all peroxide levels. To obtain the 
maximum s’max, one has to use the highest peroxide level (0.7 wt. %) together with 

the lowest cross-linking temperature (150 C). The lowest s’max value was found for 
the lowest peroxide level (0.2 wt. %) and the highest cross-linking temperature (200 

C). The numerical values of s’max are summarized in Table 3.1. 
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Figure 3.2 3D plot of s’max as a function of temperature and peroxide content. 

 

Table 3.1 s’max (dNm) values for various peroxide content at different temperatures. 

wt.% of 
peroxide 

Temperature (°C) 

150 160 170 180 190 200 
0.2 0.84 0.76 0.56 0.48 0.42 0.35 

0.3 1.21 0.92 0.77 0.65 0.56 0.53 

0.4 1.45 1.25 1.02 0.90 0.83 0.74 

0.5 1.63 1.44 1.25 1.15 1.04 0.88 

0.6 1.95 1.78 1.47 1.36 1.22 1.14 

0.7 2.15 1.79 1.71 1.49 1.30 1.25 

 
 

Another useful and important value is tantans’’/s’). The lower the 

tanvalue the better elasticity one can expect. For example, in tire industry the 

lower tan value is connected with lower rolling resistance and lower consumption 
of gasoline by the car. So the companies are trying to develop new formulations to 
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get lower tanor even new polymers such as solution type of butadiene-styrene 
rubber (SBR). 

 

 
Figure 3.3 tanδ vs. time at180 °C. 

 

The raw graphs with tancurves from RPA are shown in Figure 3.3. The 

highest values of tanwere found for 0.2 wt. % of peroxide and the lowest ones for 

0.7 wt. % of peroxide. Initially, tanincreases as the sample is melting and getting 

viscous. Then tanstarts to decrease with progressing cross-linking. Finally it 
reaches certain equilibrium value (shown by line) that will be compared in the 
following Figure 3.4. It is important to notice also the time to reach the maximum. It 
is getting shorter with increasing peroxide content. While tmax is about 1 min for 0.2 
wt. % of peroxide, it is only few seconds for 0.7 wt. % of peroxide. One could call 
that induction period of cross-linking and plot it as a function of peroxide content as 
shown in the inserted picture of Figure 3.3.  
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Figure 3.4 3D plot of tan as a function of temperature and peroxide content. 

 
Figure 3.4 shows the equilibrium tan values as a function of peroxide content 

and temperature in the form of 3D plot. There is a tremendous decrease in tan 
values in peroxide range 0.2-0.5 wt. %. Then, in range 0.5-0.7 wt. % there is also a 
decrease but much more moderate. The difference in tan is quite small at higher 
peroxide levels (0.6-0.7 wt. %). The largest difference in tan values was found to 
be for the lowest peroxide level (0.2 wt. %). Concerning cross-linking temperature 
for the 0.2 wt. % of peroxide the tan values are the largest (the worst elasticity) and 
the dependence on temperature is also the largest. With increasing temperatures the 

tan value increases as well with exception to 150 and 160 C when the tan values 
are almost the same. There is strong dependence on peroxide content and much 
smaller dependence on cross-linking temperature. The lowest tan values were 

found for 0.7 wt. % of peroxide cross-linked in 150-170 C range, tan being in 0.3-
0.4 range. The largest tan values were found for 0.2 wt. % of peroxide in 180-200 

C range, tan being in 1.1-1.2 range. The numerical values of tan are summarized 
in Table 3.2. 
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Table 3.2 tan values for various peroxide content at different temperatures. 

wt.% of 
peroxide 

Temperature (°C) 

150 160 170 180 190 200 
0.2 0.96 0.96 1.10 1.13 1.16 1.21 
0.3 0.78 0.78 0.80 0.85 0.87 0.86 
0.4 0.54 0.58 0.63 0.64 0.64 0.65 
0.5 0.46 0.49 0.51 0.51 0.51 0.55 
0.6 0.42 0.39 0.42 0.43 0.44 0.44 
0.7 0.36 0.37 0.36 0.39 0.42 0.40 

 

 

In rubber industry the t90 value is frequently evaluated to set the proper 
vulcanization time. The t90 value represents time in min required for the 90% of 
cross-linking reaction to be completed. All the t90 numerical values are listed in 
Table 3.3 and examples of the t90 values for three peroxide levels as a function of 
temperature are shown in Figure 3.5. The curves have exponential decay shape. In 
inserted picture of Figure 3.5 the natural logarithmic values of t90 are plotted as a 
function of temperature. There is a linear relationship in 150-190 °C temperature 
range confirming the exponential nature of this temperature dependent phenomenon. 
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Figure 3.5 t90 as a function of cross-linking temperature. 
 

 

Table 3.3 t90 (min) values for various peroxide content at different temperatures. 

wt.% of 
peroxide 

Temperature (°C) 

  150 160 170 180 190 200 
0.2 86.0 25.6 9.47 5.43 2.98 2.95 
0.3 66.4 25.4 9.34 5.28 2.28 1.17 
0.4 77.3 25.4 8.50 4.45 2.01 0.97 
0.5 69.9 24.0 8.69 4.10 1.84 0.94 
0.6 68.0 22.0 7.73 3.88 1.61 0.90 
0.7 48.6 19.1 7.54 3.54 1.63 0.95 
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Figure 3.6 Plot of conversion ratio, X vs. time for 0.6 wt. % of peroxide at various 

temperatures, a) 150 -170 °C and b)150-200 °C. 
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The s’ curve is recalculated so that it is in range 0.0-1.0 (or 0-100%).  X is 
defined as the percentage of achieved cross-linking. The examples of such curves 
are shown in Figures 3.6 a-b. Figure 3.6a covers very long time period (150 min) 

that was required for very slow cross-linking at 150 C. Figure 3.6b focuses on high 

temperature cross-linking (180-200 C) that is finished in less than 15 min. 

As it is shown in above figure, the conversion curves exhibit a maximum and 
then the X values decrease differently for different temperatures. The decrease in X 
value represents degradation. The network created by cross-linking is being 
damaged most likely by chain scission. Possible chemical reactions occurring in the 
system are shown on Figures 3.7 and 3.8. In the peroxide the O-O bond breaks first 
rendering two free radicals. Then this free radical RO• reacts with the hydrogen of 
EOC chain. Then two macro-radicals react together forming cross-linked and also a 
longer molecule. There are three possible sites from where hydrogen can be 
abstracted which are shown on Figure 3.7c. Numbers on hydrogen atoms are given 
according to the priority. Number one is hydrogen atom on the tertiary carbon atom 
which is called labile hydrogen. Number 2 and 3 have almost equal probability of 
reaction. There are 6 possible recombination listed in the bottom of Figure 3.7. Only 
(2-2) combination is shown in Figure 3.7b. This reaction repeats many times until a 
cross-linked network is formed. Macro-radicals can sometimes break by chain 
scission mechanism shown on Figure 3.8. There are two possibilities of chain 
scission. The bond energy of C-H bond in case of tertiary carbon is slightly lower 
than that of secondary carbon (96.5 vs. 98.6 kcal mol-1, respectively) [100].  

 
 
 
 

.  
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Cross-linking possibilities: (1-1), (1-2), (1-3), (2-2), (2-3) and (3-3). 

 
Figure 3.7 Peroxide initiation and cross-linking of EOC by DCP. 

(b) 

(c) 

(a) 
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Figure 3.8 Two possible chain scission reactions. 
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One can practically evaluate the chain scission by slope analysis shown on 
Figure 3.9. Initially the X curve increases in time rapidly that indicates the progress 
of cross-linking reaction. After reaching the maximum, the X value decreases. This 
decrease slope (chain scission) can be analyzed for various temperatures as indicated 
in Figure 3.10a where the cross-linking slope is also shown. One can plot the 
scission/cross-linking ratio as a function of temperature (see Figure 3.10b). This 
ratio has very small value in 150-170 °C temperature range; one could assign this 
temperature range as “safe for cross-linking”. However in 180-200 °C this 
scission/cross-linking ratio has much higher value and scission starts seriously 
compete with cross-linking. The inserted picture in Figure 3.10a shows an Arrhenius 
plot for evaluation of activation energy of degradation. In our case the EA value was 
calculated to be 210 kJ mol-1 which is greater than that of cross-linking. 

 
 
 

 
Figure 3.9 Cross-linking and scission slope analysis in EOC with 0.6 wt. % of DCP. 
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Figure 3.10 a) Cross-linking and scission slopes as a function of temperature and 

  b) Scission/cross-linking ratio as a function of temperature. 
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The chain scission depends not only on temperature but also on peroxide level 
as it is shown on Figures 3.11 and 3.12. Figure 3.11 shows the conversion curves at 

180 C and various peroxide levels. The degradation slopes were analyzed and 
plotted in Figure 3.12. 

In Figure 3.12, we have not seen any degradation for the 0.2 wt. % of 
peroxide in the 15 min time frame. However, for all other peroxide levels there was 
degradation. The degradation kinetics increases with the increasing peroxide level. 
These data show the danger of losing mechanical properties when the time of cross-
linking is not kept precise. This risk of mechanical properties loss is greater for 
higher peroxide levels. For thick rubber articles, one has to count with very low 
thermal conductivity of EOC and thus very slow cooling rate. During this slow 
cooling, chemical reaction still proceeds and there is always risk of degradation and 
mechanical properties loss. 

 
 

 
Figure 3.11 Plot of conversion ratio X vs. time for different peroxide content at   

180 °C. 
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Figure 3.12 Degradation slope as a function of peroxide content at 180 °C. 

 
 

In Figure 3.2 the elastic torque s’ has the highest value at lower 
temperatures. However the situation is not completely clear. The temperature of s’ 
measurement was also the cross-linking temperature in case of Figure 3.2. It is 
interesting to compare the s’ values of samples cross-linked at different temperatures 
but measured at the same temperatures. This is shown in Figure 3.13. First 
experiment indicates very long cross-linking at low temperature (150 min at 150 
°C). Then the s’ values were immediately measured at 170 and 200 °C. In contrast 
the second experiment shows very fast cross-linking at high temperature (3 min at 
200 °C). Then the s’ values were immediately measured at 190, 180, 170, 160 and 
150 °C. Clearly the s’ values are higher in case of low temperature cross-linking. 
The difference is about 0.22 dNm. In industry the productivity of work pushes to 
lower times but one has to be careful about the mechanical properties loss in case of 
high temperature cross-linking. 
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Figure 3.13 Comparison of s’, elastic torque for two cross-linking temperatures: 

150 and 200 °C. 

 
The samples were stored in a freezer at -18 °C to prevent unwanted cross-

linking and preserve good processability so that final article can be molded before 
cross-linking. Is something happening in the freezer? How long is the shelf life of 
the EOC/DCP mixture? We have compared the s’ values of samples having different 
storage history, shorter, 10 or 20 days and longer, 90 days. The measurements were 
carried out at 150 and 200 °C as shown in Figure 3.14. In both cases the s’ values at 
maximum were higher for longer storage time while the minimum s’ values were 
not almost changed. Thus after longer storage time we can expect better mechanical 
properties without losing good processability. This is good news. 
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Figure 3.14 Effect of storage time on s’ evolution during cross-linking at two 

temperatures: 150 and 200 °C. 

 

3.3 Conclusions 

EOC can be effectively cross-linked by dicumyl peroxide. The maximum 

modulus values were found for 0.7 wt. % peroxide content cross-linked at 150 C 
for 150 min. Higher temperatures speed up the process at the cost of lower modulus. 
The lowest tanδ values were found also for this 0.7 wt. % peroxide content cross-

linked in 150-170 C temperature range. The scission/cross-linking ratio study 

suggested to perform cross-linking in the 150-170 C temperature range and 0.3-0.5 
wt. % of peroxide level to avoid possible fast chain scission immediately following 
cross-linking. 
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CHAPTER 4 

Cross-linking kinetics study and high-temperature 
mechanical properties of ethylene-octene copolymer 

(EOC)/dicumyl peroxide (DCP) system 

 

4.1 Introduction 

This chapter deals with kinetic study and high temperature mechanical 
properties of ethylene octene copolymer cross-linked using dicumyl peroxide. Effect 
of peroxide content and temperature on cross-linking has been examined more 
elaborately by studying cross-linking kinetics. From RPA data analysis rate constant 
K and activation energy, EA were investigated. Influence of peroxide level on gel 
content and mechanical properties was also analyzed. The extent of cross-linking 

has been obtained through gel content analysis. Storage modulus and tanvalues 
also measured by DMA to support the RPA results. The usability of cross-linked 
polymer in long term applications was studied by creep analysis. 

4.2 Cross-linking Kinetics Analysis 

The manufacturer of RPA 2000 instrument recommends cross-linking kinetics 
analysis as following. The times necessary for the conversions in range 20-80 % (20, 
25, 30, 35….75, 80) were calculated by the RPA software. We have plotted the 
points according to Eq. (1), see Figure 4.1. There are straight lines for all 
temperatures. The linearity confirms that the DCP-EOC cross-linking is occurring as 
first order reaction. Figure 4.1 represents cross-linking kinetics analysis for EOC 
with 0.4 wt. % of peroxide. Similar plots were performed for all peroxide levels. We 
have always observed straight lines confirming first order reaction. The slope of 
these lines gives us the reaction kinetics constant K. 
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Figure 4.1 ln(1-X) vs. time for 0.4 wt. % of peroxide at various temperatures. 

 
Figure 4.2 shows that with increasing peroxide level there is a steady increase 

in rate constant K up to 180 C. At 190 C, the values for 0.6 wt. % and 0.7 wt. % of 

peroxide are almost the same and at 200 C there is even decrease in K value coming 

from 0.6 to 0.7 wt. % of peroxide. The curve at 200 C has a maximum at 0.6 wt. % 
of peroxide. 

The full map of rate constant as a function of temperature and peroxide 
content is shown by 3D plot in Figure 4.3. There is a strong exponential temperature 
dependence while the effect of peroxide level on rate constant is much smaller. The 
maximum value of rate constant for all temperatures and peroxide levels was found 

to be at 0.6 wt. % of peroxide and 200 C. Apparently, the higher loading of 
peroxide (0.7 wt. %) does not speed up the cross-linking, most likely the other 
reactions (like chain scission) make the rate constant lower. The lowest rate constant 

value was found for 0.2 wt. % of peroxide at 150 C, as summarized in Table 4.1.  
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Figure 4.2 Rate constant K as a function of peroxide content. 
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Figure 4.3 3D plot of rate constant, K as a function of temperature and peroxide 
content. 

 

 

Table 4.1 Rate constant, K values for various peroxide content at different 
temperatures. 

wt.% of 
Peroxide 

Temperature (°C) 

  150 160 170 180 190 200 

0.2 0.0261 0.083 0.229 0.505 0.95 2.41 
0.3 0.0274 0.088 0.243 0.552 1.24 3.17 
0.4 0.0295 0.092 0.278 0.669 1.64 3.19 
0.5 0.0316 0.093 0.268 0.743 1.68 3.60 
0.6 0.0372 0.105 0.295 0.795 1.94 4.06 
0.7 0.0437 0.125 0.314 0.854 1.91 3.71 
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The inserted picture in Figure 4.4 shows the plots according to Arrhenius 
equation in logarithmic form (Eq. (5)) for 0.4 wt. % of peroxide. The linearity of 
these points was rather good, measured by R values being 0.9966 for 0.4 % of 
peroxide. In this way all of the activation energies shown in Figure 4.4 were 
obtained. There is a steady increase in EA in range 0.2-0.5 wt. % of peroxide with the 
maximum being at around 0.52 wt. % and a decrease in range 0.55-0.7 wt. % of 
peroxide. When the peroxide level is lower, mainly cross-linking is taking place. But 
with higher amount of peroxide the probability of chain scission increases.  

 

 

Figure 4.4 Activation energies of cross-linking EA as a function of peroxide content. 
The inserted picture is ln K vs. 1/T for 0.4 wt. % peroxide. 

4.3 Evaluation of high-temperature mechanical properties 

Gel content of peroxide cross-linked samples are shown in Figure 4.5. It can 
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that the cross-linking reaction lead only to longer molecules but the network was not 
created. There is a sharp increase (0 to 54 %) in gel content from 0.3 to 0.4 wt. % of 
peroxide. Then, in the case of 0.5, 0.6 and 0.7, gel content gradually increases with 
increasing peroxide content. Increase in gel content is due to increase in cross-link 
network and thus cross-link density. 

 

 

Figure 4.5 Gel content of DCP cross-linked EOC samples at 150 °C. 
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the sample with 0.3 wt. % of peroxide ran till 160 °C. Even though the network was 
not fully created there is a big change in the storage modulus curve. The 0.4-0.6 wt. 
% of peroxide curves have very similar trend and they are close to each other; just 
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there is a small increase with increase in peroxide level. 0.7 curve has highest value 
of storage modulus till 180 °C, then it is rapidly decreasing and has lower value than 
the 0.6 curve. In the 180-200 °C temperature range the degradation of 0.7 samples is 
decreasing the mechanical properties.  

In Figures 4.7, dependences of tan on peroxide content and temperature are 

shown. Increase in temperature causes an increase in tan value for all samples in 

the temperature range 30-200 °C. With increasing peroxide content the tan value 
decreases with exception 0.7 wt. % of peroxide. One can conclude that increasing 
peroxide content above 0.6 wt. % does not improve elastic properties.  

 

 

Figure 4.6 Storage modulus from DMA as a function of temperature for EOC cross-
linked with various levels of DCP. 
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Figure 4.7 tan as a function of temperature for EOC cross-linked with various 
levels of DCP from DMA analysis. 

 

 

Figure 4.8 Creep compliance curves at 150 C and 0.05 MPa stress. 
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Figure 4.8 depicts the creep compliance behavior of cross-linked EOC 

samples at 150 C and 0.05 MPa stress level. As we can see from the figure, 
elongation and thus creep reduces as the peroxide content increases. Or, in other 
words cross-linking and thus strength of the samples increases when the peroxide 
level increases. This data are in good agreement with earlier shown RPA results. 

4.4 Conclusions 

Cross-linking study followed by Arrhenius equation treatment and activation 
energy evaluation suggested an optimum peroxide level being in 0.5-0.6 wt. % 

range. The highest cross-linking rate was found for 0.6 wt. % of peroxide at 200 C. 
At higher peroxide levels (starting at 0.7 wt. %) the degradation affects seriously the 
crosslinking especially at higher temperatures (180-200 °C).This fact is again 

proven by the storage modulus and tan results obtained by the DMA. Gel content 
which has shown an increasing trend with increase in peroxide content is due to the 
increased cross-link network. Creep test results at 150 °C also support the claim that 
increase in modulus and gel content is caused by increase in peroxide level. 
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CHAPTER 5 

Comparison of peroxide cross-linked ethylene-octene 
copolymers 

5.1 Introduction 

This chapter deals with comparison of two ethylene-octene copolymers cross-
linked using DCP. Two ethylene-octene copolymers (ENGAGE 8450 with 20 wt. % 
and ENGAGE 8452 with 35 wt. % octene content) of same melt flow index (3 g/10 
min) were cross-linked using various levels (0.3, 0.5 and 0.7 wt. %) of DCP at 
different temperatures (150-200 °C). Effect of octene content on cross-linking and 
degradation has been analyzed using RPA. Influence of octene content on thermal 
properties such as melting and crystallinity was studied by differential scanning 

calorimetry. Storage modulus (M’) and tan were also evaluated through dynamic 
mechanical analysis. Finally, mechanical properties above Tm (at 150 °C) were 
analyzed by high temperature creep measurement. 

 

5.2 Studies on Two Different EOC/DCP Systems 

In this chapter, these two ENGAGES are mentioned as EN 8450 and EN 
8452, for the sake of simplicity. 

Figure 5.1a and b show the raw data obtained from RPA, more specifically 

real part of elastic torque, s’ and tanfor EN 8450 and 8452. From this graph, one 
can notice that EN 8452 with 35 wt. % of octene has lower elastic torque compared 
to EN8450 with a low octene content (20 wt. %). As we discussed in previous 
chapter, the minimum of the s’ value represents processability and the maximum of 

the s’ contains information about mechanical properties after cross-linking. tan 
after cross-linking is lower for low-octene EOC, which means better elasticity. 
Figure 5.1 shows data just for one temperature (180 °C) and one peroxide level (0.5 
wt. %). 
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Figure 5.1 Plots of elastic torque, s’ (a) and tanbas a function of cross-linking 

time for EN 8450 and EN 8452 with 0.5 wt. % of peroxide at 180 °C. 
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Figure 5.2 Plot of s’max vs. temperature for EN 8450 and EN 8452 with 0.7 wt. % of 
peroxide. 

 

Figure 5.2 shows the plot of s’max as a function of cross-linking temperature 
for the two ENGAGEs. As one can see from the plot, s’max value is higher for EN 
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degradation too [101]. s’max decrease with cross-linking temperatures in both cases. 

The s’ value (s’max-s’min) represents the cross-linking efficiency of peroxide 
which is defined as the number of moles of chemical cross-links formed per mole of 

peroxide [9]. Figure 5.3 represents the s’ value as a function of peroxide content 
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The same phenomenon was observed at all cross-linking temperatures. Increase in 
number of peroxide free radicals - in other words, increase in peroxide content - 

causes an increase in s’ value (linear dependency).  

 

 

Figure 5.3 Plot of s’max-s’min (s’) vs. peroxide content at 180 °C for two different 
EOCs. 
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ENGAGEs is shown in Figure 5.4. The lower tanvalue the better elasticity one can 

expect. tanvalues increase with increasing octene content and temperature. 
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Figure 5.4 Plot of tan vs. temperatures for two different EOCs with 0.7 wt. % 
peroxide. 
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Figure 5.5 s’ as function of time for EN8450 cross-linked with 0.7 wt. % of DCP at 
180 °C and 200 °C. 

 

 

Figure 5.6 Cross-linking slopes of two different ENGAGEs cross-linked by            
0.7 wt. % of DCP. 
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Figure 5.7 Degradation slope as a function of cross-linking temperature for EOCs 
cross-linked with 0.7 wt. % of DCP. 

 

Dependence of degradation slope values on temperature is represented in 
Figure 5.7. It is clear from the figure that octene content has an influence on 
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Figure 5.8 Gel content analysis of cross-linked EOCs. 
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as function of temperature for EN8450 and EN8452 cross-linked with 0.7 wt. % of 
peroxide. The most important observation is that as the comonomer content 
increases, storage modulus decreases (the copolymer gets softer and more rubbery). 
EOC with lower octene content has higher modulus at all temperatures. 

tan results from DMA are shown in Figure 5.10. In this case, one can 

observe two transitions called  (+10 to +100 °C) and  (+10 to -70 °C). According 
to the literature, motion of CH2 units of polyethylene within the crystal 

latticeresults in -transition while motion of branched structures in the amorphous 

phase causes the -transition [66]. Comonomer content of EOC affects both of these 

transitions. In the case of high octene EOC (low crystallinity), -transition is absent. 
At same time, it is more prominent for low octene EOC. Crystallinity decreases with 
increase in octene content which is proved by DSC result (see Table 5.1). Similar 
observations have been made by Simanke et al. for low octene content EOCs 
without any cross-linking. They reported that increase in comonomer content results 
in decrease in average number of consecutive ethylene units and thus crystallizable 
part of the copolymer reduces. This ultimately causes drop in crystallinity [102]. 

From the tan curve, it is clear that, -transition temperature shifted to lower 

temperature as the octene content increases. Peak position of -transition 
corresponds to the Tg of the amorphous phase [103]. This decrease in Tg with octene 
content is due to an increase in amorphous portion. 
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Figure 5.9 DMA results: storage modulus of two EOCs cross-linked with 0.7 wt. % 
of DCP at 170 °C. 

 

 

Figure 5.10 DMA results: effect of octene content on tan
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In order to support the above-claimed conclusions, we performed also 
measurement of mechanical properties above melting point of EOCs. Below Tm, the 
strength of cross-linked EOC comes from crystal lamellae that act as tie points for 
amorphous chains, and also from cross-linking. To see the influence of cross-linking 
only one has to measure mechanical properties above Tm of the semi-crystalline 
polymer. 

In order to know the Tm of investigated EOCs, we carried out DSC 
experiments. The results are summarized in Table 5.1. With increasing octene 
content the melting point (Tm) and crystallinity (Xc) decrease. Based on this analysis, 
the temperature for high temperature creep testing was set to 150 °C when all the 
crystals are melted. The results are shown in Figures 5.11 and 5.12. From Figure 
5.11, one can observe that EOC with lower octene content has lower creep 
compliance values than EOC with higher octene level. EN8452 has undergone a 
higher creep than EN8450 at all times during the measurement, due to the lower 
extent of cross-linking. Creep compliance values after different times were evaluated 
and plotted in Figure 5.12. The results are in good agreement with the RPA and gel 
content results which are discussed earlier. 

 

Table 5.1 DSC analysis of ENGAGEs 
 

Sample Tm (°C) H (J/g) Crystallinity (%) 
EN8450 99.9 83.0 28.6 
EN8452 71.0 37.8 13.0
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Figure 5.11 Creep compliance curves at 150 C and 0.1MPa stress for EOCs with 
0.7 wt. % DCP. 

 

 

Figure 5.12 Creep compliance as a function of octene content at 150 C and 
0.1MPa stress for EOCs cross-linked with 0.7 wt. % DCP. 
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5.3 Conclusions 

Two ethylene-octene copolymers with different octene content but the same 

initial MFI value were cross-linked using dicumyl peroxide at different 

temperatures. The influence of octene content, peroxide level and temperature on 

cross-linking, degradation and high temperature creep were studied. The cross-

linking efficiency of etlylene-octene copolymers was greatly influenced by the 

octene content, peroxide level and cross-linking temperature. Better cross-linking 

was achieved for EOC with lower octene content. According to tan analysis, best 

elastic properties were observed for EN8450 (having 20 wt. % of octene) cross-

linked at low temperature (150 °C). Increase in cross-linking temperature (above 

170 °C) resulted in an increased degradation for both ENGAGEs. However, high-

octene copolymer (EN8452) was more vulnerable to degradation compared to the 

low-octene one. Gel content and high temperature creep analyses confirm the 

conclusion that EN8450 with low octene content underwent better cross-linking. 

Crystallinity and melting point of EOCs decreases with increasing octene content, as 

it was illustrated by DSC analysis. DMA revealed lower Tg and lower modulus for 

higher octene copolymer. 
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CHAPTER 6 

Influence of electron beam irradiation on the thermal, 
mechanical and rheological properties of ethylene-

octene copolymer 

6.1 Introduction 

In this chapter we have focused on electron beam irradiation cross-linking of 
ethylene-octene copolymer with high comonomer content (45 wt. %). EOC was 
irradiated at different dosages (30, 60, 90 and 120 kGy). The effect of irradiation on 
thermal, mechanical and rheological properties of EOC has been analyzed. Melting 
and thermal degradation behavior was studied by DSC and TGA, respectively. The 
rheology study involves the effect of irradiation dose on elastic modulus (G’), 

viscosity (*) and tanby Advanced rheometric expansion system (ARES 2000). 
Stress-strain behaviour of irradiation cross-linked EOC also discussed in detail. The 
effect of cross-linking was examined more elaborately by high temperature creep 
and elastic property measurements. 

6.2 Study on irradiated ethylene-octene copolymer 

Figure 6.1 shows the effect of irradiation dosage on gel content which denotes 
the extent of cross-linking. Structures with low molecular weight which are by-
products of chain scission or chain branching may not contribute towards the 
insoluble fraction during analysis. As a result of increase in network formation 
(cross-linking extent), gel content increases. It is clear from the figure that samples 
irradiated with 30 kGy dose were completely dissolved due to low cross-linking 
degree. A gradual increase in gel content was observed thereafter. A maximum gel 
content of 87.84% was recorded for EOC irradiated with 120 kGy. 

DSC thermograms of irradiated EOCs are shown in Figure 6.2. There is a 
clear difference in the position of melting peaks and peak areas. Only one melting 
peak around 43 °C is seen in the case of un-irradiated EOC sample while there is a 
second peak at around 56 °C in the case of EOCs irradiated with 90 and 120 kGy 
dosages. This may be ascribed to the formation of high-melting fraction (chains with 
high molecular mass) due to increased cross-linking. Peak area around 43 °C is 
getting decreased while at 56 °C is increased with irradiation. 
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Figure 6.1 Gel content analysis of irradiated samples. 

 
 

 

Figure 6.2 DSC thermograms at 20 °C/min. 
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The rheological properties of e-beam irradiation cross-linked ethylene-octene 
copolymer are shown in the following figures. Frequency dependence of elastic 
modulus, G’ of irradiated samples is illustrated in Figure 6.3. At low frequency, time 
is large enough to unfold the chains and relax slowly which reduces the modulus. 
But at higher frequency, the entangled chain had less time for reorientation and 
results in higher G’ values [104].  An increase in radiation dosage also increases the 
elastic modulus which implies that elasticity enhances with radiation dose. At low 
frequency range, longer chains are contributing more towards the elasticity of the 
polymer. As the radiation dosage increases, presence of shorter chains decreases i.e., 
longer and cross-linked chains are formed. This is obvious from the Figure 6.3 that, 
as the radiation dosage increases, G’ increases at lower frequency range. But at 
higher frequencies, shorter chains are responsible for the elasticity. This is the 
reason why G’ values are decreasing with the radiation dosage at higher frequencies 
when thenumber of shorter chains is relatively smaller. 

The increase in elastic modulus with radiation dosage at lower frequency is 
very clearly explained in Figure 6.4.The increase in elastic modulus with radiation 
dosage is due to the increase in amount of large macromolecules that are formed by 
the cross-linking reactions as well as by the presence of the cross-linked chains. 
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Figure 6.3 Elastic modulus (G’) vs. frequency for different radiation dose. 

 
 

 

Figure 6.4 Elastic modulus (G’) as a function of radiation dose at different 
frequencies. 
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Figure 6.5 Viscosity () as a function of frequency for different radiation doses. 

 
 

 

Figure 6.6 tan as a function of frequency for different radiation doses. 
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Figure 6.5 revealed that viscosity () decreased with increasing frequency 
and at low frequencies increased with increasing radiation dosage. This increase in 
viscosity indicates the formation of network structure by irradiation. As we 
discussed above, at higher frequency range shorter chains are contributing towards 

elastic modulus. The decrease in with radiation dosage at higher frequency is due 
to the reduction in number of shorter chains. 

Figure 6.6 depicts the effect of radiation dosage and frequency on tanThere 

is alarge decrease in tan with increasing frequency for 0 kGy. Then tan is almost 
independent of frequency level for the radiation above 30 kGy. As shows also in 
Figure 6.3 and 6.5, initially there is a large change in polymer structure (compare 

tan at 0.1 rad s-1 for 0 and 30 kGy, the values were about 6 and 0.5, respectively), 
then the change is rather moderate in range 30-120 kGy. The effect of radiation dose 

on tan at the frequency 0.1 rad s-1 for samples 30-120 kGy is illustrated in Figure 

6.7. There is an exponential decrease of tan with radiation dosage. The decrease in 

tanmeans improvement in elasticity. 

 

 

Figure 6.7 Effect of radiation dose on tanat 0.1 rad s-1. 

Radiation dose (kGy)
30 60 90 120

ta
n


0.1

0.2

0.3

0.4

0.5



89 
 

Tensile stress-strain curves of the pure and cross-linked EOCs are depicted in 
Figure 6.8. A gradual decrease in elongation at break has been observed while stress 
at break has shown an increase, except in the case of the highly irradiated (120 kGy) 
EOC. Increase in cross-linking is the reason for these two phenomena. For majority 
of the samples, elongation before failure has gone up to as high as 1000%. No yield 
points were noted in any of the measurements because of extremely low 
crystallinity. There was no significant effect of cross-linking observed in the case of 
tensile modulus. Perraud et al. have reported similar results for some other e-beam 
cross-linked poly (ethylene-co-octene) [105]. Tensile properties of irradiation cross-
linked ENGAGE 8842 are summarized in Table 6.1. 

 

 

Figure 6.8 Stress-strain curves at room temperature. 
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Table 6.1 Effect of irradiation dosage on tensile properties. 

Radiation 
dose (kGy) 

Stress at break 
(MPa) 

Elongation at break 
(%) 

0 9.23 1737 
30 11.79 1628 
60 13.68 1397 
90 14.65 1259
120 7.73 918 

 

 

Influence of radiation dosage on elastic properties at room temperature is 

demonstrated in Figure 6.9. Residual strain (r) values obtained from the hysteresis 
curves from the tensile instrument are being considered as the measure of elasticity. 
In this case, applied strain was 100%. Residual strain is found to be decreasing with 
increase in cross-linking via irradiation. In other words, elasticity of ENGAGE 8842 
is getting improved by cross-linking. Just by the exposure to 30 kGy dosage 

irradiation, a significant drop of about 30% in the r value has been observed. A 

gradual decrease in r (or increase in elasticity) with further increase in irradiation 
dosage was found. Original stress-strain hysteresis curves of pure and the most 

cross-linked EOCs are shown in the inset of the Figure 6.9, where the position of r 
is clearly marked. 

Residual strain values above the Tm of the pure EOC (50 °C) were also 
measured and are shown on Figure 6.10. For this, a temperature of 70 °C was used, 
when there are no crystals present. At room temperature the crystals play the role of 
tie points for amorphous chains. Above Tm only cross-link chemical bonds are 
holding amorphous chains together during mechanical stretching. Then after 100% 
elongation at 70 °C one can clearly see a big difference among the samples (at room 
temperature the difference was much smaller). The residual strain values at 70 °C 
are much higher compared to room temperature. High temperature testing is 
common practice in industry and has a great importance for customers.  
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Figure 6.9 Residual strain of irradiated EOCs at room temperature. 

 

 

Figure 6.10 Effect of radiation dosage on residual strain after 5 min exposure to 
100% elongation at 70 °C. 

Radiation dosage (kGy)

0 30 60 90 120

R
es

id
u

al
 s

tr
ai

n
, 

r 
(%

)

12

14

16

18

Strain (%)
0 20 40 60 80 100

S
tr

es
s 

(M
P

a)

0.0

0.2

0.4

0.6

0.8

Pure EOC

120 kGy

r

Radiation dosage (kGy)

0 30 60 90 120

R
es

id
u

al
 s

tr
ai

n
, 
 r

 (
%

)

50

60

70

80

90



92 
 

 

Figure 6.11 Effect of radiation dose on creep compliance. 

 
 

 

Figure 6.12 Effect of temperature on creep compliance for irradiated EOC (30 kGy) 
at a stress level of 0.1 MPa. 
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Creep is an important property for polymers that are being used under 
constant stress for a long duration of time such as pipes, storage tanks etc. Cross-
linking can enhance the creep resistance of polymers. Effects of cross-linking and 
temperature on creep compliance of EOC are illustrated in Figures 6.11 to 6.13. 
Figure 6.11 shows the influence of irradiation dosage on creep behavior of 
ENGAGE 8842 at 150 °C under 0.1 MPa stress. Pure EOC and samples with low 
cross-linking undergoes a rapid and high creep behavior. As the cross-linking 
increases, the more the network is formed in the whole polymer system. These 
cross-links hold the polymer chains more firmly in the case of highly cross-linked 
EOC samples. Almost no creep was observed in the case of EOC irradiated with 120 
kGy dosage. There is a transition from a high-creep to a low-creep which is 
noticeable between samples irradiated with 30 kGy and 60 kGy. Keeping in mind 
that there was no gel content found in the case of samples irradiated with 30 kGy 
dosage, this can be better understood. When the temperature increases, creep 
increases as well. This is demonstrated in Figure 6.12. Combined effect of radiation 
dose and temperature on creep compliance slope (from the later part of the curve) is 
illustrated in Figure 6.13. One can see from the figure the effect of radiation dose on 
creep is much higher than that of temperature. 

 

Figure 6.13 Combined effect of radiation dose and temperature on creep 
compliance slope at a stress level of 0.1 MPa. 
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Thermal stability of cross-linked and uncross-linked EOCs is shown in Figure 
6.14. As we can see from the figure, thermal stability increases as the cross-linking 
increases. Virgin EOC starts to decompose rapidly at around 300 °C while EOC 
irradiated with 120 kGy dosage was thermally stable up to around 350 °C. For a 
comparison, we have evaluated the temperatures at which 50% of weight loss 
happened. These temperatures have been noted as 385, 391, 405, 407 and 409 °C 
respectively for the EOCs irradiated with 0, 30, 60, 90 and 120 kGy dosages. 

 

 

 

Figure 6.14 Effect of radiation on thermal stability of ethylene-octene copolymer. 
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6.3 Conclusions 

Ethylene-octene copolymer has been irradiated using electron beam to 

investigate the effect of irradiation dose on thermal, rheological and high 

temperature elastic and creep properties. Extent of cross-linking increased with 

increase in radiation dose which was confirmed by gel content analysis. Rheological 

analysis showed that elastic modulus and viscosity increased with radiation dosage. 

Increase in radiation dosage resulted in a decrease in elongation at break and an 

increase in stress at break. The effect of cross-linking was proved by high 

temperature creep and elastic property measurements. Cross-linking through 

irradiation improved the thermal stability of ethylene-octene copolymer. 

 

 

 

 

 

 

 

 

 

 

 



96 
 

CHAPTER 7 

CLOSING REMARKS 

7.1 General Conclusions 

This doctoral thesis demonstrates two different techniques for cross-linking 
ethylene-octene copolymers and their analysis which are aimed to extend their 
application. The main conclusions from this research work are, 

 Peroxide cross-linking of ethylene-octene copolymer depends up on the cross-
linking temperature and peroxide level. Up to certain level increase in amount 
of peroxide content favors cross-linking then chain scission comes into action. 
As temperature increases, competition between scission and cross-linking also 
increases and at high temperatures scission overrules cross-linking. 

 Activation energy calculation suggested that optimum peroxide level for EOC 
cross-linking was in the range 0.5-0.6 wt. %. Increase in extent of cross-
linking with peroxide content was reflected in high temperature mechanical 
properties. 

 Comparison of two different EOC/DCP systems provided the information that 
octene content has a great influence on cross-linking. Better cross-linking was 
achieved for EOC with lower octene content which was confirmed through 
high temperature creep. High octene EOC was more vulnerable for 
degradation also.  

 Electron beam irradiation also found to be an effective way to cross-link 
ethylene-octene copolymer. Considerable improvement in thermal stability 
and mechanical properties has been observed.  

7.2 Contribution to Science and Practice  

In this work attention is given to the cross-linking of polyolefin elastomers through 
different techniques.   Ethylene-octene copolymer is able to cross-link properly with 
minimum degree of degradation to extend their useful temperature range to meet the 
demands of specialty applications. Cross-linked EOC possesses acceptable high 
temperature mechanical properties which have great value in automotive field. 
Optimization of the cross-linking parameters will help to carry out cross-linking 
easily, which has been discussed in detail in this work. This study will throw light 
on the factors causing degradation or chain scission during cross-linking and will be 
a useful reference in future. 
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7.3 Future works 

 Silane-water cross-linking of ethylene-octene copolymers. 

 Post irradiation degradation study at 160-250 °C.  

 Comparison of different cross-linking techniques. 
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