

Tomas Bata University in Zlín
Faculty of Applied Informatics

Doctoral Thesis

Evolutionary Synthesis of the Turing Machine’s Rules

Evoluční syntéza pravidel Turingova stroje

Ing. Lukáš Kouřil

Doctoral study programme: Engineering Informatics
Supervisor: prof. Ing. Ivan Zelinka, Ph.D.

Zlín, 2012

- 3 -

CONTENT

ABSTRACT ... 6
ABSTRAKT .. 7
ACKNOWLEDGEMENTS ... 8
LIST OF FIGURES .. 9
ABBREVIATIONS AND SYMBOLS ... 13
1 INTRODUCTION ... 14
2 BACKGROUND RESEARCH .. 15
3 THESIS OBJECTIVES .. 19
4 BRIEF INSIGHTS INTO AUTOMATA .. 20

4.1 FINITE AUTOMATA .. 20
4.1.1 Definition of finite automata .. 21

4.2 TURING MACHINES ... 22
4.2.1 Definition of Turing machines ... 23

4.2.2 How Turing machine works ... 24
5 APPLICATION OF EVOLUTIONARY ALGORITHMS ... 27

5.1 DIFFERENTIAL EVOLUTION ... 27
5.1.1 Essential principles of Differential Evolution .. 27

5.2 SELF-ORGANIZING MIGRATING ALGORITHM .. 29

5.2.1 Background theory of Self-Organizing Migrating Algorithm 29
6 APPROACHES TO EVOLUTIONARY OPTIMIZATION OF THE RULES OF THE

TURING MACHINE’S TRANSITION FUNCTION .. 31
6.1 CLASSICAL OPTIMIZATION .. 31

6.1.1 Encoding the rules for classical optimization .. 31
6.1.2 Definition of specimen ... 33

6.1.3 Designing evaluation function ... 33

6.2 PER-PARTES OPTIMIZATION .. 34

6.2.1 Encoding the rules for per-partes optimization ... 35

6.2.2 Definition of specimen ... 37

6.2.3 Optimization process and evaluative algorithm ... 37
7 SELECTED EXAMPLES .. 40

7.1 UNARY ADDITION ... 40
7.2 DIVISIBILITY ... 41

7.3 PRIMALITY .. 41
8 EFFECT OF CUSTOM SETTINGS OF SELECTED EVOLUTIONARY ALGORITHMS

ON EVOLUTIONARY-ESTIMATED PROGRAMMING .. 43

- 4 -

8.1 METHODOLOGY .. 43
8.2 RESULTS ... 45

8.2.1 Dependence of optimization process on DE’s NP parameter 46

8.2.2 Dependence of optimization process on DE’s F parameter 46

8.2.3 Dependence of optimization proces on DE’s CR parameter 47
8.2.4 Dependence of optimization proces on DE’s G parameter 48

8.2.5 Dependence of optimization process on SOMA’s PopSize parameter 49

8.2.6 Dependence of optimization process on SOMA’s PRT parameter 49

8.2.7 Dependence of optimization process on SOMA’s PathLength parameter 50

8.2.8 Dependence of optimization proces on SOMA’s Step parameter 51

8.2.9 Dependence of optimization process on SOMA’s Migrations parameter 52
8.3 ANALYSIS CONCLUSION .. 52

9 PRACTICAL UTILIZATION ... 54
9.1 PROTEINS ESSENTIALS ... 54

9.1.1 Proteins as Turing machine’s data tapes ... 54

9.2 PROTEIN PROCESSING BY TURING MACHINE .. 56

9.2.1 2J01 .. 58

9.2.2 1AOI ... 60
9.2.3 1LIT .. 62

9.2.4 1B08 ... 64

9.2.5 1B09 ... 66

9.2.6 1TUP .. 67

9.2.7 1YAR ... 69
9.2.8 1FNT .. 71

9.2.9 2J00 .. 73

9.2.10 1A4Y ... 74

9.2.11 1BMF.. 76

4.1.1. 2ZV4 ... 78
10 CONCLUSION ... 81
11 LITERATURE ... 82
12 PUBLICATIONS ... 85

12.1 CONFERENCE PROCEEDINGS AND JOURNALS ... 85
12.2 OTHER PUBLICATIONS ... 86

12.3 SOFTWARE .. 86

12.4 SUPERVISED OR CONSULTED DIPLOMA THESIS .. 87

- 5 -

12.5 INTERNAL GRANT AGENCY PROJECTS .. 87
13 AUTHOR’S CURRICULUM VITAE .. 88
APPENDICES ... 89

APPENDIX A: EXAMPLES OF SELECTED RULES ESTIMATED DURING ANALYSIS 90
APPENDIX B: DESCRIPTION OF TURING MACHINE SOFTWARE IMPLEMENTATION 92

- 6 -

ABSTRACT
This doctoral thesis is concerned with possibilities of artificial intelligence utilization for Turing
machine programming. The main topic regards using Differential Evolution and Self-Organizing
Migrating Algorithm as selected methods of artificial intelligence for Turing machine transition
function’s rules synthesis. The rules of Turing machine represent a form of program on its basis
Turing machine works. Rules designing can be considered as a way of this machine
programming.

The doctoral thesis consists of four parts which can be characterized as follows. The first part
represents an introduction to the finite automata because Turing machines are classified as them.
This part is necessary for understanding backgrounds of these machines. Highly important is
a characterization of the machine on the basis of formal description. This is used as a base for
rules synthesis problematics formulation in the next parts of the doctoral thesis. This first part
also introduces selected algorithms of artificial intelligence. These are Differential Evolution
and Self-Organizing Migrating Algorithm. The introduction to these algorithms is a key for
settings of suitable parameters of selected algorithms while rules synthesis.

The second part of the doctoral thesis presents two proposed approaches to Turing machine’s
rules synthesis (or optimization). These approaches are “classical optimization” and “per-partes
optimization”. Both approaches differ from each other. Each approach has also advantages and
disadvantages which herewith assess their utilization. Both of mentioned approaches are closely
described in this second part.

In the third part of the doctoral thesis three selected elementary problems are introduced.
These are unary addition, divisibility (exact divison) problem and primality (prime number
detection) problematics. The problems are used as example tasks for Turing machine which
rules we want to estimate by proposed approaches. It is utilized for analysis of rules
optimization process dependence on custom settings of Differential Evolution and Self-
Organizing Migrating Algorithm. This analysis is entirely fundamental not only for this part of
the doctoral thesis but for the next part especially.

The last, fourth, part of the doctoral thesis represents a practical utilization of proposed
approaches to programming Turing machine by artificial intelligence. As real problematics
protein processing by Turing machine was chosen. Proteins are regarded as primary protein
structures in this case. Evolutionary synthesis of Turing machine’s rules is demonstrated from
total of a twelve selected primary protein structures differing in length. As described later in the
text, this problematics is so far complex that can be considered as a sufficient way of proper
work proof of proposed approaches to evolutionary synthesis of Turing machine’s rules as main
topic of the doctoral thesis.

Keywords: Turing machine, transition function’s rules, artificial intelligence, Differential
Evolution, Self-Organizing Migrating Algorithm

- 7 -

ABSTRAKT
Tato dizertační práce se věnuje možnostem využití umělé inteligence pro programování
Turingova stroje. Nosným tématem je využití Diferenciální evoluce a Samo-organizujícího se
migrujícího algoritmu jako vybraných metod umělé inteligence pro syntézu pravidel přechodové
funkce Turingova stroje. Pravidla Turingova stroje představují program, na jehož základě
Turingův stroj pracuje. Jejich návrh lze tedy považovat za formu programování tohoto stroje.

Dizertační práce sestáva ze čtyř částí, které lze charakterizovat následovně. První část
představuje úvod do konečných automatů, mezi které patří i Turingův stroj. Tato část je
nezbytná pro pochopení mechanismů, na jejichž základě tento typ strojů pracuje. Velmi důležitá
je charakterizace stroje na základě jeho formálního popisu, který je v dalších částech dizertační
práce využit jako základ pro formulaci problému syntézy pravidel. Tato první část rovněž
seznamuje s vybranými algoritmy umělé inteligence, tedy s Diferenciální evolucí a Samo-
organizujícím se migrujícím algoritmem. Toto seznámení hraje důležitou roli pro vhodné
nastavení parametrů těchto algoritmů při syntéze pravidel.

Druhá část dizertační práce představuje dva navržené přístupy k syntéze (nebo také
optimalizaci) pravidel Turingova stroje. Těmito přístupy jsou „klasická optimalizace“
a „optimalizace po částech“. Oba tyto přístupy se zásadně liší jeden od druhého. Zároveň každý
z těchto přístupů má své výhody i zápory, které zároveň určují i jejich využití. V této druhé části
jsou oba tyto přístupy podrobně popsány.

Ve třetí části dizertační práci jsou uvedeny tři vybrané elementární problémy. Jde o unární
součet, problém dělitelnosti bez zbytku celým číslem a problematika detekce prvočísla. Tyto
problémy jsou využity jako vzorové úlohy pro Turingův stroj, jehož pravidla chceme zjistit
pomocí navržených přistupů. Toho je následně využito pro analýzu závislosti procesu
optimalizace pravidel na různém nastavení Diferenciální evoluce a Samo-organizujícího se
migrujícího algoritmu. Tato analýza je zcela zásadní nejen pro tuto část dizertační práce, ale
především pro následující.

Poslední, čtvrtá, část dizertační práce představuje praktické využití navržených přístupů
k programování Turingova stroje pomocí umělé inteligence. Za reálnou problematiku bylo
zvoleno zpracování proteinů pomocí Turingova stroje. Proteiny jsou v tomto případě míněny
primární proteinové struktury. Evoluční syntéza pravidel Turingova stroje je demonstrována
na celkem dvanácti vybraných primárních proteinových strukturách, lišících se svou délkou.
Tato problematika, jak je popsáno dále v textu, je natolik komplexní, že ji lze považovat jako
dostatečný způsob ověření správné činnost přístupů k evoluční syntéze pravidel Turingova
stroje, jimiž se tato dizertační práce zabývá.

Klíčová slova: Turingův stroj, pravidla přechodové funkce, umělá inteligence, Diferenciální
evoluce, Samo-organizující se migrující algoritmus

- 8 -

ACKNOWLEDGEMENTS
At this place, I would like to dearly thank to following persons:

• Supervisor of my doctoral thesis prof. Ing. Ivan Zelinka, Ph.D. who interested me in
artificial intelligence and inspired me to be concerned with this amazing part of applied
informatics. Also he provides many helpful advices to me.

• The head of Department of Informatics and Artificial Intelligence doc. Mgr. Roman
Jasek, Ph.D. who encourage me in finalization of this doctoral thesis and assisted me
whenever I needed.

• Ing. Zuzana Oplatkova, Ph.D. for her patience of my questions about artificial
intelligence, doctoral thesis and other concerns related to doctoral study.

• Friends of mine from SPLK KAŠAVA for making me escaped from the hard work
days. They helped me without they noticed it.

At last but not least I would like to warmly thank to my parents. They were greatly supportive
for me while my doctoral study. My cordial thanks also belong to them for everything what they
do for me.

Thank you. This doctoral thesis wouldn’t be come into existence without you.

- 9 -

LIST OF FIGURES

Fig. 4.1: Example of finite automaton .. 20
Fig. 4.2: Scheme of the Turing machine ... 23
Fig. 4.3: Operating of the Turing machines ... 24
Fig. 4.4: Example of input data tape .. 25
Fig. 4.5: Example of requested output data tape .. 25
Fig. 4.6: Appearance of the data tape in step 1 .. 26
Fig. 4.7: Appearance of the data tape in step 2 .. 26
Fig. 4.8: Appearance of the data tape in step 3 .. 26
Fig. 4.9: Appearance of the data tape in step 4 .. 26
Fig. 6.1: Example of encoding complete rules .. 32
Fig. 6.2: Evaluating individuals by classical optimization ... 34
Fig. 6.3: Example of encoding one rule .. 35
Fig. 6.4: Appearance of the data tape in step 1 .. 36
Fig. 6.5: Appearance of the data tape in step 2 .. 36
Fig. 6.6: Appearance of the data tape in step 3 .. 36
Fig. 6.7: Appearance of the data tape in step 4 .. 36
Fig. 6.8: Example of reduction of the rules .. 37
Fig. 6.9: Scheme of per-partes approach to optimization ... 38
Fig. 6.10: Diagram of the evaluative algorithm ... 38
Fig. 7.1: Initial data tape of unary addition problem ... 40
Fig. 7.2: Requested output data tape of unary addition problem ... 40
Fig. 7.3: Initial data tape of divisibility problem .. 41
Fig. 7.4: Requested output data tape of divisibility problem .. 41
Fig. 7.5: Initial data tape of primality problem .. 41
Fig. 7.6 :Requested output data tape of primality problem .. 41
Fig. 8.1: Dependence of successfull estimation on changing DE's NP parameter 46
Fig. 8.2: Dependence of execution time on changing DE's NP parameter 46
Fig. 8.3: Dependence of successfull estimation on changing DE's F parameter 46
Fig. 8.4: Dependence of execution time on changing DE's F parameter 47
Fig. 8.5: Dependence of successfull estimation on changing DE's CR parameter 47
Fig. 8.6: Dependence of execution time on changing DE's CR parameter 47
Fig. 8.7: Dependence of successfull estimation on changing DE's G parameter 48
Fig. 8.8: Dependence of execution time on changing DE's G parameter 48
Fig. 8.9: Dependence of successfull estimation on changing SOMA's PopSize parameter 49
Fig. 8.10: Dependence of execution time on changing SOMA's PopSize parameter 49
Fig. 8.11: Dependence of successfull estimation on changing SOMA's PRT parameter 49
Fig. 8.12: Dependence of execution time on changing SOMA's PRT parameter............................ 50
Fig. 8.13: Dependence of successfull estimation on changing SOMA's PathLength

parameter ... 50
Fig. 8.14: Dependence of execution time on changing SOMA's PathLength parameter 50
Fig. 8.15: Dependence of successfull estimation on changing SOMA's Step parameter 51
Fig. 8.16: Dependence of execution time on changing SOMA's Step parameter 51
Fig. 8.17: Dependence of successfull estimation on changing SOMA's Migrations

parameter ... 52
Fig. 8.18: Dependence of execution time on changing SOMA's Migrations parameter 52
Fig. 9.1: Scheme of DNA replication .. 55
Fig. 9.2: Scheme of DNA transcription ... 55
Fig. 9.3: General form of amino acid ... 56
Fig. 9.4: Image of 2J01 with highlighted chain 1 ... 58

- 10 -

Fig. 9.5: Analysis of head movement for 1J01 chain 1 result 1 .. 59
Fig. 9.6: Analysis of head movement for 1J01 chain 1 result 2 .. 59
Fig. 9.7: Analysis of head movement for 1J01 chain 1 result 3 .. 59
Fig. 9.8: Analysis of head movement for 1J01 chain 1 result 4 .. 59
Fig. 9.9: Analysis of head movement for 1J01 chain 1 result 5 .. 60
Fig. 9.10: Image of 1AOI with highlighted chain A .. 60
Fig. 9.11: Analysis of head movement for 1AOI chain A result 1 ... 61
Fig. 9.12: Analysis of head movement for 1AOI chain A result 2 ... 61
Fig. 9.13: Analysis of head movement for 1AOI chain A result 3 ... 61
Fig. 9.14: Analysis of head movement for 1AOI chain A result 4 ... 61
Fig. 9.15: Analysis of head movement for 1AOI chain A result 5 ... 62
Fig. 9.16: Image of 1LIT with highlighted chain A ... 62
Fig. 9.17: Analysis of head movement for 1LIT chain A result 1 .. 63
Fig. 9.18: Analysis of head movement for 1LIT chain A result 2 .. 63
Fig. 9.19: Analysis of head movement for 1LIT chain A result 3 .. 63
Fig. 9.20: Analysis of head movement for 1LIT chain A result 4 .. 63
Fig. 9.21: Analysis of head movement for 1LIT chain A result 5 .. 64
Fig. 9.22: Image of 1B08 with highlighted chain A .. 64
Fig. 9.23: Analysis of head movement for 1B08 chain A result 1 ... 65
Fig. 9.24: Analysis of head movement for 1B08 chain A result 2 ... 65
Fig. 9.25: Analysis of head movement for 1B08 chain A result 3 ... 65
Fig. 9.26: Analysis of head movement for 1B08 chain A result 4 ... 65
Fig. 9.27: Analysis of head movement for 1B08 chain A result 5 ... 65
Fig. 9.28: Image of 1B09 with highlighted chain A .. 66
Fig. 9.29: Analysis of head movement for 1B09 chain A result 1 ... 67
Fig. 9.30: Analysis of head movement for 1B09 chain A result 2 ... 67
Fig. 9.31: Analysis of head movement for 1B09 chain A result 3 ... 67
Fig. 9.32: Analysis of head movement for 1B09 chain A result 4 ... 67
Fig. 9.33: Analysis of head movement for 1B09 chain A result 5 ... 67
Fig. 9.34: Image of 1TUP with highlighted chain A ... 68
Fig. 9.35: Analysis of head movement for 1TUP chain A result 1 .. 68
Fig. 9.36: Analysis of head movement for 1TUP chain A result 2 .. 68
Fig. 9.37: Analysis of head movement for 1TUP chain A result 3 .. 69
Fig. 9.38: Analysis of head movement for 1TUP chain A result 4 .. 69
Fig. 9.39: Analysis of head movement for 1TUP chain A result 5 .. 69
Fig. 9.40: Image of 1YAR with highlighted chain A .. 69
Fig. 9.41: Analysis of head movement for 1YAR chain A result 1 ... 70
Fig. 9.42: Analysis of head movement for 1YAR chain A result 2 ... 70
Fig. 9.43: Analysis of head movement for 1YAR chain A result 3 ... 70
Fig. 9.44: Analysis of head movement for 1YAR chain A result 4 ... 70
Fig. 9.45: Analysis of head movement for 1YAR chain A result 5 ... 71
Fig. 9.46: Image of 1FNT with highlighted chain A ... 71
Fig. 9.47: Analysis of head movement for 1FNT chain A result 1 .. 72
Fig. 9.48: Analysis of head movement for 1FNT chain A result 2 .. 72
Fig. 9.49: Analysis of head movement for 1FNT chain A result 3 .. 72
Fig. 9.50: Analysis of head movement for 1FNT chain A result 4 .. 72
Fig. 9.51: Analysis of head movement for 1FNT chain A result 5 .. 72
Fig. 9.52: Image of 2J00 with highlighted chain B ... 73
Fig. 9.53: Analysis of head movement for 2J00 chain B result 1 .. 74
Fig. 9.54: Analysis of head movement for 2J00 chain B result 2 .. 74
Fig. 9.55: Analysis of head movement for 2J00 chain B result 3 .. 74
Fig. 9.56: Analysis of head movement for 2J00 chain B result 4 .. 74

- 11 -

Fig. 9.57: Analysis of head movement for 2J00 chain B result 5 .. 74
Fig. 9.58: Image of 1A4Y with highlighted chain A .. 75
Fig. 9.59: Analysis of head movement for 1A4Y chain A result 1 ... 76
Fig. 9.60: Analysis of head movement for 1A4Y chain A result 2 ... 76
Fig. 9.61: Analysis of head movement for 1A4Y chain A result 3 ... 76
Fig. 9.62: Analysis of head movement for 1A4Y chain A result 4 ... 76
Fig. 9.63: Analysis of head movement for 1A4Y chain A result 5 ... 76
Fig. 9.64: Image of 1BMF with highlighted chain A .. 77
Fig. 9.65: Analysis of head movement for 1BMF chain A result 1 ... 78
Fig. 9.66: Analysis of head movement for 1BMF chain A result 2 ... 78
Fig. 9.67: Analysis of head movement for 1BMF chain A result 3 ... 78
Fig. 9.68: Analysis of head movement for 1BMF chain A result 4 ... 78
Fig. 9.69: Analysis of head movement for 1BMF chain A result 5 ... 78
Fig. 9.70: Image of 2ZV4 with highlighted chain N.. 79
Fig. 9.71: Analysis of head movement for 2ZV4 chain N result 1... 80
Fig. 9.72: Analysis of head movement for 2ZV4 chain N result 2... 80
Fig. 9.73: Analysis of head movement for 2ZV4 chain N result 3... 80
Fig. 9.74: Analysis of head movement for 2ZV4 chain N result 4... 80
Fig. 9.75: Analysis of head movement for 2ZV4 chain N result 5... 80

- 12 -

LIST OF TABLES

Table 1: Transition table of first experiment [32] ... 16
Table 2: Transition table of second experiment [32] .. 17
Table 3: Example of the transition table ... 22
Table 4 - Example of the Turing machine's transition table.. 25
Table 5: Conditions which are parts of the evaluative algorithm ... 39
Table 6: Custom settings of Differential Evolution ... 43
Table 7: Custom settings of Self-Organizing Migrating Algorithm .. 43
Table 8: Specifications of examples used .. 44
Table 9: Number of cost function evaluations for parameters NP and G of Differential

Evolution ... 45
Table 10: Number of cost function evaluations for parameters PopSize and Migrations of

Self-Organizing Migrating Algorithm ... 45
Table 11: DE parameters stated according to analysis recommandation 53
Table 12: SOMA parameters stated according to analysis recommandation 53
Table 13: Parameters of Differential Evolution for protein processing.. 57
Table 14: Per-partes optimization's weights .. 57
Table 15: Summary of 5 obtained results of processing 2J01 chain 1 .. 59
Table 16: Summary of 5 obtained results of processing 1AOI chain A ... 61
Table 17: Summary of 5 obtained results of processing 1LIT chain A .. 63
Table 18: Summary of 5 obtained results of processing 1B08 chain A ... 65
Table 19: Summary of 5 obtained results of processing 1B09 chain A ... 66
Table 20: Summary of 5 obtained results of processing 1TUP chain A .. 68
Table 21: Summary of 5 obtained results of processing 1YAR chain A .. 70
Table 22: Summary of 5 obtained results of processing 1FNT chain A .. 72
Table 23: Summary of 5 obtained results of processing 2J00 chain B .. 73
Table 24: Summary of 5 obtained results of processing 1A4Y chain A ... 75
Table 25: Summary of 5 obtained results of processing 1BMF chain A ... 77
Table 26: Summary of 5 obtained results of processing 2ZV4 chain N .. 80

- 13 -

ABBREVIATIONS AND SYMBOLS
AI Artificial intelligence
DE Differential Evolution
SOMA Self-Organizing Migrating Algorithm
𝐴,𝑇𝑀 Representation of automaton or Turing machine
𝑄 Set of all inner states
Σ Set of input symbols
Δ Set of output symbols
𝛿 Transition function
𝜆 Output function
𝑝, 𝑞 Inner state
𝑞0 Initial state
𝑞𝑎𝑐𝑐𝑒𝑝𝑡 Accepting state
𝑞𝑟𝑒𝑗𝑒𝑐𝑡 Rejecting state
𝑡𝑠𝑖𝑧𝑒 Size of data tape
𝑠𝑚𝑎𝑥 Maximum number of computation steps
𝐹 Set of final or accepting states
𝐵 Blank symbol
Γ Set of all input symbols
𝑋 Input symbol
𝑌 Output symbol
𝐷 Direction of head movement
NP Number of population
F Mutation constant
CR Cross-over value
G Number of generations
M Number of migrations
PRT Perturbation
PopSize Population size
PathLength Length of path
CFE Cost function evaluations
A Adenine
C Cytosine
G Guanine
T Thymine
U Uracile
DNA Deoxyribonucleic acid
RNA Ribonucleic acid

- 14 -

 INTRODUCTION 1
The meaning of applied informatics can be regarded as one of building blocks of our
civilization. It is an engine which drives civilization progress ahead. However it doesn’t touch
the present only. The past has been affected by meaning of applied informatics too. As well as it
will also lead the way of civilization development in the future. If there is any extraterrestrial
civilization there is surely its science which has same meaning as our applied informatics (but
can be termed differently) too. I don’t think it is necessary to argue into above-outspoken words.
It can be considered as a small revolution when informatics has been arisen as a separate science
and the applied informatics has been begun daily influence lifes of people.

The doctoral thesis which is held in your hands is aimed on applied informatics too. As
considered related to this thesis, the application of informatics is related to the three areas. These
are automata theory, artificial intelligence and bioinformatics. The former two areas are main
topics of the doctoral thesis. The term “automata theory” can be sounded slightly boring but it is
not at all. With theory of automata one can met in assorted places. It is not industry (machine
tools, vehicles, consumer electronics etc.) only. The automata can also have a form of e. g.
software (workflows realization, text searching and the like). The thesis considers using Turing
machines which are a minor of finite automata. Turing machines are theoretical automata with
abilities that common automata don’t dispose (e.g. infinite size of data medium).

The second area of applied informatics related to the doctoral thesis is an artificial
intelligence. In terms of public perception, the term artificial intelligence (AI) always attracts
attention. This term itself is perceived as a sign of something extraordinary. As well as “AI” two
letters which act as a mystical acronym. However, what is curious about these words? The
probable answer is the adjective “artificial” which may be responsible for the perception of these
expressions. The adjective assigns certain characteristics of human beings to the artificial non-
living objects which is anomalous and can be also little strange. The strange aspect, in particular,
in the consciousness of the public regarding artificial intelligence (AI) is influenced and
advanced by movies all the time. AI is actually human-being-inspired only. The inspiration can
be found in several methods of artificial intelligence, e.g. neural networks (neural system of
brain), evolutionary algorithms (evolutionary processes in the nature), genetic algorithms (cell
genetics) - subsets of evolutionary algorithms etc. The methods of artificial intelligence
basically imitate actual specific processes. Due to this, AI-based methods can themselves
continuously evolve and adapt to the actual solved problems. The solution to problems retrieved
by methods of artificial intelligence can bring novel and unexpected results since the outlooks of
AI methods regarding problems are more flexible.

The last area this thesis is aimed on is bioinformatics. Bioinformatics is relatively new science
which came into existence lately. It benefits from appliances and methods of applied informatics
in relation to biological problems. The meaning of applied informatics for biology is huge and
can not be ommited. The problem, as the protein processing is, was selected as an one for
demonstration of this doctoral thesis results practical utilization.

Altough the research described on following pages is mainly focused on concerns of applied
informatics the related problems involve different ares of this science and represent new
approaches for utilization artificial intelligence for programming Turing machines. The example
applications to protein processing are included as well. I hope it will be interesting for readers
and for practical usage especially.

- 15 -

 BACKGROUND RESEARCH 2
Using artificial intelligence for programming Turing machines is not widely spread yet.
Although it is possible to find some few mentions, scientific articles or research papers which
describe attempts to use any methods of artificial intelligence these are limited to use of genetic
algorithms [33], genetic programming [33] or evolutionary programming especially. It
acknowledges that employing Differential Evolution and Self-Organizing Migrating Algorithm
– representatives of evolutionary and memetic algorithms – for programming Turing machines
as discussed in this doctoral thesis is a new unique approach to Turing machine’s rules
optimization. Of course, the lack of relevant research papers could be caused by unavailability
of some articles in databases (ISI Web of Science1, SpringerLink2, ScienceDirect3) used in the
days while working on background research, but it is less probable. Following lines briefly
introduce several existing approaches used for programming Turing machines by methods of
artificial intelligence selected by research papers’ authors.

The first of introduced researches is concerned with evolving Turing machines from examples
in eponymous article [31] by Julio Tanomaru. There are described two approaches to
programming Turing machine based on using Genetic Algorithm [33]. These are termed as
simple genetic algorithm approach and enhanced evolutionary approach. The Turing machines
are considered as transition tables where the number of inner states can be changed dynamically.
Automaton is understood as:

𝑀 = (𝑄, Σ,Δ, 𝛿, 𝜆, 𝑞0), (2.1)

where:

• 𝑄 is a set of all inner states,
• Σ is a set of input symbols,
• Δ is a set of output symbols,
• 𝛿 is the transition function, whereas 𝛿(𝑝, 𝑎) = 𝑞 and 𝑝 ∈ 𝑄, 𝑎 ∈ Σ, 𝑞 ∈ 𝑄,
• 𝜆 is the output function, whereas 𝜆(𝑝, 𝑎) = 𝑏 and 𝑝 ∈ 𝑄, 𝑎 ∈ Σ, 𝑏 ∈ Δ,
• 𝑞0 is the initial state.

In population, the automaton is represented by next state and output symbol as follows:

𝜇𝑖 = [𝑎𝑗 𝑘
𝑖 𝜖 𝑄|𝑏𝑗 𝑘

𝑖 𝜖 Δ], (2.2)

where:

• i = 1,…, Population size
• j = 1,…, ni
• k = 1,…, dim(𝛴)
• ni is number of inner states of i-th automaton
• dim(𝛴) is number of different input symbols

In the article [31], continuous generation model was used. By crossover or mutation the
population Pop’(t) is originated after population Pop(t) is duplicated at the i-th generation.
Whether member of population Pop’(t) is originated by crossover or mutation it is expressed by
𝜌 parameter (0 ≤ 𝜌 ≤ 1) what is crossover ratio. There is used 2-point crossover operator when

1 http://apps.isiknowledge.com
2 http://www.springerlink.com
3 http://www.sciencedirect.com

- 16 -

two of population members are selected and crossover exchanges groups of transition tables’
rows. Mutation is provided by changing values within specified range. In the case of Turing
machines, the formal definition is used as shown in (4.4).

Second approach described in [31] utilizes performance statistics collected for each
generation. Then the dependence of operators to best automata from previous generation is
observed. Also the crossover operation was excluded and three new mutation operators were
used. The first one is same as described in the first approach. The second one enables to
dynamic changes of inner states. The third one can discard member of population and originates
a new one on the basis of performance statistics.

The results of second research were published in research paper named „Evolving Turing
Machines for Biosequence Recognition and Analysis” [32] by Edgar E. Vallejo and Fernando
Ramos. There is used an approach by genetic programmming [33]. The article [32] describes
three slightly different experiments for evolving either Turing machine or other finite automaton
for biosequence recognition. The first experiment is aimed on Turing machines. The Turing
machine is considered as restricted and defined by 9-tuple:

𝑇𝑀 = (𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑞𝑎𝑐𝑐𝑒𝑝𝑡 , 𝑞𝑟𝑒𝑗𝑒𝑐𝑡 , 𝑡𝑠𝑖𝑧𝑒 , 𝑠𝑚𝑎𝑥), (2.3)

where:

• 𝑄 is a set of all inner states,
• Σ is a set of input symbols,
• Γ is a set of all data tape symbols,
• 𝛿 is the transition function, 𝛿:𝑄 × Γ → 𝑄 × Γ × {𝐿,𝑅},
• 𝑞0 is an initial state, 𝑞0 ∈ 𝑄,
• 𝑞𝑎𝑐𝑐𝑒𝑝𝑡 is an accept state, 𝑞𝑎𝑐𝑐𝑒𝑝𝑡 ∈ 𝑄,
• 𝑞𝑟𝑒𝑗𝑒𝑐𝑡 is a reject state, 𝑞𝑟𝑒𝑗𝑒𝑐𝑡 ≠ 𝑞𝑎𝑐𝑐𝑒𝑝𝑡,
• 𝑡𝑠𝑖𝑧𝑒 is the data tape size
• 𝑠𝑚𝑎𝑥 expresses maximum number of computation steps.

There is used genetic algorithm with tournament selection and elitism. The Turing machine is
represented as genome in the form of concatenated values of the transition function using
transition table. If there is considered transition table (see Table 1) same as the table published
in [32]:

 Table 1: Transition table of first experiment [32]

𝜹 a b
𝑞1 (𝑞1, 𝑎,𝑅) (𝑞2, 𝑏, 𝐿)
𝑞2 (𝑞3, 𝑎, 𝐿) (𝑞2, 𝑏,𝑅)
𝑞3 (𝑞2, 𝑏,𝑅) (𝑞2, 𝑎,𝑅)

then it is possible to concatenate the values of transition table to the representation of genome
(2.4)

(𝑞1, 𝑎,𝑅) (𝑞2, 𝑏, 𝐿) (𝑞3, 𝑎, 𝐿)(𝑞2, 𝑏,𝑅) (𝑞2, 𝑏,𝑅)(𝑞2, 𝑎,𝑅) (2.4)

and express it as

𝑞0,0𝑎0,0𝑚0,0𝑞0,1𝑎0,1𝑚0,1 … 𝑞|𝑄|,|Σ|𝑎|𝑄|,|Σ|𝑚|𝑄|,|Σ|, (2.5)

- 17 -

where:

• i is a row of transition table,
• j is a column of transition table.

There are used custom-designed genetic operators because genome representation is not binary.
In the research [32], the training set is compounded of biosequences accepted and randomly
generated negative sequences too. Turing machine considered has 32 inner states and 8 data tape
symbols.

The second experiment was aimed on two-way deterministic finite automata what is a type of
Turing machine which allow recognize language and works with read-only data tape. It actually
means that the input symbol is the same as the output symbol. In this experiment, there is used
restricted two-way deterministic finite automaton formally defined as 8-tuple:

𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝑞𝑎𝑐𝑐𝑒𝑝𝑡 , 𝑞𝑟𝑒𝑗𝑒𝑐𝑡 , 𝑡𝑠𝑖𝑧𝑒 , 𝑠𝑚𝑎𝑥), (2.6)

where:

• 𝑄 is a set of all inner states,
• Σ is a set of input symbols,
• 𝛿 is the transition function, 𝛿:𝑄 × Γ → 𝑄 × Γ × {𝐿,𝑅},
• 𝑞0 is an initial state, 𝑞0 ∈ 𝑄,
• 𝑞𝑎𝑐𝑐𝑒𝑝𝑡 is an accept state, 𝑞𝑎𝑐𝑐𝑒𝑝𝑡 ∈ 𝑄,
• 𝑞𝑟𝑒𝑗𝑒𝑐𝑡 is a reject state, 𝑞𝑟𝑒𝑗𝑒𝑐𝑡 ≠ 𝑞𝑎𝑐𝑐𝑒𝑝𝑡,
• 𝑡𝑠𝑖𝑧𝑒 is the data tape size
• 𝑠𝑚𝑎𝑥 expresses maximum number of computation steps.

Similarly to the first experiment of [32], the genome is represented by concatenated values of
transition table. In this case it looks like Table 1 and it is the same table as in [32].

 Table 2: Transition table of second experiment [32]

𝜹 a b
𝑞1 (𝑞1,𝑅) (𝑞2, 𝐿)
𝑞2 (𝑞3, 𝐿) (𝑞2,𝑅)
𝑞3 (𝑞2,𝑅) (𝑞2,𝑅)

When its values are concatenated the genome has a form of:

(𝑞1,𝑅) (𝑞2, 𝐿) (𝑞3, 𝐿)(𝑞2,𝑅) (𝑞2,𝑅)(𝑞2,𝑅) (2.7)

and it can be possible to express it as

𝑞0,0𝑚0,0𝑞0,1𝑚0,1 … 𝑞|𝑄|,|Σ|𝑚|𝑄|,|Σ|, (2.8)

where:

• i is a row of transition table,
• j is a column of transition table.

Genetic operators as well as the training set and other parameters were same as in the first
experiment described above.

- 18 -

The third experiment of [32] consists of multiple sequence alignment with evolved two-way
deterministic finite automaton from the second experiment. The two-way deterministic finite
automaton is used for multiple computation of each sequence at every position in the sequence.
That is repeated for every positive example and common patterns of two sequences by identical
behavior of the automaton can be revealed.

The last research mentioned at this place and aimed on evolving Turing machine has a title
„Using Genetic Programming for Turing Machine Induction” [20]. Its authors are Amashini
Naidoo and Nelishia Pillay. This research paper considers Turing machine with variable size and
two data tapes. These are input data tape and output data tape. The first one is read-only. The
output data tape is writeable. The input data tape encodes input string of Turing machine.
The output data tape contains blank symbols only. Turing machine processes both data tapes
simultaneously. Transitions between inner states are expressed by two-tuples. They represent
a dependence of processing output data tape on input data tape. The first part of two-tuple says
what symbol has to be read from the input data tape and what the direction of head movement is.
The second part of the two-tuple expresses what symbol has to be read from output data tape,
what symbol has to be written on the output data tape and what the direction of head movement
is. As an example, if transition is a/R, B/a/R, it means that symbol a must be read from input
data tape and the head must move to the right, blank symbol must be read from the output data
tape, symbol a must be written to the output data tape and the head must move to the right.
Elements of population are created by following steps. At first, the initial node (start state) is
originated automatically. Node arity is specified randomly. Other states are also randomly stated
as final states or not. The transitions between nodes and its children are originated by random
elements selection from input signary, data tape signary and directions of head movement.
Genetic operators are applied on parent nodes selected by tournament selection. The mutation
operator ensures that there is selected a mutation point. The sub-node connected to this point is
removed and new sub-node is originated and connected to this point. The cross-over operator
randomly selects points on parent nodes. Sub-nodes connected to these points are swapped. Also
inner states of sub-nodes are renumbered.

As can be seen it is possible to find several articles or research papers aimed on application of
artificial intelligence methods on Turing machine adaptation. These papers consider using
genetic algorithms or genetic programming for evolving Turing machines especially. The
mentioned research papers also consider either elementary problems or problems with less-
extensive signary for processing by evolved Turing machine. Thus it can be said that the
research discussed in this doctoral thesis is unique for using Differential Evolution and Self-
Organizing Migrating Algorithm for Turing machine optimization and aiming on processing
highly-extensive signary problems by Turing machines evolved.

- 19 -

 THESIS OBJECTIVES 3
The objectives of the thesis can be specified as follows:

• Design of approaches to Turing machine evolutionary programming.
• Proof of proper Turing machine evolutionary programming for processing selected

example problems.
• Analysis of Turing machine evolutionary programming dependence on custom settings of

Differential Evolution and Self-Organizing Migrating Algorithm.
• Proof of proper Turing machine evolutionary programming for processing proteins by

using results of above-mentioned analysis.
• Software development of Turing machine in Wolfram Mathematica.

- 20 -

 BRIEF INSIGHTS INTO AUTOMATA 4
The progress of automata theory had begun in the early 20th century mainly due to Alan Turing
who had been concerned with abstraction of machines including their capabilities. Nowadays,
plenty technical areas of interest, e.g. concepts and design of hardware and software, come out
of knowledge of automata theory. The reason is that automata theory is based on hardware
(machines or computers) but in abstract form. The principle of both abstract and non-abstract
machines are quite similar, as well as software algorithms and flow of computer programs which
can be compared with automata in many cases too.

Because the Turing machines are closely related with finite automata, the latter will be
discussed first.

4.1 Finite automata
Finite automata [10] can be considered as event-driven machines in the form of algorithm. The
events represent conditions which occur during processes or operation of finite automata.
The events also act as responses to processes since all events can be regarded as consequences
of previous process evolvement whereas the determination of intended process evolvement is
influenced by reply to the desired response and reaction to external input.

Belonging among the above-mentioned, finite automata are basically “assembled” from two
essential parts. These are events, known as states, and inputs which externally influence
incoming state occurrence in terms of a future event. The inputs advance process evolvement.

It is necessary to specify one of states as initial to be able to activate the finite automaton. The
automaton uses the initial state as the starting point while waiting in expectation for the first
input and realizing the transitions to the next state. It is also necessary to specify the set of final
or accepting states. The set contains one or more states which denote the end of the process.
When the final state occurs the automaton stops activity.

There are many examples of simple finite automata. How finite automata operate can be
shown on the basis of following situation. Let‘s consider automaton which controls the opening
of a window (see Fig. 4.1). The goal of the automaton is to fully open the window. The window
has four positions: closed position, first venting position, second venting position and fully
opened position.

Fig. 4.1: Example of finite automaton

- 21 -

The opening and closing have these restrictions:

• First venting position can be realized when the window is closed
• Second venting position can be realized when the window is opened in the first venting

position
• The window can be fully opened only if closed

The events or states have form of nouns, which are:

• Closing
• Partial-opening #1 (to the first venting position)
• Partial-opening #2 (to the second venting position)
• Full-opening

The inputs have the form of the following verbs:

• Fully-open
• Partially-open
• Close

Finite automata are usually illustrated by a diagram where states are represented as circles and
inputs as arrows. The initial state is marked with a non-linked arrow and the final state is
depicted as a double circle. An example diagram of finite automata can be seen in Fig 4.1.
Before starting, the automaton is in the state “Closing” and waits for the input. If the input is
“Fully-open”, the automaton passes to the state “Full-opening” and the activities of the
automaton finish because the state “Full-opening” is the final state. If not, it would be possible
to pass to the state “Closing” with the occurrence of “Close” input. But this state is the final
state thus “Close” input is written in parentheses. When the automaton is in the “Closing” state
and the input is “Partially-open”, the next state will be “Partial-opening #1”. It is the first
venting position. Now, the automaton can pass to the “Closing” state if “Close” input occurs or
to the “Partial-opening #2” state when “Partially-open” input appears.

As can be seen, there are the same inputs in the diagram. These are “Close” inputs and
“Partially-open” inputs. The situation is absolutely correct since these inputs can be initiated in
different states. This is typical for deterministic automata [10] compared to non-deterministic
automata [10], where it is possible to pass to the multiple states simultaneously (e.g. if the
“Partially-open” and “Fully-open” inputs would be replaced by “Open” input only). Only
deterministic finite automata will be considered further.

4.1.1 Definition of finite automata

Finite automata with deterministic behavior can be defined as 5-tuple [10]:

𝐴 = (𝑄, Σ, 𝛿, 𝑞0,𝐹), (4.1)

where:

• 𝑄 is a set of all states.
• Σ is a set of input symbols.
• 𝛿 represents the transition function.
• 𝑞0 is an initial state.
• 𝐹 is a set of final states.

- 22 -

These parameters adapted to the example are:

• 𝑄 ∈ {"𝐶𝑙𝑜𝑠𝑖𝑛𝑔", "𝑃𝑎𝑟𝑡𝑖𝑎𝑙 − 𝑜𝑝𝑒𝑛𝑖𝑛𝑔 #1", "𝑃𝑎𝑟𝑡𝑖𝑎𝑙 − 𝑜𝑝𝑒𝑛𝑖𝑛𝑔 #2", "𝐹𝑢𝑙𝑙 − 𝑜𝑝𝑒𝑛𝑖𝑛𝑔"}
• Σ ∈ {"𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝑙𝑦 − 𝑜𝑝𝑒𝑛", "𝐹𝑢𝑙𝑙𝑦 − 𝑜𝑝𝑒𝑛", "𝐶𝑙𝑜𝑠𝑒"}
• 𝛿 see below.
• 𝑞0 = {"𝐶𝑙𝑜𝑠𝑖𝑛𝑔"}
• 𝐹 ∈ {"𝐹𝑢𝑙𝑙 − 𝑜𝑝𝑒𝑛𝑖𝑛𝑔"}

The transition function can be expressed as:

𝛿(𝑞,𝑋) = 𝑝, (4.2)

where:
• 𝑞 is a current state.
• 𝑋 is an input symbol.
• 𝑝 is a state the automaton passes to.

Finite automaton operates according to the transition function. It represents a reaction of the
automaton to the inputs which occur in specific states. The reaction is a new future state of
the automaton. If the action of above-shown example automaton is rewritten as (4.2), the result
is the following system of equations.

 𝛿("𝐶𝑙𝑜𝑠𝑖𝑛𝑔", "𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝑙𝑦 − 𝑜𝑝𝑒𝑛") = "𝑃𝑎𝑟𝑡𝑖𝑎𝑙 − 𝑜𝑝𝑒𝑛𝑖𝑛𝑔 #1" (4.3)
 𝛿("𝐶𝑙𝑜𝑠𝑖𝑛𝑔", "𝐹𝑢𝑙𝑙𝑦 − 𝑜𝑝𝑒𝑛") = "𝐹𝑢𝑙𝑙 − 𝑜𝑝𝑒𝑛𝑖𝑛𝑔"
𝛿("𝑃𝑎𝑟𝑡𝑖𝑎𝑙 − 𝑜𝑝𝑒𝑛𝑖𝑛𝑔 #1", "𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝑙𝑦 − 𝑜𝑝𝑒𝑛") = "𝑃𝑎𝑟𝑡𝑖𝑎𝑙 − 𝑜𝑝𝑒𝑛𝑖𝑛𝑔 #2"
 𝛿("𝑃𝑎𝑟𝑡𝑖𝑎𝑙 − 𝑜𝑝𝑒𝑛𝑖𝑛𝑔 #1", "𝐶𝑙𝑜𝑠𝑒") = "𝐶𝑙𝑜𝑠𝑖𝑛𝑔"
 𝛿("𝑃𝑎𝑟𝑡𝑖𝑎𝑙 − 𝑜𝑝𝑒𝑛𝑖𝑛𝑔 #2", "𝐶𝑙𝑜𝑠𝑒") = "𝑃𝑎𝑟𝑡𝑖𝑎𝑙 − 𝑜𝑝𝑒𝑛𝑖𝑛𝑔 #1"

However, the usual description of the automata is in the form of a transition table (see Table 3),
which contains arguments of the transition function and the responses of the function.

 Table 3: Example of the transition table

Argument of equation (4.2) Response of equation (4.2)
Current state Current input New state

„Closing“ „Partially-open“ „Partial-opening #1“

„Closing“ „Fully-open“ „Full-opening“

„Partial-opening #1“ „Partially-open“ „Partial-opening #2“

„Partial-opening #1“ „Close“ „Closing“

„Partial-opening #1“ „Close“ „Partial-opening #1“

The 5-tuple (4.1) and the transition table together describe actual finite automaton and its
operation.

4.2 Turing machines
Turing machines [10] are theoretical machines and belong among representatives of finite
automata. They use a sequential approach to pursued operations. Except for complexity, they are
characterized by enhancement which facilitates to provide a new way of response. Turing
machines can generate output information by writing process. With regard to the character of the

- 23 -

Turing machines, it is even possible to use them to solve problems which are unsolvable by
common appliance of informatics (e.g. because of restrictions due to limited operating memory).

As with finite automata, Turing machines can be deterministic or non-deterministic; the
difference between these variations is similar as in regard to finite automata. Because in the
following text only deterministic Turing machines are considered, the term “Turing machine” is
related to the deterministic variant when it occurs.

Apart from deterministic and non-deterministic variants of the Turing machines, several
expanded types [10] of Turing machines which differ in structure also exist. These are e.g.
multi-tape Turing machines, multi-stack Turing machines, Turing machines with semi-infinite
tapes etc. In this doctoral thesis, simple Turing machines with infinite tapes are considered. This
variant of Turing machines simulates a machine with infinite memory (see Fig. 4.2).

Fig. 4.2: Scheme of the Turing machine

Turing machines contain three main components which are essential to their makeup. These are:

• Data tape
This is the data carrier of Turing machines. It serves as an information channel for input
and Turing machine can use it for writing output data.

• Operational head
The head acts as an interface between the data tape and the actual Turing machine. It can
read data from the tape and write information to the data tape.

• Internal stack
The stack contains information on inner states.

As can be seen, the structure of Turing machines is not so complex. It contains only three main
components. The data tape is a storage medium which contains symbols of pre-defined signary.
These symbols are subsequently processed by Turing machine. At first, they are read by the
operational head and input to the machine. The symbols are processed in accordance with the
transition function. Afterwards, the output is written to the data tape in the form of symbols by
the operational head.

4.2.1 Definition of Turing machines

The definition of Turing machines is partially based on a formal description of finite automata
(4.1) since there are several similarities between Turing machines and finite automata. Because
Turing machines can generate output information, their definition includes additional
parameters. The form of definition is a 7-tuple [10]:

𝑀 = (𝑄, Σ, Γ, 𝛿, 𝑞0,𝐵,𝐹), (4.4)

- 24 -

where:

• 𝑄 is a set of all inner states.
• Σ is a set of input symbols whereas ⊆ Γ \ {𝐵}. These symbols represent active input

information.
• Γ is a set of all data tape symbols.
• 𝛿 represents the transition function of Turing machine such as 𝛿:𝑄\𝐹 × Γ → 𝑄 × Γ ×

{𝐿,𝑅}.
• 𝑞0 is an initial state such as 𝑞0 ∈ 𝑄.
• 𝐵 is a blank symbol such as 𝐵 ∈ Γ. This symbol is „non-active” and used for filling

empty spaces on the data tape, separating „active” symbols etc.
• 𝐹 is a set of final states 𝐹 ⊆ 𝑄.

Along with the definition of Turing machines, the transition function of Turing machines is also
different as can be seen above. It could be transcribed as:

𝛿(𝑞,𝑋) = (𝑝,𝑌,𝐷), (4.5)

where:

• 𝑞 is a current state.
• 𝑋 is an input symbol.
• 𝑝 is a a state Turing machine passes to.
• 𝑌 is an output symbol which is written to the data tape.
• 𝐷 is the direction of the head movement. This direction is to the left (-1) and right (1)

side. Also it is possible that the head is not moved and remains (0) in its current position
thus 𝐷 = {−1,0,1}.

The meaning of symbols in (4.4), (4.5) which occur in conjunction with the final automata is the
same as in (4.1) and (4.2).

4.2.2 How Turing machine works

Basically, Turing machines pursue simple activity. They read symbols from the data tape,
process the symbols according to the transition function, write new symbols to the data tape,
move the head and pass to the new inner states.

Fig. 4.3: Operating of the Turing machines

This process is repeated until a new inner state does not belong to the set of final states. The
diagram of the process can be seen in Fig. 4.3.

- 25 -

Similarly to finite automata, the processing of symbols by Turing machines is influenced by the
transition table which maps arguments of the transition function and the response of this
function on Turing machine. The appearance of Turing machine’s transition table depends on
expression (4.5). This means that the table has five columns which correspond to the parameters
q, X, p, Y and D. The content of the table can be called the rules of Turing machine’s transition
function.

The activity of Turing machine can be demonstrated by the following basic example where
a simple Turing machine is utilized. Let’s consider a problem of bit negation. The data tape
contains sequences of bits. The task of Turing machine is to negate each bit encoded in the data
tape. The sample data tapes can be seen in Fig. 4.4 and Fig. 4.5.

Fig. 4.4: Example of input data tape

Fig. 4.5: Example of requested output data tape

Parameters of Turing machine are:

• 𝑄 = {𝑞1, 𝑞2}
• Σ = {"0", "1"}
• Γ = {"#", "0", "1"}
• 𝑞0 = 𝑞1
• 𝐹 = {𝑞2}

The initial head position is located at the first input symbol.

How Turing machine processes the data tape is controlled by the rules which are shown in
Table 4.

Table 4 - Example of the Turing machine's transition table

Argument of expression (4.5) Response of expression (4.5)
Current state Loaded

New state Record symbol Direction

𝑞1 „#“ 𝑝2

𝑞1 „0“ 𝑝1 „1“ 1

𝑞1 „1“ 𝑝1 „0“ 1

The transition table can be again rewritten in the form of an equation of the transition functions.

𝛿(𝑞1, "#") = 𝑝2 (4.6)
 𝛿(𝑞1, "0") = (𝑝1, "1", 1)
𝛿(𝑞1, "1") = (𝑝1, "0", 1)

- 26 -

Let’s have a look at the processing of the data tape on each step (the bold frame of the data tape
marks the current head position):

1. 𝛿(𝑞1, "0") = (𝑝1, "1", 1)
The current inner state of Turing machine is q1 and the head is located at symbol “0”
(see Fig. 4.6). According to the rules of the transition function (Table 4), Turing
machine writes symbol “1” to the data tape and moves the head to the left. The inner
state is not changed.

Fig. 4.6: Appearance of the data tape in step 1

2. 𝛿(𝑞1, "1") = (𝑝1, "0", 1)

The current inner state of Turing machine is q1 again. The head is located at symbol
“1” (see Fig. 4.7). According to the rules of the transition function, Turing machine
writes symbol “0” to the data tape and moves the head to the left. The inner state is not
changed.

Fig. 4.7: Appearance of the data tape in step 2

3. 𝛿(𝑞1, "1") = (𝑝1, "0", 1)

Similarly to the previous step, the current inner state of Turing machine is q1 and the
head is located at symbol “1” (see Fig. 4.8). According to the rules of the transition
function, Turing machine writes symbol “0” to the data tape and moves the head to the
left. The inner state is not changed again.

Fig. 4.8: Appearance of the data tape in step 3

4. 𝛿(𝑞1, "#") = 𝑝2

The current inner state of Turing machine is 𝑞1. The head is located at symbol “#” (see
Fig. 4.9). According to the rules of the transition function, Turing machine passes to the
inner state 𝑞2. The state 𝑞2 is final thus Turing machine finishes processing.

Fig. 4.9: Appearance of the data tape in step 4

It is not necessary to move the operational head in any direction other than toward the right in
this simple example but the rules of the Turing machine can be clearly seen. They act as the
program for Turing machines. This doctoral thesis is focused solely on optimization of the rules
of the transition function.

- 27 -

 APPLICATION OF EVOLUTIONARY ALGORITHMS 5
Artificial intelligence can be found in different forms. If the applications of artificial intelligence
are considered the methods where the artificial intelligence is part of them are especially meant
above all. In principle, these methods are inspired by natural processes interfering with life-
based systems or organisms including genetics (as genetic algorithms), neural system capability
(as neural networks), evolution (as evolutionary algorithms) etc. As perceivable according to the
title of the chapter, there is considered a subset of methods of artificial intelligence which
include evolutionary algorithms within the scope of optimization technique. The evolutionary
algorithms are inspired by natural evolutionary processes. The main area of use of
these algorithms is optimization which can be in the form of function approximation, pattern
recognition etc.

This part of doctoral thesis describes optimization using two evolutionary algorithms. These
are known as Differential Evolution [18, 19, 33, 35], which is an algorithm introduced in the
1990’s by K. Price and R. Storn, and the relatively novel Self-Organizing Migrating Algorithm
[33] – [35] developed by I. Zelinka. Although both are termed as evolutionary algorithms, there
are a few differences between them in terms of their fundamentals and behavior in action. That
is especially concerned about the latter which balances between evolutionary algorithms and
memetic algorithms as will be explained later.Within this doctoral thesis’ part both algorithms
will be briefly presented thus it will be possible to become sufficiently familiarized with them.

5.1 Differential Evolution
This evolutionary algorithm is inspired in a significant way by the process of evolution as can be
observed in nature. The principles of Differential Evolution [18, 19, 33, 35] are based on
Darwin’s theory and its fundamental aspects of natural occurrences. The evolution of any
population is influenced by the abilities of its members to adapt to the surrounding environment
where the population is spread. These abilities are mostly inherited. In addition, they come
through evolvement processes during the life-cycle of every individual member of the
population. The inherited abilities are a direct result from ancestors of each member.
The abilities important to the survival of the members of the population depend on the actual
environment where the population is spread. The abilities considered can be e.g. strength,
leadership skills, ability to obtain food etc. It could be said, that the complex of abilities which
affect survival express “quality” values of the individual member. The members of population
with higher “quality” values have a significantly greater chance of survival in the surrounding
environment.

As can be seen above, the evolution process can be considered as a form of optimization.
The members of the population can be regarded as fragmentary solutions to the problem which
takes the form of the surrounding environment. Optimization consists of looking for the most
suitable solution to the problem thus becoming the best-adapted individual member of the
population for survival in the surrounding environment.

5.1.1 Essential principles of Differential Evolution

Because the individuals of a population represent fragmentary solutions to the actual problem, it
is therefore necessary to specify how each solution to various problems is encoded in the form
of an individual. This is ensured by a specimen. The specimen is a vector which denotes
a number of parameters of the individual and the range of these parameters. The parameters of
the individuals can be imagined as the abilities of population members. At the beginning of the
evolution process, the population is an assortment of individuals with randomly generated
parameters according to the specimen. These individuals are parts of the first generation and are

- 28 -

subsequently optimized in a similar way to natural evolution. The important part of evolution is
a computing of “quality” value, which is known as cost value. In accordance with the cost value,
individuals are selected to advance to the next generation. These individuals “survive”.

Within each generation, the individuals are subsequently processed. In addition to the
currently processed individual 𝑥𝑖 three other individuals 𝑥𝑟1 , 𝑥𝑟2 and 𝑥𝑟3 are randomly selected.
The first two of randomly-selected individuals 𝑥𝑟1 and 𝑥𝑟2 are subtracted (thus the arguments for
subtraction are parameters of individuals). The result of subtraction of these individuals is
a differential vector. The mutation of the differential vector proceeds in the next step. The
mutation takes the form of a multiplication of the differential vector and the mutation constant F
(multiplication of one of Differential Evolution parameters and items of differential vector).
The mutated differential vector is known as weighted differential vector. This vector is added to
the third randomly-selected individual 𝑥𝑟3 (addition of items of weighted differential vector and
parameters of individual). The result of addition is a noise vector (5.3). The final operation is
a cross-over of the currently processed individual and the noise vector. The cross-over operation
produces the test vector (5.1) which can be regarded as a descendant of the four individuals
(currently-processed individual and three randomly-selected individuals) with inherited and
evolutionary evolved abilities - parameters. Now, the cost values of the currently-processed
individual and the test vector are computed. This is ensured by the cost function which is
specified in accordance with the actual problem thus the parameters of individual (or items of
vector) are substituted in the cost function. The individual or test vector which contains the
better evaluation advances to the next generation (5.2). After processing of all individuals within
the current generation, the next generation is formed and the optimization process repeats in
a similar way as mentioned above.

How optimization by Differential Evolution works can be mathematically expressed [33] as
follows. The computation of test vector is

𝑥𝑖,𝑗𝑡𝑒𝑠𝑡 = �
𝑥𝑟3,𝑗
𝐺 + 𝐹 ∙ �𝑥𝑟1,𝑗

𝐺 − 𝑥𝑟2,𝑗
𝐺 � 𝑖𝑓 𝑟𝑎𝑛𝑑𝑗[0,1] < 𝐶𝑅 ⋁ 𝑗 = 𝑗𝑟𝑎𝑛𝑑

𝑥𝑖,𝑗𝐺 𝑒𝑙𝑠𝑒
, (5.1)

where:

• 𝑖 = {1, … ,𝑁𝑃}, 𝑗 = {1, … ,𝐷} D – Dimension of individual
• 𝑟1, 𝑟2, 𝑟3 ∈ {1, … ,𝑁𝑃} Random selection of three individuals
• 𝑟1 ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑖
• 𝐶𝑅 ∈ 〈0,1〉,𝐹 ∈ 〈0,2〉

The evaluation of test vector and the currently-processed individual within a generation can be
formulated as (5.2). The minimization is considered in (5.2) thus lower cost value is preferred.

𝑥𝑖𝐺+1 = �
𝑥𝑖𝑡𝑒𝑠𝑡 𝑖𝑓 𝑓𝑐𝑜𝑠𝑡(𝑥𝑡𝑒𝑠𝑡) ≤ 𝑓𝑐𝑜𝑠𝑡(𝑥𝑖𝐺)
𝑥𝑖𝐺 𝑒𝑙𝑠𝑒

 (5.2)

Differential Evolution has several variants which mostly differ in the way of computation of the
noise vector. This doctoral thesis and following examples of optimization consider the
DE/rand/1/bin variation of Differential Evolution. Within the scope of the mentioned variation
of Differential Evolution, the noise vector is computed as (5.3).

𝑣 = 𝑥𝑟3,𝑗
𝐺 + 𝐹 ∙ �𝑥𝑟1,𝑗

𝐺 − 𝑥𝑟2,𝑗
𝐺 � (5.3)

- 29 -

Differential Evolution algorithm contains parameters [33] which have to be set before starting
the optimization process. The parameters which influence the processing of individuals can be
found e.g. in equations (5.1 – 5.3). These parameters are:

• NP (Number of population)
How many individuals are contained within one generation.

• F (Mutation constant)
The rate of diversity when computing weighted differential vector.

• CR (Cross-over value)
Influence on creating test vector.

• G (Generations)
How many generations will be subsequently created until optimization ends.

As can be seen, Differential Evolution is considerably similar to natural evolution.

5.2 Self-Organizing Migrating Algorithm
The algorithm which has been described here falls into the category of evolutionary algorithms,
although it is not entirely accurate. Evolutionary algorithms usually feature the ability to create
new individuals from ancestors thereby its “abilities”, in the form of parameters, are influenced
by mutation and cross-over. During optimization by Self-Organizing Migrating Algorithm [33]
– [35], new individuals are not being created and the ancestor-descendant relationship is not of
concern. Thus this algorithm should rather be termed as memetic algorithm.

5.2.1 Background theory of Self-Organizing Migrating Algorithm

Self-Organizing Migrating Algorithm (SOMA) is inspired by the social behavior of cooperating
individuals. It could be imagined as cooperation within migration of wildlife shoals, hunting or
achieving other collective interests. At the beginning of the optimization process, there is
a randomly generated initial migration according to the specimen (similar to Differential
Evolution). As opposed to Differential Evolution, SOMA uses the term “migration” instead of
“generation”, since no new individuals are created. During that process, the individuals of the
current migration are evaluated by cost function and the cost value is counted. The individual
who has the better evaluation becomes the leader of other individuals within the current
migration. These individuals start moving toward the leader from the surrounding environment
which represents an optimization problem. Each following migration involves determination of
the new leader and moving other individuals toward him thus the best and most suitable solution
of the problem is subsequently revealed.

Because SOMA is not based on common principles of evolution and does not use mutation
and cross-over operation, it is necessary to ensure the stochastic progression of the algorithm in
an alternative way. In the case of SOMA, the mutation is replaced by perturbation which
influences the movement of individuals in the surrounding environment. It means that
parameters of individuals are changed by perturbation. The perturbation has a form of a unique
vector (PRTVector) for each individual. This vector states the number of parameters which have
to be changed for the current individual. How the PRTVector is generated can be
mathematically expressed [33] as:

𝑃𝑅𝑇𝑉𝑒𝑐𝑡𝑜𝑟 = �1 𝑖𝑓 𝑟𝑎𝑛𝑑𝑗 < 𝑃𝑅𝑇
0 𝑒𝑙𝑠𝑒

, (5.4)

- 30 -

where:

• 𝑗 = {1, … ,𝐷} D – Dimension of individual
• 𝑃𝑅𝑇 Value of perturbation (see below)

The cross-over process of Differential Evolution is replaced by a movement of individuals in the
surrounding environment and remembering the best suitable position (parameters of individual).
The movement can be expressed by a directional vector [33]:

𝑟 = 𝑟0���⃗ + 𝑚��⃗ 𝑡𝑃𝑅𝑇𝑉𝑒𝑐𝑡𝑜𝑟�����������������������⃗ , (5.5)

where:

• 𝑡 ∈ 〈0, 𝑆𝑡𝑒𝑝,𝑃𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ〉 Step, PathLength – parameters of SOMA (see below)

The equation (5.5) can be further transcribed [33] as:

𝑥𝑖,𝑗𝑀+1 = 𝑥𝑖,𝑗,𝑠𝑡𝑎𝑟𝑡
𝑀 + �𝑥𝑖,𝑗𝑀 − 𝑥𝑖,𝑗,𝑠𝑡𝑎𝑟𝑡

𝑀 �𝑡𝑃𝑅𝑇𝑉𝑒𝑐𝑡𝑜𝑟𝑗, (5.6)

where:

• 𝑡 ∈ 〈0, 𝑆𝑡𝑒𝑝,𝑃𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ〉 Step,PathLength – parameters of SOMA (see below)

If the items of PRTVector are equal to 1, the current individual moves toward the leader
according to the directional vector. If certain items of PRTVector are equal to 0, the appropriate
parameters of individual are not changed within the current migration.

There are several strategies of movement of individuals within migrations in SOMA. This
chapter and all examples consider the AllToOne strategy, where all individuals move toward one
leader.

As well as Differential Evolution, SOMA has its own parameters which have to be set before
the optimization process starts. These parameters [33] are:

• PopSize (Size of population)
How many individuals are contained within one migration.

• PRT (Perturbation value)
Influences the generation of perturbation vector.

• PathLength
Distance between halting position of the current individual and the leader.

• Step
The step size of the individual movement.

• Migrations
How many migrations will occur until the optimization ends.

• AcceptedError
Maximal difference of the best and the worst individual in the current migration. If the
difference is less than AcceptedError, the optimization ends.

SOMA algorithm can be still regarded as evolutionary although there are certain nuances
between SOMA and other evolutionary algorithms. The perturbation and movement of
individuals for ensuring stochastic progression can be considered to be forms of mutation and
cross-over.

- 31 -

 APPROACHES TO EVOLUTIONARY OPTIMIZATION OF 6
THE RULES OF THE TURING MACHINE’S TRANSITION
FUNCTION

There is no easy answer to the question: “How to evolutionary optimize the rules of the Turing
machine’s transition function?” In spite of this, two approaches to evolutionary optimization
will be presented. These approaches differ considerably from each and are accomplishments of
this doctoral research [15] – [17]. In connection with the above question and knowledge of
Turing machines and selected evolutionary algorithms, both approaches offer answers to the
related questions which are:

• How to encode the rules as a transition table or equation system of transition functions to
a form which can be comprehensible to evolutionary algorithms?

• How to design the cost function which evaluates the individuals during optimization by
Differential Evolution or SOMA?

If it is thought about what is represented by the program of Turing machine and how the above
described optimization works it can be seen that above two questions are highly important.
Actually, the program of Turing machine appears as rules, hence it is necessary to provide
information on the transition table or the equation system of the transition functions in a suitable
form for processing by evolutionary algorithms. This is because evolutionary algorithms
optimize the population which is supplied by the encoded rules of Turing machine.

The approaches of optimization differ from each other by the manner in which rules are
encoded and processed. The first approach presented will consider processing of rules as a
whole. The second approach uses per-part processing of the rules. Each rule is optimized
separately.

6.1 Classical optimization
This approach [16, 17] to optimization takes into consideration the rules as a whole. This means
that all rules input to the optimization process together and are also processed as a whole. It
follows that individuals within Differential Evolution or SOMA will encode rules which
represent varied programs of Turing machine and the selected evolutionary algorithm will
produce the best optimized and most suitable one. But it is necessary to find an effective method
to do the encoding because evolutionary algorithms use numerical expressions only, whereas the
rules of Turing machine are based on symbolic expressions.

6.1.1 Encoding the rules for classical optimization

If the example shown in chapter 4.2.2 (see Table 4) is remembered, it can be perceived that the
arguments of the transition function are combinations of inner states of Turing machine Q and
the data tape symbols Γ . Similarly, the response of the transition function can be considered as
a combination of inner states of Turing machine Q, data tape symbols Γ and the direction of
head movement D. These two facts could be capitalized on composition of individuals.

Let’s create the vector 𝑣𝑖𝑛𝑝𝑢𝑡 which contains all combinations of the transition function
arguments and the vector 𝑣𝑜𝑢𝑡𝑝𝑢𝑡 which contains all combinations of responses of the transition
function. If the parameters of Turing machine are the same as in the example shown in chapter
4.2.2:

• 𝑄 = {𝑞1, 𝑞2},
• Γ = {"#", "0", "1"},

- 32 -

the vector 𝑣𝑖𝑛𝑝𝑢𝑡 has 6 items (two inner states ∙ three data tape symbols) and the vector 𝑣𝑜𝑢𝑡𝑝𝑢𝑡
is compounded from 18 items (two inner states ∙ three data tape symbols ∙ three directions). The
mentioned vectors are as follows:

 𝑣𝑖𝑛𝑝𝑢𝑡 = �
{𝑞1, "#"}, {𝑞1, "0"}, {𝑞1, "1"},
{𝑞2, "#"}, {𝑞2, "0"}, {𝑞2, "1"}� (6.1)

𝑣𝑜𝑢𝑡𝑝𝑢𝑡 =

⎩
⎪⎪
⎨

⎪⎪
⎧

{𝑞1, "#",−1}, {𝑞1, "#", 0}, {𝑞1, "#", 1},
{𝑞1, "0",−1}, {𝑞1, "0", 0}, {𝑞1, "0", 1},
{𝑞1, "1",−1}, {𝑞1, "1", 0}, {𝑞1, "1", 1},
{𝑞2, "#",−1}, {𝑞2, "#", 0}, {𝑞2, "#", 1},
{𝑞2, "0",−1}, {𝑞2, "0", 0}, {𝑞2, "0", 1},
{𝑞2, "1",−1}, {𝑞2, "1", 0}, {𝑞2, "1", 1}⎭

⎪⎪
⎬

⎪⎪
⎫

 (6.2)

These vectors can be encoded to the individual on the basis of indexes of their items. The
problem is how to effectively encode these indexes to a compact form for evolutionary
algorithm’s individual. The values included in the individual can represent indexes of items of
𝑣𝑜𝑢𝑡𝑝𝑢𝑡 whereas their positions can be matched with indexes of items of 𝑣𝑖𝑛𝑝𝑢𝑡. This may sound
complicated but can be clarified by seeing Fig. 6.1.

According to the Fig. 6.1, it is possible to rewrite:

𝑣𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 = {1,3,4,2,5, … }, (6.3)

to the equation system of transition functions:

𝛿(𝑞1, "#") = (𝑞1, "#",−1) (6.4)
𝛿(𝑞1, "0") = (𝑞1, "#", 1)
𝛿(𝑞1, "1") = (𝑞1, "0",−1)
𝛿(𝑞2, "#") = (𝑞1, "#", 0)
𝛿(𝑞2, "0") = (𝑞1, "0", 0)
 …

Fig. 6.1: Example of encoding complete rules

When the classical approach is used, it is necessary to set the number of inner states Q before
starting the optimization process because this parameter influences vectors 𝑣𝑖𝑛𝑝𝑢𝑡 and 𝑣𝑜𝑢𝑡𝑝𝑢𝑡.
If the number of inner states is too low, there is a risk that it will be impossible to find suitable

- 33 -

rules. If the number of inner states is too high, the complexity of the optimization process rises
drastically.

6.1.2 Definition of specimen

When it is clear how the individual is encoded, the specimen and boundaries of its parameters
can be established. As can be seen in Fig. 6.1, the specimen will have a number of items
equivalent to the length of the vector 𝑣𝑖𝑛𝑝𝑢𝑡 (length of Q ∙ length of Γ). Each item can gain value
from the range ⟨1; length of 𝑣𝑜𝑢𝑡𝑝𝑢𝑡�. More precisely it is ⟨1; length of Q ∙ length of Γ ∙ length of
𝐷⟩. In the case of above-mentioned example, the specimen has six items which can gain value
from the range ⟨1;18⟩:

𝑣𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛 = {𝑖1, … , 𝑖𝑛}, (6.5)

where:

• 𝑛 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑣𝑖𝑛𝑝𝑢𝑡
• 𝑖 ∈ 〈1, 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑣𝑜𝑢𝑡𝑝𝑢𝑡〉

The specimen uses the integer values for its items but the evolutionary algorithms operate over
continuous space with real numbers thus it is necessary to perform conversion when decoding
the result of the optimization to the form of the rules. This can be done by expressing values as
the greatest integers which are less or equal to real numbers occurring in the result.

6.1.3 Designing evaluation function

The evaluation function is an important part of the optimization process realized by evolutionary
algorithms as a component of cost function. Within this function the individuals are evaluated
and decisions on the advantaging of individuals are made. The evaluation function which is used
by classical optimization involves the following steps:

• Rewriting individuals to the form of rules.
• Initializing Turing machine using new rules.
• Starting Turing machine.
• Comparing the current output of Turing machine to the requested output.
• Evaluating individuals according to the above mentioned comparison.

Each individual from the current generation or migration is subsequently entered to the
evaluation function. Then the current individual is rewritten to the form of rules. These rules are
used for initialization of Turing machine and Turing machine is started. When Turing machine
finishes processing the data tape, the output data tape is compared to the requested output data
tape. After that the individual is evaluated on the basis of the comparison. This can be expressed
as:

𝐶𝑉 = �𝐶𝑉 − 𝑉 𝑖𝑓 Γ𝑜𝑢𝑡𝑝𝑢𝑡,𝑖 == Γ𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑,𝑖
CV + 𝑉 𝑒𝑙𝑠𝑒

, (6.6)

where

• 𝐶𝑉 Cost value.
• 𝑉 Value which infulences computing of the cost value.
• Γ𝑜𝑢𝑡𝑝𝑢𝑡,𝑖 Data tape symbol at i-th position of output data tape.
• Γ𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑,𝑖 Data tape symbol at i-th position of requested output data tape.
• 𝑖 = 1, … , 𝐿 L – length of data tape.

- 34 -

This is considered as optimization toward finding the minimum in (6.6) therefore the CV is
decreased if the compared symbols are identical. Alternatively, when optimization toward
finding the maximum is considered, the cost value of the individual will increase.

The process of evaluating the individual can be also depicted as can be seen in Fig. 6.2 (plus
symbol means “true”, minus symbol means “false”). During evaluation, the symbols of the
output data tape and requested output data tape are subsequently compared (see Fig. 6.2). If the
symbols are equal, the individual is advantaged (the cost value is adapted in accordance with
finding the maximum or minimum by defined coefficient V). If the symbols are not equal, the
individual is penalized by coefficient V (the cost value is decreased when finding the maximum
or increased when finding the minimum). If the optimization is finding the minimum, the better
evaluated individual has the lower cost value. If the optimization is finding the maximum, the
better evaluated individual has the higher cost value.

Fig. 6.2: Evaluating individuals by classical optimization

This design of the evaluation function enables optimization of the complete set of rules at once
because they are encoded as one individual. When evolutionary algorithms process a generation
or a migration of individuals, they optimize several sets of rules together. From the point of view
of the evolutionary algorithms, these sets of rules are ordinary individuals and are processed as
mentioned in chapter 5.1 and 5.2.

6.2 Per-partes optimization
This approach [15] to optimization is entirely different to the former. The individual does not
encode a set of all rules but one rule only and the evolutionary algorithm does not find the best
suitable set of rules in the form of the individual but separately optimizes each rule of one set
and composes the ideal program for Turing machine. This means that the evolutionary algorithm
tries to find the one rule which ensures preferable processing of the current symbol on the data

- 35 -

tape. Thus this optimization approach is known as per-partes. Therefore it is necessary to start
optimization for each symbol separately. Because the former approach uses evaluation of the
individual based on (6.6) and the evaluation of the individual as a whole is influenced by
matching of separate symbols of the output data tape and output requested data tape, it is
possible that an individual which contains several correct rules (but not all) is discarded when
penalization is too high due to other rules. The above-mentioned situation is by-passed due to
optimization of rules for processing each data tape symbol separately.

6.2.1 Encoding the rules for per-partes optimization

The first thing that is changed is the way in which the rules are encoded to the form of the
individual. Let’s consider expression of the symbol arguments of the transition function (4.5) as
indexes. The equation (4.5) may be rewritten to the following form:

𝛿�𝑞𝑖 ,𝑋𝑗� = (𝑝𝑘 ,𝑌𝑙 ,𝐷𝑚), (6.7)

where:

• 𝑞𝑖 ∈ 𝑄 𝑖 = 0, … , 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑠𝑒𝑡 𝑄 − 1
• 𝑋𝑗 ∈ Γ 𝑗 = 0, … , 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑠𝑒𝑡 Γ − 1
• 𝑝𝑘 ∈ 𝑄 𝑘 = 0, … , 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑠𝑒𝑡 𝑄 − 1
• 𝑌𝑙 ∈ Γ 𝑙 = 0, … , 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑠𝑒𝑡 Γ − 1
• 𝐷𝑚 ∈ 𝐷 𝑚 = −1, … , 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑠𝑒𝑡 𝐷 − 2,𝐷 = {𝑙𝑒𝑓𝑡,𝑛𝑜𝑛𝑒, 𝑟𝑖𝑔ℎ𝑡}

Now it is possible to work with integers which match indexes i, j, k, l, m instead of symbols 𝑞𝑖,
𝑋𝑗, 𝑝𝑘, 𝑌𝑙 , 𝐷𝑚. The encoding is simplified by expression of the rule as an individual containing
only two items. These items are:

• l – index of symbol which is written to the data tape by Turing machine.
• m – index of direction of the Turing machine’s head movement.

Fig. 6.3: Example of encoding one rule

An example of encoding the individual which explains above-descibed situation can be seen in
Fig. 6.3.

It is possible to omit other indexes because the per-partes approach dynamically adjusts inner
states. As a result, it is not necessary to set the number of inner states before starting
optimization. Every movement of the Turing machine’s head and processing of the data tape
symbol represents a new inner state thus in (4.5) arguments q and X are known. The
evolutionary algorithm finds suitable parameters Y and D. At the end of optimization, all
estimated rules are compacted or reduced in order to use all combinations of inner states and
data tape symbols since they are considered as arguments of the transition function. Then the p
parameters are supplied in reverse order and the rules are connected together. This process is
simple but it may appear unclear at first sight. The following example shows rules compositions.

- 36 -

Let’s consider a problem of bit negation as well as in chapter 4.2.2. The input data tape and
requested output data tape appear as in Fig. 4.4 and Fig. 4.5. The per-partes approach may
process the input task in steps as follows:

1. 𝛿(𝑞1, "0") = (, "1", 1)

Fig. 6.4: Appearance of the data tape in step 1

2. 𝛿(𝑞2, "1") = � , "0", 1�

Fig. 6.5: Appearance of the data tape in step 2

3. 𝛿(𝑞3, "1") = (, "0", 1)

Fig. 6.6: Appearance of the data tape in step 3

4. 𝛿(𝑞4, "#") = (, "1", 1)

Fig. 6.7: Appearance of the data tape in step 4

The arguments of the transition functions are given. The X parameter is influenced by the data
tape symbol where the head of the Turing machine is currently located. The inner states (q
parameter) are subsequently added in each step of head movement (as mentioned above). The
responses of the transition function (right sides of the equation) are results of optimization.
Within each step there is a comparison of output data tape with requested output data tape. If
both data tapes are similar, the optimization process ends.

When all rules are revealed, the set of rules is reduced. The non-compacted equation system
looks like:

𝛿(𝑞1, "0") = (, "1", 1) (6.8)
𝛿(𝑞2, "1") = � , "0", 1�
𝛿(𝑞3, "1") = (, "0", 1)
𝛿(𝑞4, "#") = (, "1", 1)

As can be seen, there is a waste of inner states because all combinations of inner states and data
tape symbols as arguments of the transition function are not utilized. These non-utilized
combinations are e.g. (𝑞1;“#”), (𝑞1;“1”), (𝑞2;“#”), (𝑞2;“0”) etc. The above-mentioned process of
reduction ensures utilization of all combinations. Within the process of reduction, the p
parameters are supplied and the connection of all rules is provided. An example of reduction is
depicted as Fig. 6.8.

As can be seen, four rules were reduced to three and connected together. The final equation
system of the transition functions is:

𝛿(𝑞1, "#") = (𝑞2, "1", 1) (6.9)
𝛿(𝑞1, "0") = (𝑞1, "1", 1)
𝛿(𝑞1, "1") = (𝑞1, "0", 1)

- 37 -

In (6.9) the state 𝑞2 is the final state. When the 𝑞2 state is reached by Turing machine, activity of
Turing machine ends.

Fig. 6.8: Example of reduction of the rules

6.2.2 Definition of specimen

The encoding of rules outlines how a specimen is defined. Fig. 6.3 shows, that the specimen will
have only two items. The first item represents index of the data tape symbol, the second item is
an index of direction of the head movement. The index of the data tape symbol can gain value in
the range ⟨0; length of Γ − 1⟩. The value of direction index is in the range ⟨−1; length of 𝐷 −
2⟩. According to the example in chapter 6.2.1, the first item is in the range ⟨0;2⟩ and the second
item is in the range ⟨−1;1⟩. The specimen will look like as follows:

𝑣𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛 = {𝑙,𝑚}, (6.10)

where

• 𝑙 ∈ ⟨0; length of Γ − 1⟩,
• 𝑚 ∈ ⟨−1; length of D − 2⟩.

As in the case of the specimen used in the classical approach to optimization (see chapter 6.1.1
and 6.1.2), it is necessary to convert the values of these items to integers since the evolutionary
algorithms use real numbers. This could be ensured by e.g. expressing values as the greatest
integers which are less or equal to the real numbers occurring in the result.

6.2.3 Optimization process and evaluative algorithm

The processing of individuals that is provided by the optimization process was partially
described in chapter 6.2.1 in connection with encoding of rules to the form of individuals. But
the optimization process which is used in the per-partes approach to optimization is yet more
complex. Per-partes optimization provides:

1. Comparing output data tape and requested output data tape. If they are the same,
proceed to step 4, if not, go to step 2.

2. Running evolutionary algorithm
The individuals are processed by designed evaluative algorithm (see below).

3. When the evolutionary algorithm is finished, the result is the best suitable rule for
processing the current symbol located on the data tape. The output data tape is altered
by this rule. Then go to step 1.

4. Reduction of the rules.
5. End of optimization proces.

- 38 -

It can be illustrated as Fig. 6.9. After starting the optimization process, the output data tape and
requested output data tape are compared. If the tapes are different, the evolutionary algorithm
which finds the most suitable rule for processing the current symbol (necessary to be specified
before starting optimization) on the data tape is started. Then the current data tape symbol and
position of the head are altered according to the estimated rule. After that, both tapes are
compared again. If the tapes are still different, the evolutionary algorithm starts and finds the
most suitable rule for processing the symbol at the new location which is influenced by the
previously estimated rule. If the data tapes are the same, the reduction of all estimated rules (as
described in chapter 6.2.1) is processed and the optimization process is finished.

Fig. 6.9: Scheme of per-partes approach to optimization

The fundamental feature of this approach is the evaluative algorithm inner cost function. This
algorithm provides a flexible way of evaluating individuals and brings another factor to the
stochastic progress of the optimization process. Due to this, estimated rules which differ in
processing of the data tape can be retrieved as results of optimization every time the
optimization process is run. The algorithm can be best understood by Fig. 6.10.

Fig. 6.10: Diagram of the evaluative algorithm

- 39 -

There are five essential conditions in the evaluative algorithm. These conditions are shown and
explained in Table 5.

Table 5: Conditions which are parts of the evaluative algorithm

Condition Meaning Question

1 Checking new location of the head.
Is the new position of the
head out of data tape?

2
Verification of last three symbols contained
on the data tape and performed movements.

Are they the same?

3
Comparison of the new output symbol and
requested output symbol.

Aren’t they the same?

4 Checking the direction of head movement.
What is the direction of
head movement?

5 Verification of the current output symbol- Is it the blank symbol?

Optimization proceeds in five steps. At first, it is verified, whether the new rule which is
encoded as the current individual will cause the head of the Turing machine to move out of data
tape (if there are limitations of the data tape). If yes, the individual is penalized by weight 𝑤1
and further evaluation stops. If no, comparison proceeds of the output symbol and direction of
the head movement encoded for the current individual and last two previous symbols and
directions of head movement. If they are the same, the individual is penalized by weight 𝑤2
(right direction of the head movement is preferred thus repeating this direction is not penalized)
and evaluation is finished. If not, the current output symbol and the requested output symbols
are compared. If they are not same, the individual is penalized by weight 𝑤3 and evaluation is
finished again. If they are the same, the direction of head movement is checked. Thanks to
weights 𝑤4, 𝑤5 and 𝑤6 the preference of certain directions can be set. As the last step, if the
current output symbol is the blank symbol, the individual can be penalized by weight 𝑤7.

As can be seen, the evaluative algorithm is really flexible by penalization or giving preference
to individuals by various initializations of weights. The features of the evaluative algorithm can
be summarized as:

• Possibilities to prefer certain directions of head movement.
• Possibilities to accept even incorrect rules assuming correction in next steps of

processing.
• Abilities to override circular rules and repeating of the output symbols and directions of

head movement.
• Possibility to penalize a blank symbol.

The features mentioned above allow for rules of Turing machine optimization for solving
complex problems quickly and effectively using the per-partes approach to optimization.

- 40 -

 SELECTED EXAMPLES 7
Up to this point there was spoken theoretically about the evolutionary optimization of the rules
of the Turing machine’s transition function. In this part of the doctoral thesis, three examples of
the previously-mentioned problems will be shown. The examples of using evolutionary
optimization involve different tasks which were processed and solved by Turing machine. These
tasks are:

• Unary addition
• Divisibility
• Primality

Above mentioned tasks or problems are very simple and represent basic mathematical
operations in unary number system. These tasks will be used as simple problem representatives
for rules estimation by the classical approach. The tasks will be also used while analyzing the
influence of custom settings of evolutionary algorithms to the results and progress of
optimization process (see chapter 8).

A description of the problem and settings of Turing machine will be given at each example
task. (There are considered two variants of Turing machines used differentiating by number of
inner states.)

7.1 Unary addition
The problem of unary addition [16, 17, 51] is simple and consists of the addition of two numbers
expressed by the unary number system. Let’s consider the mathematical example 2+3. If
rewritten to the unary number system, it will appear as:

11 + 111

The result in unary number system is:

11111

It is necessary to encode specification of this example on the data tapes. The initial data tape
looks like:

Fig. 7.1: Initial data tape of unary addition problem

and the requested output data tape:

Fig. 7.2: Requested output data tape of unary addition problem

The settings of Turing machine are following:

• 𝑄 = {𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6} | 𝑄 = {𝑞1, … , 𝑞16}
• Σ = {"1"}
• Γ = {"#", "1"}
• 𝑞0 = 𝑞1
• 𝐵 = "#"
• 𝐹 = {𝑞6} | 𝐹 = {𝑞16}

- 41 -

The initial head position is located before the first input symbol. The number of inner states was
established experimentally.

7.2 Divisibility
Divisibility [16, 17, 51] is the task in which it is requested to divide two numbers exactly.
Division is again solved using the unary number system. In this example, the mathematical
example 4/2 is considered. The initial data tape looks as in the case of unary addition:

Fig. 7.3: Initial data tape of divisibility problem

The task of Turing machine is to find whether these numbers are exactly divisible. If they are,
Turing machine should alter the data tape to the following form:

Fig. 7.4: Requested output data tape of divisibility problem

The settings of Turing machine are:

• 𝑄 = {𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6} | 𝑄 = {𝑞1, … , 𝑞16}
• Σ = {"1", "𝑋"}
• Γ = {"#", "1", "𝑋"}
• 𝑞0 = 𝑞1
• 𝐵 = "#"
• 𝐹 = {𝑞6} | 𝐹 = {𝑞16}

The head is initially positioned at the middle blank symbol between arguments represented by
input symbols. The number of inner states was set according to previous observations.

7.3 Primality
The problem of primality [16, 17, 51] consists of finding out whether a number encoded on the
data tape is a prime number or not. This example also considers a number which is expressed in
the unary number system and it is number 5. The initial data tape appears as in Fig. 7.5.

Fig. 7.5: Initial data tape of primality problem

If the number which is encoded on the data tape is a prime number, Turing machine indicates it
by placing the symbol “X” before the first input symbol and thus before the number. Also the
other input symbols are replaced by blank symbols (see Fig. 7.6).

Fig. 7.6 :Requested output data tape of primality problem

- 42 -

The settings of Turing machine are:

• 𝑄 = {𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6} | 𝑄 = {𝑞1, … , 𝑞16}
• Σ = {"1", "𝑋"}
• Γ = {"#", "1", "𝑋"}
• 𝑞0 = 𝑞1
• 𝐵 = "#"
• 𝐹 = {𝑞6} | 𝐹 = {𝑞16}

The initial position of the head is right before the first input symbol. As in the previous
examples, the number of inner states was established experimentally.

- 43 -

 EFFECT OF CUSTOM SETTINGS OF SELECTED 8
EVOLUTIONARY ALGORITHMS ON EVOLUTIONARY-
ESTIMATED PROGRAMMING

Dependence of evolutionary process on custom settings of evolutionary algorithm used is a key
issue which should be considered before discussing practical utilization of described methods to
real problems. It is apparent that settings of selected evolutionary algorithms influence an
estimation process of the transition function’s rules in a critical way. There is meant accuracy
and execution time of optimization process especially including other apects of the estimation
process too. These are important factors of the estimating process thus it is necessary to analyze
a dependence of custom settings of the evolutionary algorithms on the process of estimation.

The analysis is aimed on settings of Differential Evolution and Self-Organizing Migrating
Algorithm while estimating rules for processing selected examples (see chapter 7) by the
classical optimization (see chapter 6.1). The classical optimization is highly dependent on
settings of evolutionary algorithm thus the per-partes optimization is not involved in analysis.
(Except settings of evolutionary algorithm, the per-partes optimization is also significantly
influcenced by other factors mentioned in chapter 6.2.3.) The results of analysis will be used for
specifying the settings of evolutionary algorithms for the per-partes optimization of real
problems discussed in next part of the doctoral thesis. The issue of custom settings of
evolutionary algorithms and rules estimation was partially described here [12].

8.1 Methodology
As problems to processing by the Turing machine thus rules estimation, there were considered
selected examples (see chapters 7.1 – 7.3). These problems were subsequently processed by the
classical optimization which utilized Differential Evolution and Self-Organinzing Migrating
Algorithm. While estimation process there were changed settings of mentioned evolutionary
algorithms and rate of successfull estimation and execution time were measured. Parameters
changed can be found in following tables.

Table 6: Custom settings of Differential Evolution

Parameter Period Values Initial

NP 〈10𝐷, 100𝐷〉 10D – 100D 10D

F 〈0,2〉 0 – 2 0.9

CR 〈0,1〉 0 – 1 0.2

G customizable 100 – 1000 100

Table 7: Custom settings of Self-Organizing Migrating Algorithm

Parameter Period Values Initial

PopSize 〈10, customizable〉 D – 10D D

PRT 〈0,1〉 0 – 1 0.1

PathLength 〈1.1,5〉 1.1 – 5 3

Step 〈0.11,𝑃𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ〉 0.11 – 3 0.3

Migrations 〈10, customizable〉 100 – 1000 100

- 44 -

Parameter D represents a dimension of the problem – it is a number of cost function’s arguments
– or length of specimen vector.
While analysing dependence of evolutionary algorithms‘ custom settings on evolutionary
estimation, one only parameter was subsequently changed. Other parameters were set on initial
values. The periods of parameters change were stated in accordance with recommandations in
[33] and can be seen in Table 6 and Table 7. When analysis of current parameter was done,
parameter changed was set on initial value and other parameter was analyzed. When analyzing
NP, G and Migrations parameters, the step of change was 100. In the case of analyzing PopSize,
the step of change was equal to D. While considering other parameters, the step of change
was 0.1.

When specifying initial parameters, there was necessary take into account number of cost
function evaluations. The number of cost function evaluations depends on several parameters of
Differential Evolution and Self-Organizing Migrating Algorithm therefore it is perceptible that
the initial settings must comply the condition of approximately equal number of cost functions
evaluations while changing parameters being analyzed of both algorithms.

Number of cost function evaluations in the case of Self-Organizing Migrating Algorithm can
be expressed as [33]:

𝐶𝐹𝐸𝑆𝑂𝑀𝐴 = (𝑃𝑜𝑝𝑆𝑖𝑧𝑒−1)∙𝑃𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ∙𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑠
𝑆𝑡𝑒𝑝

 (8.1)

Number of cost function evaluations in the case of Differential Evolution can be induced as:

𝐶𝐹𝐸𝐷𝐸 = 𝑁𝑃 ∙ 𝐺 (8.2)

If considering encoding the rules of the classical approach and definition of the specimen (see
chapter 6.1.1 and 6.1.2), the dimension of the problems is equal to:

𝐷 = (𝑄 − 1) ∙ Γ (8.3)

Number of inner states is decremented by number one, because the inner states involve the final
state too. This state is omitted for dimension computations.

When initial settings (Table 6 and Table 7) are used with connection to specifications of
examples used (Table 8), number of cost function evaluations (CFE) while analyzing parameters
which influcence number of CFE can be seen in following Table 9 and Table 10. There are
considered NP – PopSize and G – Migrations which can be understood as equivalent.

Table 8: Specifications of examples used

Example id Example Q - 1 𝚪 D

1 Unary addition {𝑞1, … , 𝑞5} {"#", "1"} 10

2 Unary addition {𝑞1, … , 𝑞15} {"#", "1"} 30

3 Divisibility {𝑞1, … , 𝑞5} {"#", "1", "𝑋"} 15

4 Divisibility {𝑞1, … , 𝑞15} {"#", "1", "𝑋"} 45

5 Primality {𝑞1, … , 𝑞5} {"#", "1", "𝑋"} 15

6 Primality {𝑞1, … , 𝑞15} {"#", "1", "𝑋"} 45

In following tables, 𝐶𝐹𝐸𝑚𝑖𝑛 and 𝐶𝐹𝐸𝑚𝑎𝑥 represent number of cost function evaluations for
minimal and maximal value of analyzed parameter.

- 45 -

Table 9: Number of cost function evaluations for parameters NP and G of
Differential Evolution

 NP G
Example Id 𝑪𝑭𝑬𝒎𝒊𝒏 𝑪𝑭𝑬𝒎𝒂𝒙 𝑪𝑭𝑬𝒎𝒊𝒏 𝑪𝑭𝑬𝒎𝒂𝒙

1 10000 100000 10000 100000

2 30000 300000 30000 300000

3 15000 150000 15000 150000

4 45000 450000 45000 450000

5 15000 150000 15000 150000

6 45000 450000 45000 450000

Table 10: Number of cost function evaluations for parameters PopSize and
Migrations of Self-Organizing Migrating Algorithm

 PopSize Migrations
Example Id 𝑪𝑭𝑬𝒎𝒊𝒏 𝑪𝑭𝑬𝒎𝒂𝒙 𝑪𝑭𝑬𝒎𝒊𝒏 𝑪𝑭𝑬𝒎𝒂𝒙

1 9000 99000 9000 90000

2 29000 299000 29000 290000

3 14000 149000 14000 140000

4 44000 449000 44000 440000

5 14000 149000 14000 140000

6 44000 449000 440000 440000

8.2 Results
As stated above, there were two goals of analysis. These were answers to following questions:

• What is accuracy of optimization proces for custom settings of selected evolutionary
algorithms?

• What is execution time of optimization proces for custom settings of selected
evolutionary algorithms?

The first question can be regarded as the most important. On the basis of these results, concrete
evolutionary algorithm and its settings will be selected for processing real problems (discussed
in the next part of the doctoral thesis). The results aimed on execution time are less important
(but could be very interesting on the other hand) thus they will be only used as secondary
criterion for process of evolutionary algorithm and its settings selection.

- 46 -

8.2.1 Dependence of optimization process on DE’s NP parameter

Fig. 8.1: Dependence of successfull estimation on changing DE's NP parameter

Fig. 8.2: Dependence of execution time on changing DE's NP parameter

As can be seen at Fig. 8.1, in the case of Q = 6 it can be said that increasing of population means
the higher percentual successfull rate. This is evident for unary addition. When the divisibility
and primality are processed, number of population which is equal to 10D is sufficient as well as
in the case of Q = 16 and all problems processed.

Fig. 8.2 depicts strong dependence of execution time on the number of population. If number
of population is increasing the execution time is increasing too.

Recommandation: 𝑁𝑃 ∈ 〈300,100𝐷〉 and higher dimension of problem.

8.2.2 Dependence of optimization process on DE’s F parameter

Fig. 8.3: Dependence of successfull estimation on changing DE's F parameter

- 47 -

Fig. 8.4: Dependence of execution time on changing DE's F parameter

Analysis of dependence of successfull estimation on changing DE’s parameter F (Fig. 8.3)
revealed that estimation while changing parameter F is strongly dependent on dimension of the
problem (see results for unary addition, divisibility and primality). In the case of unary addition,
the dimension of the problem is 10 and the successfull estimation oscillates around 90%.
Divisibility and primality problems have dimension equal to 15 what is enough for 100%
successfull estimation. Important factors are number of inner states and data tape symbols of
problem – see (8.3) and Fig. 8.3 for Q = 16.

Execution time of optimization process is not dependent on changing F parameter, thus while
considering F parameter execution time can be omitted.

Recommandation: 𝐹 ∈ 〈0.3,2〉 and higher dimension of problem.

8.2.3 Dependence of optimization proces on DE’s CR parameter

Fig. 8.5: Dependence of successfull estimation on changing DE's CR parameter

Fig. 8.6: Dependence of execution time on changing DE's CR parameter

- 48 -

Estimation while changing parameter CR can be regarded as highly dependent on dimension D.
It is perceptible thanks to analysis and Fig. 8.5. In the case of unary addition and Q = 16, the
dimension which is equal to 30 is even not enough. Except that, CR parameter also significantly
influnce the successfull estimation in this case.

As well as in the changing parameter F, execution time of optimization proces is not
dependent on changing CR parameter, thus while considering CR parameter execution time can
be omitted.

Recommandation: 𝐶𝑅 ∈ 〈0.1,0.6〉, higher dimension of problem.

8.2.4 Dependence of optimization proces on DE’s G parameter

Fig. 8.7: Dependence of successfull estimation on changing DE's G parameter

Fig. 8.8: Dependence of execution time on changing DE's G parameter

Progression of estimation proces while changing parameter G can be liken to situation when
changing parameter NP has been analyzed. Except unary addition with Q = 16, the successfull
estimation is always equal to 100% as can be seen at Fig. 8.7. Similarly to previous situations,
dimension of the problem influence the successfull estimation significantly.

Execution time is highly dependent on parameter G thus number of generations as well as in
the case of parameter NP changing. See Fig. 8.8 for details.

Recommandation: 𝐺 ∈ 〈400,1000〉, higher dimension of problem.

- 49 -

8.2.5 Dependence of optimization process on SOMA’s PopSize parameter

Fig. 8.9: Dependence of successfull estimation on changing SOMA's PopSize parameter

Fig. 8.10: Dependence of execution time on changing SOMA's PopSize parameter

As can be seen at Fig. 8.9, changing SOMA’s PopSize parameter influences estimation process
in the same way as changing DE’s NP parameter. It means that successfull estimation of lower
dimension problems can be positively influenced by increasing PopSize parameters especially
when Q = 6. In the case of problems with higher dimension, PopSize which is equal to lower
bound is sufficient.

Changing PopSize parameter significantly influences execution time thus there can be
observed dependence of execution time on PopSize parameter as it is depicted at Fig. 8.10.

Recommandation: 𝑃𝑜𝑝𝑆𝑖𝑧𝑒 ∈ 〈80,10𝐷〉 and higher dimension of problem.

8.2.6 Dependence of optimization process on SOMA’s PRT parameter

Fig. 8.11: Dependence of successfull estimation on changing SOMA's PRT parameter

- 50 -

Fig. 8.12: Dependence of execution time on changing SOMA's PRT parameter

In the case of changing PRT parameter it can be said that successfull estimation is not only
influenced by dimension of the problem but selection of the PRT parameter is highly important
too. Higher dimension can bring better progress of estimation process but PRT parameter and its
selection can still significantly influence results. This state is illustrated at Fig. 8.11.

Influence of execution time by changing PRT parameter is not too important in this case thus
can be omitted.

Recommandation: 𝑃𝑅𝑇 ∈ 〈0.2,0.7〉, higher dimension of problem.

8.2.7 Dependence of optimization process on SOMA’s PathLength parameter

Fig. 8.13: Dependence of successfull estimation on changing SOMA's PathLength parameter

Fig. 8.14: Dependence of execution time on changing SOMA's PathLength parameter

In this case, importance of PathLength parameter and dimension of the problrm can be
perceptible. The rate of successfull estimatation of unary addition whose dimension is lower
than dimension of other problems is worse. This situation can be partially improved by selection

- 51 -

of suitable PathLength parameter value. But this improvement can be not enought in some cases
as can be seen at right part of Fig. 8.13.

Execution time is strongly dependent on changing PathLength parameter. If value of
PathLength parameter is incresed the execution time is increased too.

Recommandation: 𝑃𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ ∈ 〈2.5,5〉 and higher dimension of problem.

8.2.8 Dependence of optimization proces on SOMA’s Step parameter

Fig. 8.15: Dependence of successfull estimation on changing SOMA's Step parameter

Fig. 8.16: Dependence of execution time on changing SOMA's Step parameter

The influence of increasing Step parameter has opposite effect than increasing other parameters.
In this case the rate of successfull estimation is decreased when the value of Step parameter gets
higher. The dependence of suitable Step value on estimation is significant as well as dependence
of problem dimension. It can be said that high dimension of the problem is really fundamental
for successfull estimation as can be seen at Fig. 8.15.

Descending tendency of execution time when increasing Step parameter can be observed here
as well as in the case of successfull estimation.

Recommandation: 𝑆𝑡𝑒𝑝 ∈ 〈0.11,1.5〉, high dimension of problem.

- 52 -

8.2.9 Dependence of optimization process on SOMA’s Migrations parameter

Fig. 8.17: Dependence of successfull estimation on changing SOMA's Migrations parameter

Fig. 8.18: Dependence of execution time on changing SOMA's Migrations parameter

Changing of the Migrations parameter has similar effect as in the case of changing PopSize
parameter (see Fig. 8.17 and Fig. 8.9). Increasing of this parameter can positively influence the
rate of successfull estimation as well as increasing of problem dimension. If unary addition is
considered there is perceptible that its dimension which is equal to 10 (Q = 6) is not enough for
100% successful estimation.

Influence of changing Migrations parameter to execution time is similar again as in the case
of changing PopSize parameter. When Migrations parameter is increasing, execution time is
increasing too (see Fig. 8.18 and Fig. 8.10).

Recommandation: 𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ∈ 〈600,1000〉, higher dimension of problem

8.3 Analysis conclusion
Analysis revealed several important depencence aspects of optimization process for estimating
Turing machine’s rules. Main goal of the analysis was specifiying suitable parameters of
evolutionary algorihm selected for optimization in the next part of the doctoral thesis where
processing real problems is considered. These parameters stated according to the analysis can be
found in Table 11 and Table 12.

- 53 -

Table 11: DE parameters stated according to analysis
recommandation

Parameter Period Values

NP 〈10𝐷, 100𝐷〉 30D – 100D

F 〈0,2〉 0.3 – 2

CR 〈0,1〉 0.1 – 0.6

G customizable 400 – 1000

Table 12: SOMA parameters stated according to analysis
recommandation

Parameter Period Values

PopSize 〈10, customizable〉 8D – 10D

PRT 〈0,1〉 0.2 – 0.7

PathLength 〈1.1,5〉 2.5 – 5

Step 〈0.11,𝑃𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ〉 0.11 – 1.5

Migrations 〈10, customizable〉 600 – 1000

As can be seen in chaper 8.2, except parameters of evolutionary algorithms successfull
estimation is strongly dependent on dimension of the problem. Dimension is specified as (8.3)
and influenced by number of inner states of Turing machine and number of data tape symbols. It
can be presumed that arguments of (8.3) will be sufficiently high in the case of real problem
representation thus factor of dimension ensures successfull progression of estimation process
without sole affecting optimization by parameters of evolutionary algorithm. Suitable settings of
evolutionary algorithm used can be understood as “an insurance” if the dimension doesn’t
ensure successful estimation. Results of the analysis also proved that selection of the
evolutionary algorithm used is not a key aspect of optimization process. Both selected
evolutionary algorithms are entirely equivalent in the case of optimization Turing machine’s
rules. The results of successfull estimation are similar without dependence of evolutionary
algorithm used.

During analysis there were optimized a large set of rules for processing example problems by
Turing machine. Selected representants of these rules can be found in Appendix A.

- 54 -

 PRACTICAL UTILIZATION 9
While discussing practical utilization of evolutionary synthesis of the Turing machine’s rules
there can be found many of applications in the form of problems related to utilization of Turing
machines. Fundamental advantage of using approaches described in chapter 6 is to simply and
reliably ensure programming Turing machine for processing even the most complex tasks. In
chapter 8, there was proceeded analysis consisted in optimization of rules for processing several
elementary problems. But the power of using evolutionary approaches to programming Turing
machine is a possibility to use methods described in previous parts of the doctoral thesis for
estimation and optimization Turing machine’s rules for processing real problems which are not
elementary at all. As a representant of highly complex real problems protein processing was
selected. From the view of using Turing machines, the task of estimation the rules for processing
proteins is very complicated thus can be regarded as suitable for proving abilities of described
approaches to evolutionary synthesis to successfully estimate proper Turing machine’s rules.

9.1 Proteins essentials
Proteins [2, 3, 8, 36] can be regarded as the most important for all organisms which live and
generally exist on the Earth. It is thanks to a key feature of proteins which influences processes
belonging to life build blocks. This key feature is entirely uniqe for proteins. As life build blocks
anyone can imagine prepositions for life genesis, keeping the life, controlling organisms’
internal and external processes, metabolism, immune system etc. Cell structures, respiration,
muscles, skin – these are results of protein features and activities as well as accelerators of
biochemical processes – enzymes [1, 36], which are fundamentals of internal processes. Proteins
have impact to all life-based activities.

9.1.1 Proteins as Turing machine’s data tapes

In order to explain how to transcribe proteins as the Turing machine’s data tapes it is necessary
to breifly introduce protein biosynthesis.

Base elements of proteins are macromolecule of deoxyribonucleic acid (DNA) [5, 26, 36] or
ribonucleic acid (RNA) [6, 26, 36] eventually. DNA macromolecule has a form of double helix
[28, 36]. Strands of double helices are made of sugar-phosphate residues and serve for retaining
sequences of four bases [36]. These are adenine (A), guanine (G), cytosine (C) and thymine (T).
Combinations of residues and bases are termed as nucleotides [25, 36] or nucleosides [25, 36]. It
depends on condition whether base is combined with sugar and phosphate residues (nucleotide)
or sugar residue only (nucleoside). These combinations are termed as adenosine, guanosine,
cytidine and thymidine. Both strands of DNA helix are held together by hydrogen bonds [22,
36] which originate between following pairs of bases:

• A – T
• G – C
• T – A
• C – G

Basis transformation to the form of protein is two-step process composed by:

• Transcription
• Translation

Transcription [9, 29, 36] is a process which can be liken to DNA replication [24, 36]. During
DNA replication a new complementary strand of DNA helix is created by DNA polymerase

- 55 -

enzyme [36] in accordance with base pairing regarding one of strands. New DNA
macromolecule identical to ancestor is created (see Fig. 9.1).

Fig. 9.1: Scheme of DNA replication

Transciption differs from DNA replication by enzyme. Instead of DNA polymerase, RNA
polymerase [36] is used. It is perceptible that the result is not identical DNA macromolecule but
RNA macromolecule. The process of transcription is similar to replication. One of strands
serves as template thus it is termed as non-coding because contains complementary bases [22].
Another strand is termed as coding. Because new strand is created according to template strand
its appereance is identical to coding strand but thymine is replaced by uracile (U) (see Fig. 9.2).

Fig. 9.2: Scheme of DNA transcription

Contrary to DNA macromolecules, RNA macromolecules are compounded of one strand only.
Also appereance of RNA macromolecules is much less regular than appereance of DNA
macromolecules.

RNA originated from DNA by transcription is termed as messenger RNA (mRNA) and
contains “simple” transcription of DNA information. It is not possible to synthesize proteins
from mRNA directly.

Second step of protein origination is a translation [9, 36]. During translation nucleotides
contained in mRNA strand are processed as triplets termed as codons [23, 36]. There are 64
different codons which are related to combinations of four nucleotides in mRNA. Three of these
codens (UAA, UAG and UGA) represent so-called stop-codons [36] which denotes end of
protein. Other codons are considered as amino acids [7, 36] as well as AUG codon which is
protein opening codon. Because there are only 20 common amino acids it is clear that several
different codons (or combinations of nucleotides) can represent same amino acid (e.g. GCU,
GCC, GCA and GCG codons stand for alanin amino acid).
After translation, there are obtained amino acids which have direct impact to proteins because
proteins are biopolymers consisted of amino acid sequences. Amino acids are molecules
compounded of two functional groups [8, 36]. These are amine group NH2 and carboxylic acid
group COOH (see Fig. 9.3).

- 56 -

Fig. 9.3: General form of amino acid

Thanks to above-mentioned functional groups amino acids can be chained together thus proteins
can be formed. Because amine group is a base which allows to react with acids and neutralize
them and carboxylic acid is an oposite part of molecule, it is possible to be reaction between
amino acids arisen by condensation process. This process enables to originate a peptide C-N
bond [27, 36] between amino acids. Sequenced amino acids forms polypeptide chains [36]
which are regarded as primary protein structures [21, 36].

Except full name of amino acids, they can be referred by abbreviations. These are 3-letter or
1-letter. It is perceptible that 1-letter abbreviations of amino acid names are the most suitable in
the case of processing by Turing machines. Thus the Turing machine’s data tape symbols can
simply appear as following parts of Turing machine formal definition:

• Γ = �"#","A", "C", "D", "E", "F", "G", "H", "I", "K","L",
"𝑀", "𝑁", "𝑂", "𝑄", "𝑅", "𝑆", "𝑇", "𝑉", "𝑊", "𝑌" �

• 𝐵 = "#"

9.2 Protein processing by Turing machine
Employing Turing machines at protein processing is a representant of real highly complex and
interesting problem. The protein processing as it is considered related to this doctoral thesis and
using Turing machines involves protein reconstruction independly on origin protein structure. It
means processing polypeptide chains containing randomly positioned amino acids to the form of
requested primary protein structures by Turing machine. The optimized Turing machine’s rules
which ensure above-mentioned protein processing enable e.g. simple protein description resulted
from general set of amino acids, reconstruction of corrupted primary protein structures etc.

As mentioned protein processing is a highly complex problem. If the dimension is expressed
as (8.3) it is possible to obtain:

𝐷 = (𝑄 − 1) ∙ 21 (9.1)

If the numer of inner states Q is equal to 6, dimension of the problem is 105. In the case of Q =
16, dimension is significantly increased to 315. If it is considered that maximal dimension of
some problems used while analysis was 45 and maximal execution time was nearly 1 hour (see
Fig. 8.10), time consumption could by higly unsatisfactory in the case of D = 105 or even D =
315. Additionaly it is necessary to discuss whether number of inner states equal to 16 is
sufficient for such complex problem as it is protein processing. If the Q is set too low there is a
risk of impossibility to successfully optimize Turing machine’s rules. Fortunately, issue of
stating Q parameter is only related to using classical optimization (see chapter 6.1). If the per-
partes optimization (see chapter 6.2) is used, number of inner states is adapting dynamically
during optimization. Also dimension of the problem is considerably decreased without influence
of successfull estimation thanks to per-partes approach to optimization (see chapter 6.2 for more
details). Thus the per-partes optimization is selected in relation to protein processing.

C

C3
+

_

Amine
group

Carboxylic acid group

Side chain

- 57 -

There are two prepositions for using per-partes optimization which have to be carefully
considered. These are:
• Selection of evolutionary algorithm and its parameters
• Per-partes optimization’s weights (see chapter 6.2.3) selection

The answer to first preposition is rather simple. Analysis approved that Turing machine’s rules
estimation process is not directly dependent on evolutionary algorithm selected. Instead of that
the dependence is on settings of evolutionary algorihm. From this point of view Differential
Evolution and Self-Organizing Migrating Algorithm are entirely equivalent thus
Differential Evolution will be selected as algorithm used in relation to the per-partes
optimization. Parameters of Differential Evolution will be specified according to Table 11 and
previous experiences. Selected values can be seen in Table 13.

Table 13: Parameters of Differential Evolution for protein processing

Parameter Recommanded value Values

NP 30D – 100D 200

F 0.3 – 2 0.9

CR 0.1 – 0.6 0.3

G 400 – 1000 1000

Second preposition is more important because it influences optimization process and Turing
machine operations while processing proteins. It can be said that the per-partes
optimization’s weights provides answers to questions contained in Table 5 (also see Fig. 6.10).
By changing weights it is possible to completely alter behavior of Turing machine while
processing proteins or other problems too. There is a lot of ways how to set these weights. At
this place the set of weights which was experimentally obtained and successfully approved
many times (e.g. here [14]) will be used. This set is contained in Table 14. Detailed exaplanation
of meaning of these weights can be found in chapter 6.2.3.

Table 14: Per-partes optimization's weights

Weight Value
1 4000

2 2000

3 1000

4 -2000

5 -1000

6 -3000
7 1000

Concrete specification of the protein processing tasks can be formulated as reconstruction of
proteins from the set of amino acids. It means that it is requested to evolutionary estimate rules
which enable to transcribe a data tape containing sequence of randomly positioned amino acids
to the form of primary structure of selected protein whereas both of sequences have the same
length. There were selected twelve proteins [30, 40] whose primary protein structures will be

- 58 -

used for processing. These primary protein structures differ from each other by length thus
additional variability and complexity increasing is ensured.

All algorithms which will be used (Turing machine, Differential Evolution, per-partes
optimization algorithm) are written in functional programming language F# [50]. The reason is
that the effectivity of F# programming language is much higher than algorithm implementations
in Wolfram Mathematica used till this time as it was proven [13]. Turing machine and
Differential Evolution implemented in F# are parts of the F# Artificial Intelligence Library [11].

Following subsections include information on sequences used, summary of obtained 5 results
of processing each polypeptide sequence and analysis of head movement while processing
amino acid sequences.

Shared Turing machine settings for all results are:

• Σ = � "A", "C", "D", "E", "F", "G", "H", "I", "K","L",
"𝑀", "𝑁", "𝑂", "𝑄", "𝑅", "𝑆", "𝑇", "𝑉", "𝑊", "𝑌"�

• Γ = �"#","A", "C", "D", "E", "F", "G", "H", "I", "K","L",
"𝑀", "𝑁", "𝑂", "𝑄", "𝑅", "𝑆", "𝑇", "𝑉", "𝑊", "𝑌" �

• 𝑞0 = 𝑞1
• 𝐵 = "#"
• Initial position of the head is at the fifth left symbol contained in the data tape

Data tapes look like:

• 𝑡𝑎𝑝𝑒 = {"#", "#", "#", "#", "#", … 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒… , "#", "#", "#", "#", "#"},

where sequence is an amino acid protein-coding part of test sequence described in following
subsections.

Parameters of Differential Evolution were set according to Table 13. Weights of the per-
partes optimization algorithm can be seen in Table 14. Images of the proteins which are shown
below were created in Geneious v5.5 [4] software application.

9.2.1 2J01

Structure of the thermus thermophilus 70s ribosome complexed with mRNA, tRNA and
Paromomycin (part 2 of 4) [30, 48] – chain 1. Length of sequence is 98 amino acids.

Seq. 1: 2J01 chain 1 sequence

MSKVCEISGKRPIVANSIQRRGKAKREGGVGKKTTGISKRRQYPNLQKVRVRVAG
QEITFRVAASHIPKVYELVERAKGLKLEGLSPKEIKKELLKLL

 Fig. 9.4: Image of 2J01 with highlighted chain 1

- 59 -

Seq. 2: Test sequence for 2J01

TYNDFEWEQMLQRAVNSFDQGSWGLEKMTTYGGMSPNWQVRQVPWFLTLDGMEEP
PQGFWKEKVQHWSGANLKVRFFFFDYHQLHASVVCNHRIMWYE

Table 15: Summary of 5 obtained results of processing 2J01 chain 1

Result no. Q F Steps Rate* [%]

1 {𝑞1, … , 𝑞10} {𝑞10} 116 100

2 {𝑞1, … , 𝑞16} {𝑞16} 127 100

3 {𝑞1, … , 𝑞13} {𝑞13} 125 100

4 {𝑞1, … , 𝑞15} {𝑞15} 124 100

5 {𝑞1, … , 𝑞34} {𝑞34} 170 100

Average successfull processing amino acids contained
in sequence [%] 100

* It means percentual rate of all correctly processed amino acids in sequence

Fig. 9.5: Analysis of head movement for 1J01
chain 1 result 1

Fig. 9.6: Analysis of head movement for 1J01
chain 1 result 2

Fig. 9.7: Analysis of head movement for 1J01
chain 1 result 3

Fig. 9.8: Analysis of head movement for 1J01
chain 1 result 4

- 60 -

Fig. 9.9: Analysis of head movement for 1J01
chain 1 result 5

9.2.2 1AOI

Complex between nucleosome core particle (H3, H4, H2A, H2B) and 146 bp long DNA
fragment [30, 38] – chain A. Length of sequence is 116 amino acids.

Seq. 3: 1AOI chain A sequence

LATKAARKSAPATGGVKKPHRYRPGTVALREIRRYQKSTELLIRKLPFQRLVREI
AQDFKTDLRFQSSAVMALQEASEAYLVALFEDTNLCAIHAKRVTIMPKDIQLARR
IRGERA

Seq. 4: Test sequence for 1AOI

QPCESKNFCVEWNTECQLWNVTEGDTPPATESCMNNNKEPQEDSVEKCFKYGSIM
SPPVKDIFCAKMKRVFRKPNNKMDEPRFPHYMCVCYPRYNPFCMKMRCQMKNVIN
DPFLQE

Fig. 9.10: Image of 1AOI with highlighted
chain A

- 61 -

Table 16: Summary of 5 obtained results of processing 1AOI chain A

Result no. Q F Steps Rate* [%]

1 {𝑞1, … , 𝑞22} {𝑞22} 175 100

2 {𝑞1, … , 𝑞24} {𝑞24} 171 99.14

3 {𝑞1, … , 𝑞14} {𝑞14} 143 100

4 {𝑞1, … , 𝑞15} {𝑞15} 132 100

5 {𝑞1, … , 𝑞14} {𝑞14} 142 100

Average successfull processing amino acids contained
in sequence [%] 99.83

* It means percentual rate of all correctly processed amino acids in sequence

Fig. 9.11: Analysis of head movement for 1AOI
chain A result 1

Fig. 9.12: Analysis of head movement for 1AOI
chain A result 2

Fig. 9.13: Analysis of head movement for 1AOI

chain A result 3

Fig. 9.14: Analysis of head movement for 1AOI

chain A result 4

- 62 -

Fig. 9.15: Analysis of head movement for
1AOI chain A result 5

9.2.3 1LIT

Human lithostathine [30, 44] – chain A. Length of sequence is 144 amino acids.

Seq. 5: 1LIT chain A sequence

QEAQTELPQARISCPEGTNAYRSYCYYFNEDRETWVDADLYCQNMNSGNLVSVLT
QAEGAFVASLIKESGTDDFNVWIGLHDPKKNRRWHWSSGSLVSYKSWGIGAPSSV
NPGYCVSLTSSTGFQKWKDVPCEDKFSFVCKFKN

Seq. 6: Test sequence for 1LIT

FFYGKHMSQIVVWRGIDNWAQKKSFMDTVIPCEIKKNRIPATHVASQFHCFIKTM
HCVPPCYPYPKGIRIGFENNSCFALDRSKNIHMIATNGCQWFLSRCIFQGWAPEF
DREEGMETSVAYEKEPHQPNFRTYRDVQKSEWPD

Fig. 9.16: Image of 1LIT with highlighted chain A

- 63 -

Table 17: Summary of 5 obtained results of processing 1LIT chain A

Result no. Q F Steps Rate* [%]

1 {𝑞1, … , 𝑞57} {𝑞57} 285 100

2 {𝑞1, … , 𝑞42} {𝑞42} 263 97.92

3 {𝑞1, … , 𝑞51} {𝑞51} 279 99.30

4 {𝑞1, … , 𝑞57} {𝑞57} 315 99.30

5 {𝑞1, … , 𝑞44} {𝑞44} 276 99.30

Average successfull processing amino acids contained
in sequence [%] 99.16

* It means percentual rate of all correctly processed amino acids in sequence

Fig. 9.17: Analysis of head movement for 1LIT

chain A result 1

Fig. 9.18: Analysis of head movement for 1LIT

chain A result 2

Fig. 9.19: Analysis of head movement for 1LIT
chain A result 3

Fig. 9.20: Analysis of head movement for 1LIT
chain A result 4

- 64 -

Fig. 9.21: Analysis of head movement for 1LIT
chain A result 5

9.2.4 1B08

Lung surfactant protein D (SP-D) [30, 39] – chain A. Length of sequence is 158 amino acids.

Seq. 7: 1B08 chain A sequence

EAEAGSVASLRQQVEALQGQVQHLQAAFSQYKKVELFPNGQSVGEKIFKTAGFVK
PFTEAQLLCTQAGGQLASPRSAAENAALQQLVVAKNEAAFLSMTDSKTEGKFTYP
TGESLVYSNWAPGEPNDDGGSEDCVEIFTNGKWNDRACGEKRLVVCEF

Seq. 8: Test sequence for 1B08

PQIGSGDDIDKEALQAICWKQMGSIIGRMEIPRFHYWVVVWDYAYHIERPHHPPAQ
EKTEACGSHMPSYRWLIIFSDYLNCEEAPKTSYSTMDKGSCILGAEMPKKCEYQWW
FKGYPALNRYIRPAKCPHQKIRRYVITWIQDGNMCMNMGQDYCKNW

Fig. 9.22: Image of 1B08 with highlighted
chain A

- 65 -

Table 18: Summary of 5 obtained results of processing 1B08 chain A

Result no. Q F Steps Rate* [%]

1 {𝑞1, … , 𝑞78} {𝑞78} 373 98.73

2 {𝑞1, … , 𝑞66} {𝑞66} 351 96,84

3 {𝑞1, … , 𝑞61} {𝑞61} 337 99.37

4 {𝑞1, … , 𝑞82} {𝑞82} 376 98.73

5 {𝑞1, … , 𝑞81} {𝑞81} 366 99.37

Average successfull processing amino acids contained
in sequence [%] 98.61

* It means percentual rate of all correctly processed amino acids in sequence

Fig. 9.23: Analysis of head movement for 1B08
chain A result 1

Fig. 9.24: Analysis of head movement for 1B08
chain A result 2

Fig. 9.25: Analysis of head movement for 1B08
chain A result 3

Fig. 9.26: Analysis of head movement for 1B08
chain A result 4

Fig. 9.27: Analysis of head movement for 1B08
chain A result 5

- 66 -

9.2.5 1B09

Human C-reactive protein complexed with phosphocholine [40, 41] – chain A. Length of
sequence is 206 amino acids.

Seq. 9: 1B09 chain A sequence

QTDMSRKAFVFPKESDTSYVSLKAPLTKPLKAFTVCLHFYTELSSTRGYSIFSYA
TKRQDNEILIFWSKDIGYSFTVGGSEILFEVPEVTVAPVHICTSWESASGIVEFW
VDGKPRVRKSLKKGYTVGAEASIILGQEQDSFGGNFEGSQSLVGDIGNVNMWDFV
LSPDEINTIYLGGPFSPNVLNWRALKYEVQGEVFTKPQLW

Seq. 10: Test sequence for 1B09

VWQGEKRCCEFMICYFIYTLTLFIPVYSVSTIERQYQELNRRRTTLCGMDIKEGS
AGCAGKVTRCKGCIHKQEHEASEGKDITVEFRMCKASSFTKLFDVDLLMCTTNCD
TYWVHQPLPHRTEVKEAIIINRYSWMTVNRDYMKEEDKGYHSAIIWYVAAKYLTT
RTDMPESVPWAYMMFNWRCHWFKGPCMENDIAIFHINVGGM

Table 19: Summary of 5 obtained results of processing 1B09 chain A

Result no. Q F Steps Rate* [%]

1 {𝑞1, … , 𝑞41} {𝑞41} 310 98.54

2 {𝑞1, … , 𝑞113} {𝑞113} 481 99.03

3 {𝑞1, … , 𝑞68} {𝑞68} 370 97.57

4 {𝑞1, … , 𝑞61} {𝑞61} 366 98.06

5 {𝑞1, … , 𝑞87} {𝑞87} 413 98.54

Average successfull processing amino acids contained in
sequence [%] 98.35

* It means percentual rate of all correctly processed amino acids in sequence

Fig. 9.28: Image of 1B09 with highlighted
chain A

- 67 -

Fig. 9.29: Analysis of head movement for 1B09
chain A result 1

Fig. 9.30: Analysis of head movement for 1B09
chain A result 2

Fig. 9.31: Analysis of head movement for 1B09
chain A result 3

Fig. 9.32: Analysis of head movement for 1B09
chain A result 4

Fig. 9.33: Analysis of head movement for 1B09
chain A result 5

9.2.6 1TUP

Tumor suppressor P53 complexed with DNA [30, 45] – chain A. Length of sequence is 219
amino acids.

Seq. 11: 1TUP chain A sequence

SSSVPSQKTYQGSYGFRLGFLHSGTAKSVTCTYSPALNKMFCQLAKTCPVQLWVD
STPPPGTRVRAMAIYKQSQHMTEVVRRCPHHERCSDSDGLAPPQHLIRVEGNLRV
EYLDDRNTFRHSVVVPYEPPEVGSDCTTIHYNYMCNSSCMGGMNRRPILTIITLE
DSSGNLLGRNSFEVRVCACPGRDRRTEEENLRKKGEPHHELPPGSTKRALPNNT

- 68 -

Seq. 12: Test sequence for 1TUP

MFQEDDDFEISQHSIHWAIWGDGVFVGSYAYVHINWEFVSCIHPINIANQIATAV
VDLAVEYYIAQNSNFKHRTMRQCPGTWNPSCARVKDVVYAIPHLHCYWCFQTKLN
LTTSDSFDRQTYCLYVFGTKEGPNKISHADLENFQHEPQYSHSEVANMQLHKFVE
RTECNAIRALHWDTQKDYKMKHFSFARDGFWFVYYMNMYALEDRQSMKQNWFP

Table 20: Summary of 5 obtained results of processing 1TUP chain A

Result no. Q F Steps Rate* [%]

1 {𝑞1, … , 𝑞36} {𝑞36} 288 99.09

2 {𝑞1, … , 𝑞45} {𝑞45} 323 98.63

3 {𝑞1, … , 𝑞46} {𝑞46} 334 100

4 {𝑞1, … , 𝑞32} {𝑞32} 308 100

5 {𝑞1, … , 𝑞35} {𝑞35} 310 100

Average successfull processing amino acids contained
in sequence [%] 99.54

* It means percentual rate of all correctly processed amino acids in sequence

Fig. 9.35: Analysis of head movement for
1TUP chain A result 1

Fig. 9.36: Analysis of head movement for 1TUP
chain A result 2

Fig. 9.34: Image of 1TUP with highlighted
chain A

- 69 -

Fig. 9.37: Analysis of head movement for
1TUP chain A result 3

Fig. 9.38: Analysis of head movement for 1TUP
chain A result 4

Fig. 9.39: Analysis of head movement for 1TUP
chain A result 5

9.2.7 1YAR

Structure of archeabacterial 20S proteasome mutant D9S – PA26 complex [30, 46] – chain A.
Length of sequence is 233 amino acids.

Seq. 13: 1YAR chain A sequence

MQQGQMAYSRAITVFSPDGRLFQVEYAREAVKKGSTALGMKFANGVLLISDKKVR
SRLIEQNSIEKIQLIDDYVAAVTSGLVADARVLVDFARISAQQEKVTYGSLVNIE
NLVKRVADQMQQYTQYGGVRPYGVSLIFAGIDQIGPRLFDCDPAGTINEYKATAI
GSGKDAVVSFLEREYKENLPEKEAVTLGIKALKSSLEEGEELKAPEIASITVGNK
YRIYDQEEVKKFL

 Fig. 9.40: Image of 1YAR with highlighted chain A

- 70 -

Seq. 14: Test sequence for 1YAR

CVPGIFPYQASNAFEISKMAPYYFKNKRNVKINPVAKYTFEWASGPGKNKNYWDV
PLMYHLSWHIHHRDNRDSMKFFHLMIDNKHCMYCIMWNPSSKHNHLERYLQWGTW
NMHEHMMLSITRYPAFPMLVTKPMSEQNPNECDATPRCMKQHCSDDFWQPFEKGS
ARRERFTFRMQWTYMRLQSFRANHLCRTKFTLKMLQEAVNWCQWMYRFFHDPCER
FKANTAVEPPIFG

Table 21: Summary of 5 obtained results of processing 1YAR chain A

Result no. Q F Steps Rate* [%]

1 {𝑞1, … , 𝑞41} {𝑞41} 353 100

2 {𝑞1, … , 𝑞59} {𝑞59} 386 98.71

3 {𝑞1, … , 𝑞66} {𝑞66} 416 99.57

4 {𝑞1, … , 𝑞57} {𝑞57} 409 99.57

5 {𝑞1, … , 𝑞27} {𝑞27} 309 97.85

Average successfull processing amino acids contained
in sequence [%] 99.14

* It means percentual rate of all correctly processed amino acids in sequence

Fig. 9.41: Analysis of head movement for 1YAR
chain A result 1

Fig. 9.42: Analysis of head movement for 1YAR
chain A result 2

Fig. 9.43: Analysis of head movement for 1YAR
chain A result 3

Fig. 9.44: Analysis of head movement for 1YAR
chain A result 4

- 71 -

Fig. 9.45: Analysis of head movement for 1YAR
chain A result 5

9.2.8 1FNT

Crystal structure of the 20S proteasome from yeast in complex with the proteasome activator
PA26 from Trypanosome Brucei at 3.2 Angstroms resolution [30, 43] – chain A. Length of
sequence is 252 amino acids.

Seq. 15: 1FNT chain A sequence

MSGAAAASAAGYDRHITIFSPEGRLYQVEYAFKATNQTNINSLAVRGKDCTVVIS
QKKVPDKLLDPTTVSYIFCISRTIGMVVNGPIPDARNAALRAKAEAAEFRYKYGY
DMPCDVLAKRMANLSQIYTQRAYMRPLGVILTFVSVDEELGPSIYKTDPAGYYVG
YKATATGPKQQEITTNLENHFKKSKIDHINEESWEKVVEFAITHMIDALGTEFSK
NDLEVGVATKDKFFTLSAENIEERLVAIAEQD

Fig. 9.46: Image of 1FNT with highlighted chain A

Seq. 16: Test sequence for 1FNT

KDWSRGPCDTHHWRVILPYTTINKNDGQKYSYHNQGHIHPRYMSKLCNMWESSSY
ETFAGFDAEMENVPMKRPLWQMSSISMKKWCLLPLRWDIWCFCKSAKMCENNPAA
EQRIWFTIMSEGADTKGTCCIFTPPPECCCTYMNVALPQHWASARQPNQMRGWML
NVTMVAALWESWTGIHVNFMMGHNMNYLQNPYCRAVMWKNHLPRIAEMNQHDPCF
YRIQCTLCCVYKNTMIRGYNPVITHFQLVDDT

- 72 -

Table 22: Summary of 5 obtained results of processing 1FNT chain A

Result no. Q F Steps Rate* [%]

1 {𝑞1, … , 𝑞120} {𝑞120} 597 97.62

2 {𝑞1, … , 𝑞111} {𝑞111} 537 98.02

3 {𝑞1, … , 𝑞123} {𝑞123} 562 98.81

4 {𝑞1, … , 𝑞104} {𝑞104} 460 99.21

5 {𝑞1, … , 𝑞149} {𝑞149} 616 99.60

Average successfull processing amino acids contained in
sequence [%] 98.65

* It means percentual rate of all correctly processed amino acids in sequence

Fig. 9.47: Analysis of head movement for
1FNT chain A result 1

Fig. 9.48: Analysis of head movement for 1FNT
chain A result 2

Fig. 9.49: Analysis of head movement for
1FNT chain A result 3

Fig. 9.50: Analysis of head movement for 1FNT
chain A result 4

Fig. 9.51: Analysis of head movement for 1FNT chain
A result 5

- 73 -

9.2.9 2J00

Structure of the Thermus Thermophilus 70S ribosome complexed with mRNA, tRNA and
paromomycin [30, 47] – chain B. Length of sequence is 256 amino acids.

Seq. 17: 2J00 chain B sequence

MPVEITVKELLEAGVHFGHERKRWNPKFARYIYAERNGIHIIDLQKTMEELERTF
RFIEDLAMRGGTILFVGTKKQAQDIVRMEAERAGMPYVNQRWLGGMLTNFKTISQ
RVHRLEELEALFASPEIEERPKKEQVRLKHELERLQKYLSGFRLLKRLPDAIFVV
DPTKEAIAVREARKLFIPVIALADTDSDPDLVDYIIPGNDDAIRSIQLILSRAVD
LIIQARGGVVEPSPSYALVQEAEATETPEGESEVEA

Seq. 18: Test sequence for 2J00

CSNACPLFLFYANWDAEVINSSMTKSQMPTRLPLRSLFNWLVKSPFCYGYKWHMC
MNQDGSHVSTVESCGSEMDFNDFFIDCIIYKLNPFWRYVGLKPEHTSQMGKKYQD
QRVCPTAINFYFMEIWYLKPDHNWRNWQACMIWSPFLRYGTSYYVSGEPKETDQS
TNCMFMQTIPQPKWESFMVQQQWVAYQGNNPLQCLVFKRLTYQQPYPDIKDFIYC
DHAAFIKLTMDESESATCGSWQICPDHLRQLIEVEW

Table 23: Summary of 5 obtained results of processing 2J00 chain B

Result no. Q F Steps Rate* [%]

1 {𝑞1, … , 𝑞88} {𝑞88} 483 99.61

2 {𝑞1, … , 𝑞80} {𝑞80} 488 98.83

3 {𝑞1, … , 𝑞50} {𝑞50} 425 98.83

4 {𝑞1, … , 𝑞97} {𝑞97} 512 98.44

5 {𝑞1, … , 𝑞82} {𝑞82} 492 98.44

Average successfull processing amino acids contained
in sequence [%] 98.83

* It means percentual rate of all correctly processed amino acids in sequence

Fig. 9.52: Image of 2J00 with highlighted chain B

- 74 -

Fig. 9.53: Analysis of head movement for 2J00
chain B result 1

Fig. 9.54: Analysis of head movement for 2J00
chain B result 2

Fig. 9.55: Analysis of head movement for 2J00
chain B result 3

Fig. 9.56: Analysis of head movement for 2J00
chain B result 4

Fig. 9.57: Analysis of head movement for 2J00
chain B result 5

9.2.10 1A4Y

Ribonuclease inhibitor – angiogenin complex [30, 37] – chain A. Length of sequence is 460
amino acids.

- 75 -

Seq. 19: 1A4Y chain A sequence

SLDIQSLDIQCEELSDARWAELLPLLQQCQVVRLDDCGLTEARCKDISSALRVNP
ALAELNLRSNELGDVGVHCVLQGLQTPSCKIQKLSLQNCCLTGAGCGVLSSTLRT
LPTLQELHLSDNLLGDAGLQLLCEGLLDPQCRLEKLQLEYCSLSAASCEPLASVL
RAKPDFKELTVSNNDINEAGVRVLCQGLKDSPCQLEALKLESCGVTSDNCRDLCG
IVASKASLRELALGSNKLGDVGMAELCPGLLHPSSRLRTLWIWECGITAKGCGDL
CRVLRAKESLKELSLAGNELGDEGARLLCETLLEPGCQLESLWVKSCSFTAACCS
HFSSVLAQNRFLLELQISNNRLEDAGVRELCQGLGQPGSVLRVLWLADCDVSDSS
CSSLAATLLANHSLRELDLSNNCLGDAGILQLVESVRQPGCLLEQLVLYDIYWSE
EMEDRLQALEKDKPSLRVIS

Seq. 20: Test sequence for 1A4Y

RTAHPKGFPNVQDGGNISFQMSYWHMLNSLNYYKPVGADATVFQCLPEPNFPIFH
HHKGMHHWYPFWYAINWAGCIQHLTCIKPKIEIRRIVCFQTCQWQRVEMIPHYQD
NKEGEVLWDESNSKFQALLHYIGAKEASWIFVYAMHPCTIGCHEICPSWVNAIYN
IVQHWWIAWYHDREVPSAAYCKRHTHTHHCFLSEPRGKKVPFRCMKMTIPSAEGM
GNLFLAKFDPNWNQQKGVVWQVHPAAMQIPCAGWMVINMGFPGCYTKDSKLEDKH
WTWRQWFHITHCFQSNPDVYHADDFKNFNGYIKTNFKWGNISASLMEQNMEPFIG
IIWAQGICITFMHWDITVEMRKTFEGRTYVSPCGRVVWASRRWNCAGQYSQRPPT
QMRIHCAIQFHWKINDLFYQTCTYVMHMWNCLKFSSSDMCLPNNEACCPIPDIDN
HKTGAVSPMLTWGQSLMRWP

Table 24: Summary of 5 obtained results of processing 1A4Y chain A

Result no. Q F Steps Rate* [%]

1 {𝑞1, … , 𝑞166} {𝑞166} 865 98.69

2 {𝑞1, … , 𝑞159} {𝑞159} 885 99.13

3 {𝑞1, … , 𝑞169} {𝑞169} 928 98.69

4 {𝑞1, … , 𝑞130} {𝑞130} 792 99.13

5 {𝑞1, … , 𝑞147} {𝑞147} 875 99.78

Average successfull processing amino acids contained in
sequence [%] 99.08

* It means percentual rate of all correctly processed amino acids in sequence

Fig. 9.58: Image of 1A4Y with highlighted chain A

- 76 -

Fig. 9.59: Analysis of head movement for 1A4Y
chain A result 1

Fig. 9.60: Analysis of head movement for 1A4Y
chain A result 2

Fig. 9.61: Analysis of head movement for 1A4Y
chain A result 3

Fig. 9.62: Analysis of head movement for 1A4Y
chain A result 4

Fig. 9.63: Analysis of head movement for 1A4Y
chain A result 5

9.2.11 1BMF

Bovine mitochondrial F1 - atpase [30, 42] – chain A. Length of sequence is 510 amino acids.

Seq. 21: 1BMF chain A sequence

QKTGTAEVSSILEERILGADTSVDLEETGRVLSIGDGIARVHGLRNVQAEEMVEF
SSGLKGMSLNLEPDNVGVVVFGNDKLIKEGDIVKRTGAIVDVPVGEELLGRVVDA
LGNAIDGKGPIGSKARRRVGLKAPGIIPRISVREPMQTGIKAVDSLVPIGRGQRE
LIIGDRQTGKTSIAIDTIINQKRFNDGTDEKKKLYCIYVAIGQKRSTVAQLVKRL
TDADAMKYTIVVSATASDAAPLQYLAPYSGCSMGEYFRDNGKHALIIYDDLSKQA
VAYRQMSLLLRRPPGREAYPGDVFYLHSRLLERAAKMNDAFGGGSLTALPVIETQ
AGDVSAYIPTNVISITDGQIFLETELFYKGIRPAINVGLSVSRVGSAAQTRAMKQ

- 77 -

VAGTMKLELAQYREVAAFAQFGSDLDAATQQLLSRGVRLTELLKQGQYSPMAIEE
QVAVIYAGVRGYLDKLEPSKITKFENAFLSHVISQHQALLGKIRTDGKISEESDA
KLKEIVTNFLAGFEA

Seq. 22: Test sequence for 1BMF

YGWNPGYPDESYGAICYAVIHMELVNINDWFVTPIGTIREAHWNEYDLFVEAELC
RMSYCCVGMYYYTKCFVKTWRQIWPKLSTDHQYDAQCGFCFRKGWHPTTCVPTDE
RQYYHDSYRERWIAFPEMMEYPVKYPMQHEQCPSDFLLNIYHCNYWMFGCRNAFW
YWEVRFATLVMDRKAGKCRNLRCEWPSAKGKHSGHSTNRSWGIIRWGFLNRVDLE
IDMYFFFSAMSRYVCMCARACYLQSVNHTVIRMGRPYWLDHVFFEFDLHRIRDAA
YVMLRAVGCTHGWILCAPLVWWHNCSVTYYSVDMEMCIWRYRGYQLRFWTWNGIR
VATPKNHTQLRGSKNFFHRWESFKVPYHFMLWLLKESFDIGKPMMNKQTSQRNAA
LDRDVFAEPCDIQEDDRYHGSPMRHWRHEYKRDFFQSAHIYHNHNRYCRRKHLVY
HRWPTRLRHRHAPHACWDGMEWQSIRRMYGEAYKMAWCPTVCWYACRQEAVNRPR
SIMFITSDYDASWCH

Table 25: Summary of 5 obtained results of processing 1BMF chain A

Result no. Q F Steps Rate* [%]

1 {𝑞1, … , 𝑞110} {𝑞110} 814 99.41

2 {𝑞1, … , 𝑞142} {𝑞142} 934 99.02

3 {𝑞1, … , 𝑞114} {𝑞114} 872 98.63

4 {𝑞1, … , 𝑞142} {𝑞142} 912 99.22

5 {𝑞1, … , 𝑞142} {𝑞142} 952 99.22

Average successfull processing amino acids contained in
sequence [%] 99.10

* It means percentual rate of all correctly processed amino acids in sequence

Fig. 9.64: Image of 1BMF with highlighted
chain A

- 78 -

Fig. 9.65: Analysis of head movement for
1BMF chain A result 1

Fig. 9.66: Analysis of head movement for
1BMF chain A result 2

Fig. 9.67: Analysis of head movement for
1BMF chain A result 3

Fig. 9.68: Analysis of head movement for
1BMF chain A result 4

Fig. 9.69: Analysis of head movement for 1BMF
chain A result 5

4.1.1. 2ZV4

The structure of rat liver vault at 3.5 Angstrom resolution [30, 49] – chain N. Length of
sequence is 861 amino acids.

Seq. 23: 2ZV4 chain N sequence

MATEEAIIRIPPYHYIHVLDQNSNVSRVEVGPKTYIRQDNERVLFAPVRMVTVPP
RHYCIVANPVSRDTQSSVLFDITGQVRLRHADQEIRLAQDPFPLYPGEVLEKDIT
PLQVVLPNTALHLKALLDFEDKNGDKVMAGDEWLFEGPGTYIPQKEVEVVEIIQA
TVIKQNQALRLRARKECFDREGKGRVTGEEWLVRSVGAYLPAVFEEVLDLVDAVI

- 79 -

LTEKTALHLRALQNFRDLRGVLHRTGEEWLVTVQDTEAHVPDVYEEVLGVVPITT
LGPRHYCVILDPMGPDGKNQLGQKRVVKGEKSFFLQPGERLERGIQDVYVLSEQQ
GLLLKALQPLEEGESEEKVSHQAGDCWLIRGPLEYVPSAKVEVVEERQAIPLDQN
EGIYVQDVKTGKVRAVIGSTYMLTQDEVLWEKELPSGVEELLNLGHDPLADRGQK
GTAKPLQPSAPRNKTRVVSYRVPHNAAVQVYDYRAKRARVVFGPELVTLDPEEQF
TVLSLSAGRPKRPHARRALCLLLGPDFFTDVITIETADHARLQLQLAYNWHFELK
NRNDPAEAAKLFSVPDFVGDACKAIASRVRGAVASVTFDDFHKNSARIIRMAVFG
FEMSEDTGPDGTLLPKARDQAVFPQNGLVVSSVDVQSVEPVDQRTRDALQRSVQL
AIEITTNSQEAAAKHEAQRLEQEARGRLERQKILDQSEAEKARKELLELEAMSMA
VESTGNAKAEAESRAEAARIEGEGSVLQAKLKAQALAIETEAELERVKKVREMEL
IYARAQLELEVSKAQQLANVEAKKFKEMTEALGPGTIRDLAVAGPEMQVKLLQSL
GLKSTLITDGSSPINLFSTAFGLLGLGSDGQPPAQK

Seq. 24: Test sequence for 2ZV4

LWWFIHANHAWYGMTQNTYCKIFILWLQASCYCVVNCYQCFGCQSVHYVLIYKQF
EMVFDWIGNQRDWSARPWHQMLKTILVHKACYTCVHPEQCMTAILALMEINSLYV
NSQYLPEAHGKMLMMTEIWISMGDGDPTTCHETIEQVNSGSAEWQGYFMNPVDDA
NWAMKQMRLAKAIRTAVMSIKWVRLKLIAWDHAHNQQTSLMNPCIKLCVAYPFEI
FFEKESWVSPIYIVFRNMHWACASVCFPKEWMQDNPHPHTAIAVFYSLTLLQSNE
RKERLIGIHWCTENNESYDKIEDSGYCLWYTMYCGRQVVWEMYNTWWWTCHYYKF
GENGFTMDRQREWRYLRSGILYEGHWDWGADYSVFFFMRWSHPCGQMYGQPEMKE
RGNGFFCLTWEIYCRGQFSSLMYKNHSVRALFAIITHNCAKINVAVEHQPCFVRE
QMDGGPCCQWYLFQTGADWQPNPFCESLDKTFLEDIYNAILGEPMFSFMIRYSHA
FCQPKSWQKLQRWFTCGVISGTDSVNQQMLSNFQFMALAVKWENNREMLCMTDMN
SPQFGNSECYPCPPFSTPSARHCDVFRTMLWSKQSWHHKVMRNVGYLPNQYECFN
WNESSNAWTEHPVVKCFPPICNLHYPFFMRTNISAIGDFWDEGVQKSRFGGTLVQ
QSHNSLANFHTAMEEDCCHGGQPKNYAQQILSAVPCMTQDYKVVLHMWPYKLDHD
TLAMDVGILNPRVRLTECEFKEYYNSTYTWWWKCCKHPTDEMDPTSNMNWLFIER
YWMLIATNYIGEDYHRNPNICIDNAEGVIKVGFLGWYDLNLPWSPFGLWYVTTIC
PAQYEKPYKAEIERELMGTEMSMMEPQPPDSKSDKM

Fig. 9.70: Image of 2ZV4 with highlighted chain N

- 80 -

Table 26: Summary of 5 obtained results of processing 2ZV4 chain N

Result no. Q F Steps Rate* [%]

1 {𝑞1, … , 𝑞173} {𝑞173} 1410 99.54

2 {𝑞1, … , 𝑞144} {𝑞144} 1347 99.42

3 {𝑞1, … , 𝑞119} {𝑞119} 1246 99.30

4 {𝑞1, … , 𝑞150} {𝑞150} 1334 99.77

5 {𝑞1, … , 𝑞154} {𝑞154} 1252 99.65

Average successfull processing amino acids contained in
sequence [%] 99.54

* It means percentual rate of all correctly processed amino acids in sequence

Fig. 9.71: Analysis of head movement for 2ZV4
chain N result 1

Fig. 9.72: Analysis of head movement for 2ZV4
chain N result 2

Fig. 9.73: Analysis of head movement for 2ZV4
chain N result 3

Fig. 9.74: Analysis of head movement for 2ZV4
chain N result 4

Fig. 9.75: Analysis of head movement for 2ZV4
chain N result 5

- 81 -

 CONCLUSION 10
In this doctoral thesis the evolutionary synthesis of the rules of the Turing machine’s transition
function was described and introduced. Except background research which represents analysis
of present utilization of artificial intelligence for programming Turing machine, doctoral thesis
provides two short studies which are necessary for doctoral thesis’ topic dealt with. These are
study of finite automata theory focused on Turing machines and study of selected artificial
intelligence methods aimed on Differential Evolution and Self-Organizing Migrating Algorithm.
Thanks to mentioned studies it was possible to specify conception of Turing machine software
implementation in Wolfram Mathematica and Turing machine evolutionary programming. The
software implementation of Turing machine was important for the doctoral research because it
was used as parts of optimization algorithms approaches. Also it was used for visualization of
Turing machine behavior. The doctoral research was further aimed on outlining possibilities of
using artificial intelligence for evolutionary optimization and its applications to the rules of the
Turing machine’s transition function. There was necessary to deal with problematics of proper
representation of Turing machine rules for processing by evolutionary algorithms and
conception of cost function of evolutionary algorithms. Within the scope of the doctoral
research, two approaches to Turing machine evolutionary programming were designed and
described in this doctoral thesis. As well as conceptions of algorithms used in cost functions of
selected evolutionary algorithms there were introduced. The approaches are classical
optimization and per-partes optimization. The former is suitable for estimating the rules of
Turing machine when processing not very complex problems because it optimizes the complete
set of rules at once. The latter estimates each rule separately thus it is also possible to obtain the
rules of Turing machine when processing highly complex problems. On the previous pages there
were brough the proof of proper Turing machine evolutionary programming for processing
selected example problems by former of designed approaches and analysis based on above
proof. The analysis was concerned with Turing machine evolutionary programming dependence
on custom settings of Differential Evolution and Self-Organizing Migrating Algorithm. The
analysis represents highly important part of doctoral thesis because shows influence of selected
evolutionary algorithms and their settings on Turing machine evolutionary programming
process. As final part of doctoral thesis conception of primary protein structures processing by
evolutionary programmed Turing machine was introduced. The final part is a key part of the
doctoral thesis and represents practical utilization of the topic the doctoral thesis deals with. The
final part also comprehends proofs of proper Turing machine evolutionary programming for
processing proteins on twelve selected primary protein structures by the latter of designed
approaches.

As background reseach presented in introductory part of the doctoral thesis shown, currently
it is not yet quitely common to use methods of artificial intelligence to estimation of the Turing
machines rules except very little of cases. Therefore it can be presumed that approaches
described in this doctoral thesis and related research papers and articles published are entirely
novel and uniqe especially if Differential Evolution and Self-Organizing Migrating Algorithm
are considered as optimization methods.

- 82 -

 LITERATURE 11
[1] BERING, C. L. Chemistry: Foundations and Applications. Macmillan Reference USA,

2004. vol. 2. p. 54-56. Enzymes. ISBN 0-02-8659319.
[2] BLACK, S., The Origin of Proteins. The American Biology Teacher. 2004, vol. 66, no. 6,

p. 408-408.
[3] DOEBLER, S. A. The Dawn of the Protein Era. BioScience. 2000, vol. 50, no. 1, p. 15-

20.
[4] DRUMMOND, A. J., ASHTON, B., BUXTON, S., CHEUNG, M., COOPER, A.,

DURAN, C., FIELD, M., HELED, J., KEARSE, M., MARKOWITZ, S., MOIR, R.,
STONES-HAVAS, S., STURROCK, S., THIERER, T., WILSON, A., Geneious v5.5,
2011. Available from: http://www.geneious.com.

[5] GROVER, N. Chemistry: Foundations and Applications. Macmillan Reference USA,
2004. vol. 2. p. 7-8. Deoxyribonucleic Acid (DNA). ISBN 0-02-8659319.

[6] GROVER, N. Chemistry: Foundations and Applications. Macmillan Reference USA,
2004. vol. 4. p. 84-85. Ribonucleic Acid. ISBN 0-02-8659319.

[7] HOLME, T. A. Chemistry: Foundations and Applications. Macmillan Reference USA,
2004. vol. 1. p. 44-45. Amino Acid. ISBN 0-02-8659319.

[8] HOLME, T. A. Chemistry: Foundations and Applications. Macmillan Reference USA,
2004. vol. 4. p. 34-38. Proteins. ISBN 0-02-8659319.

[9] HOLME, T. A. Chemistry: Foundations and Applications. Macmillan Reference USA,
2004. vol. 4. p. 39-43. Protein Synthesis. ISBN 0-02-8659319.

[10] HOPCROFT, J. E., MOTWANI, R., ULLMAN, J. D. Introduction to Automata Theory,
Languages and Computation. 2nd s.l., Pearson Education, 2000. ISBN 0-201-44124-1.

[11] KOURIL, L. F# Artificial Intelligence Library. In Codeplex [online]. © 2012 [cit. 2011-
09-08]. Available from: http://fsai.codeplex.com.

[12] KOURIL, L., JASEK, R. Dependence of Evolutionary-Programming the Turing Machine
on Settings of Differential Evolution. In Annals of DAAAM for 2011 & Proceedings of the
22nd International DAAAM Symposium. Vienna, Austria, 2011, p. 1537-1538. ISBN 978-
3-901509-83-4, ISSN 1726-9679.

[13] KOURIL, L., JASEK, R. Comparison of Algorithms for Evolutionary-Programming the
Turing Machine. In Annals of DAAAM for 2011 & Proceedings of the 22nd International
DAAAM Symposium. Vienna, Austria, 2011, p. 1539-1540. ISBN 978-3-901509-83-4,
ISSN 1726-9679.

[14] KOURIL, L., JASEK, R., MOTYL, I. A Description of the Protein Structures by
Evolutionary-Programmed Turing Machine. In Recent Advances in Signal Processing,
Computational Geometry and System Theory - Proceedings of the 11th WSEAS
International Conference on Signal Processing, Computational Geometry and Artificial
Vision (ISCGAV ‘11). Florence, Italy, 2011, p. 278-283. ISBN 978-61804-027-5.

[15] KOURIL, L., ZELINKA, I. An Evaluative Algorithm for Per-Partes-Programming the
Turing Machine. In Proceedings of the 17th International Conference on Soft Computing
MENDEL 2011. Brno, Czech Republic, 2011, p. 30-37. ISBN 978-80-214-4302-0.

[16] KOURIL, L., ZELINKA, I. Evolutionary Synthesis of Rules for Programming the Turing
Machine. Odborny vedecky casopis Trilobit [online]. 2010, no. 2 [cit. 2012-04-10]. ISSN
1804-1795. Available from: http://trilobit.fai.utb.cz/evolutionary-synthesis-of-rules-for-
programming-a-turing-machine.

[17] KOURIL, L., ZELINKA, I. Evolutionary-Estimated Programming the Turing Machine by
Differential Evolution. In Proceedings of the 16th International Conference on Soft
Computing MENDEL 2010. Brno, Czech Republic, 2010, p. 41-48. ISBN 978-80-214-
4120-0.

- 83 -

[18] LAMPINEN, J., ZELINKA, I. New Ideas of Optimization. 1st London, McGraw-Hill,
1999. p. 127-146. Mechanical Engineering Design Optimization by Differential
Evolution. ISBN 007-709506-5.

[19] MAYER, D. G., KINGHORN, B. P., ARCHER, A. A. Differential evolution - an easy
and efficient evolutionary algorithm for model optimization. Agricultural Systems. 2005,
vol. 83, no. 3, p. 315-328.

[20] NAIDOO, A., PILLAY, N. Using Genetic Programming for Turing Machine Induction.
In Proceeding EuroGP ’08 Proceedings of the 11th European Conference on Genetic
Programming. Springer-Verlag, 2008, p. 350-361. ISBN 3-540-78670-8.

[21] ROBERTS-KIRCHHOFF, E. S. Chemistry: Foundations and Applications. Macmillan
Reference USA, 2004. vol. 4. p. 32. Primary Structure. ISBN 0-02-8659319.

[22] SCOVELL, W. M. Chemistry: Foundations and Applications. Macmillan Reference
USA, 2004. vol. 1. p. 105-107. Base Pairing. ISBN 0-02-8659319.

[23] SCOVELL, W. M. Chemistry: Foundations and Applications. Macmillan Reference
USA, 2004. vol. 1. p. 237-239. Codon. ISBN 0-02-8659319.

[24] SCOVELL, W. M. Chemistry: Foundations and Applications. Macmillan Reference
USA, 2004. vol. 2. p. 20-22. DNA Replication. ISBN 0-02-8659319.

[25] SCOVELL, W. M. Chemistry: Foundations and Applications. Macmillan Reference
USA, 2004. vol. 3. p. 186-187. Nucleotides. ISBN 0-02-8659319.

[26] SCOVELL, W. M. Chemistry: Foundations and Applications. Macmillan Reference
USA, 2004. vol. 3. p. 182-186. Nucleic Acids. ISBN 0-02-8659319.

[27] SCHWABACHER, A. Chemistry: Foundations and Applications. Macmillan Reference
USA, 2004. vol. 3. p. 227. Peptide Bond. ISBN 0-02-8659319.

[28] SULLIVAN, D. M. Chemistry: Foundations and Applications. Macmillan Reference
USA, 2004. vol. 2. p. 23-24. Double Helix. ISBN 0-02-8659319.

[29] SULLIVAN, D. M. Chemistry: Foundations and Applications. Macmillan Reference
USA, 2004. vol. 4. p. 43-44. Protein Translation. ISBN 0-02-8659319.

[30] SWAMINATHAN, J., VELANKAR, S. Interesting Protein Structures. In: Workshop
Tutorials [online]. PDBe – Protein Data Bank Europe, ©2012 [cit. 2012-04-24].
Available
from: http://www.ebi.ac.uk/pdbe/docs/Tutorials/workshop_tutorials/InterestingProtein
Structures.html

[31] TANOMARU, J. Evolving Turing Machines from Examples. In Proceeding AE ’97
Selected Papers from the Third European Conference on Artificial Evolution. Springer-
Verlag, 1998, p. 167-182. ISBN 3-540-64169-6.

[32] VALLEJO, E. E., RAMOS, F. Evolving Turing Machines for Biosequence Recognition
and Analysis. In Proceeding EuroGP ’01 Proceedings of the 4th European Conference on
Genetic Programming. Springer-Verlag, 2001, p. 192-203. ISBN 3-560-41899-7.

[33] ZELINKA, I., OPLATKOVA, Z., SEDA, M., OSMERA, P., VCELAR, F. Evolucni
vypocetni techniky - principy a aplikace. Praha: BEN - technicka literatura, 2008. ISBN
80-7300-218-3.

[34] ZELINKA, I. New Optimization Techniques in Engineering. Springer-Verlag, 2004. p.
167-218. Chapter 7. SOMA - Self-Organizing Migrating Algorithm. ISBN 3-540-
20167X.

[35] ZELINKA, I. Umela inteligence v problemech globalni optimalizace. Praha: BEN –
technicka literatura, 2002. ISBN 80-7300-069-5.

[36] ZVELEBIL M., BAUM, J. O. Understanding Bioinformatics. Garland Science, Taylor &
Francis Group, LLC, 2008. ISBN 0-8153-4024-9.

- 84 -

[37] 1A4Y – Ribonuclease Inhibitor – Angiogenin Complex. PDBe Protein Data Bank Europe
[online]. ©2012 [cit. 2012-04-27]. Available from: http://www.ebi.ac.uk/pdbe-srv/view/
entry/1a4y/primary.

[38] 1AOI – Complex between Nucleosome Core Particle (H3, H4, H2A, H2B) and 146 BP
Long DNA Fragment. PDBe Protein Data Bank Europe [online]. ©2012 [cit. 2012-04-
27]. Available from: http://www.ebi.ac.uk/pdbe-srv/view/entry/1aoi/primary.

[39] 1B08 – Lung Surfactant Protein D (SP-D). PDBe Protein Data Bank Europe [online].
©2012 [cit. 2012-04-27]. Available from: http://www.ebi.ac.uk/pdbe-srv/view/entry/
1b08/primary.

[40] 1B09 – Human C-Reactive Protein Complexed with Phosphocholine. RCSB Protein Data
Bank [online]. ©2012 [cit. 2012-04-24]. Available from: http://www.pdb.org/pdb/
explore/explore.do?structureId=1b09.

[41] 1B09 – Human C-Reactive Protein Complexed with Phosphocholine. PDBe Protein Data
Bank Europe [online]. ©2012 [cit. 2012-04-27]. Available from: http://www.ebi.ac.uk/
pdbe-srv/view/entry/1b09/primary.

[42] 1BMF – Bovine Mitochondrial F1 – Atpase. PDBe Protein Data Bank Europe [online].
©2012 [cit. 2012-04-27]. Available from: http://www.ebi.ac.uk/pdbe-srv/view/ entry/
1bmf/primary.

[43] 1FNT – Crystal Structure of the 20S Proteasome from Yeast in Complex with the
Proteasome Activator PA26 from Trypanosome Brucei at 3.2 Angstroms Resolution.
PDBe Protein Data Bank Europe [online]. ©2012 [cit. 2012-04-27]. Available
from: http://www.ebi.ac.uk/pdbe-srv/view/entry/1fnt/primary.

[44] 1LIT – Human Lithostathine. PDBe Protein Data Bank Europe [online]. ©2012 [cit.
2012-04-27]. Available from: http://www.ebi.ac.uk/pdbe-srv/view/entry/1lit/primary.

[45] 1TUP – Tumor Supressor P53 Complexed with DNA. PDBe Protein Data Bank Europe
[online]. ©2012 [cit. 2012-04-27]. Available from: http://www.ebi.ac.uk/pdbe-srv/view/
entry/1tup/primary.

[46] 1YAR – Structure of Archeabacterial 20S Proteasome Mutant D9S – PA26 Complex.
PDBe Protein Data Bank Europe [online]. ©2012 [cit. 2012-04-27]. Available
from: http://www.ebi.ac.uk/pdbe-srv/view/entry/1yar/primary.

[47] 2J00 – Structure of the Thermus Themrophilus 70S Ribosome Complexed with MRNA,
TRNA and Paromomycin (Part 1 of 4). PDBe Protein Data Bank Europe [online]. ©2012
[cit. 2012-04-27]. Available from: http://www.ebi.ac.uk/pdbe-
srv/view/entry/2j00/primary.

[48] 2J01 – Structure of the Thermus Thermophilus 70S Ribosome Complexed with MRNA,
TRNA and Paromomycin (Part 2 of 4). PDBe Protein Data Bank Europe [online]. ©2012
[cit. 2012-04-27]. Available from: http://www.ebi.ac.uk/pdbe-
srv/view/entry/2j01/primary.

[49] 2ZV4 – The Structure of Rat Liver Vault at 3.5 Angstrom Resolution. PDBe Protein Data
Bank Europe [online]. ©2012 [cit. 2012-04-27]. Available from: http://www.ebi.ac.uk/
pdbe-srv/view/entry/2zv4/primary.

[50] Microsoft F# Developer Center [online]. ©2012 [cit. 2012-02-03]. Available
from: http://www.fsharp.net.

[51] Turing Machines implemented in JavaScript. The Alan Turing Internet Scrapbook
[online]. [Cit. 2011-04-15]. Available from:
http://www.turing.org.uk/turing/scrapbook/tmjava.html.

- 85 -

 PUBLICATIONS 12

12.1 Conference proceedings and journals
1. KOURIL, L., POSPISILIK, M., ADAMEK, M., JASEK, R. Application of Differential

Evolution for Audio Transformers Optimization. Int. J. of Circuits, Systems and Signal
Processing. 2012, vol. 6, no. 3, p. 231-240. ISSN 1998-4464.

2. KOURIL, L., POSPISILIK, M., ADAMEK, M., JASEK, R. Flat Coil Optimizer in the
Meaning to Coil Optimization. Int. J. of Circuits, Systems and Signal Processing. 2012,
vol. 6, no. 4, p. 241-248. ISSN 1998-4464.

3. POSPISILIK, M., KOURIL, L., ADAMEK, M., ZELINKA, I., JASEK, R. Custom
Winding Ratio Analysis of Evolutionary Optimized Audio Transformer. In Proceedings
of International Conference on Prediction, Modeling and Analysis of Complex Systems
NOSTRADAMUS 2012. Ostrava, Czech Republic, 2012. Accepted for publication.

4. POSPISILIK, M., KOURIL, L., OTAHAL, J., ADAMEK, M. Proposal on Intelligent
Wearable Sensor Suit. In Proceedings of the 16th WSEAS International Conference on
Circuits and Systems. Kos, Greece, 2012, p. 564-567. ISBN 978-1-61804-108-1.

5. POSPISILIK, M., KOURIL, L., ADAMEK, M., ZELINKA, I., JASEK, R. SOMA-Based
Audio Transformers Optimization. In Proceedings of the 18th International Conference
on Soft Computing MENDEL 2012. Brno, Czech Republic, 2012, p. 326-331. ISBN 978-
80-214-4540-6.

6. POSPISILIK, M., KOURIL, L., ADAMEK, M. Contactless ECG Scanning Device
Hardware Design Proposal. In Proceedings of the XX IMEKO World Congress. Busan,
Republic of Korea, 2012. Accepted for publication.

7. KOURIL, L., POSPISILIK, M., ADAMEK, M., JASEK, R. Audio Transformers
Optimization by Means of Evolutionary Algorithm. In Proceedings of 5th WSEAS World
Congress on Applied Computing Conference. Faro, Portugal, 2012, p. 133-138. ISBN
978-1-61804-089-3.

8. KOURIL, L. POSPISILIK, M. ADAMEK, M., JASEK, R. Coil Optimization with Aid of
Flat Coil Optimizer. In Proceedings of 5th WSEAS World Congress on Applied
Computing Conference. Faro, Portugal, 2012, p. 124-127. ISBN 978-1-61804-089-3.

9. KOURIL, L., JASEK, R. Dependence of Evolutionary-Programming the Turing Machine
on Settings of Differential Evolution. In Annals of DAAAM for 2011 & Proceedings of
the 22nd International DAAAM Symposium. Vienna, Austria, 2011, p. 1537-1538. ISBN
978-3-901509-83-4. ISSN 1726-9679.

10. KOURIL, L., JASEK, R. Comparison of Algorithms for Evolutionary-Programming the
Turing Machine Implemented in Wolfram Mathematica and Microsoft .NET Framework.
In Annals of DAAAM for 2011 & Proceedings of the 22nd International DAAAM
Symposium. Vienna, Austria, 2011, p. 1539-1540. ISBN 978-3-901509-93-4. ISSN 1726-
9679.

11. POSPISILIK, M., KOURIL, L., ADAMEK, M. Comparison of Diferential Evolution and
Self-Organising Migrating Algorithm at Flat Inductor Optimisation. In Proceedings of
the XIII Annual International Conference Internet, Competiveness and Organizational
Security – Process Management and the Use of Modern Technologies. Zlin, Czech
Republic, 2011, p. 323-327. ISBN 978-80-7454-012-7.

12. POSPISILIK, M., KOURIL, L., ADAMEK, M. Approach to Electrical Circuitry
Designing by Employing Differential Evolution. In Proceedings of the XIII Annual
International Conference Internet, Competitiveness and Organizational Security –
Process Management and the Use of Modern Technologies. Zlin, Czech Republic, 2011,
p. 328-330. ISBN 978-80-7454-012-7.

- 86 -

13. KOURIL, L., JASEK, R., MOTYL, I. A Description of the Protein Structures by
Evolutionary-Programmed Turing Machine. In Recent Advances in Signal Processing,
Computational Geomatry and System Theory – Proceedings of the 11th WSEAS
International Conference on Signal Processing, Computational Geometry and Artificial
Vision (ISCGAV ’11). Florence, Italy, 2011, p. 278-283. ISBN 978-1-61804-027-5.

14. POSPISILIK, M., KOURIL, L., MOTYL, I., ADAMEK, M. Single and Double Layer
Spiral Planar Inductors Optimisation with the Aid of Self-Organising Migrating
Algorithm. In Recent Advances in Signal Processing, Computational Geometry and
System Theory – Proceedings of the 11th WSEAS International Conference on Signal
Processing, Computational Geometry and Artificial Vision (ISCGAV ’11). Florence,
Italy, 2011, p. 272-277. ISBN 978-1-61804-027-5.

15. KOURIL, L., ZELINKA, I. An Evaluative Algorithm for Evolutionary-Estimated Per-
Partes-Programming the Turing Machine. In Proceedings of the 17th International
Conference on Soft Computing MENDEL 2011. Brno, Czech Republic, 2011, p. 30-37.
ISBN 978-80-214-4302-0.

16. POSPISILIK, M., KOURIL, L., ADAMEK, M. Planar Inductor Optimised by
Evolutionary Algorithm. In Proceedings of the 17th International Conference on Soft
Computing MENDEL 2011. Brno, Czech Republic, 2011, p. 38-43. ISBN 978-80-214-
4302-0.

17. KOURIL, L., ZELINKA, I. Evolutionary Synthesis of Rules for Programming the Turing
Machine. Odborny vedecky casopis Trilobit [online]. 2010, no. 2 [cit. 2012-04-10]. ISSN
1804-1795. Available from: http://trilobit.fai.utb.cz/evolutionary-synthesis-of-rules-for-
programming-a-turing-machine

18. KOURIL, L., ZELINKA, I. Evolutionary-Estimated Programming the Turing Machine
by Differential Evolution. In Proceedings of the 16th International Conference on Soft
Computing MENDEL 2010. Brno, Czech Republic, 2010, p. 41-48. ISBN 978-80-214-
4120-0.

19. POSPISILIK, M., KOURIL, L., ADAMEK, M. Employing Self-Organizing Migrating
Algorithm at Electrical Circuitry Designing. In Proceedings of the 16th International
Conference on Soft Computing MENDEL 2010. Brno, Czech Republic, 2010. ISBN 978-
80-214-4120-0.

20. KOURIL, L., ZELINKA, I. Moznosti predikce aminokyselinovych sekvenci v
proteinech. In FOBIA Conference 2009 – Book ofAbstracts. Zlin, Czech Republic.

21. PROCHAZKA, M., KOURIL, L., ZELINKA, I. Classification and Prediction by
Decision Trees and Neural Networks. In Proceedings of the 15th International
Conference on Soft Computing MENDEL 2009. Brno, Czech Republic, 2009. ISBN 978-
80-214-3884-2.

12.2 Other publications
1. HECZKO, M., KOURIL, L., MALANIK, D. Disease-Simulation Environment. In Ceske

narodni finale Imagine Cup 2009 – Sbornik souteznich praci. Praha, Czech Republic,
2009.

12.3 Software

1. POSPISILIK, M., KOURIL, L. Flat Coil Optimizer. Tomas Bata University in Zlin,
Faculty of Applied Informatics, Zlin, 2011.

- 87 -

12.4 Supervised or consulted diploma thesis
1. STUSAK, V. Rizeni pohybu autonomniho robota pomoci umele inteligence, MSc.

Project, 2012.
2. STUSAK, V. Testovaci prostredi pro vyuku kurzu Microsoft IT Academy na UTB ve

Zline, Bc. Project, 2011.

12.5 Internal Grant Agency projects
1. KOURIL, L., ZELINKA, I. IGA/FAI/2012/053 Aplikace evolucnich algoritmu pri

navrhu a optimalizaci elektrickych obvodu, 2012.
2. KOURIL, L., LEBEDIK, A., ZELINKA, I. IGA/42/FAI/10/D Evolucni synteza

biomolekularnich struktur, 2010 – 2011.

- 88 -

 AUTHOR’S CURRICULUM VITAE 13

Education
• Tomas Bata University in Zlin, Czech Republic, Faculty of Applied Informatics

Master’s study (2008)
Program: Engineering Informatics
Diploma thesis: „Computer Viruses and Artificial Intelligence“
Diploma thesis was awarded by 3rd prize at international student contest STOC 2008

• Tomas Bata University in Zlin, Czech Republic, Faculty of Applied Informatics
Bachelor’s study (2006)
Program: Engineering Informatics
Bachelor thesis: „Comparing of Web Technologies ASP, ASP.NET and PHP“

Certifications
• Microsoft Certified Technology Specialist

70-620: Configuring Microsoft Windows Vista Client

• Microsoft Certified Professional
70-270: Installing, Configuring and Administering Microsoft Windows XP Professional

Professional student activities
• Microsoft Student Partner

Tomas Bata University in Zlin, Czech Republic

• Participation in student contest „Nejlepsi podnikatelsky zamer Zlinskeho kraje
2011/2012“
Bussiness plan was awarded as the 3rd best.

• Participation in international student contest Imagine Cup 2009
Project SimuLIVE – The Desease-Simulation Environment was awarded by 2nd prize at
national finals, Czech Republic

• Lectures focused on software development
Tomas Bata University in Zlin, Czech Republic

Awards
• MCTS: Microsoft Windows Vista, Configuration Charter Member
• Certificate of recognition for contribution to the Czech Microsoft Research’s Machine

Translation Engine Evaluation for Visual Studio 2010.

Research activities
• Principal researcher

1. 2011: Project IGA/FAI/2012/053 „Aplikace evolucnich algoritmu pri navrhu
a optimalizaci elektrickych obvodu“

2. 2010-2011: Project IGA/42/FAI/10/D „Evolucni synteza biomolekularních
struktur“

• Member of project team
3. 2011-2012: Project CEBIA-Tech No. CZ.1.05/2.1.00/03.0089. 2nd reseach team

„Security research“

- 89 -

APPENDICES
Appendix A: Examples of selected rules estimated during analysis
Appendix B: Description of Turing machine software implementation in Wolfram
Mathematica

- 90 -

Appendix A: Examples of selected rules estimated during analysis

• Unary addition
𝛿(𝑞1, "#") = (𝑞2, "#", 0) 𝛿(𝑞3, "1") = (𝑞1, "1", 1)
𝛿(𝑞1, "1") = (𝑞3, "1", 1) 𝛿(𝑞4, "#") = (𝑞5, "#",−1)
𝛿(𝑞2, "#") = (𝑞3, "#", 1) 𝛿(𝑞4, "1") = (𝑞1, "#",−1)
𝛿(𝑞2, "1") = (𝑞4, "1", 1) 𝛿(𝑞5, "#") = (𝑞6, "#",−1)
𝛿(𝑞3, "#") = (𝑞4, "1", 1) 𝛿(𝑞5, "1") = (𝑞5, "#", 1)

• Divisibility

𝛿(𝑞1, "#") = (𝑞1, "#", 1) 𝛿(𝑞4, "𝑋") = (𝑞1, "#",−1)
𝛿(𝑞1, "1") = (𝑞4, "1", 0) 𝛿(𝑞5, "#") = (𝑞2, "1", 0)
𝛿(𝑞1, "𝑋") = (𝑞1, "1", 0) 𝛿(𝑞5, "1") = (𝑞3, "1", 1)
𝛿(𝑞2, "#") = (𝑞7, "1", 1) 𝛿(𝑞5, "𝑋") = (𝑞4, "𝑋", 1)
𝛿(𝑞2, "1") = (𝑞1, "1", 0) 𝛿(𝑞6, "#") = (𝑞1, "𝑋", 1)
𝛿(𝑞2, "𝑋") = (𝑞8, "#", 0) 𝛿(𝑞6, "1") = (𝑞4, "𝑋", 0)
𝛿(𝑞3, "#") = (𝑞3, "1", 0) 𝛿(𝑞6, "𝑋") = (𝑞7, "#",−1)
𝛿(𝑞3, "1") = (𝑞8, "𝑋", 0) 𝛿(𝑞7, "#") = (𝑞5, "#", 1)
𝛿(𝑞3, "𝑋") = (𝑞5, "𝑋", 0) 𝛿(𝑞7, "1") = (𝑞4, "#", 0)
𝛿(𝑞4, "#") = (𝑞1, "1", 1) 𝛿(𝑞7, "𝑋") = (𝑞5, "1", 0)
𝛿(𝑞4, "1") = (𝑞5, "1", 1)

• Primality

 𝛿(𝑞1, "#") = (𝑞20, "𝑋", 0) δ(q6, "#") = (q18, "X", 0)
 𝛿(𝑞1, "1") = (𝑞15, "𝑋", 1) δ(q6, "1") = (q16 , "#",−1)

 𝛿(𝑞1, "𝑋") = (𝑞4, "𝑋", 1) δ (q6, "X") = (q20, "X", 1)
 𝛿(𝑞2, "#") = (𝑞15, "𝑋", 0) δ(q7, "#") = (q15 , "X",−1)
 𝛿(𝑞2, "1") = (𝑞13, "1",−1) δ(q7, "1") = (q20, "1",−1)
 𝛿(𝑞2, "𝑋") = (𝑞25, "#", 0) δ(q7, "X") = (q10, "1", 0)
 𝛿(𝑞3, "#") = (𝑞15, "#",−1) δ (q8, "#") = (q19, "1",−1)
 𝛿(𝑞3, "1") = (𝑞15, "1", 0) δ(q8, "1") = (q10 , "#", 0)
 𝛿(𝑞3, "𝑋") = (𝑞25, "𝑋", 0) δ(q8, "X") = (q13, "#", 0)
 𝛿(𝑞4, "#") = (𝑞21, "𝑋",−1) δ(q9, "#") = (q14, "X", 0)
 𝛿(𝑞4, "1") = (𝑞19, "#",−1) δ(q9, "1") = (q13, "1", 0)
 𝛿(𝑞4, "𝑋") = (𝑞17, "#",−1) δ(q9, "X") = (q9, "1", 0)
 𝛿(𝑞5, "#") = (𝑞21, "𝑋",−1) δ(q10 , "#") = (q14, "#", 0)
 𝛿(𝑞5, "1") = (𝑞11, "𝑋", 1)

 δ(q10 , "1") = (q16, "1",−1)
 𝛿(𝑞5, "𝑋") = (𝑞22, "#",−1) δ(q10, "X") = (q5, "1", 1)
 𝛿(𝑞11, "#") = (𝑞25, "1",−1) δ(q18, "#") = (q17 , "X", 0)
 𝛿(𝑞11, "1") = (𝑞22, "1", 0) δ(q18, "1") = (q1, "#", 1)
 𝛿(𝑞11, "𝑋") = (𝑞3, "#",−1) δ(q18, "X") = (q7, "X", 1)
 𝛿 (𝑞12, "#") = (𝑞10, "1", 0) δ(q19, "#") = (q3, "#",−1)

- 91 -

 𝛿(𝑞12, "1") = (𝑞12, "#",−1) 𝛿(𝑞19, "1") = (𝑞9, "𝑋", 0)
 𝛿(𝑞12, "𝑋") = (𝑞9, "𝑋", 0) 𝛿(𝑞19, "𝑋") = (𝑞23, "1", 1)
 𝛿(𝑞13, "#") = (𝑞11, "𝑋",−1) 𝛿(𝑞20, "#") = (𝑞10, "1",−1)
 𝛿(𝑞13, "1") = (𝑞11, "#",−1) 𝛿(𝑞20, "1") = (𝑞10, "#",−1)
 𝛿(𝑞13, "𝑋") = (𝑞5, "𝑋", 1) 𝛿(𝑞20, "𝑋") = (𝑞15, "#", 0)
 𝛿(𝑞14, "#") = (𝑞8, "#", 1) 𝛿(𝑞21, "#") = (𝑞4, "1",−1)
 𝛿(𝑞14, "1") = (𝑞4, "𝑋", 0) 𝛿(𝑞21, "1") = (𝑞12, "𝑋", 0)
 𝛿(𝑞14, "𝑋") = (𝑞12, "1", 0) 𝛿 (𝑞21, "𝑋") = (𝑞10, "#", 0)
 𝛿(𝑞15, "#") = (𝑞3, "𝑋", 1) 𝛿(𝑞22, "#") = (𝑞7, "𝑋", 1)
 𝛿(𝑞15, "1") = (𝑞18, "#", 1) 𝛿(𝑞22, "1") = (𝑞4, "𝑋", 1)
 𝛿(𝑞15, "1") = (𝑞2, "#",−1) 𝛿(𝑞22, "𝑋") = (𝑞11, "1", 1)
 𝛿(𝑞16, "𝑋") = (𝑞22, "1",−1) (𝑞23, "#") = (𝑞6, "𝑋", 0)
 𝛿(𝑞16, "1") = (𝑞13, "1",−1) 𝛿(𝑞23, "1") = (𝑞15, "1", 0)

𝛿(𝑞16, "𝑋") = (𝑞7, "𝑋", 1) 𝛿(𝑞23, "𝑋") = (𝑞18, "1",−1)
 𝛿(𝑞17, "#") = (𝑞5, "𝑋",−1) 𝛿(𝑞24, "#") = (𝑞4, "#", 1)
 𝛿(𝑞17, "1") = (𝑞5, "𝑋",−1) 𝛿(𝑞24, "1") = (𝑞14, "#", 1)
 𝛿(𝑞17, "𝑋") = (𝑞22, "#", 1) 𝛿(𝑞24, "𝑋") = (𝑞5, "#", 1)

• Proteins
These rules are not published in the doctoral thesis because of their extensiveness.

- 92 -

Appendix B: Description of Turing machine software implementation
Turing machine is implemented as Turing machine simulator (see figure below) in Wolfram
Mathematica. It is created as CDF4 (Computable Document Format) file thus it can be run in
free Wolfram CDF Player5 or can be placed at web pages thanks to CDF plugin for web
browsers.

Turing machine simulator consists of two parts. The first part located at the top of application
window contains input fields for Turing machine settings as are number of innter states, data
tape symbols, initial state, accepting state, initial head position, data tape, and rules of transition
function. If Run button is pressed, the simulation will proceed. The Step slider allows manual
moving the head operations of the Turing machine.

The second part of the application windows located at bottom contains information on current
step and rule. There are also included preview of output data tape with current position of
Turing machine’s head and graph which depicts head movement.

Fig.: Application window of Turing machine simulator.

4 http://www.wolfram.com/cdf/
5 http://www.wolfram.com/cdf-player/

	2TUABSTRACTU2T 6
	2TUABSTRAKTU2T 7
	2TUACKNOWLEDGEMENTSU2T 8
	2TULIST OF FIGURESU2T 9
	2TUABBREVIATIONS AND SYMBOLSU2T 13
	2T12T 2TUintroductionU2T 14
	2T22T 2TUbackground researchU2T 15
	2T32T 2TUthesis objectivesU2T 19
	2T42T 2TUbrief insights into automataU2T 20
	2T52T 2TUapplication of evolutionary algorithmsU2T 27
	2T62T 2TUApproaches to evolutionary optimization of the rules of THE Turing machine’s transition functionU2T 31
	2T72T 2TUSelected ExamplesU2T 40
	2T82T 2TUEffect of custom settings of selected evolutionary algorithms on evolutionary-estimated programmingU2T 43
	2T92T 2TUpractical utilizationU2T 54
	2TU10U2T 2TUconclusionU2T 81
	2TU11U2T 2TULiteratureU2T 82
	2TU12U2T 2TUpublicationsU2T 85
	2TU13U2T 2TUAuthor’s Curriculum VitaeU2T 88
	2TUappendicesU2T 89
	ABSTRACT
	ABSTRAKT
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	ABBREVIATIONS AND SYMBOLS
	1 introduction
	2 background research
	3 thesis objectives
	4 brief insights into automata
	4.1 Finite automata
	4.1.1 Definition of finite automata

	4.2 Turing machines
	4.2.1 Definition of Turing machines
	4.2.2 How Turing machine works

	5 application of evolutionary algorithms
	5.1 Differential Evolution
	5.1.1 Essential principles of Differential Evolution

	5.2 Self-Organizing Migrating Algorithm
	5.2.1 Background theory of Self-Organizing Migrating Algorithm

	6 Approaches to evolutionary optimization of the rules of THE Turing machine’s transition function
	6.1 Classical optimization
	6.1.1 Encoding the rules for classical optimization
	6.1.2 Definition of specimen
	6.1.3 Designing evaluation function

	6.2 Per-partes optimization
	6.2.1 Encoding the rules for per-partes optimization
	6.2.2 Definition of specimen
	6.2.3 Optimization process and evaluative algorithm

	7 Selected Examples
	7.1 Unary addition
	7.2 Divisibility
	7.3 Primality

	8 Effect of custom settings of selected evolutionary algorithms on evolutionary-estimated programming
	8.1 Methodology
	8.2 Results
	8.2.1 Dependence of optimization process on DE’s NP parameter
	8.2.2 Dependence of optimization process on DE’s F parameter
	8.2.3 Dependence of optimization proces on DE’s CR parameter
	8.2.4 Dependence of optimization proces on DE’s G parameter
	8.2.5 Dependence of optimization process on SOMA’s PopSize parameter
	8.2.6 Dependence of optimization process on SOMA’s PRT parameter
	8.2.7 Dependence of optimization process on SOMA’s PathLength parameter
	8.2.8 Dependence of optimization proces on SOMA’s Step parameter
	8.2.9 Dependence of optimization process on SOMA’s Migrations parameter

	8.3 Analysis conclusion

	9 practical utilization
	9.1 Proteins essentials
	9.1.1 Proteins as Turing machine’s data tapes

	9.2 Protein processing by Turing machine
	9.2.1 2J01
	9.2.2 1AOI
	9.2.3 1LIT
	9.2.4 1B08
	9.2.5 1B09
	9.2.6 1TUP
	9.2.7 1YAR
	9.2.8 1FNT
	9.2.9 2J00
	9.2.10 1A4Y
	9.2.11 1BMF
	4.1.1. 2ZV4

	10 conclusion
	11 Literature
	12 publications
	12.1 Conference proceedings and journals
	12.2 Other publications
	12.3 Software
	12.4 Supervised or consulted diploma thesis
	12.5 Internal Grant Agency projects

	13 Author’s Curriculum Vitae
	appendices
	Appendix A: Examples of selected rules estimated during analysis
	Appendix B: Description of Turing machine software implementation

