
 
 

Tomas Bata University in Zlín 
Faculty of Applied Informatics 

 
 
 
 
 
 
 
 
 
 
 

Doctoral Thesis 
 
 
 
 

 
Evolutionary Synthesis of the Turing Machine’s Rules 

 
Evoluční syntéza pravidel Turingova stroje 

 
 
 
 
 

Ing. Lukáš Kouřil 
 
 
 
 
 
 
 
 
 
 
 

Doctoral study programme: Engineering Informatics 
Supervisor: prof. Ing. Ivan Zelinka, Ph.D. 

 
 

Zlín, 2012 
 



 
 
   
 
  

  



 

- 3 - 

CONTENT 
 
ABSTRACT ....................................................................................................................................... 6 
ABSTRAKT ...................................................................................................................................... 7 
ACKNOWLEDGEMENTS ............................................................................................................. 8 
LIST OF FIGURES .......................................................................................................................... 9 
ABBREVIATIONS AND SYMBOLS ........................................................................................... 13 
1 INTRODUCTION ....................................................................................................................... 14 
2 BACKGROUND RESEARCH .................................................................................................. 15 
3 THESIS OBJECTIVES .............................................................................................................. 19 
4 BRIEF INSIGHTS INTO AUTOMATA .................................................................................. 20 

4.1 FINITE AUTOMATA ............................................................................................................ 20 
4.1.1 Definition of finite automata .............................................................................. 21 

4.2 TURING MACHINES ........................................................................................................... 22 
4.2.1 Definition of Turing machines ........................................................................... 23 

4.2.2 How Turing machine works ............................................................................... 24 
5 APPLICATION OF EVOLUTIONARY ALGORITHMS ..................................................... 27 

5.1 DIFFERENTIAL EVOLUTION ............................................................................................... 27 
5.1.1 Essential principles of Differential Evolution .................................................... 27 

5.2 SELF-ORGANIZING MIGRATING ALGORITHM .................................................................... 29 

5.2.1 Background theory of Self-Organizing Migrating Algorithm ............................ 29 
6 APPROACHES TO EVOLUTIONARY OPTIMIZATION OF THE RULES OF THE 

TURING MACHINE’S TRANSITION FUNCTION .............................................................. 31 
6.1 CLASSICAL OPTIMIZATION ................................................................................................ 31 

6.1.1 Encoding the rules for classical optimization .................................................... 31 
6.1.2 Definition of specimen ....................................................................................... 33 

6.1.3 Designing evaluation function ........................................................................... 33 

6.2 PER-PARTES OPTIMIZATION .............................................................................................. 34 

6.2.1 Encoding the rules for per-partes optimization ................................................. 35 

6.2.2 Definition of specimen ....................................................................................... 37 

6.2.3 Optimization process and evaluative algorithm ................................................. 37 
7 SELECTED EXAMPLES .......................................................................................................... 40 

7.1 UNARY ADDITION ............................................................................................................. 40 
7.2 DIVISIBILITY ..................................................................................................................... 41 

7.3 PRIMALITY ........................................................................................................................ 41 
8 EFFECT OF CUSTOM SETTINGS OF SELECTED EVOLUTIONARY ALGORITHMS 

ON EVOLUTIONARY-ESTIMATED PROGRAMMING .................................................... 43 



 

- 4 - 

8.1 METHODOLOGY ................................................................................................................ 43 
8.2 RESULTS ........................................................................................................................... 45 

8.2.1 Dependence of optimization process on DE’s NP parameter ............................ 46 

8.2.2 Dependence of optimization process on DE’s F parameter ............................... 46 

8.2.3 Dependence of optimization proces on DE’s CR parameter .............................. 47 
8.2.4 Dependence of optimization proces on DE’s G parameter ................................ 48 

8.2.5 Dependence of optimization process on SOMA’s PopSize parameter ............... 49 

8.2.6 Dependence of optimization process on SOMA’s PRT parameter ..................... 49 

8.2.7 Dependence of optimization process on SOMA’s PathLength parameter .......... 50 

8.2.8 Dependence of optimization proces on SOMA’s Step parameter ....................... 51 

8.2.9 Dependence of optimization process on SOMA’s Migrations parameter .......... 52 
8.3 ANALYSIS CONCLUSION .................................................................................................... 52 

9 PRACTICAL UTILIZATION ................................................................................................... 54 
9.1 PROTEINS ESSENTIALS ....................................................................................................... 54 

9.1.1 Proteins as Turing machine’s data tapes ........................................................... 54 

9.2 PROTEIN PROCESSING BY TURING MACHINE ...................................................................... 56 

9.2.1 2J01 .................................................................................................................... 58 

9.2.2 1AOI ................................................................................................................... 60 
9.2.3 1LIT .................................................................................................................... 62 

9.2.4 1B08 ................................................................................................................... 64 

9.2.5 1B09 ................................................................................................................... 66 

9.2.6 1TUP .................................................................................................................. 67 

9.2.7 1YAR ................................................................................................................... 69 
9.2.8 1FNT .................................................................................................................. 71 

9.2.9 2J00 .................................................................................................................... 73 

9.2.10 1A4Y ................................................................................................................... 74 

9.2.11 1BMF.................................................................................................................. 76 

4.1.1. 2ZV4 ................................................................................................................... 78 
10 CONCLUSION ......................................................................................................................... 81 
11 LITERATURE ......................................................................................................................... 82 
12 PUBLICATIONS ..................................................................................................................... 85 

12.1 CONFERENCE PROCEEDINGS AND JOURNALS ..................................................................... 85 
12.2 OTHER PUBLICATIONS ....................................................................................................... 86 

12.3 SOFTWARE ........................................................................................................................ 86 

12.4 SUPERVISED OR CONSULTED DIPLOMA THESIS .................................................................. 87 



 

- 5 - 

12.5 INTERNAL GRANT AGENCY PROJECTS .............................................................................. 87 
13 AUTHOR’S CURRICULUM VITAE .................................................................................... 88 
APPENDICES ................................................................................................................................. 89 

APPENDIX  A: EXAMPLES OF SELECTED RULES ESTIMATED DURING ANALYSIS ............................ 90 
APPENDIX B: DESCRIPTION OF TURING MACHINE SOFTWARE IMPLEMENTATION ......................... 92 



 

- 6 - 

ABSTRACT 
This doctoral thesis is concerned with possibilities of artificial intelligence utilization for Turing 
machine programming. The main topic regards using Differential Evolution and Self-Organizing 
Migrating Algorithm as selected methods of artificial intelligence for Turing machine transition 
function’s rules synthesis. The rules of Turing machine represent a form of program on its basis 
Turing machine works. Rules designing can be considered as a way of this machine 
programming. 

The doctoral thesis consists of four parts which can be characterized as follows. The first part 
represents an introduction to the finite automata because Turing machines are classified as them. 
This part is necessary for understanding backgrounds of these machines. Highly important is 
a characterization of the machine on the basis of formal description. This is used as a base for 
rules synthesis problematics formulation in the next parts of the doctoral thesis. This first part 
also introduces selected algorithms of artificial intelligence. These are Differential Evolution 
and Self-Organizing Migrating Algorithm. The introduction to these algorithms is a key for 
settings of suitable parameters of selected algorithms while rules synthesis. 

The second part of the doctoral thesis presents two proposed approaches to Turing machine’s 
rules synthesis (or optimization). These approaches are “classical optimization” and “per-partes 
optimization”. Both approaches differ from each other. Each approach has also advantages and 
disadvantages which herewith assess their utilization. Both of mentioned approaches are closely 
described in this second part. 

In the third part of the doctoral thesis three selected elementary problems are introduced. 
These are unary addition, divisibility (exact divison) problem and primality (prime number 
detection) problematics. The problems are used as example tasks for Turing machine which 
rules we want to estimate by proposed approaches. It is utilized for analysis of rules 
optimization process dependence on custom settings of Differential Evolution and Self-
Organizing Migrating Algorithm. This analysis is entirely fundamental not only for this part of 
the doctoral thesis but for the next part especially. 

The last, fourth, part of the doctoral thesis represents a practical utilization of proposed 
approaches to programming Turing machine by artificial intelligence. As real problematics 
protein processing by Turing machine was chosen. Proteins are regarded as primary protein 
structures in this case. Evolutionary synthesis of Turing machine’s rules is demonstrated from 
total of a twelve selected primary protein structures differing in length. As described later in the 
text, this problematics is so far complex that can be considered as a sufficient way of proper 
work proof of proposed approaches to evolutionary synthesis of Turing machine’s rules as main 
topic of the doctoral thesis.  

 
 
 

Keywords: Turing machine, transition function’s rules, artificial intelligence, Differential 
Evolution, Self-Organizing Migrating Algorithm 
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ABSTRAKT 
Tato dizertační práce se věnuje možnostem využití umělé inteligence pro programování 
Turingova stroje. Nosným tématem je využití Diferenciální evoluce a Samo-organizujícího se 
migrujícího algoritmu jako vybraných metod umělé inteligence pro syntézu pravidel přechodové 
funkce Turingova stroje. Pravidla Turingova stroje představují program, na jehož základě 
Turingův stroj pracuje. Jejich návrh lze tedy považovat za formu programování tohoto stroje. 

Dizertační práce sestáva ze čtyř částí, které lze charakterizovat následovně. První část 
představuje úvod do konečných automatů, mezi které patří i Turingův stroj. Tato část je 
nezbytná pro pochopení mechanismů, na jejichž základě tento typ strojů pracuje. Velmi důležitá 
je charakterizace stroje na základě jeho formálního popisu, který je v dalších částech dizertační 
práce využit jako základ pro formulaci problému syntézy pravidel. Tato první část rovněž 
seznamuje s vybranými algoritmy umělé inteligence, tedy s Diferenciální evolucí a Samo-
organizujícím se migrujícím algoritmem. Toto seznámení hraje důležitou roli pro vhodné 
nastavení parametrů těchto algoritmů při syntéze pravidel. 

Druhá část dizertační práce představuje dva navržené přístupy k syntéze (nebo také 
optimalizaci) pravidel Turingova stroje. Těmito přístupy jsou „klasická optimalizace“ 
a „optimalizace po částech“. Oba tyto přístupy se zásadně liší jeden od druhého. Zároveň každý 
z těchto přístupů má své výhody i zápory, které zároveň určují i jejich využití. V této druhé části 
jsou oba tyto přístupy podrobně popsány. 

Ve třetí části dizertační práci jsou uvedeny tři vybrané elementární problémy. Jde o unární 
součet, problém dělitelnosti bez zbytku celým číslem a problematika detekce prvočísla. Tyto 
problémy jsou využity jako vzorové úlohy pro Turingův stroj, jehož pravidla chceme zjistit 
pomocí navržených přistupů. Toho je následně využito pro analýzu závislosti procesu 
optimalizace pravidel na různém nastavení Diferenciální evoluce a Samo-organizujícího se 
migrujícího algoritmu. Tato analýza je zcela zásadní nejen pro tuto část dizertační práce, ale 
především pro následující. 

Poslední, čtvrtá, část dizertační práce představuje praktické využití navržených přístupů 
k programování Turingova stroje pomocí umělé inteligence. Za reálnou problematiku bylo 
zvoleno zpracování proteinů pomocí Turingova stroje. Proteiny jsou v tomto případě míněny 
primární proteinové struktury. Evoluční syntéza pravidel Turingova stroje je demonstrována 
na celkem dvanácti vybraných primárních proteinových strukturách, lišících se svou délkou. 
Tato problematika, jak je popsáno dále v textu, je natolik komplexní, že ji lze považovat jako 
dostatečný způsob ověření správné činnost přístupů k evoluční syntéze pravidel Turingova 
stroje, jimiž se tato dizertační práce zabývá. 

 
 
 
Klíčová slova: Turingův stroj, pravidla přechodové funkce, umělá inteligence, Diferenciální 
evoluce, Samo-organizující se migrující algoritmus 
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 INTRODUCTION 1
The meaning of applied informatics can be regarded as one of building blocks of our 
civilization. It is an engine which drives civilization progress ahead. However it doesn’t touch 
the present only. The past has been affected by meaning of applied informatics too. As well as it 
will also lead the way of civilization development in the future.  If there is any extraterrestrial 
civilization there is surely its science which has same meaning as our applied informatics (but 
can be termed differently) too. I don’t think it is necessary to argue into above-outspoken words. 
It can be considered as a small revolution when informatics has been arisen as a separate science 
and the applied informatics has been begun daily influence lifes of people. 

The doctoral thesis which is held in your hands is aimed on applied informatics too. As 
considered related to this thesis, the application of informatics is related to the three areas. These 
are automata theory, artificial intelligence and bioinformatics. The former two areas are main 
topics of the doctoral thesis. The term “automata theory” can be sounded slightly boring but it is 
not at all. With theory of automata one can met in assorted places. It is not industry (machine 
tools, vehicles, consumer electronics etc.) only. The automata can also have a form of e. g. 
software (workflows realization, text searching and the like). The thesis considers using Turing 
machines which are a minor of finite automata. Turing machines are theoretical automata with 
abilities that common automata don’t dispose (e.g. infinite size of data medium). 

The second area of applied informatics related to the doctoral thesis is an artificial 
intelligence. In terms of public perception, the term artificial intelligence (AI) always attracts 
attention. This term itself is perceived as a sign of something extraordinary. As well as “AI” two 
letters which act as a mystical acronym. However, what is curious about these words? The 
probable answer is the adjective “artificial” which may be responsible for the perception of these 
expressions. The adjective assigns certain characteristics of human beings to the artificial non-
living objects which is anomalous and can be also little strange. The strange aspect, in particular, 
in the consciousness of the public regarding artificial intelligence (AI) is influenced and 
advanced by movies all the time. AI is actually human-being-inspired only. The inspiration can 
be found in several methods of artificial intelligence, e.g. neural networks (neural system of 
brain), evolutionary algorithms (evolutionary processes in the nature), genetic algorithms (cell 
genetics) - subsets of evolutionary algorithms etc. The methods of artificial intelligence 
basically imitate actual specific processes. Due to this, AI-based methods can themselves 
continuously evolve and adapt to the actual solved problems. The solution to problems retrieved 
by methods of artificial intelligence can bring novel and unexpected results since the outlooks of 
AI methods regarding problems are more flexible.  

The last area this thesis is aimed on is bioinformatics. Bioinformatics is relatively new science 
which came into existence lately. It benefits from appliances and methods of applied informatics 
in relation to biological problems. The meaning of applied informatics for biology is huge and 
can not be ommited. The problem, as the protein processing is, was selected as an one for 
demonstration of this doctoral thesis results practical utilization. 

Altough the research described on following pages is mainly focused on concerns of applied 
informatics the related problems involve different ares of this science and represent new 
approaches for utilization artificial intelligence for programming Turing machines. The example 
applications to protein processing are included as well. I hope it will be interesting for readers 
and for practical usage especially. 
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 BACKGROUND RESEARCH 2
Using artificial intelligence for programming Turing machines is not widely spread yet. 
Although it is possible to find some few mentions, scientific articles or research papers which 
describe attempts to use any methods of artificial intelligence these are limited to use of genetic 
algorithms [33], genetic programming [33] or evolutionary programming especially. It 
acknowledges that employing Differential Evolution and Self-Organizing Migrating Algorithm 
– representatives of evolutionary and memetic algorithms – for programming Turing machines 
as discussed in this doctoral thesis is a new unique approach to Turing machine’s rules 
optimization. Of course, the lack of relevant research papers could be caused by unavailability 
of some articles in databases (ISI Web of Science1, SpringerLink2, ScienceDirect3) used in the 
days while working on background research, but it is less probable. Following lines briefly 
introduce several existing approaches used for programming Turing machines by methods of 
artificial intelligence selected by research papers’ authors. 

The first of introduced researches is concerned with evolving Turing machines from examples 
in eponymous article [31] by Julio Tanomaru. There are described two approaches to 
programming Turing machine based on using Genetic Algorithm [33]. These are termed as 
simple genetic algorithm approach and enhanced evolutionary approach. The Turing machines 
are considered as transition tables where the number of inner states can be changed dynamically. 
Automaton is understood as: 

 
𝑀 = (𝑄, Σ,Δ, 𝛿, 𝜆, 𝑞0), (2.1) 

 
where: 

• 𝑄 is a set of all inner states, 
• Σ is a set of input symbols, 
• Δ is a set of output symbols, 
• 𝛿 is the transition function, whereas 𝛿(𝑝, 𝑎) = 𝑞 and 𝑝 ∈ 𝑄, 𝑎 ∈ Σ, 𝑞 ∈ 𝑄, 
• 𝜆 is the output function, whereas 𝜆(𝑝, 𝑎) = 𝑏 and 𝑝 ∈ 𝑄, 𝑎 ∈ Σ, 𝑏 ∈ Δ, 
• 𝑞0 is the initial state. 
 

In population, the automaton is represented by next state and output symbol as follows: 
 

𝜇𝑖 = [𝑎𝑗 𝑘
𝑖 𝜖 𝑄|𝑏𝑗 𝑘

𝑖 𝜖 Δ], (2.2) 
 

where: 

• i = 1,…, Population size 
• j = 1,…, ni 
• k = 1,…, dim(𝛴) 
• ni is number of inner states of i-th automaton 
• dim(𝛴) is number of different input symbols 

 
In the article [31], continuous generation model was used. By crossover or mutation the 
population Pop’(t) is originated after population Pop(t) is duplicated at the i-th generation. 
Whether member of population Pop’(t) is originated by crossover or mutation it is expressed by 
𝜌 parameter (0 ≤ 𝜌 ≤ 1) what is crossover ratio. There is used 2-point crossover operator when 

                                                           
1 http://apps.isiknowledge.com 
2 http://www.springerlink.com 
3 http://www.sciencedirect.com 
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two of population members are selected and crossover exchanges groups of transition tables’ 
rows. Mutation is provided by changing values within specified range. In the case of Turing 
machines, the formal definition is used as shown in (4.4). 

Second approach described in [31] utilizes performance statistics collected for each 
generation. Then the dependence of operators to best automata from previous generation is 
observed. Also the crossover operation was excluded and three new mutation operators were 
used. The first one is same as described in the first approach. The second one enables to 
dynamic changes of inner states. The third one can discard member of population and originates 
a new one on the basis of performance statistics. 

The results of second research were published in research paper named „Evolving Turing 
Machines for Biosequence Recognition and Analysis” [32] by Edgar E. Vallejo and Fernando 
Ramos. There is used an approach by genetic programmming [33]. The article [32] describes 
three slightly different experiments for evolving either Turing machine or other finite automaton 
for biosequence recognition. The first experiment is aimed on Turing machines. The Turing 
machine is considered as restricted and defined by 9-tuple: 

 
𝑇𝑀 = (𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑞𝑎𝑐𝑐𝑒𝑝𝑡 , 𝑞𝑟𝑒𝑗𝑒𝑐𝑡 , 𝑡𝑠𝑖𝑧𝑒 , 𝑠𝑚𝑎𝑥), (2.3) 
 

where: 

• 𝑄 is a set of all inner states, 
• Σ is a set of input symbols, 
• Γ is a set of all data tape symbols, 
• 𝛿 is the transition function, 𝛿:𝑄 × Γ → 𝑄 × Γ × {𝐿,𝑅}, 
• 𝑞0 is an initial state, 𝑞0 ∈ 𝑄, 
• 𝑞𝑎𝑐𝑐𝑒𝑝𝑡  is an accept state, 𝑞𝑎𝑐𝑐𝑒𝑝𝑡 ∈ 𝑄, 
• 𝑞𝑟𝑒𝑗𝑒𝑐𝑡  is a reject state, 𝑞𝑟𝑒𝑗𝑒𝑐𝑡 ≠ 𝑞𝑎𝑐𝑐𝑒𝑝𝑡, 
• 𝑡𝑠𝑖𝑧𝑒 is the data tape size 
• 𝑠𝑚𝑎𝑥  expresses maximum number of computation steps. 
 

There is used genetic algorithm with tournament selection and elitism. The Turing machine is 
represented as genome in the form of concatenated values of the transition function using 
transition table. If there is considered transition table (see Table 1) same as the table published 
in [32]: 

 Table 1: Transition table of first experiment [32] 

𝜹 a b 
𝑞1 (𝑞1, 𝑎,𝑅) (𝑞2, 𝑏, 𝐿) 
𝑞2 (𝑞3, 𝑎, 𝐿) (𝑞2, 𝑏,𝑅) 
𝑞3 (𝑞2, 𝑏,𝑅) (𝑞2, 𝑎,𝑅) 

 
then it is possible to concatenate the values of transition table to the representation of genome 
(2.4) 

(𝑞1, 𝑎,𝑅) (𝑞2, 𝑏, 𝐿) (𝑞3, 𝑎, 𝐿)(𝑞2, 𝑏,𝑅) (𝑞2, 𝑏,𝑅)(𝑞2, 𝑎,𝑅) (2.4) 
 

and express it as 

𝑞0,0𝑎0,0𝑚0,0𝑞0,1𝑎0,1𝑚0,1 … 𝑞|𝑄|,|Σ|𝑎|𝑄|,|Σ|𝑚|𝑄|,|Σ|, (2.5) 
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where: 

• i is a row of transition table, 
• j is a column of transition table. 
 

There are used custom-designed genetic operators because genome representation is not binary. 
In the research [32], the training set is compounded of biosequences accepted and randomly 
generated negative sequences too. Turing machine considered has 32 inner states and 8 data tape 
symbols. 

The second experiment was aimed on two-way deterministic finite automata what is a type of 
Turing machine which allow recognize language and works with read-only data tape. It actually 
means that the input symbol is the same as the output symbol. In this experiment, there is used 
restricted two-way deterministic finite automaton formally defined as 8-tuple: 

𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝑞𝑎𝑐𝑐𝑒𝑝𝑡 , 𝑞𝑟𝑒𝑗𝑒𝑐𝑡 , 𝑡𝑠𝑖𝑧𝑒 , 𝑠𝑚𝑎𝑥), (2.6) 
 

where: 

• 𝑄 is a set of all inner states, 
• Σ is a set of input symbols, 
• 𝛿 is the transition function, 𝛿:𝑄 × Γ → 𝑄 × Γ × {𝐿,𝑅}, 
• 𝑞0 is an initial state, 𝑞0 ∈ 𝑄, 
• 𝑞𝑎𝑐𝑐𝑒𝑝𝑡  is an accept state, 𝑞𝑎𝑐𝑐𝑒𝑝𝑡 ∈ 𝑄, 
• 𝑞𝑟𝑒𝑗𝑒𝑐𝑡  is a reject state, 𝑞𝑟𝑒𝑗𝑒𝑐𝑡 ≠ 𝑞𝑎𝑐𝑐𝑒𝑝𝑡, 
• 𝑡𝑠𝑖𝑧𝑒 is the data tape size 
• 𝑠𝑚𝑎𝑥  expresses maximum number of computation steps. 
 

Similarly to the first experiment of [32], the genome is represented by concatenated values of 
transition table. In this case it looks like Table 1 and it is the same table as in [32]. 

 

 Table 2: Transition table of second experiment [32] 

𝜹 a b 
𝑞1 (𝑞1,𝑅) (𝑞2, 𝐿) 
𝑞2 (𝑞3, 𝐿) (𝑞2,𝑅) 
𝑞3 (𝑞2,𝑅) (𝑞2,𝑅) 

 
When its values are concatenated the genome has a form of: 

(𝑞1,𝑅) (𝑞2, 𝐿) (𝑞3, 𝐿)(𝑞2,𝑅) (𝑞2,𝑅)(𝑞2,𝑅) (2.7) 
 

and it can be possible to express it as 

𝑞0,0𝑚0,0𝑞0,1𝑚0,1 … 𝑞|𝑄|,|Σ|𝑚|𝑄|,|Σ|, (2.8) 
 

where: 

• i is a row of transition table, 
• j is a column of transition table. 
 

Genetic operators as well as the training set and other parameters were same as in the first 
experiment described above. 
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The third experiment of [32] consists of multiple sequence alignment with evolved two-way 
deterministic finite automaton from the second experiment. The two-way deterministic finite 
automaton is used for multiple computation of each sequence at every position in the sequence. 
That is repeated for every positive example and common patterns of two sequences by identical 
behavior of the automaton can be revealed. 

The last research mentioned at this place and aimed on evolving Turing machine has a title 
„Using Genetic Programming for Turing Machine Induction” [20]. Its authors are Amashini 
Naidoo and Nelishia Pillay. This research paper considers Turing machine with variable size and 
two data tapes. These are input data tape and output data tape. The first one is read-only. The 
output data tape is writeable. The input data tape encodes input string of Turing machine. 
The output data tape contains blank symbols only. Turing machine processes both data tapes 
simultaneously. Transitions between inner states are expressed by two-tuples. They represent 
a dependence of processing output data tape on input data tape. The first part of two-tuple says 
what symbol has to be read from the input data tape and what the direction of head movement is. 
The second part of the two-tuple expresses what symbol has to be read from output data tape, 
what symbol has to be written on the output data tape and what the direction of head movement 
is. As an example, if transition is a/R, B/a/R, it means that symbol a must be read from input 
data tape and the head must move to the right, blank symbol must be read from the output data 
tape, symbol a must be written to the output data tape and the head must move to the right. 
Elements of population are created by following steps. At first, the initial node (start state) is 
originated automatically. Node arity is specified randomly. Other states are also randomly stated 
as final states or not. The transitions between nodes and its children are originated by random 
elements selection from input signary, data tape signary and directions of head movement. 
Genetic operators are applied on parent nodes selected by tournament selection. The mutation 
operator ensures that there is selected a mutation point. The sub-node connected to this point is 
removed and new sub-node is originated and connected to this point. The cross-over operator 
randomly selects points on parent nodes. Sub-nodes connected to these points are swapped. Also 
inner states of sub-nodes are renumbered. 

As can be seen it is possible to find several articles or research papers aimed on application of 
artificial intelligence methods on Turing machine adaptation. These papers consider using 
genetic algorithms or genetic programming for evolving Turing machines especially. The 
mentioned research papers also consider either elementary problems or problems with less-
extensive signary for processing by evolved Turing machine. Thus it can be said that the 
research discussed in this doctoral thesis is unique for using Differential Evolution and Self-
Organizing Migrating Algorithm for Turing machine optimization and aiming on processing 
highly-extensive signary problems by Turing machines evolved. 
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 THESIS OBJECTIVES 3
The objectives of the thesis can be specified as follows: 

• Design of approaches to Turing machine evolutionary programming. 
• Proof of proper Turing machine evolutionary programming for processing selected 

example problems. 
• Analysis of Turing machine evolutionary programming dependence on custom settings of 

Differential Evolution and Self-Organizing Migrating Algorithm. 
• Proof of proper Turing machine evolutionary programming for processing proteins by 

using results of above-mentioned analysis. 
• Software development of Turing machine in Wolfram Mathematica. 
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 BRIEF INSIGHTS INTO AUTOMATA 4
The progress of automata theory had begun in the early 20th century mainly due to Alan Turing 
who had been concerned with abstraction of machines including their capabilities. Nowadays, 
plenty technical areas of interest, e.g. concepts and design of hardware and software, come out 
of knowledge of automata theory. The reason is that automata theory is based on hardware 
(machines or computers) but in abstract form. The principle of both abstract and non-abstract 
machines are quite similar, as well as software algorithms and flow of computer programs which 
can be compared with automata in many cases too. 

Because the Turing machines are closely related with finite automata, the latter will be 
discussed first. 

 
4.1 Finite automata 
Finite automata [10] can be considered as event-driven machines in the form of algorithm. The 
events represent conditions which occur during processes or operation of finite automata. 
The events also act as responses to processes since all events can be regarded as consequences 
of previous process evolvement whereas the determination of intended process evolvement is 
influenced by reply to the desired response and reaction to external input. 

Belonging among the above-mentioned, finite automata are basically “assembled” from two 
essential parts. These are events, known as states, and inputs which externally influence 
incoming state occurrence in terms of a future event. The inputs advance process evolvement. 

It is necessary to specify one of states as initial to be able to activate the finite automaton. The 
automaton uses the initial state as the starting point while waiting in expectation for the first 
input and realizing the transitions to the next state. It is also necessary to specify the set of final 
or accepting states. The set contains one or more states which denote the end of the process. 
When the final state occurs the automaton stops activity. 

There are many examples of simple finite automata. How finite automata operate can be 
shown on the basis of following situation. Let‘s consider automaton which controls the opening 
of a window (see Fig. 4.1). The goal of the automaton is to fully open the window. The window 
has four positions: closed position, first venting position, second venting position and fully 
opened position. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

Fig. 4.1: Example of finite automaton 
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The opening and closing have these restrictions: 

• First venting position can be realized when the window is closed 
• Second venting position can be realized when the window is opened in the first venting 

position 
• The window can be fully opened only if closed 

 
The events or states have form of nouns, which are: 

• Closing 
• Partial-opening #1 (to the first venting position) 
• Partial-opening #2 (to the second venting position) 
• Full-opening 

 
The inputs have the form of the following verbs: 

• Fully-open 
• Partially-open 
• Close 

 
Finite automata are usually illustrated by a diagram where states are represented as circles and 
inputs as arrows. The initial state is marked with a non-linked arrow and the final state is 
depicted as a double circle. An example diagram of finite automata can be seen in Fig 4.1. 
Before starting, the automaton is in the state “Closing” and waits for the input. If the input is 
“Fully-open”, the automaton passes to the state “Full-opening” and the activities of the 
automaton finish because the state “Full-opening” is the final state. If not, it would be possible 
to pass to the state “Closing” with the occurrence of “Close” input. But this state is the final 
state thus “Close” input is written in parentheses. When the automaton is in the “Closing” state 
and the input is “Partially-open”, the next state will be “Partial-opening #1”. It is the first 
venting position. Now, the automaton can pass to the “Closing” state if “Close” input occurs or 
to the “Partial-opening #2” state when “Partially-open” input appears. 

As can be seen, there are the same inputs in the diagram. These are “Close” inputs and 
“Partially-open” inputs. The situation is absolutely correct since these inputs can be initiated in 
different states. This is typical for deterministic automata [10] compared to non-deterministic 
automata [10], where it is possible to pass to the multiple states simultaneously (e.g. if the 
“Partially-open” and “Fully-open” inputs would be replaced by “Open” input only). Only 
deterministic finite automata will be considered further. 

 
4.1.1 Definition of finite automata 

Finite automata with deterministic behavior can be defined as 5-tuple [10]: 

𝐴 = (𝑄, Σ, 𝛿, 𝑞0,𝐹), (4.1) 
 

where: 

• 𝑄 is a set of all states. 
• Σ is a set of input symbols. 
• 𝛿 represents the transition function. 
• 𝑞0 is an initial state. 
• 𝐹 is a set of final states. 
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These parameters adapted to the example are: 

• 𝑄 ∈ {"𝐶𝑙𝑜𝑠𝑖𝑛𝑔", "𝑃𝑎𝑟𝑡𝑖𝑎𝑙 − 𝑜𝑝𝑒𝑛𝑖𝑛𝑔 #1", "𝑃𝑎𝑟𝑡𝑖𝑎𝑙 − 𝑜𝑝𝑒𝑛𝑖𝑛𝑔 #2", "𝐹𝑢𝑙𝑙 − 𝑜𝑝𝑒𝑛𝑖𝑛𝑔"} 
• Σ ∈ {"𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝑙𝑦 − 𝑜𝑝𝑒𝑛", "𝐹𝑢𝑙𝑙𝑦 − 𝑜𝑝𝑒𝑛", "𝐶𝑙𝑜𝑠𝑒"} 
• 𝛿 see below. 
• 𝑞0 =  {"𝐶𝑙𝑜𝑠𝑖𝑛𝑔"} 
• 𝐹 ∈ {"𝐹𝑢𝑙𝑙 − 𝑜𝑝𝑒𝑛𝑖𝑛𝑔"} 

 
The transition function can be expressed as: 

𝛿(𝑞,𝑋) = 𝑝, (4.2) 
 
where: 
• 𝑞 is a current state. 
• 𝑋 is an input symbol. 
• 𝑝 is a state the automaton passes to. 

 
Finite automaton operates according to the transition function. It represents a reaction of the 
automaton to the inputs which occur in specific states. The reaction is a new future state of 
the automaton. If the action of above-shown example automaton is rewritten as (4.2), the result 
is the following system of equations. 

                      𝛿("𝐶𝑙𝑜𝑠𝑖𝑛𝑔", "𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝑙𝑦 − 𝑜𝑝𝑒𝑛") = "𝑃𝑎𝑟𝑡𝑖𝑎𝑙 − 𝑜𝑝𝑒𝑛𝑖𝑛𝑔 #1" (4.3) 
                            𝛿("𝐶𝑙𝑜𝑠𝑖𝑛𝑔", "𝐹𝑢𝑙𝑙𝑦 − 𝑜𝑝𝑒𝑛") = "𝐹𝑢𝑙𝑙 − 𝑜𝑝𝑒𝑛𝑖𝑛𝑔"   
𝛿("𝑃𝑎𝑟𝑡𝑖𝑎𝑙 − 𝑜𝑝𝑒𝑛𝑖𝑛𝑔 #1", "𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝑙𝑦 − 𝑜𝑝𝑒𝑛") = "𝑃𝑎𝑟𝑡𝑖𝑎𝑙 − 𝑜𝑝𝑒𝑛𝑖𝑛𝑔 #2"                
                  𝛿("𝑃𝑎𝑟𝑡𝑖𝑎𝑙 − 𝑜𝑝𝑒𝑛𝑖𝑛𝑔 #1", "𝐶𝑙𝑜𝑠𝑒") = "𝐶𝑙𝑜𝑠𝑖𝑛𝑔"  
                  𝛿("𝑃𝑎𝑟𝑡𝑖𝑎𝑙 − 𝑜𝑝𝑒𝑛𝑖𝑛𝑔 #2", "𝐶𝑙𝑜𝑠𝑒") = "𝑃𝑎𝑟𝑡𝑖𝑎𝑙 − 𝑜𝑝𝑒𝑛𝑖𝑛𝑔 #1"  

 
However, the usual description of the automata is in the form of a transition table (see Table 3), 
which contains arguments of the transition function and the responses of the function. 
 
 Table 3: Example of the transition table 

Argument of equation (4.2) Response of equation (4.2) 
Current state Current input New state 

„Closing“ „Partially-open“ „Partial-opening #1“ 

„Closing“ „Fully-open“ „Full-opening“ 

„Partial-opening #1“ „Partially-open“ „Partial-opening #2“ 

„Partial-opening #1“ „Close“ „Closing“ 

„Partial-opening #1“ „Close“ „Partial-opening #1“ 
 
The 5-tuple (4.1) and the transition table together describe actual finite automaton and its 
operation. 
 
4.2 Turing machines 
Turing machines [10] are theoretical machines and belong among representatives of finite 
automata. They use a sequential approach to pursued operations. Except for complexity, they are 
characterized by enhancement which facilitates to provide a new way of response. Turing 
machines can generate output information by writing process. With regard to the character of the 
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Turing machines, it is even possible to use them to solve problems which are unsolvable by 
common appliance of informatics (e.g. because of restrictions due to limited operating memory). 

As with finite automata, Turing machines can be deterministic or non-deterministic; the 
difference between these variations is similar as in regard to finite automata. Because in the 
following text only deterministic Turing machines are considered, the term “Turing machine” is 
related to the deterministic variant when it occurs. 

Apart from deterministic and non-deterministic variants of the Turing machines, several 
expanded types [10] of Turing machines which differ in structure also exist. These are e.g. 
multi-tape Turing machines, multi-stack Turing machines, Turing machines with semi-infinite 
tapes etc. In this doctoral thesis, simple Turing machines with infinite tapes are considered. This 
variant of Turing machines simulates a machine with infinite memory (see Fig. 4.2). 

 
 
 
 
 
 
 
 
 
 

Fig. 4.2: Scheme of the Turing machine 

 
Turing machines contain three main components which are essential to their makeup. These are: 

• Data tape 
This is the data carrier of Turing machines. It serves as an information channel for input 
and Turing machine can use it for writing output data. 

• Operational head 
The head acts as an interface between the data tape and the actual Turing machine. It can 
read data from the tape and write information to the data tape. 

• Internal stack 
The stack contains information on inner states. 

 
As can be seen, the structure of Turing machines is not so complex. It contains only three main 
components. The data tape is a storage medium which contains symbols of pre-defined signary. 
These symbols are subsequently processed by Turing machine. At first, they are read by the 
operational head and input to the machine. The symbols are processed in accordance with the 
transition function. Afterwards, the output is written to the data tape in the form of symbols by 
the operational head. 
 
4.2.1 Definition of Turing machines 

The definition of Turing machines is partially based on a formal description of finite automata 
(4.1) since there are several similarities between Turing machines and finite automata. Because 
Turing machines can generate output information, their definition includes additional 
parameters. The form of definition is a 7-tuple [10]: 

𝑀 = (𝑄, Σ, Γ, 𝛿, 𝑞0,𝐵,𝐹), (4.4) 
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where: 

• 𝑄 is a set of all inner states. 
• Σ is a set of input symbols whereas ⊆  Γ \ {𝐵}. These symbols represent active input 

information. 
• Γ is a set of all data tape symbols. 
• 𝛿 represents the transition function of Turing machine such as 𝛿:𝑄\𝐹 × Γ → 𝑄 × Γ ×

{𝐿,𝑅}. 
• 𝑞0 is an initial state such as 𝑞0 ∈ 𝑄. 
• 𝐵 is a blank symbol such as 𝐵 ∈ Γ. This symbol is „non-active” and used for filling 

empty spaces on the data tape, separating „active” symbols etc. 
• 𝐹 is a set of final states 𝐹 ⊆ 𝑄. 

 
Along with the definition of Turing machines, the transition function of Turing machines is also 
different as can be seen above. It could be transcribed as: 

𝛿(𝑞,𝑋) = (𝑝,𝑌,𝐷), (4.5) 
 
where: 

• 𝑞 is a current state. 
• 𝑋 is an input symbol. 
• 𝑝 is a a state Turing machine passes to. 
• 𝑌 is an output symbol which is written to the data tape. 
• 𝐷 is the direction of the head movement. This direction is to the left (-1) and right (1) 

side. Also it is possible that the head is not moved and remains (0) in its current position 
thus 𝐷 = {−1,0,1}. 

 
The meaning of symbols in (4.4), (4.5) which occur in conjunction with the final automata is the 
same as in (4.1) and (4.2). 
 
4.2.2 How Turing machine works 

Basically, Turing machines pursue simple activity. They read symbols from the data tape, 
process the symbols according to the transition function, write new symbols to the data tape, 
move the head and pass to the new inner states.  

 
 
 

 

 

 

 

 

 

Fig. 4.3: Operating of the Turing machines 

 
This process is repeated until a new inner state does not belong to the set of final states. The 
diagram of the process can be seen in Fig. 4.3. 
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Similarly to finite automata, the processing of symbols by Turing machines is influenced by the 
transition table which maps arguments of the transition function and the response of this 
function on Turing machine. The appearance of Turing machine’s transition table depends on 
expression (4.5). This means that the table has five columns which correspond to the parameters 
q, X, p, Y and D. The content of the table can be called the rules of Turing machine’s transition 
function. 

The activity of Turing machine can be demonstrated by the following basic example where 
a simple Turing machine is utilized. Let’s consider a problem of bit negation. The data tape 
contains sequences of bits. The task of Turing machine is to negate each bit encoded in the data 
tape. The sample data tapes can be seen in Fig. 4.4 and Fig. 4.5. 

 
 
 

Fig. 4.4: Example of input data tape 

 
 
 

Fig. 4.5: Example of requested output data tape 

 
Parameters of Turing machine are: 

• 𝑄 = {𝑞1, 𝑞2} 
• Σ = {"0", "1"} 
• Γ = {"#", "0", "1"} 
• 𝑞0 = 𝑞1 
• 𝐹 = {𝑞2} 
 

The initial head position is located at the first input symbol. 
 
How Turing machine processes the data tape is controlled by the rules which are shown in 
Table 4. 
 

Table 4 - Example of the Turing machine's transition table 

Argument of expression (4.5) Response of expression (4.5) 
Current state Loaded 

 
New state Record symbol Direction 

𝑞1 „#“ 𝑝2   

𝑞1 „0“ 𝑝1 „1“ 1 

𝑞1 „1“ 𝑝1 „0“ 1 
 

The transition table can be again rewritten in the form of an equation of the transition functions. 

𝛿(𝑞1, "#")  =  𝑝2 (4.6) 
 𝛿(𝑞1, "0") =  (𝑝1, "1", 1)  
𝛿(𝑞1, "1")  =  (𝑝1, "0", 1)  
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Let’s have a look at the processing of the data tape on each step (the bold frame of the data tape 
marks the current head position): 

1. 𝛿(𝑞1, "0") =  (𝑝1, "1", 1) 
The current inner state of Turing machine is q1 and the head is located at symbol “0” 
(see Fig. 4.6). According to the rules of the transition function (Table 4), Turing 
machine writes symbol “1” to the data tape and moves the head to the left. The inner 
state is not changed. 

 
 

Fig. 4.6: Appearance of the data tape in step 1 

 
2. 𝛿(𝑞1, "1")  =  (𝑝1, "0", 1) 

The current inner state of Turing machine is q1 again. The head is located at symbol 
“1” (see Fig. 4.7). According to the rules of the transition function, Turing machine 
writes symbol “0” to the data tape and moves the head to the left. The inner state is not 
changed. 
 
 

Fig. 4.7: Appearance of the data tape in step 2 

 
3. 𝛿(𝑞1, "1")  =  (𝑝1, "0", 1) 

Similarly to the previous step, the current inner state of Turing machine is q1 and the 
head is located at symbol “1” (see Fig. 4.8). According to the rules of the transition 
function, Turing machine writes symbol “0” to the data tape and moves the head to the 
left. The inner state is not changed again. 
 
 

Fig. 4.8: Appearance of the data tape in step 3 

 
4. 𝛿(𝑞1, "#")  =  𝑝2 

The current inner state of Turing machine is 𝑞1. The head is located at symbol “#” (see 
Fig. 4.9). According to the rules of the transition function, Turing machine passes to the 
inner state 𝑞2. The state 𝑞2 is final thus Turing machine finishes processing. 
 
 

Fig. 4.9: Appearance of the data tape in step 4 

 
 
It is not necessary to move the operational head in any direction other than toward the right in 
this simple example but the rules of the Turing machine can be clearly seen. They act as the 
program for Turing machines. This doctoral thesis is focused solely on optimization of the rules 
of the transition function. 
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 APPLICATION OF EVOLUTIONARY ALGORITHMS 5
Artificial intelligence can be found in different forms. If the applications of artificial intelligence 
are considered the methods where the artificial intelligence is part of them are especially meant 
above all. In principle, these methods are inspired by natural processes interfering with life-
based systems or organisms including genetics (as genetic algorithms), neural system capability 
(as neural networks), evolution (as evolutionary algorithms) etc. As perceivable according to the 
title of the chapter, there is considered a subset of methods of artificial intelligence which 
include evolutionary algorithms within the scope of optimization technique. The evolutionary 
algorithms are inspired by natural evolutionary processes. The main area of use of 
these algorithms is optimization which can be in the form of function approximation, pattern 
recognition etc. 

This part of doctoral thesis describes optimization using two evolutionary algorithms. These 
are known as Differential Evolution [18, 19, 33, 35], which is an algorithm introduced in the 
1990’s by K. Price and R. Storn, and the relatively novel Self-Organizing Migrating Algorithm 
[33] – [35] developed by I. Zelinka. Although both are termed as evolutionary algorithms, there 
are a few differences between them in terms of their fundamentals and behavior in action. That 
is especially concerned about the latter which balances between evolutionary algorithms and 
memetic algorithms as will be explained later.Within this doctoral thesis’ part both algorithms 
will be briefly presented thus it will be possible to become sufficiently familiarized with them. 

 
5.1 Differential Evolution 
This evolutionary algorithm is inspired in a significant way by the process of evolution as can be 
observed in nature. The principles of Differential Evolution [18, 19, 33, 35] are based on 
Darwin’s theory and its fundamental aspects of natural occurrences. The evolution of any 
population is influenced by the abilities of its members to adapt to the surrounding environment 
where the population is spread. These abilities are mostly inherited. In addition, they come 
through evolvement processes during the life-cycle of every individual member of the 
population. The inherited abilities are a direct result from ancestors of each member. 
The abilities important to the survival of the members of the population depend on the actual 
environment where the population is spread. The abilities considered can be e.g. strength, 
leadership skills, ability to obtain food etc. It could be said, that the complex of abilities which 
affect survival express “quality” values of the individual member. The members of population 
with higher “quality” values have a significantly greater chance of survival in the surrounding 
environment. 

As can be seen above, the evolution process can be considered as a form of optimization. 
The members of the population can be regarded as fragmentary solutions to the problem which 
takes the form of the surrounding environment. Optimization consists of looking for the most 
suitable solution to the problem thus becoming the best-adapted individual member of the 
population for survival in the surrounding environment. 

 
5.1.1 Essential principles of Differential Evolution 

Because the individuals of a population represent fragmentary solutions to the actual problem, it 
is therefore necessary to specify how each solution to various problems is encoded in the form 
of an individual. This is ensured by a specimen. The specimen is a vector which denotes 
a number of parameters of the individual and the range of these parameters. The parameters of 
the individuals can be imagined as the abilities of population members. At the beginning of the 
evolution process, the population is an assortment of individuals with randomly generated 
parameters according to the specimen. These individuals are parts of the first generation and are 
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subsequently optimized in a similar way to natural evolution. The important part of evolution is 
a computing of “quality” value, which is known as cost value. In accordance with the cost value, 
individuals are selected to advance to the next generation. These individuals “survive”. 

Within each generation, the individuals are subsequently processed. In addition to the 
currently processed individual 𝑥𝑖 three other individuals 𝑥𝑟1 , 𝑥𝑟2  and 𝑥𝑟3  are randomly selected. 
The first two of randomly-selected individuals 𝑥𝑟1  and 𝑥𝑟2  are subtracted (thus the arguments for 
subtraction are parameters of individuals). The result of subtraction of these individuals is 
a differential vector. The mutation of the differential vector proceeds in the next step. The 
mutation takes the form of a multiplication of the differential vector and the mutation constant F 
(multiplication of one of Differential Evolution parameters and items of differential vector). 
The mutated differential vector is known as weighted differential vector. This vector is added to 
the third randomly-selected individual 𝑥𝑟3 (addition of items of weighted differential vector and 
parameters of individual). The result of addition is a noise vector (5.3). The final operation is 
a cross-over of the currently processed individual and the noise vector. The cross-over operation 
produces the test vector (5.1) which can be regarded as a descendant of the four individuals 
(currently-processed individual and three randomly-selected individuals) with inherited and 
evolutionary evolved abilities - parameters. Now, the cost values of the currently-processed 
individual and the test vector are computed. This is ensured by the cost function which is 
specified in accordance with the actual problem thus the parameters of individual (or items of 
vector) are substituted in the cost function. The individual or test vector which contains the 
better evaluation advances to the next generation (5.2). After processing of all individuals within 
the current generation, the next generation is formed and the optimization process repeats in 
a similar way as mentioned above. 

How optimization by Differential Evolution works can be mathematically expressed [33] as 
follows. The computation of test vector is 

 

𝑥𝑖,𝑗𝑡𝑒𝑠𝑡 = �
𝑥𝑟3,𝑗
𝐺 + 𝐹 ∙ �𝑥𝑟1,𝑗

𝐺 − 𝑥𝑟2,𝑗
𝐺 � 𝑖𝑓 𝑟𝑎𝑛𝑑𝑗[0,1] < 𝐶𝑅 ⋁ 𝑗 = 𝑗𝑟𝑎𝑛𝑑

𝑥𝑖,𝑗𝐺 𝑒𝑙𝑠𝑒
, (5.1) 

 
 
where: 

• 𝑖 = {1, … ,𝑁𝑃}, 𝑗 = {1, … ,𝐷} D – Dimension of individual 
• 𝑟1, 𝑟2, 𝑟3 ∈ {1, … ,𝑁𝑃}  Random selection of three individuals 
• 𝑟1 ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑖 
• 𝐶𝑅 ∈ 〈0,1〉,𝐹 ∈ 〈0,2〉 

 
The evaluation of test vector and the currently-processed individual within a generation can be 
formulated as (5.2). The minimization is considered in (5.2) thus lower cost value is preferred. 
 

𝑥𝑖𝐺+1 = �
𝑥𝑖𝑡𝑒𝑠𝑡 𝑖𝑓 𝑓𝑐𝑜𝑠𝑡(𝑥𝑡𝑒𝑠𝑡) ≤ 𝑓𝑐𝑜𝑠𝑡(𝑥𝑖𝐺)
𝑥𝑖𝐺 𝑒𝑙𝑠𝑒

 (5.2) 
 

 
Differential Evolution has several variants which mostly differ in the way of computation of the 
noise vector. This doctoral thesis and following examples of optimization consider the 
DE/rand/1/bin variation of Differential Evolution. Within the scope of the mentioned variation 
of Differential Evolution, the noise vector is computed as (5.3). 
 

𝑣 = 𝑥𝑟3,𝑗
𝐺 + 𝐹 ∙ �𝑥𝑟1,𝑗

𝐺 − 𝑥𝑟2,𝑗
𝐺 � (5.3) 
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Differential Evolution algorithm contains parameters [33] which have to be set before starting 
the optimization process. The parameters which influence the processing of individuals can be 
found e.g. in equations (5.1 – 5.3). These parameters are: 

• NP (Number of population) 
How many individuals are contained within one generation. 

• F (Mutation constant) 
The rate of diversity when computing weighted differential vector. 

• CR (Cross-over value) 
Influence on creating test vector. 

• G (Generations) 
How many generations will be subsequently created until optimization ends. 

 
As can be seen, Differential Evolution is considerably similar to natural evolution. 
 
5.2 Self-Organizing Migrating Algorithm 
The algorithm which has been described here falls into the category of evolutionary algorithms, 
although it is not entirely accurate. Evolutionary algorithms usually feature the ability to create 
new individuals from ancestors thereby its “abilities”, in the form of parameters, are influenced 
by mutation and cross-over. During optimization by Self-Organizing Migrating Algorithm [33] 
– [35], new individuals are not being created and the ancestor-descendant relationship is not of 
concern. Thus this algorithm should rather be termed as memetic algorithm. 
 
5.2.1 Background theory of Self-Organizing Migrating Algorithm 

Self-Organizing Migrating Algorithm (SOMA) is inspired by the social behavior of cooperating 
individuals. It could be imagined as cooperation within migration of wildlife shoals, hunting or 
achieving other collective interests. At the beginning of the optimization process, there is 
a randomly generated initial migration according to the specimen (similar to Differential 
Evolution). As opposed to Differential Evolution, SOMA uses the term “migration” instead of 
“generation”, since no new individuals are created. During that process, the individuals of the 
current migration are evaluated by cost function and the cost value is counted. The individual 
who has the better evaluation becomes the leader of other individuals within the current 
migration. These individuals start moving toward the leader from the surrounding environment 
which represents an optimization problem. Each following migration involves determination of 
the new leader and moving other individuals toward him thus the best and most suitable solution 
of the problem is subsequently revealed. 

Because SOMA is not based on common principles of evolution and does not use mutation 
and cross-over operation, it is necessary to ensure the stochastic progression of the algorithm in 
an alternative way. In the case of SOMA, the mutation is replaced by perturbation which 
influences the movement of individuals in the surrounding environment. It means that 
parameters of individuals are changed by perturbation. The perturbation has a form of a unique 
vector (PRTVector) for each individual. This vector states the number of parameters which have 
to be changed for the current individual. How the PRTVector is generated can be 
mathematically expressed [33] as: 

𝑃𝑅𝑇𝑉𝑒𝑐𝑡𝑜𝑟 = �1 𝑖𝑓 𝑟𝑎𝑛𝑑𝑗 < 𝑃𝑅𝑇
0 𝑒𝑙𝑠𝑒

, (5.4) 
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where: 

• 𝑗 = {1, … ,𝐷} D – Dimension of individual 
• 𝑃𝑅𝑇 Value of perturbation (see below) 

 
The cross-over process of Differential Evolution is replaced by a movement of individuals in the 
surrounding environment and remembering the best suitable position (parameters of individual). 
The movement can be expressed by a directional vector [33]: 

𝑟 = 𝑟0���⃗ + 𝑚��⃗ 𝑡𝑃𝑅𝑇𝑉𝑒𝑐𝑡𝑜𝑟�����������������������⃗ , (5.5) 
 

where: 

• 𝑡 ∈ 〈0, 𝑆𝑡𝑒𝑝,𝑃𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ〉 Step, PathLength – parameters of SOMA (see below) 
 
The equation (5.5) can be further transcribed [33] as: 

𝑥𝑖,𝑗𝑀+1 = 𝑥𝑖,𝑗,𝑠𝑡𝑎𝑟𝑡
𝑀 + �𝑥𝑖,𝑗𝑀 −  𝑥𝑖,𝑗,𝑠𝑡𝑎𝑟𝑡

𝑀 �𝑡𝑃𝑅𝑇𝑉𝑒𝑐𝑡𝑜𝑟𝑗, (5.6) 
 
where: 

• 𝑡 ∈ 〈0, 𝑆𝑡𝑒𝑝,𝑃𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ〉 Step,PathLength – parameters of SOMA (see below) 
 
If the items of PRTVector are equal to 1, the current individual moves toward the leader 
according to the directional vector. If certain items of PRTVector are equal to 0, the appropriate 
parameters of individual are not changed within the current migration. 

There are several strategies of movement of individuals within migrations in SOMA. This 
chapter and all examples consider the AllToOne strategy, where all individuals move toward one 
leader. 

As well as Differential Evolution, SOMA has its own parameters which have to be set before 
the optimization process starts. These parameters [33] are: 

• PopSize (Size of population) 
How many individuals are contained within one migration. 

• PRT (Perturbation value) 
Influences the generation of perturbation vector. 

• PathLength 
Distance between halting position of the current individual and the leader. 

• Step 
The step size of the individual movement. 

• Migrations 
How many migrations will occur until the optimization ends. 

• AcceptedError 
Maximal difference of the best and the worst individual in the current migration. If the 
difference is less than AcceptedError, the optimization ends. 

 
SOMA algorithm can be still regarded as evolutionary although there are certain nuances 
between SOMA and other evolutionary algorithms. The perturbation and movement of 
individuals for ensuring stochastic progression can be considered to be forms of mutation and 
cross-over. 
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 APPROACHES TO EVOLUTIONARY OPTIMIZATION OF 6
THE RULES OF THE TURING MACHINE’S TRANSITION 
FUNCTION 

There is no easy answer to the question: “How to evolutionary optimize the rules of the Turing 
machine’s transition function?” In spite of this, two approaches to evolutionary optimization 
will be presented. These approaches differ considerably from each and are accomplishments of 
this doctoral research [15] – [17]. In connection with the above question and knowledge of 
Turing machines and selected evolutionary algorithms, both approaches offer answers to the 
related questions which are: 

• How to encode the rules as a transition table or equation system of transition functions to 
a form which can be comprehensible to evolutionary algorithms? 

• How to design the cost function which evaluates the individuals during optimization by 
Differential Evolution or SOMA? 

 

If it is thought about what is represented by the program of Turing machine and how the above 
described optimization works it can be seen that above two questions are highly important. 
Actually, the program of Turing machine appears as rules, hence it is necessary to provide 
information on the transition table or the equation system of the transition functions in a suitable 
form for processing by evolutionary algorithms. This is because evolutionary algorithms 
optimize the population which is supplied by the encoded rules of Turing machine. 

The approaches of optimization differ from each other by the manner in which rules are 
encoded and processed. The first approach presented will consider processing of rules as a 
whole. The second approach uses per-part processing of the rules. Each rule is optimized 
separately. 

 
6.1 Classical optimization 
This approach [16, 17] to optimization takes into consideration the rules as a whole. This means 
that all rules input to the optimization process together and are also processed as a whole. It 
follows that individuals within Differential Evolution or SOMA will encode rules which 
represent varied programs of Turing machine and the selected evolutionary algorithm will 
produce the best optimized and most suitable one. But it is necessary to find an effective method 
to do the encoding because evolutionary algorithms use numerical expressions only, whereas the 
rules of Turing machine are based on symbolic expressions. 
 
6.1.1 Encoding the rules for classical optimization 

If the example shown in chapter 4.2.2 (see Table 4) is remembered, it can be perceived that the 
arguments of the transition function are combinations of inner states of Turing machine Q and 
the data tape symbols Γ . Similarly, the response of the transition function can be considered as 
a combination of inner states of Turing machine Q, data tape symbols Γ  and the direction of 
head movement D. These two facts could be capitalized on composition of individuals. 

Let’s create the vector 𝑣𝑖𝑛𝑝𝑢𝑡 which contains all combinations of the transition function 
arguments and the vector 𝑣𝑜𝑢𝑡𝑝𝑢𝑡 which contains all combinations of responses of the transition 
function. If the parameters of Turing machine are the same as in the example shown in chapter 
4.2.2: 

• 𝑄 = {𝑞1, 𝑞2}, 
• Γ = {"#", "0", "1"}, 
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the vector 𝑣𝑖𝑛𝑝𝑢𝑡 has 6 items (two inner states ∙ three data tape symbols) and the vector 𝑣𝑜𝑢𝑡𝑝𝑢𝑡 
is compounded from 18 items (two inner states ∙ three data tape symbols ∙ three directions). The 
mentioned vectors are as follows: 
 

  𝑣𝑖𝑛𝑝𝑢𝑡 = �
{𝑞1, "#"}, {𝑞1, "0"}, {𝑞1, "1"},
{𝑞2, "#"}, {𝑞2, "0"}, {𝑞2, "1"}� (6.1) 

 
 

 

 
 
𝑣𝑜𝑢𝑡𝑝𝑢𝑡 =

⎩
⎪⎪
⎨

⎪⎪
⎧

{𝑞1, "#",−1}, {𝑞1, "#", 0}, {𝑞1, "#", 1},
{𝑞1, "0",−1}, {𝑞1, "0", 0}, {𝑞1, "0", 1},
{𝑞1, "1",−1}, {𝑞1, "1", 0}, {𝑞1, "1", 1},
{𝑞2, "#",−1}, {𝑞2, "#", 0}, {𝑞2, "#", 1},
{𝑞2, "0",−1}, {𝑞2, "0", 0}, {𝑞2, "0", 1},
{𝑞2, "1",−1}, {𝑞2, "1", 0}, {𝑞2, "1", 1}⎭

⎪⎪
⎬

⎪⎪
⎫

 (6.2) 
 

 
 
 
These vectors can be encoded to the individual on the basis of indexes of their items. The 
problem is how to effectively encode these indexes to a compact form for evolutionary 
algorithm’s individual. The values included in the individual can represent indexes of items of 
𝑣𝑜𝑢𝑡𝑝𝑢𝑡 whereas their positions can be matched with indexes of items of 𝑣𝑖𝑛𝑝𝑢𝑡. This may sound 
complicated but can be clarified by seeing Fig. 6.1. 
 

According to the Fig. 6.1, it is possible to rewrite: 

𝑣𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 = {1,3,4,2,5, … }, (6.3) 
 
to the equation system of transition functions: 

𝛿(𝑞1, "#") = (𝑞1, "#",−1) (6.4) 
𝛿(𝑞1, "0") = (𝑞1, "#", 1)                                                                   
𝛿(𝑞1, "1") = (𝑞1, "0",−1)                                           
𝛿(𝑞2, "#") = (𝑞1, "#", 0)                                              
𝛿(𝑞2, "0") = (𝑞1, "0", 0)                                              
                 …                                                                

 
 
 
 
 
 
 
 
 
 
 

Fig. 6.1: Example of encoding complete rules 

 
When the classical approach is used, it is necessary to set the number of inner states Q before 
starting the optimization process because this parameter influences vectors 𝑣𝑖𝑛𝑝𝑢𝑡 and 𝑣𝑜𝑢𝑡𝑝𝑢𝑡. 
If the number of inner states is too low, there is a risk that it will be impossible to find suitable 
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rules. If the number of inner states is too high, the complexity of the optimization process rises 
drastically. 
 
6.1.2 Definition of specimen 

When it is clear how the individual is encoded, the specimen and boundaries of its parameters 
can be established. As can be seen in Fig. 6.1, the specimen will have a number of items 
equivalent to the length of the vector 𝑣𝑖𝑛𝑝𝑢𝑡 (length of Q ∙ length of Γ). Each item can gain value 
from the range ⟨1; length of 𝑣𝑜𝑢𝑡𝑝𝑢𝑡�. More precisely it is ⟨1; length of Q ∙ length of Γ ∙ length of 
𝐷⟩. In the case of above-mentioned example, the specimen has six items which can gain value 
from the range ⟨1;18⟩: 

𝑣𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛 = {𝑖1, … , 𝑖𝑛}, (6.5) 
 
where: 

• 𝑛 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑣𝑖𝑛𝑝𝑢𝑡 
• 𝑖 ∈ 〈1, 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑣𝑜𝑢𝑡𝑝𝑢𝑡〉 

 
The specimen uses the integer values for its items but the evolutionary algorithms operate over 
continuous space with real numbers thus it is necessary to perform conversion when decoding 
the result of the optimization to the form of the rules. This can be done by expressing values as 
the greatest integers which are less or equal to real numbers occurring in the result. 
 
6.1.3 Designing evaluation function 

The evaluation function is an important part of the optimization process realized by evolutionary 
algorithms as a component of cost function. Within this function the individuals are evaluated 
and decisions on the advantaging of individuals are made. The evaluation function which is used 
by classical optimization involves the following steps: 

• Rewriting individuals to the form of rules. 
• Initializing Turing machine using new rules. 
• Starting Turing machine. 
• Comparing the current output of Turing machine to the requested output. 
• Evaluating individuals according to the above mentioned comparison. 

 

Each individual from the current generation or migration is subsequently entered to the 
evaluation function. Then the current individual is rewritten to the form of rules. These rules are 
used for initialization of Turing machine and Turing machine is started. When Turing machine 
finishes processing the data tape, the output data tape is compared to the requested output data 
tape. After that the individual is evaluated on the basis of the comparison. This can be expressed 
as: 
 

𝐶𝑉 = �𝐶𝑉 − 𝑉 𝑖𝑓 Γ𝑜𝑢𝑡𝑝𝑢𝑡,𝑖 == Γ𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑,𝑖
CV + 𝑉 𝑒𝑙𝑠𝑒

, (6.6) 
 

where 

• 𝐶𝑉  Cost value. 
• 𝑉  Value which infulences computing of the cost value. 
• Γ𝑜𝑢𝑡𝑝𝑢𝑡,𝑖 Data tape symbol at i-th position of output data tape. 
• Γ𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑,𝑖 Data tape symbol at i-th position of requested output data tape. 
• 𝑖 = 1, … , 𝐿 L – length of data tape. 
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This is considered as optimization toward finding the minimum in (6.6) therefore the CV is 
decreased if the compared symbols are identical. Alternatively, when optimization toward 
finding the maximum is considered, the cost value of the individual will increase. 

The process of evaluating the individual can be also depicted as can be seen in Fig. 6.2 (plus 
symbol means “true”, minus symbol means “false”). During evaluation, the symbols of the 
output data tape and requested output data tape are subsequently compared (see Fig. 6.2). If the 
symbols are equal, the individual is advantaged (the cost value is adapted in accordance with 
finding the maximum or minimum by defined coefficient V). If the symbols are not equal, the 
individual is penalized by coefficient V (the cost value is decreased when finding the maximum 
or increased when finding the minimum). If the optimization is finding the minimum, the better 
evaluated individual has the lower cost value. If the optimization is finding the maximum, the 
better evaluated individual has the higher cost value. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.2: Evaluating individuals by classical optimization 

 
This design of the evaluation function enables optimization of the complete set of rules at once 
because they are encoded as one individual. When evolutionary algorithms process a generation 
or a migration of individuals, they optimize several sets of rules together. From the point of view 
of the evolutionary algorithms, these sets of rules are ordinary individuals and are processed as 
mentioned in chapter 5.1 and 5.2. 
 
6.2 Per-partes optimization 
This approach [15] to optimization is entirely different to the former. The individual does not 
encode a set of all rules but one rule only and the evolutionary algorithm does not find the best 
suitable set of rules in the form of the individual but separately optimizes each rule of one set 
and composes the ideal program for Turing machine. This means that the evolutionary algorithm 
tries to find the one rule which ensures preferable processing of the current symbol on the data 
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tape. Thus this optimization approach is known as per-partes. Therefore it is necessary to start 
optimization for each symbol separately. Because the former approach uses evaluation of the 
individual based on (6.6) and the evaluation of the individual as a whole is influenced by 
matching of separate symbols of the output data tape and output requested data tape, it is 
possible that an individual which contains several correct rules (but not all) is discarded when 
penalization is too high due to other rules. The above-mentioned situation is by-passed due to 
optimization of rules for processing each data tape symbol separately. 
 
6.2.1 Encoding the rules for per-partes optimization 

The first thing that is changed is the way in which the rules are encoded to the form of the 
individual. Let’s consider expression of the symbol arguments of the transition function (4.5) as 
indexes. The equation (4.5) may be rewritten to the following form: 

𝛿�𝑞𝑖 ,𝑋𝑗� = (𝑝𝑘 ,𝑌𝑙 ,𝐷𝑚), (6.7) 
 
where: 

• 𝑞𝑖 ∈ 𝑄 𝑖 = 0, … , 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑠𝑒𝑡 𝑄 − 1 
• 𝑋𝑗 ∈ Γ 𝑗 = 0, … , 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑠𝑒𝑡 Γ − 1 
• 𝑝𝑘 ∈ 𝑄 𝑘 = 0, … , 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑠𝑒𝑡 𝑄 − 1 
• 𝑌𝑙 ∈ Γ  𝑙 = 0, … , 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑠𝑒𝑡 Γ − 1 
• 𝐷𝑚 ∈ 𝐷 𝑚 = −1, … , 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑠𝑒𝑡 𝐷 − 2,𝐷 = {𝑙𝑒𝑓𝑡,𝑛𝑜𝑛𝑒, 𝑟𝑖𝑔ℎ𝑡} 

 

Now it is possible to work with integers which match indexes i, j, k, l, m instead of symbols 𝑞𝑖, 
𝑋𝑗, 𝑝𝑘, 𝑌𝑙  , 𝐷𝑚. The encoding is simplified by expression of the rule as an individual containing 
only two items. These items are: 

• l – index of symbol which is written to the data tape by Turing machine. 
• m – index of direction of the Turing machine’s head movement. 

 
 
 
 
 
 
 
 
 

Fig. 6.3: Example of encoding one rule 

An example of encoding the individual which explains above-descibed situation can be seen in 
Fig. 6.3. 

It is possible to omit other indexes because the per-partes approach dynamically adjusts inner 
states. As a result, it is not necessary to set the number of inner states before starting 
optimization. Every movement of the Turing machine’s head and processing of the data tape 
symbol represents a new inner state thus in (4.5) arguments q and X are known. The 
evolutionary algorithm finds suitable parameters Y and D. At the end of optimization, all 
estimated rules are compacted or reduced in order to use all combinations of inner states and 
data tape symbols since they are considered as arguments of the transition function. Then the p 
parameters are supplied in reverse order and the rules are connected together. This process is 
simple but it may appear unclear at first sight. The following example shows rules compositions. 
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Let’s consider a problem of bit negation as well as in chapter 4.2.2. The input data tape and 
requested output data tape appear as in Fig. 4.4 and Fig. 4.5. The per-partes approach may 
process the input task in steps as follows: 

1. 𝛿(𝑞1, "0")  = (     , "1", 1) 
 

 

Fig. 6.4: Appearance of the data tape in step 1 

 
2. 𝛿(𝑞2, "1") = �     , "0", 1� 

 
 

Fig. 6.5: Appearance of the data tape in step 2 

 
3. 𝛿(𝑞3, "1")  = (     , "0", 1) 

 
 

Fig. 6.6: Appearance of the data tape in step 3 

 
4. 𝛿(𝑞4, "#")  = (     , "1", 1) 

 
 

Fig. 6.7: Appearance of the data tape in step 4 

 
The arguments of the transition functions are given. The X parameter is influenced by the data 
tape symbol where the head of the Turing machine is currently located. The inner states (q 
parameter) are subsequently added in each step of head movement (as mentioned above). The 
responses of the transition function (right sides of the equation) are results of optimization. 
Within each step there is a comparison of output data tape with requested output data tape. If 
both data tapes are similar, the optimization process ends. 

When all rules are revealed, the set of rules is reduced. The non-compacted equation system 
looks like: 

𝛿(𝑞1, "0") = (     , "1", 1) (6.8) 
𝛿(𝑞2, "1") = �     , "0", 1�  
𝛿(𝑞3, "1") = (     , "0", 1)  
𝛿(𝑞4, "#") = (     , "1", 1)  

 
As can be seen, there is a waste of inner states because all combinations of inner states and data 
tape symbols as arguments of the transition function are not utilized. These non-utilized 
combinations are e.g. (𝑞1;“#”), (𝑞1;“1”), (𝑞2;“#”), (𝑞2;“0”) etc. The above-mentioned process of 
reduction ensures utilization of all combinations. Within the process of reduction, the p 
parameters are supplied and the connection of all rules is provided. An example of reduction is 
depicted as Fig. 6.8. 

As can be seen, four rules were reduced to three and connected together. The final equation 
system of the transition functions is: 

𝛿(𝑞1, "#") = (𝑞2, "1", 1) (6.9) 
𝛿(𝑞1, "0") = (𝑞1, "1", 1)  
𝛿(𝑞1, "1") = (𝑞1, "0", 1)  
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In (6.9) the state 𝑞2 is the final state. When the 𝑞2 state is reached by Turing machine, activity of 
Turing machine ends. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 6.8: Example of reduction of the rules 

 

6.2.2 Definition of specimen 

The encoding of rules outlines how a specimen is defined. Fig. 6.3 shows, that the specimen will 
have only two items. The first item represents index of the data tape symbol, the second item is 
an index of direction of the head movement. The index of the data tape symbol can gain value in 
the range ⟨0; length of Γ − 1⟩. The value of direction index is in the range ⟨−1; length of 𝐷 −
2⟩. According to the example in chapter 6.2.1, the first item is in the range  ⟨0;2⟩ and the second 
item is in the range  ⟨−1;1⟩. The specimen will look like as follows: 

𝑣𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛 = {𝑙,𝑚}, (6.10)  
 
where 

• 𝑙 ∈ ⟨0; length of Γ − 1⟩, 
• 𝑚 ∈ ⟨−1; length of D − 2⟩. 

 
As in the case of the specimen used in the classical approach to optimization (see chapter 6.1.1 
and 6.1.2), it is necessary to convert the values of these items to integers since the evolutionary 
algorithms use real numbers. This could be ensured by e.g. expressing values as the greatest 
integers which are less or equal to the real numbers occurring in the result. 
 
6.2.3 Optimization process and evaluative algorithm 

The processing of individuals that is provided by the optimization process was partially 
described in chapter 6.2.1 in connection with encoding of rules to the form of individuals. But 
the optimization process which is used in the per-partes approach to optimization is yet more 
complex. Per-partes optimization provides: 

1. Comparing output data tape and requested output data tape. If they are the same, 
proceed to step 4, if not, go to step 2. 

2. Running evolutionary algorithm 
The individuals are processed by designed evaluative algorithm (see below). 

3. When the evolutionary algorithm is finished, the result is the best suitable rule for 
processing the current symbol located on the data tape. The output data tape is altered 
by this rule. Then go to step 1. 

4. Reduction of the rules. 
5. End of optimization proces. 
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It can be illustrated as Fig. 6.9. After starting the optimization process, the output data tape and 
requested output data tape are compared. If the tapes are different, the evolutionary algorithm 
which finds the most suitable rule for processing the current symbol (necessary to be specified 
before starting optimization) on the data tape is started. Then the current data tape symbol and 
position of the head are altered according to the estimated rule. After that, both tapes are 
compared again. If the tapes are still different, the evolutionary algorithm starts and finds the 
most suitable rule for processing the symbol at the new location which is influenced by the 
previously estimated rule. If the data tapes are the same, the reduction of all estimated rules (as 
described in chapter 6.2.1) is processed and the optimization process is finished. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 6.9: Scheme of per-partes approach to optimization 

 
The fundamental feature of this approach is the evaluative algorithm inner cost function. This 
algorithm provides a flexible way of evaluating individuals and brings another factor to the 
stochastic progress of the optimization process. Due to this, estimated rules which differ in 
processing of the data tape can be retrieved as results of optimization every time the 
optimization process is run. The algorithm can be best understood by Fig. 6.10. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.10: Diagram of the evaluative algorithm 
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There are five essential conditions in the evaluative algorithm. These conditions are shown and 
explained in Table 5. 
 

Table 5: Conditions which are parts of the evaluative algorithm 

Condition Meaning Question 

1 Checking new location of the head. 
Is the new position of the 
head out of data tape? 

2 
Verification of last three symbols contained 
on the data tape and performed movements. 

Are they the same? 

3 
Comparison of the new output symbol and 
requested output symbol. 

Aren’t they the same? 

4 Checking the direction of head movement. 
What is the direction of 
head movement? 

5 Verification of the current output symbol- Is it the blank symbol? 
 

Optimization proceeds in five steps. At first, it is verified, whether the new rule which is 
encoded as the current individual will cause the head of the Turing machine to move out of data 
tape (if there are limitations of the data tape). If yes, the individual is penalized by weight 𝑤1 
and further evaluation stops. If no, comparison proceeds of the output symbol and direction of 
the head movement encoded for the current individual and last two previous symbols and 
directions of head movement. If they are the same, the individual is penalized by weight 𝑤2 
(right direction of the head movement is preferred thus repeating this direction is not penalized) 
and evaluation is finished. If not, the current output symbol and the requested output symbols 
are compared. If they are not same, the individual is penalized by weight 𝑤3 and evaluation is 
finished again. If they are the same, the direction of head movement is checked. Thanks to 
weights 𝑤4, 𝑤5 and 𝑤6 the preference of certain directions can be set. As the last step, if the 
current output symbol is the blank symbol, the individual can be penalized by weight 𝑤7. 

As can be seen, the evaluative algorithm is really flexible by penalization or giving preference 
to individuals by various initializations of weights. The features of the evaluative algorithm can 
be summarized as: 

• Possibilities to prefer certain directions of head movement. 
• Possibilities to accept even incorrect rules assuming correction in next steps of 

processing. 
• Abilities to override circular rules and repeating of the output symbols and directions of 

head movement. 
• Possibility to penalize a blank symbol. 

 
The features mentioned above allow for rules of Turing machine optimization for solving 
complex problems quickly and effectively using the per-partes approach to optimization. 
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 SELECTED EXAMPLES 7
Up to this point there was spoken theoretically about the evolutionary optimization of the rules 
of the Turing machine’s transition function. In this part of the doctoral thesis, three examples of 
the previously-mentioned problems will be shown. The examples of using evolutionary 
optimization involve different tasks which were processed and solved by Turing machine. These 
tasks are: 

• Unary addition 
• Divisibility 
• Primality 

 
Above mentioned tasks or problems are very simple and represent basic mathematical 
operations in unary number system. These tasks will be used as simple problem representatives 
for rules estimation by the classical approach. The tasks will be also used while analyzing the 
influence of custom settings of evolutionary algorithms to the results and progress of 
optimization process (see chapter 8). 

A description of the problem and settings of Turing machine will be given at each example 
task. (There are considered two variants of Turing machines used differentiating by number of 
inner states.) 

 
7.1 Unary addition 
The problem of unary addition [16, 17, 51] is simple and consists of the addition of two numbers 
expressed by the unary number system. Let’s consider the mathematical example 2+3. If 
rewritten to the unary number system, it will appear as: 

11 + 111 
 
The result in unary number system is: 

11111 
 
It is necessary to encode specification of this example on the data tapes. The initial data tape 
looks like: 

 
 

Fig. 7.1: Initial data tape of unary addition problem 

 
and the requested output data tape: 

 
 

Fig. 7.2: Requested output data tape of unary addition problem 

 
The settings of Turing machine are following: 

• 𝑄 = {𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6} | 𝑄 = {𝑞1, … , 𝑞16} 
• Σ = {"1"} 
• Γ = {"#", "1"} 
• 𝑞0 = 𝑞1 
• 𝐵 = "#" 
• 𝐹 = {𝑞6} | 𝐹 = {𝑞16} 
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The initial head position is located before the first input symbol. The number of inner states was 
established experimentally. 
 
7.2 Divisibility 
Divisibility [16, 17, 51] is the task in which it is requested to divide two numbers exactly. 
Division is again solved using the unary number system. In this example, the mathematical 
example 4/2 is considered. The initial data tape looks as in the case of unary addition: 

 
 

Fig. 7.3: Initial data tape of divisibility problem 

 
The task of Turing machine is to find whether these numbers are exactly divisible. If they are, 
Turing machine should alter the data tape to the following form: 

 
 

Fig. 7.4: Requested output data tape of divisibility problem 

 
The settings of Turing machine are: 

• 𝑄 = {𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6} | 𝑄 = {𝑞1, … , 𝑞16} 
• Σ = {"1", "𝑋"} 
• Γ = {"#", "1", "𝑋"} 
• 𝑞0 = 𝑞1 
• 𝐵 = "#" 
• 𝐹 = {𝑞6} | 𝐹 = {𝑞16} 

 
The head is initially positioned at the middle blank symbol between arguments represented by 
input symbols. The number of inner states was set according to previous observations. 
 
7.3 Primality 
The problem of primality [16, 17, 51] consists of finding out whether a number encoded on the 
data tape is a prime number or not. This example also considers a number which is expressed in 
the unary number system and it is number 5. The initial data tape appears as in Fig. 7.5. 
 

 
Fig. 7.5: Initial data tape of primality problem 

 
If the number which is encoded on the data tape is a prime number, Turing machine indicates it 
by placing the symbol “X” before the first input symbol and thus before the number. Also the 
other input symbols are replaced by blank symbols (see Fig. 7.6). 

 
 

Fig. 7.6 :Requested output data tape of primality problem 
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The settings of Turing machine are: 

• 𝑄 = {𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6} | 𝑄 = {𝑞1, … , 𝑞16} 
• Σ = {"1", "𝑋"} 
• Γ = {"#", "1", "𝑋"} 
• 𝑞0 = 𝑞1 
• 𝐵 = "#" 
• 𝐹 = {𝑞6} | 𝐹 = {𝑞16} 

 
The initial position of the head is right before the first input symbol. As in the previous 
examples, the number of inner states was established experimentally. 
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 EFFECT OF CUSTOM SETTINGS OF SELECTED 8
EVOLUTIONARY ALGORITHMS ON EVOLUTIONARY-
ESTIMATED PROGRAMMING 

Dependence of evolutionary process on custom settings of evolutionary algorithm used is a key 
issue which should be considered before discussing practical utilization of described methods to 
real problems. It is apparent that settings of selected evolutionary algorithms influence an 
estimation process of the transition function’s rules in a critical way. There is meant accuracy 
and execution time of optimization process especially including other apects of the estimation 
process too. These are important factors of the estimating process thus it is necessary to analyze 
a dependence of custom settings of the evolutionary algorithms on the process of estimation. 

The analysis is aimed on settings of Differential Evolution and Self-Organizing Migrating 
Algorithm while estimating rules for processing selected examples (see chapter 7) by the 
classical optimization (see chapter 6.1). The classical optimization is highly dependent on 
settings of evolutionary algorithm thus the per-partes optimization is not involved in analysis. 
(Except settings of evolutionary algorithm, the per-partes optimization is also significantly 
influcenced by other factors mentioned in chapter 6.2.3.) The results of analysis will be used for 
specifying the settings of evolutionary algorithms for the per-partes optimization of real 
problems discussed in next part of the doctoral thesis. The issue of custom settings of 
evolutionary algorithms and rules estimation was partially described here [12]. 

 
8.1 Methodology 
As  problems to processing by the Turing machine thus rules estimation, there were considered 
selected examples (see chapters 7.1 – 7.3). These problems were subsequently processed by the 
classical optimization which utilized Differential Evolution and Self-Organinzing Migrating 
Algorithm. While estimation process there were changed settings of mentioned evolutionary 
algorithms and rate of successfull estimation and execution time were measured. Parameters 
changed can be found in following tables. 

Table 6: Custom settings of Differential Evolution 

Parameter Period Values Initial 

NP 〈10𝐷, 100𝐷〉 10D – 100D 10D 

F 〈0,2〉 0 – 2 0.9 

CR 〈0,1〉 0 – 1 0.2 

G customizable 100 – 1000 100 
 

Table 7: Custom settings of Self-Organizing Migrating Algorithm 

Parameter Period Values Initial 

PopSize 〈10, customizable〉 D – 10D D 

PRT 〈0,1〉 0 – 1 0.1 

PathLength 〈1.1,5〉 1.1 – 5 3 

Step 〈0.11,𝑃𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ〉 0.11 – 3 0.3 

Migrations 〈10, customizable〉 100 – 1000 100 
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Parameter D represents a dimension of the problem – it is a number of cost function’s arguments 
– or length of specimen vector. 
While analysing dependence of evolutionary algorithms‘ custom settings on evolutionary 
estimation, one only parameter was subsequently changed. Other parameters were set on initial 
values. The periods of parameters change were stated in accordance with recommandations in 
[33] and can be seen in Table 6 and Table 7. When analysis of current parameter was done, 
parameter changed was set on initial value and other parameter was analyzed. When analyzing 
NP, G and Migrations parameters, the step of change was 100. In the case of analyzing PopSize, 
the step of change was equal to D. While considering other parameters, the step of change 
was 0.1. 

When specifying initial parameters, there was necessary take into account number of cost 
function evaluations. The number of cost function evaluations depends on several parameters of 
Differential Evolution and Self-Organizing Migrating Algorithm therefore it is perceptible that 
the initial settings must comply the condition of approximately equal number of cost functions 
evaluations while changing parameters being analyzed of both algorithms. 

Number of cost function evaluations in the case of Self-Organizing Migrating Algorithm can 
be expressed as [33]: 

𝐶𝐹𝐸𝑆𝑂𝑀𝐴 = (𝑃𝑜𝑝𝑆𝑖𝑧𝑒−1)∙𝑃𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ∙𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑠
𝑆𝑡𝑒𝑝

 (8.1) 
 
Number of cost function evaluations in the case of Differential Evolution can be induced as: 

𝐶𝐹𝐸𝐷𝐸 = 𝑁𝑃 ∙ 𝐺 (8.2) 
 
If considering encoding the rules of the classical approach and definition of the specimen (see 
chapter 6.1.1 and 6.1.2), the dimension of the problems is equal to: 

𝐷 = (𝑄 − 1) ∙ Γ (8.3) 
 
Number of inner states is decremented by number one, because the inner states involve the final 
state too. This state is omitted for dimension computations. 

When initial settings (Table 6 and Table 7) are used with connection to specifications of 
examples used (Table 8), number of cost function evaluations (CFE) while analyzing parameters 
which influcence number of CFE can be seen in following Table 9 and Table 10. There are 
considered NP – PopSize and G – Migrations which can be understood as equivalent.  

Table 8: Specifications of examples used 

Example id Example Q - 1 𝚪 D 

1 Unary addition {𝑞1, … , 𝑞5} {"#", "1"} 10 

2 Unary addition {𝑞1, … , 𝑞15} {"#", "1"} 30 

3 Divisibility {𝑞1, … , 𝑞5} {"#", "1", "𝑋"} 15 

4 Divisibility {𝑞1, … , 𝑞15} {"#", "1", "𝑋"} 45 

5 Primality {𝑞1, … , 𝑞5} {"#", "1", "𝑋"} 15 

6 Primality {𝑞1, … , 𝑞15} {"#", "1", "𝑋"} 45 
 
In following tables, 𝐶𝐹𝐸𝑚𝑖𝑛  and 𝐶𝐹𝐸𝑚𝑎𝑥  represent number of cost function evaluations for 
minimal and maximal value of analyzed parameter. 
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Table 9: Number of cost function evaluations for parameters NP and G of 
Differential Evolution 

 NP G 
Example Id 𝑪𝑭𝑬𝒎𝒊𝒏 𝑪𝑭𝑬𝒎𝒂𝒙 𝑪𝑭𝑬𝒎𝒊𝒏 𝑪𝑭𝑬𝒎𝒂𝒙 

1 10000 100000 10000 100000 

2 30000 300000 30000 300000 

3 15000 150000 15000 150000 

4 45000 450000 45000 450000 

5 15000 150000 15000 150000 

6 45000 450000 45000 450000 
 

Table 10: Number of cost function evaluations for parameters PopSize and 
Migrations of Self-Organizing Migrating Algorithm 

 PopSize Migrations 
Example Id 𝑪𝑭𝑬𝒎𝒊𝒏 𝑪𝑭𝑬𝒎𝒂𝒙 𝑪𝑭𝑬𝒎𝒊𝒏 𝑪𝑭𝑬𝒎𝒂𝒙 

1 9000 99000 9000 90000 

2 29000 299000 29000 290000 

3 14000 149000 14000 140000 

4 44000 449000 44000 440000 

5 14000 149000 14000 140000 

6 44000 449000 440000 440000 
 
 
8.2 Results 
As stated above, there were two goals of analysis. These were answers to following questions: 

• What is accuracy of optimization proces for custom settings of selected evolutionary 
algorithms? 

• What is execution time of optimization proces for custom settings of selected 
evolutionary algorithms? 

 
The first question can be regarded as the most important. On the basis of these results, concrete 
evolutionary algorithm and its settings will be selected for processing real problems (discussed 
in the next part of the doctoral thesis). The results aimed on execution time are less important 
(but could be very interesting on the other hand) thus they will be only used as secondary 
criterion for  process of evolutionary algorithm and its settings selection. 
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8.2.1 Dependence of optimization process on DE’s NP parameter 

  
Fig. 8.1: Dependence of successfull estimation on changing DE's NP parameter 

 

  
Fig. 8.2: Dependence of execution time on changing DE's NP parameter 

 
As can be seen at Fig. 8.1, in the case of Q = 6 it can be said that increasing of population means 
the higher percentual successfull rate. This is evident for unary addition. When the divisibility 
and primality are processed, number of population which is equal to 10D is sufficient as well as 
in the case of Q = 16 and all problems processed. 

Fig. 8.2 depicts strong dependence of execution time on the number of population. If number 
of population is increasing the execution time is increasing too. 
 
Recommandation: 𝑁𝑃 ∈ 〈300,100𝐷〉 and higher dimension of problem. 
 
 
8.2.2 Dependence of optimization process on DE’s F parameter 

  
Fig. 8.3: Dependence of successfull estimation on changing DE's F parameter 
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Fig. 8.4: Dependence of execution time on changing DE's F parameter 

 
Analysis of dependence of successfull estimation on changing DE’s parameter F (Fig. 8.3) 
revealed that estimation while changing parameter F is strongly dependent on dimension of the 
problem (see results for unary addition, divisibility and primality). In the case of unary addition, 
the dimension of the problem is 10 and the successfull estimation oscillates around 90%. 
Divisibility and primality problems have dimension equal to 15 what is enough for 100% 
successfull estimation. Important factors are number of inner states and data tape symbols of 
problem – see (8.3) and Fig. 8.3 for Q = 16. 

Execution time of optimization process is not dependent on changing F parameter, thus while 
considering F parameter execution time can be omitted. 
 
Recommandation:  𝐹 ∈ 〈0.3,2〉 and higher dimension of problem. 
 
8.2.3 Dependence of optimization proces on DE’s CR parameter 

  
Fig. 8.5: Dependence of successfull estimation on changing DE's CR parameter 

 

  
Fig. 8.6: Dependence of execution time on changing DE's CR parameter 
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Estimation while changing parameter CR can be regarded as highly dependent on dimension D. 
It is perceptible thanks to analysis and Fig. 8.5. In the case of unary addition and Q = 16, the 
dimension which is equal to 30 is even not enough. Except that, CR parameter also significantly 
influnce the successfull estimation in this case. 

As well as in the changing parameter F, execution time of optimization proces is not 
dependent on changing CR parameter, thus while considering CR parameter execution time can 
be omitted. 
 
Recommandation: 𝐶𝑅 ∈ 〈0.1,0.6〉, higher dimension of problem. 
 
8.2.4 Dependence of optimization proces on DE’s G parameter 

  
Fig. 8.7: Dependence of successfull estimation on changing DE's G parameter 

 

  
Fig. 8.8: Dependence of execution time on changing DE's G parameter 

 
Progression of estimation proces while changing parameter G can be liken to situation when 
changing parameter NP has been analyzed. Except unary addition with Q = 16, the successfull 
estimation is always equal to 100% as can be seen at Fig. 8.7. Similarly to previous situations, 
dimension of the problem influence the successfull estimation significantly. 

Execution time is highly dependent on parameter G thus number of generations as well as in 
the case of parameter NP changing. See Fig. 8.8 for details. 
 
Recommandation: 𝐺 ∈ 〈400,1000〉, higher dimension of problem. 



 

- 49 - 

8.2.5 Dependence of optimization process on SOMA’s PopSize parameter 

  
Fig. 8.9: Dependence of successfull estimation on changing SOMA's PopSize parameter 

 

  
Fig. 8.10: Dependence of execution time on changing SOMA's PopSize parameter 

 
As can be seen at Fig. 8.9, changing SOMA’s PopSize parameter influences estimation process 
in the same way as changing DE’s NP parameter. It means that successfull estimation of lower 
dimension problems can be positively influenced by increasing PopSize parameters especially 
when Q = 6. In the case of problems with higher dimension, PopSize which is equal to lower 
bound is sufficient. 

Changing PopSize parameter significantly influences execution time thus there can be 
observed dependence of execution time on PopSize parameter as it is depicted at Fig. 8.10. 
 
Recommandation: 𝑃𝑜𝑝𝑆𝑖𝑧𝑒 ∈ 〈80,10𝐷〉 and higher dimension of problem. 
 
8.2.6 Dependence of optimization process on SOMA’s PRT parameter 

  
Fig. 8.11: Dependence of successfull estimation on changing SOMA's PRT parameter 
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Fig. 8.12: Dependence of execution time on changing SOMA's PRT parameter 

 
In the case of changing PRT parameter it can be said that successfull estimation is not only 
influenced by dimension of the problem but selection of the PRT parameter is highly important 
too. Higher dimension can bring better progress of estimation process but PRT parameter and its 
selection can still significantly influence results. This state is illustrated at Fig. 8.11. 

Influence of execution time by changing PRT parameter is not too important in this case thus 
can be omitted.  

 
Recommandation: 𝑃𝑅𝑇 ∈ 〈0.2,0.7〉, higher dimension of problem. 
 
8.2.7 Dependence of optimization process on SOMA’s PathLength parameter 

  
Fig. 8.13: Dependence of successfull estimation on changing SOMA's PathLength parameter 

 

  
Fig. 8.14: Dependence of execution time on changing SOMA's PathLength parameter 

 
In this case, importance of PathLength parameter and dimension of the problrm can be 
perceptible. The rate of successfull estimatation of unary addition whose dimension is lower 
than dimension of other problems is worse. This situation can be partially improved by selection 
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of suitable PathLength parameter value. But this improvement can be not enought in some cases 
as can be seen at right part of Fig. 8.13. 

Execution time is strongly dependent on changing PathLength parameter. If value of 
PathLength parameter is incresed the execution time is increased too. 

 
Recommandation: 𝑃𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ ∈ 〈2.5,5〉 and higher dimension of problem. 
 
 
8.2.8 Dependence of optimization proces on SOMA’s Step parameter 

  
Fig. 8.15: Dependence of successfull estimation on changing SOMA's Step parameter 

 

  
Fig. 8.16: Dependence of execution time on changing SOMA's Step parameter 

 
The influence of increasing Step parameter has opposite effect than increasing other parameters. 
In this case the rate of successfull estimation is decreased when the value of Step parameter gets 
higher. The dependence of suitable Step value on estimation is significant as well as dependence 
of problem dimension. It can be said that high dimension of the problem is really fundamental 
for successfull estimation as can be seen at Fig. 8.15. 

Descending tendency of execution time when increasing Step parameter can be observed here 
as well as in the case of successfull estimation. 

 
Recommandation: 𝑆𝑡𝑒𝑝 ∈ 〈0.11,1.5〉, high dimension of problem. 
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8.2.9 Dependence of optimization process on SOMA’s Migrations parameter 

  
Fig. 8.17: Dependence of successfull estimation on changing SOMA's Migrations parameter 

 

  
Fig. 8.18: Dependence of execution time on changing SOMA's Migrations parameter 

 
Changing of the Migrations parameter has similar effect as in the case of changing PopSize 
parameter (see Fig. 8.17 and Fig. 8.9). Increasing of this parameter can positively influence the 
rate of successfull estimation as well as increasing of problem dimension. If unary addition is 
considered there is perceptible that its dimension which is equal to 10 (Q = 6) is not enough for 
100% successful estimation. 

Influence of changing Migrations parameter to execution time is similar again as in the case 
of changing PopSize parameter. When Migrations parameter is increasing, execution time is 
increasing too (see Fig. 8.18 and Fig. 8.10). 

 
Recommandation: 𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ∈ 〈600,1000〉, higher dimension of problem 
 
 
8.3 Analysis conclusion 
Analysis revealed several important depencence aspects of optimization process for estimating 
Turing machine’s rules. Main goal of the analysis was specifiying suitable parameters of 
evolutionary algorihm selected for optimization in the next part of the doctoral thesis where 
processing real problems is considered. These parameters stated according to the analysis can be 
found in Table 11 and Table 12. 
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Table 11: DE parameters stated according to analysis 
recommandation 

Parameter Period Values 

NP 〈10𝐷, 100𝐷〉 30D – 100D 

F 〈0,2〉 0.3 – 2 

CR 〈0,1〉 0.1 – 0.6 

G customizable 400 – 1000 
 

Table 12: SOMA parameters stated according to analysis 
recommandation 

Parameter Period Values 

PopSize 〈10, customizable〉 8D – 10D 

PRT 〈0,1〉 0.2 – 0.7 

PathLength 〈1.1,5〉 2.5 – 5 

Step 〈0.11,𝑃𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ〉 0.11 – 1.5 

Migrations 〈10, customizable〉 600 – 1000 
 
As can be seen in chaper 8.2, except parameters of evolutionary algorithms successfull 
estimation is strongly dependent on dimension of the problem. Dimension is specified as (8.3) 
and influenced by number of inner states of Turing machine and number of data tape symbols. It 
can be presumed that arguments of (8.3) will be sufficiently high in the case of real problem 
representation thus factor of dimension ensures successfull progression of estimation process 
without sole affecting optimization by parameters of evolutionary algorithm. Suitable settings of 
evolutionary algorithm used can be understood as “an insurance” if the dimension doesn’t 
ensure successful estimation. Results of the analysis also proved that selection of the 
evolutionary algorithm used is not a key aspect of optimization process. Both selected 
evolutionary algorithms are entirely equivalent in the case of optimization Turing machine’s 
rules. The results of successfull estimation are similar without dependence of evolutionary 
algorithm used. 

During analysis there were optimized a large set of rules for processing example problems by 
Turing machine. Selected representants of these rules can be found in Appendix A. 
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 PRACTICAL UTILIZATION 9
While discussing practical utilization of evolutionary synthesis of the Turing machine’s rules 
there can be found many of applications in the form of problems related to utilization of Turing 
machines. Fundamental advantage of using approaches described in chapter 6 is to simply and 
reliably ensure programming Turing machine for processing even the most complex tasks. In 
chapter 8, there was proceeded analysis consisted in optimization of rules for processing several 
elementary problems. But the power of using evolutionary approaches to programming Turing 
machine is a possibility to use methods described in previous parts of the doctoral thesis for 
estimation and optimization Turing machine’s rules for processing real problems which are not 
elementary at all. As a representant of highly complex real problems protein processing was 
selected. From the view of using Turing machines, the task of estimation the rules for processing 
proteins is very complicated thus can be regarded as suitable for proving abilities of described 
approaches to evolutionary synthesis to successfully estimate proper Turing machine’s rules.  
 
9.1 Proteins essentials 
Proteins [2, 3, 8, 36] can be regarded as the most important for all organisms which live and 
generally exist on the Earth. It is thanks to a key feature of proteins which influences processes 
belonging to life build blocks. This key feature is entirely uniqe for proteins. As life build blocks 
anyone can imagine prepositions for life genesis, keeping the life, controlling organisms’ 
internal and external processes, metabolism, immune system etc. Cell structures, respiration, 
muscles, skin – these are results of protein features and activities as well as accelerators of 
biochemical processes – enzymes [1, 36], which are fundamentals of internal processes. Proteins 
have impact to all life-based activities. 
 
9.1.1 Proteins as Turing machine’s data tapes 

In order to explain how to transcribe proteins as the Turing machine’s data tapes it is necessary 
to breifly introduce protein biosynthesis. 

Base elements of proteins are macromolecule of deoxyribonucleic acid (DNA) [5, 26, 36] or 
ribonucleic acid (RNA) [6, 26, 36] eventually. DNA macromolecule has a form of double helix 
[28, 36]. Strands of double helices are made of sugar-phosphate residues and serve for retaining 
sequences of four bases [36]. These are adenine (A), guanine (G), cytosine (C) and thymine (T). 
Combinations of residues and bases are termed as nucleotides [25, 36] or nucleosides [25, 36]. It 
depends on condition whether base is combined with sugar and phosphate residues (nucleotide) 
or sugar residue only (nucleoside). These combinations are termed as adenosine, guanosine, 
cytidine and thymidine. Both strands of DNA helix are held together by hydrogen bonds [22, 
36] which originate between following pairs of bases: 

• A – T 
• G – C  
• T – A 
• C – G 

 
Basis transformation to the form of protein is two-step process composed by: 

• Transcription 
• Translation 
 

Transcription [9, 29, 36] is a process which can be liken to DNA replication [24, 36]. During 
DNA replication a new complementary strand of DNA helix is created by DNA polymerase 
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enzyme [36] in accordance with base pairing regarding one of strands. New DNA 
macromolecule identical to ancestor is created (see Fig. 9.1). 

 
 

 
 
 
 

 
 

 
Fig. 9.1: Scheme of DNA replication 

 
Transciption differs from DNA replication by enzyme. Instead of DNA polymerase, RNA 
polymerase [36] is used. It is perceptible that the result is not identical DNA macromolecule but 
RNA macromolecule. The process of transcription is similar to replication. One of strands 
serves as template thus it is termed as non-coding because contains complementary bases [22]. 
Another strand is termed as coding. Because new strand is created according to template strand 
its appereance is identical to coding strand but thymine is replaced by uracile (U) (see Fig. 9.2). 

 

 

 

 
 
 
 
 
 

Fig. 9.2: Scheme of DNA transcription 

 
Contrary to DNA macromolecules, RNA macromolecules are compounded of one strand only. 
Also appereance of RNA macromolecules is much less regular than appereance of DNA 
macromolecules.  

RNA originated from DNA by transcription is termed as messenger RNA (mRNA) and 
contains “simple” transcription of DNA information. It is not possible to synthesize proteins 
from mRNA directly. 

Second step of protein origination is a translation [9, 36]. During translation nucleotides 
contained in mRNA strand are processed as triplets termed as codons [23, 36]. There are 64 
different codons which are related to combinations of four nucleotides in mRNA. Three of these 
codens (UAA, UAG and UGA) represent so-called stop-codons [36] which denotes end of 
protein. Other codons are considered as amino acids [7, 36] as well as AUG codon which is 
protein opening codon. Because there are only 20 common amino acids it is clear that several 
different codons (or combinations of nucleotides) can represent same amino acid (e.g. GCU, 
GCC, GCA and GCG codons stand for alanin amino acid).  
After translation, there are obtained amino acids which have direct impact to proteins because 
proteins are biopolymers consisted of amino acid sequences. Amino acids are molecules 
compounded of two functional groups [8, 36]. These are amine group NH2 and carboxylic acid 
group COOH (see Fig. 9.3). 
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Fig. 9.3: General form of amino acid 

 
Thanks to above-mentioned functional groups amino acids can be chained together thus proteins 
can be formed. Because amine group is a base which allows to react with acids and neutralize 
them and carboxylic acid is an oposite part of molecule, it is possible to be reaction between  
amino acids arisen by condensation process. This process enables to originate a peptide C-N 
bond [27, 36] between amino acids. Sequenced amino acids forms polypeptide chains [36] 
which are regarded as primary protein structures [21, 36]. 

Except full name of amino acids, they can be referred by abbreviations. These are 3-letter or 
1-letter. It is perceptible that 1-letter abbreviations of amino acid names are the most suitable in 
the case of processing by Turing machines. Thus the Turing machine’s data tape symbols can 
simply appear as following parts of Turing machine formal definition: 

• Γ = �"#","A", "C", "D", "E", "F", "G", "H", "I", "K","L",
"𝑀", "𝑁", "𝑂", "𝑄", "𝑅", "𝑆", "𝑇", "𝑉", "𝑊", "𝑌" � 

 
• 𝐵 = "#" 

 
9.2 Protein processing by Turing machine 
Employing Turing machines at protein processing is a representant of real highly complex and 
interesting problem. The protein processing as it is considered related to this doctoral thesis and 
using Turing machines involves protein reconstruction independly on origin protein structure.  It 
means processing polypeptide chains containing randomly positioned amino acids to the form of 
requested primary protein structures by Turing machine. The optimized Turing machine’s rules 
which ensure above-mentioned protein processing enable e.g. simple protein description resulted 
from general set of amino acids, reconstruction of corrupted primary protein structures etc. 

As mentioned protein processing is a highly complex problem. If the dimension is expressed 
as (8.3) it is possible to obtain: 

𝐷 = (𝑄 − 1) ∙ 21 (9.1) 
 
If the numer of inner states Q is equal to 6, dimension of the problem is 105. In the case of Q = 
16, dimension is significantly increased to 315. If it is considered that maximal dimension of 
some problems used while analysis was 45 and maximal execution time was nearly 1 hour (see 
Fig. 8.10), time consumption could by higly unsatisfactory in the case of D = 105 or even D = 
315. Additionaly it is necessary to discuss whether number of inner states equal to 16 is 
sufficient for such complex problem as it is protein processing. If the Q is set too low there is a 
risk of impossibility to successfully optimize Turing machine’s rules. Fortunately, issue of 
stating Q parameter is only related to using classical optimization (see chapter 6.1). If the per-
partes optimization (see chapter 6.2) is used, number of inner states is adapting dynamically 
during optimization. Also dimension of the problem is considerably decreased without influence 
of successfull estimation thanks to per-partes approach to optimization (see chapter 6.2 for more 
details). Thus the per-partes optimization is selected in relation to protein processing. 

C

C3
+

_

Amine
group

Carboxylic acid group

Side chain
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There are two prepositions for using per-partes optimization which have to be carefully 
considered. These are: 
• Selection of evolutionary algorithm and its parameters 
• Per-partes optimization’s weights (see chapter 6.2.3) selection 
 

The answer to first preposition is rather simple. Analysis approved that Turing machine’s rules 
estimation process is not directly dependent on evolutionary algorithm selected. Instead of that 
the dependence is on settings of evolutionary algorihm. From this point of view Differential 
Evolution and Self-Organizing Migrating Algorithm are entirely equivalent thus 
Differential Evolution will be selected as algorithm used in relation to the per-partes 
optimization. Parameters of Differential Evolution will be specified according to Table 11 and 
previous experiences. Selected values can be seen in Table 13. 

Table 13: Parameters of Differential Evolution for protein processing 

Parameter Recommanded value Values 

NP 30D – 100D 200 

F 0.3 – 2 0.9 

CR 0.1 – 0.6 0.3 

G 400 – 1000 1000 
 
Second preposition is more important because it influences optimization process and Turing 
machine operations while processing proteins. It can be said that the per-partes 
optimization’s weights provides answers to questions contained in Table 5 (also see Fig. 6.10). 
By changing weights it is possible to completely alter behavior of Turing machine while 
processing proteins or other problems too. There is a lot of ways how to set these weights. At 
this place the set of weights which was experimentally obtained and successfully approved 
many times (e.g. here [14]) will be used. This set is contained in Table 14. Detailed exaplanation 
of meaning of these weights can be found in chapter 6.2.3. 

Table 14: Per-partes optimization's  weights 

Weight Value 
1 4000 

2 2000 

3 1000 

4 -2000 

5 -1000 
 
 

6 -3000 
7 1000 

 
Concrete specification of the protein processing tasks can be formulated as reconstruction of 
proteins from the set of amino acids. It means that it is requested to evolutionary estimate rules 
which enable to transcribe a data tape containing sequence of randomly positioned amino acids 
to the form of primary structure of selected protein whereas both of sequences have the same 
length. There were selected twelve proteins [30, 40] whose primary protein structures will be 
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used for processing. These primary protein structures differ from each other by length thus 
additional variability and complexity increasing is ensured.  

All algorithms which will be used (Turing machine, Differential Evolution, per-partes 
optimization algorithm) are written in functional programming language F# [50]. The reason is 
that the effectivity of F# programming language is much higher than algorithm implementations 
in Wolfram Mathematica used till this time as it was proven [13]. Turing machine and 
Differential Evolution implemented in F# are parts of the F# Artificial Intelligence Library [11]. 

Following subsections include information on sequences used, summary of obtained 5 results 
of processing each polypeptide sequence and analysis of head movement while processing 
amino acid sequences. 

 
Shared Turing machine settings for all results are: 

• Σ = � "A", "C", "D", "E", "F", "G", "H", "I", "K","L",
"𝑀", "𝑁", "𝑂", "𝑄", "𝑅", "𝑆", "𝑇", "𝑉", "𝑊", "𝑌"�   

• Γ = �"#","A", "C", "D", "E", "F", "G", "H", "I", "K","L",
"𝑀", "𝑁", "𝑂", "𝑄", "𝑅", "𝑆", "𝑇", "𝑉", "𝑊", "𝑌" �  

• 𝑞0 = 𝑞1 
• 𝐵 = "#" 
• Initial position of the head is at the fifth left symbol contained in the data tape 

 
Data tapes look like: 

• 𝑡𝑎𝑝𝑒 = {"#", "#", "#", "#", "#", … 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒… , "#", "#", "#", "#", "#"}, 
 
where sequence is an amino acid protein-coding part of test sequence described in following 
subsections. 

Parameters of Differential Evolution were set according to Table 13. Weights of the per-
partes optimization algorithm can be seen in Table 14. Images of the proteins which are shown 
below were created in Geneious v5.5 [4] software application. 

 
9.2.1 2J01 

Structure of the thermus thermophilus 70s ribosome complexed with mRNA, tRNA and 
Paromomycin (part 2 of 4) [30, 48] – chain 1. Length of sequence is 98 amino acids. 

 
Seq. 1: 2J01 chain 1 sequence 

MSKVCEISGKRPIVANSIQRRGKAKREGGVGKKTTGISKRRQYPNLQKVRVRVAG
QEITFRVAASHIPKVYELVERAKGLKLEGLSPKEIKKELLKLL 

 
 
 

 

 
 
 
 
 
 

 Fig. 9.4: Image of 2J01 with highlighted chain 1 
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Seq. 2: Test sequence for 2J01 

TYNDFEWEQMLQRAVNSFDQGSWGLEKMTTYGGMSPNWQVRQVPWFLTLDGMEEP
PQGFWKEKVQHWSGANLKVRFFFFDYHQLHASVVCNHRIMWYE 

 

Table 15: Summary of 5 obtained results of processing 2J01 chain 1 

Result no. Q F Steps Rate* [%] 

1 {𝑞1, … , 𝑞10} {𝑞10} 116 100 

2 {𝑞1, … , 𝑞16} {𝑞16} 127 100 

3 {𝑞1, … , 𝑞13} {𝑞13} 125 100 

4 {𝑞1, … , 𝑞15} {𝑞15} 124 100 

5 {𝑞1, … , 𝑞34} {𝑞34} 170 100 

Average successfull processing amino acids contained 
in sequence [%] 100 

* It means percentual rate of all correctly processed amino acids in sequence 
 
 

Fig. 9.5: Analysis of head movement for 1J01 
chain 1 result 1 

 
 

Fig. 9.6: Analysis of head movement for 1J01 
chain 1 result 2 

 
 

Fig. 9.7: Analysis of head movement for 1J01 
chain 1 result 3 

Fig. 9.8: Analysis of head movement for 1J01 
chain 1 result 4 
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Fig. 9.9: Analysis of head movement for 1J01 
chain 1 result 5 

 
 
9.2.2 1AOI 

Complex between nucleosome core particle (H3, H4, H2A, H2B) and 146 bp long DNA 
fragment [30, 38] – chain A. Length of sequence is 116 amino acids. 
 

Seq. 3: 1AOI chain A sequence 

LATKAARKSAPATGGVKKPHRYRPGTVALREIRRYQKSTELLIRKLPFQRLVREI
AQDFKTDLRFQSSAVMALQEASEAYLVALFEDTNLCAIHAKRVTIMPKDIQLARR
IRGERA 

 
 

 

 
Seq. 4: Test sequence for 1AOI 

QPCESKNFCVEWNTECQLWNVTEGDTPPATESCMNNNKEPQEDSVEKCFKYGSIM
SPPVKDIFCAKMKRVFRKPNNKMDEPRFPHYMCVCYPRYNPFCMKMRCQMKNVIN
DPFLQE 

 
 
 
 

Fig. 9.10: Image of 1AOI with highlighted 
chain A 
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Table 16: Summary of 5 obtained results of processing 1AOI chain A 

Result no. Q F Steps Rate* [%] 

1 {𝑞1, … , 𝑞22} {𝑞22} 175 100 

2 {𝑞1, … , 𝑞24} {𝑞24} 171 99.14 

3 {𝑞1, … , 𝑞14} {𝑞14} 143 100 

4 {𝑞1, … , 𝑞15} {𝑞15} 132 100 

5 {𝑞1, … , 𝑞14} {𝑞14} 142 100 

Average successfull processing amino acids contained 
in sequence [%] 99.83 

* It means percentual rate of all correctly processed amino acids in sequence 
 

 

Fig. 9.11: Analysis of head movement for 1AOI 
chain A result 1 

 
 

 

Fig. 9.12: Analysis of head movement for 1AOI 
chain A result 2 

 
 

 

 
Fig. 9.13: Analysis of head movement for 1AOI 

chain A result 3 
 

 
Fig. 9.14: Analysis of head movement for 1AOI 

chain A result 4 
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Fig. 9.15: Analysis of head movement for 
1AOI chain A result 5 

 
 
 
9.2.3 1LIT 

Human lithostathine [30, 44] – chain A. Length of sequence is 144 amino acids. 
 
 

Seq. 5: 1LIT chain A sequence 

QEAQTELPQARISCPEGTNAYRSYCYYFNEDRETWVDADLYCQNMNSGNLVSVLT
QAEGAFVASLIKESGTDDFNVWIGLHDPKKNRRWHWSSGSLVSYKSWGIGAPSSV
NPGYCVSLTSSTGFQKWKDVPCEDKFSFVCKFKN 

 
 
 
 
 
 
 
 
 

 
 

 

 

 

Seq. 6: Test sequence for 1LIT 

FFYGKHMSQIVVWRGIDNWAQKKSFMDTVIPCEIKKNRIPATHVASQFHCFIKTM
HCVPPCYPYPKGIRIGFENNSCFALDRSKNIHMIATNGCQWFLSRCIFQGWAPEF
DREEGMETSVAYEKEPHQPNFRTYRDVQKSEWPD 

 
 

 

Fig. 9.16: Image of 1LIT with highlighted chain A 
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Table 17: Summary of 5 obtained results of processing 1LIT chain A 

Result no. Q F Steps Rate* [%] 

1 {𝑞1, … , 𝑞57} {𝑞57} 285 100 

2 {𝑞1, … , 𝑞42} {𝑞42} 263 97.92 

3 {𝑞1, … , 𝑞51} {𝑞51} 279 99.30 

4 {𝑞1, … , 𝑞57} {𝑞57} 315 99.30 

5 {𝑞1, … , 𝑞44} {𝑞44} 276 99.30 

Average successfull processing amino acids contained 
in sequence [%] 99.16 

* It means percentual rate of all correctly processed amino acids in sequence 
 
 

 
Fig. 9.17: Analysis of head movement for 1LIT 

chain A result 1 

 
 

 
Fig. 9.18: Analysis of head movement for 1LIT 

chain A result 2 

 
 

Fig. 9.19: Analysis of head movement for 1LIT 
chain A result 3 

Fig. 9.20: Analysis of head movement for 1LIT 
chain A result 4 
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Fig. 9.21: Analysis of head movement for 1LIT 
chain A result 5 

 
 
9.2.4 1B08 

Lung surfactant protein D (SP-D) [30, 39] – chain A. Length of sequence is 158 amino acids. 
 

Seq. 7: 1B08 chain A sequence 

EAEAGSVASLRQQVEALQGQVQHLQAAFSQYKKVELFPNGQSVGEKIFKTAGFVK
PFTEAQLLCTQAGGQLASPRSAAENAALQQLVVAKNEAAFLSMTDSKTEGKFTYP
TGESLVYSNWAPGEPNDDGGSEDCVEIFTNGKWNDRACGEKRLVVCEF 

 
 
 
 
 
 
 
 
 

 
 
 

  

 

 
 
 

Seq. 8: Test sequence for 1B08 

PQIGSGDDIDKEALQAICWKQMGSIIGRMEIPRFHYWVVVWDYAYHIERPHHPPAQ 
EKTEACGSHMPSYRWLIIFSDYLNCEEAPKTSYSTMDKGSCILGAEMPKKCEYQWW 
FKGYPALNRYIRPAKCPHQKIRRYVITWIQDGNMCMNMGQDYCKNW 

 
 
 

Fig. 9.22: Image of 1B08 with highlighted 
chain A 
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Table 18: Summary of 5 obtained results of processing 1B08 chain A 

Result no. Q F Steps Rate* [%] 

1 {𝑞1, … , 𝑞78} {𝑞78} 373 98.73 

2 {𝑞1, … , 𝑞66} {𝑞66} 351 96,84 

3 {𝑞1, … , 𝑞61} {𝑞61} 337 99.37 

4 {𝑞1, … , 𝑞82} {𝑞82} 376 98.73 

5 {𝑞1, … , 𝑞81} {𝑞81} 366 99.37 

Average successfull processing amino acids contained 
in sequence [%] 98.61 

* It means percentual rate of all correctly processed amino acids in sequence 
 

Fig. 9.23: Analysis of head movement for 1B08 
chain A result 1 

 

Fig. 9.24: Analysis of head movement for 1B08 
chain A result 2 

 

Fig. 9.25: Analysis of head movement for 1B08 
chain A result 3 

Fig. 9.26: Analysis of head movement for 1B08 
chain A result 4 

Fig. 9.27: Analysis of head movement for 1B08 
chain A result 5 
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9.2.5 1B09 

Human C-reactive protein complexed with phosphocholine [40, 41] – chain A. Length of 
sequence is 206 amino acids. 
 

Seq. 9: 1B09 chain A sequence 

QTDMSRKAFVFPKESDTSYVSLKAPLTKPLKAFTVCLHFYTELSSTRGYSIFSYA
TKRQDNEILIFWSKDIGYSFTVGGSEILFEVPEVTVAPVHICTSWESASGIVEFW
VDGKPRVRKSLKKGYTVGAEASIILGQEQDSFGGNFEGSQSLVGDIGNVNMWDFV
LSPDEINTIYLGGPFSPNVLNWRALKYEVQGEVFTKPQLW 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Seq. 10: Test sequence for 1B09 

VWQGEKRCCEFMICYFIYTLTLFIPVYSVSTIERQYQELNRRRTTLCGMDIKEGS
AGCAGKVTRCKGCIHKQEHEASEGKDITVEFRMCKASSFTKLFDVDLLMCTTNCD
TYWVHQPLPHRTEVKEAIIINRYSWMTVNRDYMKEEDKGYHSAIIWYVAAKYLTT
RTDMPESVPWAYMMFNWRCHWFKGPCMENDIAIFHINVGGM 

 
Table 19: Summary of 5 obtained results of processing 1B09 chain A 

Result no. Q F Steps Rate* [%] 

1 {𝑞1, … , 𝑞41} {𝑞41} 310 98.54 

2 {𝑞1, … , 𝑞113} {𝑞113} 481 99.03 

3 {𝑞1, … , 𝑞68} {𝑞68} 370 97.57 

4 {𝑞1, … , 𝑞61} {𝑞61} 366 98.06 

5 {𝑞1, … , 𝑞87} {𝑞87} 413 98.54 

Average successfull processing amino acids contained in 
sequence [%] 98.35 

* It means percentual rate of all correctly processed amino acids in sequence 

Fig. 9.28: Image of 1B09 with highlighted 
chain A 
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Fig. 9.29: Analysis of head movement for 1B09 
chain A result 1 

 

Fig. 9.30: Analysis of head movement for 1B09 
chain A result 2 

 

Fig. 9.31: Analysis of head movement for 1B09 
chain A result 3 

 

Fig. 9.32: Analysis of head movement for 1B09 
chain A result 4 

 

Fig. 9.33: Analysis of head movement for 1B09 
chain A result 5 

 
 
9.2.6 1TUP 

Tumor suppressor P53 complexed with DNA [30, 45] – chain A. Length of sequence is 219 
amino acids. 

 
Seq. 11: 1TUP chain A sequence 

SSSVPSQKTYQGSYGFRLGFLHSGTAKSVTCTYSPALNKMFCQLAKTCPVQLWVD
STPPPGTRVRAMAIYKQSQHMTEVVRRCPHHERCSDSDGLAPPQHLIRVEGNLRV
EYLDDRNTFRHSVVVPYEPPEVGSDCTTIHYNYMCNSSCMGGMNRRPILTIITLE
DSSGNLLGRNSFEVRVCACPGRDRRTEEENLRKKGEPHHELPPGSTKRALPNNT 
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Seq. 12: Test sequence for 1TUP 

MFQEDDDFEISQHSIHWAIWGDGVFVGSYAYVHINWEFVSCIHPINIANQIATAV
VDLAVEYYIAQNSNFKHRTMRQCPGTWNPSCARVKDVVYAIPHLHCYWCFQTKLN
LTTSDSFDRQTYCLYVFGTKEGPNKISHADLENFQHEPQYSHSEVANMQLHKFVE
RTECNAIRALHWDTQKDYKMKHFSFARDGFWFVYYMNMYALEDRQSMKQNWFP 

 
Table 20: Summary of 5 obtained results of processing 1TUP chain A 

Result no. Q F Steps Rate* [%] 

1 {𝑞1, … , 𝑞36} {𝑞36} 288 99.09 

2 {𝑞1, … , 𝑞45} {𝑞45} 323 98.63 

3 {𝑞1, … , 𝑞46} {𝑞46} 334 100 

4 {𝑞1, … , 𝑞32} {𝑞32} 308 100 

5 {𝑞1, … , 𝑞35} {𝑞35} 310 100 

Average successfull processing amino acids contained 
in sequence [%] 99.54 

* It means percentual rate of all correctly processed amino acids in sequence 
 
 

Fig. 9.35: Analysis of head movement for 
1TUP chain A result 1 

Fig. 9.36: Analysis of head movement for 1TUP 
chain A result 2 

Fig. 9.34: Image of 1TUP with highlighted 
chain A 
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Fig. 9.37: Analysis of head movement for 
1TUP chain A result 3 

 

Fig. 9.38: Analysis of head movement for 1TUP 
chain A result 4 

 

Fig. 9.39: Analysis of head movement for 1TUP 
chain A result 5 

 
 
9.2.7 1YAR 

Structure of archeabacterial 20S proteasome mutant D9S – PA26 complex [30, 46] – chain A. 
Length of sequence is 233 amino acids. 
 

Seq. 13: 1YAR chain A sequence 

MQQGQMAYSRAITVFSPDGRLFQVEYAREAVKKGSTALGMKFANGVLLISDKKVR
SRLIEQNSIEKIQLIDDYVAAVTSGLVADARVLVDFARISAQQEKVTYGSLVNIE
NLVKRVADQMQQYTQYGGVRPYGVSLIFAGIDQIGPRLFDCDPAGTINEYKATAI
GSGKDAVVSFLEREYKENLPEKEAVTLGIKALKSSLEEGEELKAPEIASITVGNK
YRIYDQEEVKKFL 

 
 
 
 
 
 
 
 
 
 

 
 Fig. 9.40: Image of 1YAR with highlighted chain A 
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Seq. 14: Test sequence for 1YAR 

CVPGIFPYQASNAFEISKMAPYYFKNKRNVKINPVAKYTFEWASGPGKNKNYWDV
PLMYHLSWHIHHRDNRDSMKFFHLMIDNKHCMYCIMWNPSSKHNHLERYLQWGTW
NMHEHMMLSITRYPAFPMLVTKPMSEQNPNECDATPRCMKQHCSDDFWQPFEKGS
ARRERFTFRMQWTYMRLQSFRANHLCRTKFTLKMLQEAVNWCQWMYRFFHDPCER
FKANTAVEPPIFG 

 
Table 21: Summary of 5 obtained results of processing 1YAR chain A 

Result no. Q F Steps Rate* [%] 

1 {𝑞1, … , 𝑞41} {𝑞41} 353 100 

2 {𝑞1, … , 𝑞59} {𝑞59} 386 98.71 

3 {𝑞1, … , 𝑞66} {𝑞66} 416 99.57 

4 {𝑞1, … , 𝑞57} {𝑞57} 409 99.57 

5 {𝑞1, … , 𝑞27} {𝑞27} 309 97.85 

Average successfull processing amino acids contained 
in sequence [%] 99.14 

* It means percentual rate of all correctly processed amino acids in sequence 
 
 

Fig. 9.41: Analysis of head movement for 1YAR 
chain A result 1 

 

Fig. 9.42: Analysis of head movement for 1YAR 
chain A result 2 

 

Fig. 9.43: Analysis of head movement for 1YAR 
chain A result 3 

 

Fig. 9.44: Analysis of head movement for 1YAR 
chain A result 4 
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Fig. 9.45: Analysis of head movement for 1YAR 
chain A result 5 

 

 

9.2.8 1FNT 

Crystal structure of the 20S proteasome from yeast in complex with the proteasome activator 
PA26 from Trypanosome Brucei at 3.2 Angstroms resolution [30, 43] – chain A. Length of 
sequence is 252 amino acids. 
 

Seq. 15: 1FNT chain A sequence 

MSGAAAASAAGYDRHITIFSPEGRLYQVEYAFKATNQTNINSLAVRGKDCTVVIS
QKKVPDKLLDPTTVSYIFCISRTIGMVVNGPIPDARNAALRAKAEAAEFRYKYGY
DMPCDVLAKRMANLSQIYTQRAYMRPLGVILTFVSVDEELGPSIYKTDPAGYYVG
YKATATGPKQQEITTNLENHFKKSKIDHINEESWEKVVEFAITHMIDALGTEFSK
NDLEVGVATKDKFFTLSAENIEERLVAIAEQD 

 
 
 
 
 
 
 
 
 
 
 

Fig. 9.46: Image of 1FNT with highlighted chain A 

 
 

Seq. 16: Test sequence for 1FNT 

KDWSRGPCDTHHWRVILPYTTINKNDGQKYSYHNQGHIHPRYMSKLCNMWESSSY
ETFAGFDAEMENVPMKRPLWQMSSISMKKWCLLPLRWDIWCFCKSAKMCENNPAA
EQRIWFTIMSEGADTKGTCCIFTPPPECCCTYMNVALPQHWASARQPNQMRGWML
NVTMVAALWESWTGIHVNFMMGHNMNYLQNPYCRAVMWKNHLPRIAEMNQHDPCF
YRIQCTLCCVYKNTMIRGYNPVITHFQLVDDT 
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Table 22: Summary of 5 obtained results of processing 1FNT chain A 

Result no. Q F Steps Rate* [%] 

1 {𝑞1, … , 𝑞120} {𝑞120} 597 97.62 

2 {𝑞1, … , 𝑞111} {𝑞111} 537 98.02 

3 {𝑞1, … , 𝑞123} {𝑞123} 562 98.81 

4 {𝑞1, … , 𝑞104} {𝑞104} 460 99.21 

5 {𝑞1, … , 𝑞149} {𝑞149} 616 99.60 

Average successfull processing amino acids contained in 
sequence [%] 98.65 

* It means percentual rate of all correctly processed amino acids in sequence 
 

Fig. 9.47: Analysis of head movement for 
1FNT chain A result 1 

 

Fig. 9.48: Analysis of head movement for 1FNT 
chain A result 2 

 

Fig. 9.49: Analysis of head movement for 
1FNT chain A result 3 

Fig. 9.50: Analysis of head movement for 1FNT 
chain A result 4 

 

Fig. 9.51: Analysis of head movement for 1FNT chain 
A result 5 
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9.2.9 2J00 

Structure of the Thermus Thermophilus 70S ribosome complexed with mRNA, tRNA and 
paromomycin [30, 47] – chain B. Length of sequence is 256 amino acids. 
 

Seq. 17: 2J00 chain B sequence 

MPVEITVKELLEAGVHFGHERKRWNPKFARYIYAERNGIHIIDLQKTMEELERTF
RFIEDLAMRGGTILFVGTKKQAQDIVRMEAERAGMPYVNQRWLGGMLTNFKTISQ
RVHRLEELEALFASPEIEERPKKEQVRLKHELERLQKYLSGFRLLKRLPDAIFVV
DPTKEAIAVREARKLFIPVIALADTDSDPDLVDYIIPGNDDAIRSIQLILSRAVD
LIIQARGGVVEPSPSYALVQEAEATETPEGESEVEA 

 
 
 
 
 
 
 
 
 
 

 

 

 

Seq. 18: Test sequence for 2J00 

CSNACPLFLFYANWDAEVINSSMTKSQMPTRLPLRSLFNWLVKSPFCYGYKWHMC
MNQDGSHVSTVESCGSEMDFNDFFIDCIIYKLNPFWRYVGLKPEHTSQMGKKYQD
QRVCPTAINFYFMEIWYLKPDHNWRNWQACMIWSPFLRYGTSYYVSGEPKETDQS
TNCMFMQTIPQPKWESFMVQQQWVAYQGNNPLQCLVFKRLTYQQPYPDIKDFIYC
DHAAFIKLTMDESESATCGSWQICPDHLRQLIEVEW 

 
Table 23: Summary of 5 obtained results of processing 2J00 chain B 

Result no. Q F Steps Rate* [%] 

1 {𝑞1, … , 𝑞88} {𝑞88} 483 99.61 

2 {𝑞1, … , 𝑞80} {𝑞80} 488 98.83 

3 {𝑞1, … , 𝑞50} {𝑞50} 425 98.83 

4 {𝑞1, … , 𝑞97} {𝑞97} 512 98.44 

5 {𝑞1, … , 𝑞82} {𝑞82} 492 98.44 

Average successfull processing amino acids contained 
in sequence [%] 98.83 

* It means percentual rate of all correctly processed amino acids in sequence 

Fig. 9.52: Image of 2J00 with highlighted chain B 
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Fig. 9.53: Analysis of head movement for 2J00 
chain B result 1 

Fig. 9.54: Analysis of head movement for 2J00 
chain B result 2 

 

Fig. 9.55: Analysis of head movement for 2J00 
chain B result 3 

 

Fig. 9.56: Analysis of head movement for 2J00 
chain B result 4 

 
 
 
 
 
 
 
 

 

Fig. 9.57: Analysis of head movement for 2J00 
chain B result 5 

 
 
9.2.10 1A4Y 

Ribonuclease inhibitor – angiogenin complex [30, 37] – chain A. Length of sequence is 460 
amino acids. 
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Seq. 19: 1A4Y chain A sequence 

SLDIQSLDIQCEELSDARWAELLPLLQQCQVVRLDDCGLTEARCKDISSALRVNP
ALAELNLRSNELGDVGVHCVLQGLQTPSCKIQKLSLQNCCLTGAGCGVLSSTLRT
LPTLQELHLSDNLLGDAGLQLLCEGLLDPQCRLEKLQLEYCSLSAASCEPLASVL
RAKPDFKELTVSNNDINEAGVRVLCQGLKDSPCQLEALKLESCGVTSDNCRDLCG
IVASKASLRELALGSNKLGDVGMAELCPGLLHPSSRLRTLWIWECGITAKGCGDL
CRVLRAKESLKELSLAGNELGDEGARLLCETLLEPGCQLESLWVKSCSFTAACCS
HFSSVLAQNRFLLELQISNNRLEDAGVRELCQGLGQPGSVLRVLWLADCDVSDSS
CSSLAATLLANHSLRELDLSNNCLGDAGILQLVESVRQPGCLLEQLVLYDIYWSE
EMEDRLQALEKDKPSLRVIS 

 
 
 
 
 
 
 
 
 

 
 

Seq. 20: Test sequence for 1A4Y 

RTAHPKGFPNVQDGGNISFQMSYWHMLNSLNYYKPVGADATVFQCLPEPNFPIFH
HHKGMHHWYPFWYAINWAGCIQHLTCIKPKIEIRRIVCFQTCQWQRVEMIPHYQD
NKEGEVLWDESNSKFQALLHYIGAKEASWIFVYAMHPCTIGCHEICPSWVNAIYN
IVQHWWIAWYHDREVPSAAYCKRHTHTHHCFLSEPRGKKVPFRCMKMTIPSAEGM
GNLFLAKFDPNWNQQKGVVWQVHPAAMQIPCAGWMVINMGFPGCYTKDSKLEDKH
WTWRQWFHITHCFQSNPDVYHADDFKNFNGYIKTNFKWGNISASLMEQNMEPFIG
IIWAQGICITFMHWDITVEMRKTFEGRTYVSPCGRVVWASRRWNCAGQYSQRPPT
QMRIHCAIQFHWKINDLFYQTCTYVMHMWNCLKFSSSDMCLPNNEACCPIPDIDN
HKTGAVSPMLTWGQSLMRWP 

 

Table 24: Summary of 5 obtained results of processing 1A4Y chain A 

Result no. Q F Steps Rate* [%] 

1 {𝑞1, … , 𝑞166} {𝑞166} 865 98.69 

2 {𝑞1, … , 𝑞159} {𝑞159} 885 99.13 

3 {𝑞1, … , 𝑞169} {𝑞169} 928 98.69 

4 {𝑞1, … , 𝑞130} {𝑞130} 792 99.13 

5 {𝑞1, … , 𝑞147} {𝑞147} 875 99.78 

Average successfull processing amino acids contained in 
sequence [%] 99.08 

* It means percentual rate of all correctly processed amino acids in sequence 

Fig. 9.58: Image of 1A4Y with highlighted chain A 
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Fig. 9.59: Analysis of head movement for 1A4Y 
chain A result 1 

 

Fig. 9.60: Analysis of head movement for 1A4Y 
chain A result 2 

 

Fig. 9.61: Analysis of head movement for 1A4Y 
chain A result 3 

 

Fig. 9.62: Analysis of head movement for 1A4Y 
chain A result 4 

 

Fig. 9.63: Analysis of head movement for 1A4Y 
chain A result 5 

 
9.2.11 1BMF 

Bovine mitochondrial F1 - atpase [30, 42] – chain A. Length of sequence is 510 amino acids. 
 

Seq. 21: 1BMF chain A sequence 

QKTGTAEVSSILEERILGADTSVDLEETGRVLSIGDGIARVHGLRNVQAEEMVEF
SSGLKGMSLNLEPDNVGVVVFGNDKLIKEGDIVKRTGAIVDVPVGEELLGRVVDA
LGNAIDGKGPIGSKARRRVGLKAPGIIPRISVREPMQTGIKAVDSLVPIGRGQRE
LIIGDRQTGKTSIAIDTIINQKRFNDGTDEKKKLYCIYVAIGQKRSTVAQLVKRL
TDADAMKYTIVVSATASDAAPLQYLAPYSGCSMGEYFRDNGKHALIIYDDLSKQA
VAYRQMSLLLRRPPGREAYPGDVFYLHSRLLERAAKMNDAFGGGSLTALPVIETQ
AGDVSAYIPTNVISITDGQIFLETELFYKGIRPAINVGLSVSRVGSAAQTRAMKQ 



 

- 77 - 

 

VAGTMKLELAQYREVAAFAQFGSDLDAATQQLLSRGVRLTELLKQGQYSPMAIEE
QVAVIYAGVRGYLDKLEPSKITKFENAFLSHVISQHQALLGKIRTDGKISEESDA
KLKEIVTNFLAGFEA 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Seq. 22: Test sequence for 1BMF 

YGWNPGYPDESYGAICYAVIHMELVNINDWFVTPIGTIREAHWNEYDLFVEAELC
RMSYCCVGMYYYTKCFVKTWRQIWPKLSTDHQYDAQCGFCFRKGWHPTTCVPTDE
RQYYHDSYRERWIAFPEMMEYPVKYPMQHEQCPSDFLLNIYHCNYWMFGCRNAFW
YWEVRFATLVMDRKAGKCRNLRCEWPSAKGKHSGHSTNRSWGIIRWGFLNRVDLE
IDMYFFFSAMSRYVCMCARACYLQSVNHTVIRMGRPYWLDHVFFEFDLHRIRDAA
YVMLRAVGCTHGWILCAPLVWWHNCSVTYYSVDMEMCIWRYRGYQLRFWTWNGIR
VATPKNHTQLRGSKNFFHRWESFKVPYHFMLWLLKESFDIGKPMMNKQTSQRNAA
LDRDVFAEPCDIQEDDRYHGSPMRHWRHEYKRDFFQSAHIYHNHNRYCRRKHLVY
HRWPTRLRHRHAPHACWDGMEWQSIRRMYGEAYKMAWCPTVCWYACRQEAVNRPR
SIMFITSDYDASWCH 

 

Table 25: Summary of 5 obtained results of processing 1BMF chain A 

Result no. Q F Steps Rate* [%] 

1 {𝑞1, … , 𝑞110} {𝑞110} 814 99.41 

2 {𝑞1, … , 𝑞142} {𝑞142} 934 99.02 

3 {𝑞1, … , 𝑞114} {𝑞114} 872 98.63 

4 {𝑞1, … , 𝑞142} {𝑞142} 912 99.22 

5 {𝑞1, … , 𝑞142} {𝑞142} 952 99.22 

Average successfull processing amino acids contained in 
sequence [%] 99.10 

* It means percentual rate of all correctly processed amino acids in sequence 
 

Fig. 9.64: Image of 1BMF with highlighted 
chain A 
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Fig. 9.65: Analysis of head movement for 
1BMF chain A result 1 

Fig. 9.66: Analysis of head movement for 
1BMF chain A result 2 

 

Fig. 9.67: Analysis of head movement for 
1BMF chain A result 3 

 

Fig. 9.68: Analysis of head movement for 
1BMF chain A result 4 

 

Fig. 9.69: Analysis of head movement for 1BMF 
chain A result 5 

 

4.1.1. 2ZV4 

The structure of rat liver vault at 3.5 Angstrom resolution [30, 49] – chain N. Length of 
sequence is 861 amino acids. 
 

Seq. 23: 2ZV4 chain N sequence 

MATEEAIIRIPPYHYIHVLDQNSNVSRVEVGPKTYIRQDNERVLFAPVRMVTVPP
RHYCIVANPVSRDTQSSVLFDITGQVRLRHADQEIRLAQDPFPLYPGEVLEKDIT
PLQVVLPNTALHLKALLDFEDKNGDKVMAGDEWLFEGPGTYIPQKEVEVVEIIQA
TVIKQNQALRLRARKECFDREGKGRVTGEEWLVRSVGAYLPAVFEEVLDLVDAVI 
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LTEKTALHLRALQNFRDLRGVLHRTGEEWLVTVQDTEAHVPDVYEEVLGVVPITT
LGPRHYCVILDPMGPDGKNQLGQKRVVKGEKSFFLQPGERLERGIQDVYVLSEQQ
GLLLKALQPLEEGESEEKVSHQAGDCWLIRGPLEYVPSAKVEVVEERQAIPLDQN
EGIYVQDVKTGKVRAVIGSTYMLTQDEVLWEKELPSGVEELLNLGHDPLADRGQK
GTAKPLQPSAPRNKTRVVSYRVPHNAAVQVYDYRAKRARVVFGPELVTLDPEEQF
TVLSLSAGRPKRPHARRALCLLLGPDFFTDVITIETADHARLQLQLAYNWHFELK
NRNDPAEAAKLFSVPDFVGDACKAIASRVRGAVASVTFDDFHKNSARIIRMAVFG
FEMSEDTGPDGTLLPKARDQAVFPQNGLVVSSVDVQSVEPVDQRTRDALQRSVQL
AIEITTNSQEAAAKHEAQRLEQEARGRLERQKILDQSEAEKARKELLELEAMSMA
VESTGNAKAEAESRAEAARIEGEGSVLQAKLKAQALAIETEAELERVKKVREMEL
IYARAQLELEVSKAQQLANVEAKKFKEMTEALGPGTIRDLAVAGPEMQVKLLQSL
GLKSTLITDGSSPINLFSTAFGLLGLGSDGQPPAQK 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Seq. 24: Test sequence for 2ZV4 

LWWFIHANHAWYGMTQNTYCKIFILWLQASCYCVVNCYQCFGCQSVHYVLIYKQF
EMVFDWIGNQRDWSARPWHQMLKTILVHKACYTCVHPEQCMTAILALMEINSLYV
NSQYLPEAHGKMLMMTEIWISMGDGDPTTCHETIEQVNSGSAEWQGYFMNPVDDA
NWAMKQMRLAKAIRTAVMSIKWVRLKLIAWDHAHNQQTSLMNPCIKLCVAYPFEI
FFEKESWVSPIYIVFRNMHWACASVCFPKEWMQDNPHPHTAIAVFYSLTLLQSNE
RKERLIGIHWCTENNESYDKIEDSGYCLWYTMYCGRQVVWEMYNTWWWTCHYYKF
GENGFTMDRQREWRYLRSGILYEGHWDWGADYSVFFFMRWSHPCGQMYGQPEMKE
RGNGFFCLTWEIYCRGQFSSLMYKNHSVRALFAIITHNCAKINVAVEHQPCFVRE
QMDGGPCCQWYLFQTGADWQPNPFCESLDKTFLEDIYNAILGEPMFSFMIRYSHA
FCQPKSWQKLQRWFTCGVISGTDSVNQQMLSNFQFMALAVKWENNREMLCMTDMN
SPQFGNSECYPCPPFSTPSARHCDVFRTMLWSKQSWHHKVMRNVGYLPNQYECFN
WNESSNAWTEHPVVKCFPPICNLHYPFFMRTNISAIGDFWDEGVQKSRFGGTLVQ
QSHNSLANFHTAMEEDCCHGGQPKNYAQQILSAVPCMTQDYKVVLHMWPYKLDHD
TLAMDVGILNPRVRLTECEFKEYYNSTYTWWWKCCKHPTDEMDPTSNMNWLFIER
YWMLIATNYIGEDYHRNPNICIDNAEGVIKVGFLGWYDLNLPWSPFGLWYVTTIC
PAQYEKPYKAEIERELMGTEMSMMEPQPPDSKSDKM 

 

Fig. 9.70: Image of 2ZV4 with highlighted chain N 
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Table 26: Summary of 5 obtained results of processing 2ZV4 chain N 

Result no. Q F Steps Rate* [%] 

1 {𝑞1, … , 𝑞173} {𝑞173} 1410 99.54 

2 {𝑞1, … , 𝑞144} {𝑞144} 1347 99.42 

3 {𝑞1, … , 𝑞119} {𝑞119} 1246 99.30 

4 {𝑞1, … , 𝑞150} {𝑞150} 1334 99.77 

5 {𝑞1, … , 𝑞154} {𝑞154} 1252 99.65 

Average successfull processing amino acids contained in 
sequence [%] 99.54 

* It means percentual rate of all correctly processed amino acids in sequence 
 

Fig. 9.71: Analysis of head movement for 2ZV4 
chain N result 1 

Fig. 9.72: Analysis of head movement for 2ZV4 
chain N result 2 

 

Fig. 9.73: Analysis of head movement for 2ZV4 
chain N result 3 

Fig. 9.74: Analysis of head movement for 2ZV4 
chain N result 4 

Fig. 9.75: Analysis of head movement for 2ZV4 
chain N result 5 
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 CONCLUSION 10
In this doctoral thesis the evolutionary synthesis of the rules of the Turing machine’s transition 
function was described and introduced. Except background research which represents analysis 
of present utilization of artificial intelligence for programming Turing machine, doctoral thesis 
provides two short studies which are necessary for doctoral thesis’ topic dealt with. These are 
study of finite automata theory focused on Turing machines and study of selected artificial 
intelligence methods aimed on Differential Evolution and Self-Organizing Migrating Algorithm. 
Thanks to mentioned studies it was possible to specify conception of Turing machine software 
implementation in Wolfram Mathematica and Turing machine evolutionary programming. The 
software implementation of Turing machine was important for the doctoral research because it 
was used as parts of optimization algorithms approaches. Also it was used for visualization of 
Turing machine behavior. The doctoral research was further aimed on outlining possibilities of 
using artificial intelligence for evolutionary optimization and its applications to the rules of the 
Turing machine’s transition function. There was necessary to deal with problematics of proper 
representation of Turing machine rules for processing by evolutionary algorithms and 
conception of cost function of evolutionary algorithms. Within the scope of the doctoral 
research, two approaches to Turing machine evolutionary programming were designed and 
described in this doctoral thesis. As well as conceptions of algorithms used in cost functions of 
selected evolutionary algorithms there were introduced. The approaches are classical 
optimization and per-partes optimization. The former is suitable for estimating the rules of 
Turing machine when processing not very complex problems because it optimizes the complete 
set of rules at once. The latter estimates each rule separately thus it is also possible to obtain the 
rules of Turing machine when processing highly complex problems. On the previous pages there 
were brough the proof of proper Turing machine evolutionary programming for processing 
selected example problems by former of designed approaches and analysis based on above 
proof. The analysis was concerned with Turing machine evolutionary programming dependence 
on custom settings of Differential Evolution and Self-Organizing Migrating Algorithm. The 
analysis represents highly important part of doctoral thesis because shows influence of selected 
evolutionary algorithms and their settings on Turing machine evolutionary programming 
process. As final part of doctoral thesis conception of primary protein structures processing by 
evolutionary programmed Turing machine was introduced. The final part is a key part of the 
doctoral thesis and represents practical utilization of the topic the doctoral thesis deals with. The 
final part also comprehends proofs of proper Turing machine evolutionary programming for 
processing proteins on twelve selected primary protein structures by the latter of designed 
approaches. 

As background reseach presented in introductory part of the doctoral thesis shown, currently 
it is not yet quitely common to use methods of artificial intelligence to estimation of the Turing 
machines rules except very little of cases. Therefore it can be presumed that approaches 
described in this doctoral thesis and related research papers and articles published are entirely 
novel and uniqe especially if Differential Evolution and Self-Organizing Migrating Algorithm 
are considered as optimization methods. 
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Appendix  A: Examples of selected rules estimated during analysis 
 

• Unary addition 
𝛿(𝑞1, "#") = (𝑞2, "#", 0) 𝛿(𝑞3, "1") = (𝑞1, "1", 1) 
𝛿(𝑞1, "1") = (𝑞3, "1", 1)                    𝛿(𝑞4, "#") = (𝑞5, "#",−1) 
𝛿(𝑞2, "#") = (𝑞3, "#", 1)                    𝛿(𝑞4, "1") = (𝑞1, "#",−1) 
𝛿(𝑞2, "1") = (𝑞4, "1", 1)                    𝛿(𝑞5, "#") = (𝑞6, "#",−1) 
𝛿(𝑞3, "#") = (𝑞4, "1", 1)                         𝛿(𝑞5, "1") = (𝑞5, "#", 1) 

 
• Divisibility 

𝛿(𝑞1, "#") = (𝑞1, "#", 1)                    𝛿(𝑞4, "𝑋") = (𝑞1, "#",−1) 
𝛿(𝑞1, "1") = (𝑞4, "1", 0) 𝛿(𝑞5, "#") = (𝑞2, "1", 0) 
𝛿(𝑞1, "𝑋") = (𝑞1, "1", 0) 𝛿(𝑞5, "1") = (𝑞3, "1", 1) 
𝛿(𝑞2, "#") = (𝑞7, "1", 1) 𝛿(𝑞5, "𝑋") = (𝑞4, "𝑋", 1) 
𝛿(𝑞2, "1") = (𝑞1, "1", 0) 𝛿(𝑞6, "#") = (𝑞1, "𝑋", 1) 
𝛿(𝑞2, "𝑋") = (𝑞8, "#", 0) 𝛿(𝑞6, "1") = (𝑞4, "𝑋", 0) 
𝛿(𝑞3, "#") = (𝑞3, "1", 0)                    𝛿(𝑞6, "𝑋") = (𝑞7, "#",−1) 
𝛿(𝑞3, "1") = (𝑞8, "𝑋", 0) 𝛿(𝑞7, "#") = (𝑞5, "#", 1) 
𝛿(𝑞3, "𝑋") = (𝑞5, "𝑋", 0) 𝛿(𝑞7, "1") = (𝑞4, "#", 0) 
𝛿(𝑞4, "#") = (𝑞1, "1", 1) 𝛿(𝑞7, "𝑋") = (𝑞5, "1", 0) 
𝛿(𝑞4, "1") = (𝑞5, "1", 1)  

 
• Primality 

                         𝛿(𝑞1, "#") = (𝑞20, "𝑋", 0)                           δ(q6, "#") = (q18, "X", 0) 
                                    𝛿(𝑞1, "1") = (𝑞15, "𝑋", 1)                            δ(q6, "1") = (q16 , "#",−1)  

                             𝛿(𝑞1, "𝑋") = (𝑞4, "𝑋", 1)                           δ (q6, "X") = (q20, "X", 1) 
                             𝛿(𝑞2, "#") = (𝑞15, "𝑋", 0)                            δ(q7, "#") = (q15 , "X",−1) 
                             𝛿(𝑞2, "1") = (𝑞13, "1",−1)                            δ(q7, "1") = (q20, "1",−1) 
                             𝛿(𝑞2, "𝑋") = (𝑞25, "#", 0)                            δ(q7, "X") = (q10, "1", 0) 
                             𝛿(𝑞3, "#") = (𝑞15, "#",−1)                           δ (q8, "#") = (q19, "1",−1) 
                             𝛿(𝑞3, "1") = (𝑞15, "1", 0)                            δ(q8, "1") = (q10 , "#", 0) 
                             𝛿(𝑞3, "𝑋") = (𝑞25, "𝑋", 0)                            δ(q8, "X") = (q13, "#", 0) 
                             𝛿(𝑞4, "#") = (𝑞21, "𝑋",−1)                            δ(q9, "#") = (q14, "X", 0) 
                             𝛿(𝑞4, "1") = (𝑞19, "#",−1)                            δ(q9, "1") = (q13, "1", 0) 
                             𝛿(𝑞4, "𝑋") = (𝑞17, "#",−1)                            δ(q9, "X") = (q9, "1", 0) 
                             𝛿(𝑞5, "#") = (𝑞21, "𝑋",−1)                          δ(q10 , "#") = (q14, "#", 0) 
                             𝛿(𝑞5, "1") = (𝑞11, "𝑋", 1) 
 

                         δ(q10 , "1") = (q16, "1",−1) 
                            𝛿(𝑞5, "𝑋") = (𝑞22, "#",−1)                           δ(q10, "X") = (q5, "1", 1)  
                          𝛿(𝑞11, "#") = (𝑞25, "1",−1)                           δ(q18, "#") = (q17 , "X", 0) 
                          𝛿(𝑞11, "1") = (𝑞22, "1", 0)                           δ(q18, "1") = (q1, "#", 1) 
                          𝛿(𝑞11, "𝑋") = (𝑞3, "#",−1) δ(q18, "X") = (q7, "X", 1) 
                         𝛿 (𝑞12, "#") = (𝑞10, "1", 0)                           δ(q19, "#") = (q3, "#",−1) 
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                          𝛿(𝑞12, "1") = (𝑞12, "#",−1) 𝛿(𝑞19, "1") = (𝑞9, "𝑋", 0) 
                          𝛿(𝑞12, "𝑋") = (𝑞9, "𝑋", 0) 𝛿(𝑞19, "𝑋") = (𝑞23, "1", 1) 
                          𝛿(𝑞13, "#") = (𝑞11, "𝑋",−1)     𝛿(𝑞20, "#") = (𝑞10, "1",−1) 
                          𝛿(𝑞13, "1") = (𝑞11, "#",−1)      𝛿(𝑞20, "1") = (𝑞10, "#",−1) 
                         𝛿(𝑞13, "𝑋") = (𝑞5, "𝑋", 1) 𝛿(𝑞20, "𝑋") = (𝑞15, "#", 0) 
                         𝛿(𝑞14, "#") = (𝑞8, "#", 1)  𝛿(𝑞21, "#") = (𝑞4, "1",−1) 
                         𝛿(𝑞14, "1") = (𝑞4, "𝑋", 0)  𝛿(𝑞21, "1") = (𝑞12, "𝑋", 0) 
                         𝛿(𝑞14, "𝑋") = (𝑞12, "1", 0) 𝛿 (𝑞21, "𝑋") = (𝑞10, "#", 0) 
                         𝛿(𝑞15, "#") = (𝑞3, "𝑋", 1) 𝛿(𝑞22, "#") = (𝑞7, "𝑋", 1) 
                          𝛿(𝑞15, "1") = (𝑞18, "#", 1) 𝛿(𝑞22, "1") = (𝑞4, "𝑋", 1) 
                          𝛿(𝑞15, "1") = (𝑞2, "#",−1)   𝛿(𝑞22, "𝑋") = (𝑞11, "1", 1) 
                          𝛿(𝑞16, "𝑋") = (𝑞22, "1",−1)   (𝑞23, "#") = (𝑞6, "𝑋", 0) 
                          𝛿(𝑞16, "1") = (𝑞13, "1",−1)  𝛿(𝑞23, "1") = (𝑞15, "1", 0) 

𝛿(𝑞16, "𝑋") = (𝑞7, "𝑋", 1)     𝛿(𝑞23, "𝑋") = (𝑞18, "1",−1) 
                         𝛿(𝑞17, "#") = (𝑞5, "𝑋",−1) 𝛿(𝑞24, "#") = (𝑞4, "#", 1) 
                         𝛿(𝑞17, "1") = (𝑞5, "𝑋",−1)    𝛿(𝑞24, "1") = (𝑞14, "#", 1) 
                         𝛿(𝑞17, "𝑋") = (𝑞22, "#", 1) 𝛿(𝑞24, "𝑋") = (𝑞5, "#", 1) 

 

• Proteins 
These rules are not published in the doctoral thesis because of their extensiveness. 
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Appendix B: Description of Turing machine software implementation 
Turing machine is implemented as Turing machine simulator (see figure below) in Wolfram 
Mathematica. It is created as CDF4 (Computable Document Format) file thus it can be run in 
free Wolfram CDF Player5 or can be placed at web pages thanks to CDF plugin for web 
browsers. 

Turing machine simulator consists of two parts. The first part located at the top of application 
window contains input fields for Turing machine settings as are number of innter states, data 
tape symbols, initial state, accepting state, initial head position, data tape, and rules of transition 
function. If Run button is pressed, the simulation will proceed. The Step slider allows manual 
moving the head operations of the Turing machine. 

The second part of the application windows located at bottom contains information on current 
step and rule. There are also included preview of output data tape with current position of 
Turing machine’s head and graph which depicts head movement.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.: Application window of Turing machine simulator. 
                                                           
4 http://www.wolfram.com/cdf/ 
5 http://www.wolfram.com/cdf-player/ 
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