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ABSTRAKT

Hlavním cílem této práce je ukázat, že je možné vylepšit výkonnost evolučních
výpočetních technik pro spojitou optimalizaci s jednou výstupní veličinou využitím
různých metod modifikace. Je ukázáno, že s využitím relativně jednoduchým
modifikací je možné zlepšit výkonnost algoritmu Rojení částic (Particle Swarm
Optimization - PSO) jak pro umělé testovací funkce, tak pro reálné problémy.

Nejdříve je vysvětlena důležitost optimalizace a základní principy evoluční opti-
malizace. Dále jsou představeny moderní trendy v návrhu modifikací evolučních
výpočetních technik spolu s oblastmi využití. Vysvětleno je též zaměření práce
na algoritmus Rojení částic.

Dále jsou v práci popsány základy tzv. „Swarm Intelligence“ či inteligence hejna
a významní zástupci této třídy evolučních technik. Algoritmus Rojení částic
použitý v této práci je popsán detailně. Popsány jsou také využité testovací
funkce.

Jelikož se významná část tohoto výzkumu zabývá užitím generátorů pseudo-
náhodných čísel založených na chaotických systémech, je teoretická část uzavřena
detailním popisem užitých chaotických systémů včetně rovnic a grafů.

V experimentální části jsou prezentovány výsledky dlouhodobého výzkumu. Ne-
jdříve je detailně popsán algoritmus PSO využívající chaos. Způsob implemen-
tace chaotických sekvencí jako generátorů pseudo-náhodných čísel je vysvětlen
a výkonnost a chování PSO algoritmu s těmito generátory je detailně prozk-
oumána. Dále je prezentován ladící experiment. První část je uzavřena ukázkovou
aplikací chaosem obohaceného PSO algoritmu na modelový případ návrhu PID
regulátoru.

V další sekci je prezentován tzv. multi-chaotický přístup pro PSO. Jedná se o
velmi slibnou metodu vyvinutou během tohoto výzkumu. V tomto je přístupu
je v rámci jednoho běhu algoritmu využito více chaotických generátorů pseudo-
náhodných čísel. Tímto způsobem je možné vylepšit výkonnost algoritmu a up-
ravit chování roje požadovaným způsobem. Je uvedeno i využití tohoto přístupu
pro jinou evoluční výpočetní techniku – algoritmus Diferenciální evoluce.

Během výzkumu chaotického PSO byla detailně studována vnitřní dynamika



algoritmu PSO. Jako reakce na získané poznatky bylo navrženo a otestováno
několik modifikací algoritmu PSO. Jako první je popsána tzv. „Multiple-choice“
strategie pro PSO. V tomto návrhu je vytvořen heterogenní roj a jednotlivé role
jsou rozděleny náhodně. Jako druhý příklad úspěšné modifikace PSO algoritmu
je uveden nově navržený tzv. shromažďovací (Gathering) algoritmus. V tomto
algoritmu je využit tzv. lavinový efekt či efekt sněhové koule ke zdůraznění
slibných regionů pomocí shromáždění množství částic. Tímto přístupem je
možné vyhnout se problémům typickým pro algoritmus využívající pevný bod
pro atrakci částic.

Výkonnost všech popsaných algoritmů byla testována na typicky využívaných
testovacích funkcích a výsledky jsou srovnány s obyčejným PSO či zástupci ne-
jnovějších algoritmů Výsledky výzkumu byly průběžně publikovány a presen-
továny na mezinárodních konferencích a byly velmi dobře přijaty.

Výsledky získané během tohoto výzkumu umožňuji tvrdit, že výkonnost evolučních
výpočetních metod může být vylepšena využitím různých moderních metod, jako
jsou například chaotické sekvence či modifikace vnitřních principů algoritmů.



SUMMARY

The main aim of this work is to show that it is possible to improve the perfor-
mance of evolutionary computational techniques for single-objective continuous
optimization problems by various modification methods. It is shown that by
relatively simple modifications it is possible to improve the performance of Par-
ticle swam optimization algorithm on both artificial benchmark functions and
real-world problems.

Firstly it is introduced the importance of optimization and the basic princi-
ples of evolutionary optimization. Further the modern trends in modification of
evolutionary computational techniques are introduced alongside with the areas
of application for these methods. Also the thesis focus on Swarm intelligence
representative Particle swarm optimization algorithm is explained.

Further the basics of swarm intelligence are described alongside with notable
representatives of this category of evolutionary techniques. The Particle Swarm
optimization algorithm that has been used in this work is described in detail.
Used benchmarks are also described. As a significant part of the research dealt
with using of pseudo-random number generators based on chaotic systems, the
theoretical part concludes with detailed description of used chaotic systems in-
cluding equations and plots.

In the experimental part the results of long-term research are presented. Firstly
the Chaos PSO is described in detail. The implementation of chaotic sequences
as pseudo-random number generators is explained and the performance and be-
havior of PSO algorithm driven by chaotic pseudo-random number generator is
investigated in detail. Further a tuning experiment is presented. The first part
concludes with an example application of the chaos driven PSO algorithm on a
model task of PID controller design.

In the next section it is presented the multi-chaotic approach for chaos driven
PSO - promising method developed during this work. In this approach multi-
ple chaotic pseudo-random number generators are used within one run of the
algorithm and enhance its performance by changing the behavior of the swarm
in a desirable way. It is also shown the utilization of this approach for another
evolutionary computational technique – the Differential evolution algorithm.



During the research of chaos driven PSO the inner dynamics of the PSO al-
gorithm were studied in detail. As a reaction several modifications of PSO
algorithm were proposed and tested. As first the Multiple-choice strategy for
PSO is described. In this design a heterogeneous swarm is created and the roles
are randomly assigned. As a second example of successful PSO modification the
newly developed Gathering algorithm is presented. In the Gathering algorithm
the phenomenon known in literature as “snowball effect” is used to highlight
the promising regions by gathering of multiple particles and avoid the problems
common for algorithm with static attraction points.

The performance of all above mentioned algorithms was tested using common
benchmark functions and the results are compared either with canonical PSO
algorithm or state-of-art representatives. The research results were continuously
published and presented in international conferences with great reception.

Based on results obtained during this research is possible to claim that the
performance of evolutionary computation techniques can be improved by various
modern methods such as chaotic sequence implementation or inner principles
modifications.
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1 Introduction

The evolutionary computation techniques (ECTs) are a class of soft-computing
algorithms inspired by the Darwinian principles of natural selection as a key
mechanism of evolution and Mendel’s law of heredity. These non-deterministic
methods are used in last decades with great success in global optimization tasks
of various kinds [1]-[6]. The main advantage of these methods is their ability to
find solutions of good quality in exceptionally fast times in comparison with other
optimization techniques either deterministic or brutal force based and also their
capability of solving problems that are completely unsolvable by other methods
(usually for time restrictions or complexity reasons). The ECTs are currently
finding many applications in practice [7]-[11].

1.1 The goals of the dissertation

Following five main goals of the dissertation were defined:

1. Evaluation of the current state of the research area: Evolutionary algo-
rithms (EAs), non-deterministic pseudo-random number generators (PRNGs).

2. Definition of the field of research - finding a suitable algorithm for imple-
mentation of alternative approaches and modifications.

3. The proposal of modifications and alternative strategies. Finding alterna-
tive PRNGs and their implementation into EAs.

4. Testing and benchmarking of proposed algorithms.

5. Evaluation of results, analysis and recommendations for future works.



TBU in Zlín, Faculty of Applied Informatics 17

1.2 Optimization

Within this research the optimization is understand as a process of finding such
parameters for the cost function (CF) that generate the lowest value of CF. The
cost function is mathematical description of the problem, it can have and usually
has multiple parameters (inputs) but only one output (usually real number).
The multi-objective optimization (multiple outputs) also exists and the ECTs are
successfully used there too but in this research only single objective optimization
problems are used. The dimension of the problem refers to the number of CF
parameters. ECTs could be used for low-dimensional problems but also for
solving very high-dimensional (e.g. 1000 parameters) problems.

1.3 Basic principles of evolutionary optimization

The vast majority of evolutionary optimization techniques follow similar pattern
as described below:

• At the start of optimization process an initial population of candidate
solutions is randomly generated. Each candidate solution represents a
combination of CF parameters.

• This initial population is transformed into new population by different
mathematical and evolutionary operations (such as crossover and muta-
tion) that are unique for each algorithm. The new population should now
contain solutions of better quality (lower CF value) and serves as an initial
population for the next iteration of the algorithm.

• This process repeats until certain pre-defined ending conditions are met.
Typically number of algorithm iterations or result precision.

As previously mentioned ECTs are stochastic algorithms thus use random oper-
ations (realized by pseudo-random number generation). Given this nature the
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algorithm may produce slightly different results each run. This is one of the
disadvantages of these methods

1.4 Modern trends in ECTs design

These days the most popular ECTs are widely modified and new ECTs are devel-
oped in order to achieve better results and solve more complex tasks. According
to the “No free lunch theorem” [12] there will never be a single algorithm that
would outperform all others on all possible optimization tasks thus the vari-
ety of algorithms is convenient. Apart from modifying the inner principles of
various ECTs, one of the newly investigated enhancement approaches is the im-
plementation of chaotic sequences [13] into the ECTs [10, 11, 14]-[17]. In this
approach pseudo-random number generator (PRNG) that is based on chaotic
system is used instead of basic inbuilt computer (simulation software) pseudo-
random number generator. The idea is that ECTs are inspired in nature and
deterministic chaos exhibits in many natural processes and systems, thus the
chaotic sequences may be more natural to ECTs and may improve their perfor-
mance. Main part of this thesis is focused on this matter. Recently an innovative
approach for chaos driven metaheuristics was presented by author of this the-
sis [18]. This approach uses more than one chaotic system during the run of
particular ECT and switches between these systems either manually or by adap-
tive approach. A variety of learning technique [19] - [22] has been recently also
presented to improve the performance of ECTs.

1.5 Areas of application

The main area for application of ECTs is currently the operations research,
especially: Scheduling, Time management, Supply chains, Network optimization,
Allocation problems, Routing. Other real-life applications can be found e.g.:
GPS navigation (GEAS), Logistics, Aerodynamics, Moulds design, Evolutionary
programming, Chaos Control and many more.
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1.6 Thesis focus

Even though the research involved several different ECTs over the time; the
main focus of this work is the Particle Swarm Optimization algorithm (PSO)
that has been studied extensively as a prominent representative of Swarm Intel-
ligence. Several modification methods created initially for PSO have been later
successfully utilized in other ECTs.

1.7 Workflow

This section presents the overview of the research. The initial impulse for re-
search of PSO inner dynamics was the Master thesis “PSO Algorithm in the
Mathematica environment” defended in 2011. Since the later 2011 (start of
Ph.D. study) the PSO was the main topic of the theoretical research. In early
2012 first successful experiments with chaotic sequences implemented in PSO
were undertaken and results published. During the whole 2012 the chaos driven
PSO was the main topic in both theoretical and applied studies.Successful appli-
cations for the model PID controller design were published. Following the study
of inner dynamic of chaos driven PSO the multi-chaotic PSO was introduced
in 2013 with great results and reception from international experts. The multi-
chaotic approach was later used for other ECT, which is Differential Evolution.
Alongside chaos PSO the multiple choice strategy for PSO was presented as an
effective alternative to original PSO core. Furthermore several modifications of
PSO were created during the 2014, among them the Gathering algorithm based
on PSO is first highly competitive method developed in this research. All designs
successfully presented in 2014 will be extended further in 2015. For clarity the
workflow is visualized in Fig. 2.1.
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Fig. 1.1 Workflow schematic

2 Swarm Intelligence

In the theory of evolutionary computing the Swarm Intelligence [3] refers to a set
of algorithms inspired by swarming behavior of insect and other animals. Also
the swarm intelligence may refer to a phenomenon that very primitive individuals
can solve complex tasks in organized swarms. The first and most prominent
algorithms containing the swarm intelligence were the Ant Colony Optimization
(ACO) [4] and Particle Swarm Optimization (PSO) [1, 2, 3]. These were followed
by the SOMA algorithm [5]. Recently a vast number of new “swarm“ algorithms
was proposed [23]. Among many others the notable are the Artificial Bee Colony
(ABC) [24], Firefly Algorithm [25], Bat Algorithm [27, 28] and Cuckoo Search
[26].

2.1 Ant Colony Optimization (ACO)

The ACO mimics foraging behavior of ants in such way that the quality of a
solution is given by a concentration of a pheromone [4]. The pheromone is used
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to mark a path to promising areas. The algorithm uses the mutation operator
and specific selection rules which lead to great exploration capability but slower
convergence. The ACO was one of the first SI algorithms and remains popular
to these days.

2.2 Self-Organizing Migrating Algorithm (SOMA)

SOMA works with groups of individuals (population) whose behavior can be
described as a competitive – cooperative strategy. The construction of a new
population of individuals is not based on evolutionary principles (two parents
produce offspring) but on the behavior of social group, e.g. a herd of animals
looking for food. This algorithm can be classified as an algorithm of a social
environment [5]. In every migration loop the best individual and called the
Leader. All active individuals from the population move in the direction towards
the Leader in the search space and evaluate the CF value at multiple points on
the way. The SOMA and its discrete variant remain to this date among the best
performing algorithms on very complex tasks.

2.3 Artificial Bee Colonoy (ABC)

The ABC algorithm took its inspiration from the behavior of bees) [24]. The
population (swarm) is divided into three groups. Each group is than assigned
different role. There are scouting bees, on looking bees and employed bees. To-
gether all three groups form a heterogeneous swarm. The quality of the solution
is represented by the amount of nectar (higher amount of nectar means better CF
value). The onlookers and employed bees choose a food source (promising area)
given their own experience (nectar amount) however the scouting bees choose
their food source randomly bringing a strong heuristic-search aspect to the ABC.
The discrete version of ABC is often successfully used for combinatorial problems
and discrete optimization in general.
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2.4 Firefly Algorithm

Firefly algorithm is based on the flashing patterns and behavior of tropical fire-
flies [23][25]. The innovation in this method is that the attractiveness between
particles (fireflies) is introduced and used as a direction guide. Brighter fireflies
(higher attractiveness) are more likely to attract other fireflies in their direction.
The final movement is also partially randomized. The method manifested very
impressive initial results and is now utilized by many researchers. It is claimed
by the authors that the firefly algorithm can in special cases become similar to
Differential evolution, Simulated annealing or Accelerated particle swarm opti-
mization.

2.5 Cuckoo Search

This algorithm utilizes so called Lévy flights Cuckoo Search [26] and is designed
as a combination of two random walks – local random walk and global random
walk. Instead of typical isotropic random walks a random walk based on Lévy
flights is used. Claimed to be capable of guaranteed global convergence the
algorithm became very popular and achieved impressive results in many cases.

2.6 Bat Algorithm

The Bat algorithm introduced frequency tuning [23, 27, 28] (represented by
loudness and pulse emission rate) as a mutation operator. Each individual in the
population (bat) has the ability to change the loudness and the pulse emission
rate. This helps to boost the exploitation capability of the algorithm. The
Bat algorithm shares many notable similarities with other algorithms based on
Swarm Intelligence e.g. PSO. The performance of the Bat algorithm nevertheless
is very promising.
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3 Particle Swarm Optimization Algorithm (PSO)

As has been mentioned above many Swarm intelligence bas algorithms share no-
table similarities therefore it is likely that performance-enhancing methods that
successfully improve the performance of one representative of this category may
be used to improve the performance of other members of the group. The PSO
algorithm is probably the most prominent, popular and widely used represen-
tative of this category and shares notable similarities with almost all other SI
methods. For these reason this algorithm has been chosen as the most suitable
for this work.The PSO algorithm takes inspiration from the natural swarm be-
havior of birds and fish. It was firstly introduced by Eberhart and Kennedy in
1995 [1]. The membership of PSO into the ECTs is to this day widely discussed
in the community [29]. Some say that the Swarm Intelligence (SI) [3] is an en-
tirely different group of methods and others count these methods as sub-set of
ECTs. For the purposes of this research the PSO is considered as one the ECTs
and also SI methods.

In the PSO algorithm each particle in the population (swarm) represents a can-
didate solution for the optimization problem that is defined by its mathematical
representation - the cost function (CF). In every iteration of the algorithm a new
location (combination of CF parameters) for the particle is calculated based on
its previous location and so called “velocity vector” (velocity vector contains
particle velocity for each dimension of the problem).

According to the method of selection of the swarm or sub-swarm for best solution
information spreading, the PSO algorithms are noted as global PSO (GPSO) or
local PSO (LPSO) [30]. The advantages and disadvantages of both approaches
are discussed in detail in [30]. In this research the GPSO is used (if not specified
otherwise).

The new velocity of particle is given by (4.1); the velocity directly affects the
position of each particle in the next iteration.
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vt+1
i,j = w · vti,j + c1 ·Rand1 · (pBestti,j − xti,j) + c2 ·Rand2 · (gBesttj − xti,j) (3.1)

Notation:

c1, c2 - acceleration constants typically set to 2.

Rand1, Rand2 - random numbers from interval [0, 1]. In chaos PSO version this
is the only place that chaotic pseudo-random number generators (CPRNGs) are
used.

vt+1
i,j - New velocity of the ith particle in iteration t+1. (component j of the
dimension D).

vti,j - Current velocity of the ith particle in iteration t. (component j of the
dimension D).

xti,j - Current position of the ith particle in iteration t. (component j of the
dimension D).

pBestti,j - Local (personal) best solution found by the ith particle in iteration t.
(component j of the dimension D).

gBesttj - Best solution found in a population in iteration t. (component j of the
dimensionD).

w – inertia weight value.

The maximum velocity is typically limited to 0.2 times the range. The new
position of each particle is then given by (4.2).
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Xt+1
i = Xt

i + V t+1
i (3.2)

Where:

Xt+1
i = (xt+1

i,1 , xt+1
i,2 , . . . , xt+1

i,D ) - position of the ith particle in iteration t+1.

Xt
i = (xti,1, x

t
i,2, . . . , x

t
i,D) - position of the ith particle in iteration t.

Vt+1
i = (vt+1

i,1 , vt+1
i,2 , . . . , vt+1

i,D ) - velocity of the ith particle in iteration t+1.

Based on the method of velocity and position update it is recognized the syn-
chronous (velocity and position updated after iteration cycle) and asynchronous
(imminent velocity and position update) PSO [31]. In this study the imminently
updating (asynchronous) PSO was utilized. As is discussed in [32] it may be
beneficial to initialize the population with zero velocity. Therefore this advice
was followed in this research.

Finally the linear decreasing inertia weight [2, 33, 34] is used in the typically re-
ferred GPSO design that was used in this research. The dynamic inertia weight
is meant to slow the particles over time thus to improve the local search capa-
bility in the later phase of the optimization. The inertia weight has two control
parameters wstart and wend. A new w for each iteration is given by (4.3), where
t stands for current iteration number and n stands for the total number of iter-
ations. The values used in this study were wstart = 0.9 and wend = 0.4.

w = wstart −
((wstart − wend) · t)

n
(3.3)

The inertia weight is often replaced with other approaches, such as using so
called "constriction factor”. Again the benefits and mutual relations of these
two approaches are still discussed in the community [34]. The default setting of
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control parameters of the algorithm was based on most typically used PSO de-
signs in literature. Different settings are also possible and sometimes preferable.
Some of these settings are proved to lead to convergent trajectories [35].

The above described basic PSO design was used as the default version for further
enhancement during all experiments (if not specified otherwise).

4 Test functions

During the research an extensive set of benchmark functions was used. Apart
from the IEEE CEC 2013 Special Session and Competition on Real-Parameter
Optimization benchmark set [36] that contains 28 functions an additional set
of typically used benchmark functions was used. The additional set of typical
benchmark functions [20] is detailed in the following Table 5.1:

Tab. 4.1 Selected typically used benchmark functions

Name Function
Sphere fs1(x) =

∑D
i=1 x

2
i

Schwefel’sP2.22 fs2(x) =
∑D

i=1 |xi|+
∏D

i=1 |xi|
Rosenbrock fs3(x) =

∑D−1
i=1 [100(x2i − xi+1)

2 + (1− xi)2]
Noise fs4(x) =

∑D
i=1 x

4
i + random[0, 1)

Schwefel’s1 fs5(x) = 418.9829 · D−
∑D

i=1 xi sin(
√
|x|)

Rastrigin fs6(x) =
∑D

i=1[x
2
i − 10 cos(2πxi) + 10]

Ackley fs7(x) = −20 exp(−0.2
√

1
D

∑D
i=1 x

2
i ) −

exp( 1
D

∑D
i=1 x

2
i cos 2πxi) + 20 + e

1 Two variants of the Schwefel’s function were used. The value of the optimum
was shifted to -418.9829 ·D for the second variant. The position of the optimum
and other characteristics of the function are the same.
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5 Chaotic maps

This section contains the description and mathematical definitions of six discrete
chaotic maps [13] used as the CPRNGs in this research.

5.1 Lozi Map

The Lozi map is a simple discrete two-dimensional chaotic map. The map equa-
tions are given in (6.1). The parameters used in this work are: a = 1.7 and b =
0.5 [13]. For these values, the system exhibits typical chaotic behavior and with
this parameter setting it is used in the most research papers and other literature
sources. The x,y plot of the map is given in Figure 6.1. The sample sequence
produced by this map is given in Figure 6.2. Finally the distribution histogram
of CPRNG constructed from this chaotic system is presented in Figure 6.3.

Xn+1 = 1− a |Xn|+ bYn

Yn+1 = Xn

(5.1)

5.2 Dissipative Standard Map

The Dissipative Standard map is a two-dimensional chaotic map. The parame-
ters used in this work are b = 0.6 and k = 8 [13]. The map equations are given
in (6.2). The x,y plot of the map is given in Figure 6.4. The sample sequence
produced by this map is given in Figure 6.5. Finally the distribution histogram
of CPRNG constructed from this chaotic system is presented in Figure 6.6.

Xn+1 = Xn + Yn+1(mod2π)

Yn+1 = bYn + k sinXn(mod2π)
(5.2)
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Fig. 5.1 Lozi map x,y plot
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Fig. 5.2 Lozi map sequence sample
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Fig. 5.4 Disipative map x,y plot
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Fig. 5.6 Distribution histogram - CPRNG based on Disipative map
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Fig. 5.7 Arnold’s Cat map x,y plot

5.3 Arnold’s Cat Map

The Arnold’s Cat map is a simple two dimensional discrete system that stretches
and folds points (x, y) to (x+y , x+2y) mod 1 in phase space. The map equations
are given in (6.3). This map was used with parameter k = 0.1 [13]. The x,y plot
of the map is given in Figure 6.7. The sample sequence produced by this map is
given in Figure 6.8. Finally the distribution histogram of CPRNG constructed
from this chaotic system is presented in Figure 6.9.

Xn+1 = Xn + Yn(mod1)

Yn+1 = Xn + kYn(mod1)
(5.3)
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Fig. 5.8 Arnold’s Cat map sequence sample
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Fig. 5.9 Distribution histogram - CPRNG based on Arnold’s Cat map
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Fig. 5.10 Sinai map x,y plot

5.4 Sinai Map

The Sinai map is a simple two dimensional discrete system similar to the Arnold’s
Cat map. The map equations are given in (6.4). The parameter used in this
work is δ = 0.1 [13]. The x,y plot of the map is given in Figure 6.10. The sample
sequence produced by this map is given in Figure 6.11. Finally the distribution
histogram of CPRNG constructed from this chaotic system is presented in Figure
6.12.

Xn+1 = Xn + Yn + δ cos 2πYn(mod1)

Yn+1 = Xn + 2Yn(mod1)
(5.4)

5.5 Burgers Map

The Burgers map is a discretization of a pair of coupled differential equations
The map equations are given in (6.5) with control parameters a = 0.75 and b =
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Fig. 5.11 Sinai map sequence sample
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Fig. 5.12 Distribution histogram - CPRNG based on Sinai map
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Fig. 5.13 Burgers map x,y plot

1.75 [13]. The x,y plot of the map is given in Figure 6.13. The sample sequence
produced by this map is given in Figure 6.14. Finally the distribution histogram
of CPRNG constructed from this chaotic system is presented in Figure 6.15.

Xn+1 = aXn − Y 2
n

Yn+1 = bYn +XnYn
(5.5)

5.6 Tinkerbell Map

The Tinkerbell map is a two-dimensional complex discrete-time dynamical sys-
tem given by (6.6) with following control parameters: a = 0.9, b = -0.6, c = 2
and d = 0.5 [13]. The x,y plot of the map is given in Figure 6.17. The sample
sequence produced by this map is given in Figure 6.18. Finally the distribu-
tion histogram of CPRNG constructed from this chaotic system is presented in
Figure 6.18.
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Fig. 5.16 Tinkerbell map x,y plot

Xn+1 = X2
n − Y 2

n + aXn + bYn

Yn+1 = 2XnYn + cXn + dYn
(5.6)

6 Chaos PSO

The first and main part of the research dealt with implementation of chaotic
sequences into ECTs. As the most suitable algorithm it was chosen the PSO.
The initial experiments with chaotic PSO (CPSO) were presented in [15].

6.1 Chaotic pseudo-random number generator implementation

Based on the literature [15] and initial experiments the method of implemen-
tation of chaotic sequences was chosen thus that the chaotic pseudo-random
numbers generator (CPRNG) was used only for generating the random numbers
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Fig. 6.1 Sample output sequence of the Lozi map (x value)

for the main PSO formula (4.1). For the needs of PSO main formula (4.1) it is
necessary to generate pseudo-random numbers in the interval [0,1] however the
majority of chaotic maps does not follow this restriction for the area it covers.
It is therefore necessary to transform the output sequence into the required in-
terval. In the case of two-dimensional discrete chaotic map as output sequence
it can be used either the x or y value sequence given by the pair of equations
that define the chaotic map (as described in previous section). Figure 7.1 gives x
value sequence for the first 100 iterations of the Lozi map. Corresponding y value
sequence is depicted in Figure 7.2. It can be observed that these sequences share
certain similarities. However in the case of Burger’s map (Figure 7.3 and 7.4)
the corresponding x and y sequences are significantly more different. Further
from this point the PSO versions that use the x value sequence for the CPRNG
are noted with "X" and vice versa.

The performance differences of the "X" and "Y" versions is investigated later in
this study. Furthermore two different approaches for transforming the sequences
into the interval [0,1] were investigated in this research. In the first case the
absolute value is used to transform negative numbers to positive. All numbers
in the sequence are then divided by the maximum value found in the sequence
(7.1). As an example the distribution of CPRNG based on the Lozi map x value
sequence created this way is given in Figure 7.5.
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Fig. 6.2 Sample output sequence of the Lozi map (y value)
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Fig. 6.4 Sample output sequence of the Burger’s map (y value)
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Fig. 6.5 CPRNG based on Lozi map (x sequence, absolute value applied) –
distribution histogram

X = |X∗| /Max(X∗) (6.1)

Where:

X – Transformed sequence

X* – Original sequence

Max(X*) – Maximum number in original sequence

Alternatively it is possible to shift the whole sequence to positive numbers and
interval [0,1] according to (7.2). The distribution of CPRNG based on the Lozi
map x value sequence created this alternative way is given in Fig. 7.6. Versions
of PSO using this approach are further noted with "s” (as shifted).

X = (|Min(X∗)|+X∗)/(|Min(X∗)|+Max(X∗)) (6.2)
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Fig. 6.6 CPRNG based on Lozi map (x sequence, shifted) – distribution
histogram

Where:

Min(X*) – Minimum number in original sequence

6.2 Experiment 1

In order to evaluate the impact of different CPRNG implementations on the
performance of PSO algorithm a basic experiment was designed.

6.2.1 Experiment 1 setup

The control parameters of PSO algorithm and experiment setup is given in Table
7.1.

6.2.2 Notation

Several versions of original GPSO (as described in section 3) algorithm were used.
The notation follows the pattern described in previous section. The version is
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Tab. 6.1 Algorithm setup

Population size: 40
Iterations / Generations: 5000
c1, c2: 2
w: Linear 0.9 -> 0.4
vmax: 0.2
Dim: 30
Repeated runs: 30

noted according to the chaotic map that was used (”Lozi” or ”Burger”) + the
sequence that was used for CPRNG (”X” or ”Y”) + “s” if the shifting approach
described in previous section was applied to move the sequence into required
interval. Examples:

• GPSO Lozi Y – CPRNG based on the y value sequence of Lozi map.
Transformed into the interval [0,1] using the absolute value approach.

• GPSO Burger Xs – CPRNG based on the x value sequence of Burgers
map. Transformed into the interval [0,1] using the shift approach.

• Etc.

As already mentioned in previous sections the CPRNG based on Lozi map or
Burger’s map was applied only for the main formula of PSO (4.1). For other pur-
poses (generating of initial population etc.) default C language built-in pseudo-
random number generator was used within all described versions of PSO.

6.2.3 Experiment 1 results

In following tables (Table 7.2 - 7.5) the numerical results of the initial experiment
are summarized. The best mean result and best overall result (min. CF value)
are highlighted. Furthermore the mean history of gBest value (best solution) is
given in Figures 7.7 - 7.10.
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Tab. 6.2 Final results comparison – Sphere function – Lozi CPRNGs

GPSO Lozi
Y

GPSO Lozi
X

GPSO Lozi
Ys

GPSO Lozi
Xs

Mean CF Value: 4.03E-108 7.78E-106 1.39E-78 2.98E-78
Std. Dev.: 2.18E-107 4.26E-105 6.78E-78 1.39E-77
CF Value Median: 4.73E-112 8.74E-113 1.49E-81 1.17E-81
Max. CF Value: 1.20E-106 2.33E-104 3.72E-77 7.57E-77
Min. CF Value: 2.35E-116 3.43E-118 1.95E-85 7.04E-86

Tab. 6.3 Final results comparison – Schwefel’s function – Lozi CPRNGs

GPSO Lozi
Y

GPSO Lozi
X

GPSO Lozi
Ys

GPSO Lozi
Xs

Mean CF Value: 4.08E+03 4.09E+03 5.07E+03 5.05E+03
Std. Dev.: 4.46E+02 3.26E+02 3.93E+02 4.77E+02
CF Value Median: 4.14E+03 4.05E+03 5.07E+03 5.04E+03
Max. CF Value: 4.78E+03 5.07E+03 6.02E+03 5.98E+03
Min. CF Value: 3.08E+03 3.61E+03 4.44E+03 4.32E+03

Tab. 6.4 Final results comparison- Sphere function – Burger CPRNGs

GPSO
Burger Y

GPSO
Burger X

GPSO
Burger Ys

GPSO
Burger Xs

Mean CF Value: 1.45E+02 3.87E-12 2.32E-88 2.93E+03
Std. Dev.: 6.47E+01 1.04E-11 1.27E-87 2.61E+02
CF Value Median: 1.30E+02 1.61E-12 2.68E-100 3.03E+03
Max. CF Value: 2.84E+02 5.80E-11 6.97E-87 3.25E+03
Min. CF Value: 2.96E+01 5.25E-14 3.11E-111 2.29E+03

Tab. 6.5 Results comparison – Schwefel’s function Burger CPRNGs

GPSO
Burger Y

GPSO
Burger X

GPSO
Burger Ys

GPSO
Burger Xs

Mean CF Value: 3.98E+03 2.07E+03 4.61E+03 8.66E+03
Std. Dev.: 6.68E+02 3.30E+02 5.28E+02 2.40E+02
CF Value Median: 3.98E+03 2.09E+03 4.71E+03 8.65E+03
Max. CF Value: 5.69E+03 2.88E+03 5.65E+03 8.98E+03
Min. CF Value: 3.07E+03 1.54E+03 3.57E+03 8.01E+03
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Based on the results obtained in this experiment the implementation method for
further chaos PSO research was chosen in such way that the ’X” equation will
be used for all maps and that the transformation using absolute value will be
performed.

6.3 Chaos PSO - Initial experiment

In the experiment, six chaotic maps described previously were utilized as the
CPRNGs for the GPSO algorithm. The CPRNGs were used only in the pro-
cess of the new velocity calculation. In order to observe the influence of different
CPRNGs to the behaviour of the GPSO algorithm dealing with diverse optimiza-
tion tasks, one unimodal (fs1) and one multimodal (fs5) benchmark function were
used. Subsequently the obtained results were used as a guideline for the selection
of promising CPRNGs for the next experiment with multi-chaotic CPRNGs.

The time evolutions of the mean history of gBest value for both used benchmark
functions are presented in Figure 7.11 and Figure 7.12. Performance comparisons
of all six versions of Chaos enhanced GPSO and canonical GPSO are given in
Table 7.6 and Table 7.7.

Tab. 6.6 Final results comparison- Sphere function

GPSO GPSO
Lozi

GPSO
Disi

GPSO
Arnold

GPSO
Sinai

GPSO
Burger

GPSO
Tinker

Mean CF
Value:

4.6721E-
34

4.3675E-
113

6.7601E-
03

2.4591E-
45

3.1906E-
35

3.8018E-
01

1.0085E-
91

Std.
Dev.:

1.9509E-
33

1.3264E-
112

5.7096E-
03

7.4281E-
45

1.2962E-
34

1.9674E-
01

5.0422E-
91

CF Value
Median:

4.8885E-
35

1.6014E-
115

6.5301E-
03

3.2741E-
46

2.8485E-
36

3.0138E-
01

1.2449E-
106

Max. CF
Value:

9.8184E-
33

5.4880E-
112

2.7976E-
02

3.6716E-
44

6.5272E-
34

8.1530E-
01

2.5211E-
90

Min. CF
Value:

1.0276E-
37

2.9063E-
119

5.9880E-
04

1.3461E-
49

2.1051E-
38

8.2704E-
02

3.6187E-
113

As is presented above in this initial experiment it was observed very differ-
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Fig. 6.12 Mean gBest value history - Schwefel’s function - CPRNGs comparison

ent behavior of GPSO algorithm enhanced with different CPRNGs in terms of
convergence speed, premature convergence avoidance capability and final result
value. Following these findings the performance of proposed algorithms was in-
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Tab. 6.7 Final results comparison- Schwefel’s function

GPSO GPSO
Lozi

GPSO
Disi

GPSO
Arnold

GPSO
Sinai

GPSO
Burger

GPSO
Tinker

Mean CF
Value:

3904.56 3993.01 4581.14 4220.41 3909.3 4264.07 3741.93

Std.
Dev.:

419.763 405.379 401.721 423.804 470.136 681.092 486.467

CF Value
Median:

3888.77 3947.97 4640.9 4145.4 3947.97 4172.27 3770.37

Max. CF
Value:

4777.08 5152.17 5362.58 5349.56 5112.66 5509.38 4540.27

Min. CF
Value:

3138.64 3079.41 3843.19 3651.89 3079.42 2854.48 2724.17

vestigated further using the CEC 2013 Benchmark set. The complete results
overview is given in Table 7.8 and Table 7.9. The algorithms were set according
to benchmark rules for dim = 10.

Based on presented results several conclusions can be made. Firstly, it is clear
that different chaotic PRNGs lead to different convergence behavior of PSO.
Secondly the effect on the actual performance (final result) is very problem-
dependant. In some cases the performance of PSO algorithm enhanced with
different CPRNGs is similar or comparable. In other cases however it is possible
to significantly enhance the performance of PSO algorithm by using particular
CPRNG (See Table 7.8 and Table 7.9).

After these satisfactory results with CPRNGs with default setting of control
parameters a tuning experiment was conducted.

6.4 Tuning experiment

In the tuning experiment the impact of different control parameters of the chaotic
system on the performance of chaos enhanced PSO was examined. The PSO
enhanced with CPRNG based on Lozi map was selected for this experiment and
the goal was to improve the performance on multi-modal problems. For this
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Tab. 6.8 Mean final results comparison- CEC 13 Benchmark set (Part 1)

f(x) fmin GPSO Lozi Dissipative Arnold’s
f1 -1400 -1.40E+03 -1.40E+03 -1.40E+03 -1.40E+03
f2 -1300 1.17E+05 1.75E+05 3.10E+05 4.46E+05
f3 -1200 2.58E+06 7.13E+06 2.50E+06 3.15E+06
f4 -1100 -7.38E+02 -8.15E+02 -6.74E+02 -1.47E+02
f5 -1000 -1.00E+03 -1.00E+03 -1.00E+03 -1.00E+03
f6 -900 -8.89E+02 -8.90E+02 -8.93E+02 -8.93E+02
f7 -800 -7.97E+02 -7.95E+02 -7.95E+02 -7.96E+02
f8 -700 -6.80E+02 -6.80E+02 -6.80E+02 -6.80E+02
f9 -600 -5.97E+02 -5.96E+02 -5.96E+02 -5.97E+02
f10 -500 -5.00E+02 -4.99E+02 -5.00E+02 -4.99E+02
f11 -400 -3.98E+02 -3.97E+02 -3.98E+02 -3.95E+02
f12 -300 -2.89E+02 -2.88E+02 -2.87E+02 -2.79E+02
f13 -200 -1.81E+02 -1.82E+02 -1.84E+02 -1.79E+02
f14 -100 1.33E+02 1.20E+02 1.25E+02 1.59E+02
f15 100 7.62E+02 7.28E+02 7.18E+02 9.79E+02
f16 200 2.01E+02 2.01E+02 2.01E+02 2.01E+02
f17 300 3.14E+02 3.13E+02 3.14E+02 3.32E+02
f18 400 4.34E+02 4.22E+02 4.24E+02 4.43E+02
f19 500 5.01E+02 5.01E+02 5.01E+02 5.02E+02
f20 600 6.02E+02 6.03E+02 6.02E+02 6.03E+02
f21 700 1.09E+03 1.09E+03 1.10E+03 1.10E+03
f22 800 1.06E+03 1.07E+03 1.08E+03 1.04E+03
f23 900 1.60E+03 1.66E+03 1.72E+03 1.83E+03
f24 1000 1.21E+03 1.21E+03 1.20E+03 1.21E+03
f25 1100 1.31E+03 1.31E+03 1.31E+03 1.31E+03
f26 1200 1.34E+03 1.35E+03 1.35E+03 1.35E+03
f27 1300 1.64E+03 1.64E+03 1.63E+03 1.63E+03
f28 1400 1.78E+03 1.74E+03 1.73E+03 1.73E+03

reason the Rotated Schwefel’s Function (f15 ) from CEC‘13 Benchamrk set [36]
was used with dimension setting 10. Number of particles was set to 40 and
number of iterations was 2500. The Lozi map parameters were changed with
step 0.05 in following way: parameter a: from 1.3 to 1.7; parameter b: from 0.1
to 0.6. For each setting 100 repeated runs of the algorithm were performed.

For some control parameter settings in this experiment the Lozi map no longer
exhibits chaotic behavior or is reduced to two-value sequence however with re-
spect to [37] all possible combinations in given range were tested.
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Tab. 6.9 Mean final results comparison- CEC 13 Benchmark set (Part 2)

f(x) fmin Sinai Burgers Tinkerbell
f1 -1400 -1.40E+03 -1.40E+03 -1.40E+03
f2 -1300 1.85E+05 1.47E+05 7.11E+05
f3 -1200 1.70E+06 5.92E+06 3.15E+07
f4 -1100 -5.24E+02 -5.40E+02 7.19E+02
f5 -1000 -1.00E+03 -1.00E+03 -1.00E+03
f6 -900 -8.95E+02 -8.91E+02 -8.91E+02
f7 -800 -7.97E+02 -7.97E+02 -7.93E+02
f8 -700 -6.80E+02 -6.80E+02 -6.80E+02
f9 -600 -5.97E+02 -5.97E+02 -5.96E+02
f10 -500 -5.00E+02 -5.00E+02 -4.98E+02
f11 -400 -3.98E+02 -3.98E+02 -3.87E+02
f12 -300 -2.89E+02 -2.88E+02 -2.68E+02
f13 -200 -1.81E+02 -1.81E+02 -1.68E+02
f14 -100 1.06E+02 1.06E+02 5.30E+02
f15 100 6.90E+02 6.94E+02 1.29E+03
f16 200 2.01E+02 2.01E+02 2.01E+02
f17 300 3.14E+02 3.15E+02 3.39E+02
f18 400 4.30E+02 4.32E+02 4.50E+02
f19 500 5.01E+02 5.01E+02 5.03E+02
f20 600 6.03E+02 6.03E+02 6.03E+02
f21 700 1.10E+03 1.09E+03 1.10E+03
f22 800 1.02E+03 1.00E+03 1.41E+03
f23 900 1.72E+03 1.70E+03 2.10E+03
f24 1000 1.21E+03 1.21E+03 1.21E+03
f25 1100 1.31E+03 1.30E+03 1.31E+03
f26 1200 1.35E+03 1.35E+03 1.36E+03
f27 1300 1.63E+03 1.63E+03 1.66E+03
f28 1400 1.75E+03 1.75E+03 1.71E+03

The summary of mean results of the tuning experiment is given in Table 7.10.
The best result and corresponding parameters values are highlighted. Following
the results of the tuning experiment second CPRNG was constructed based on
Lozi map with setting a = 1.5 and b = 0.45. The x,y plot of tuned Lozi map is
given in Figure 7.13. The distribution of CPRNG based on tuned Lozi map is
given in Figure 7.14 and sample sequence of tuned CPRNG is depicted in Figure
7.15.

This basic tuning experiment proved that by tuning the parameters of chaotic
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Tab. 6.10 Tuning experiment - mean final results forf15 ;100 runs

a/b 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
1.3 911 830 704 1344 1638 1569 1383 1389 1467 1356 1402
1.35 851 820 716 665 1057 1497 1383 1437 1481 1391 1285
1.4 753 703 689 676 655 838 1397 1416 1424 1229 1325
1.45 658 715 724 713 547 617 593 1214 1373 1276 1270
1.5 703 760 757 731 671 749 701 534 1203 1171 1217
1.55 725 732 699 752 702 713 750 762 625 1118 1204
1.6 679 826 737 701 643 807 657 643 692 745 1066
1.65 761 680 756 681 760 798 715 706 812 708 685
1.7 615 771 752 715 696 696 774 724 747 701 690

-0.5 0.0 0.5 1.0
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0.0

0.5

1.0

x

y

Fig. 6.13 x,y plot of Lozi map - tuned
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Fig. 6.14 Distribution of CPRNG - tuned
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Fig. 6.15 Pseudo-random sequence sample – Lozi map based CPRNG - tuned
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map it is possible to further improve the performance of chaos driven PSO al-
gorithm on a particular problem. However the overall performance had to be
re-evaluated. The performance of the tuned algorithm was compared with canon-
ical GPSO and Lozi map enhanced PSO with default control parameters. The
results of testing on the CEC 13 benchmark are given in Table 5.10 where:

• GPSO with canonical PRNG is noted GPSO

• GPSO with CPRNG based on Lozi map (a = 1.7, b = 0.5) is noted GPSO
Lozi 1

• GPSO with CPRNG based on Lozi map (a = 1.5, b = 0.45) is noted GPSO
Lozi 2

The bold numbers represents the best mean results. The mean results are pre-
sented alongside the total number of best results obtained. Furthermore the
performance of pairs of algorithms is compared, where 1 stands for “win” of the
“algorithm 1” (the first from the pair - left); number 2 stand for “win” of algo-
rithm 2 (the second from the pair - right) and 0 stands for draw. The final score
is also given in Tables 7.11 as a sum of points for wins (1 point) and draws (0.5
point).

6.5 Chaos PSO - discussion

In the previous section the research of chaos driven particle swarm algorithm
was presented. Following the work of other researchers [14, 15, 11] the impact of
various chaotic PRNGs on the performance of PSO was studied in detail. The
implementation method was experimentally selected and six different chaotic
systems were utilized as CPRNGs for PSO algorithm. It has been experimentally
demonstrated that using CPRNG for velocity calculation in PSO algorithm may
have significant impact on the convergence behavior of the algorithm and the
final result quality. Also it was observed that the effect depends on the particular
system and its setting. All presented experiments lead to better understanding
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Tab. 6.11 Mean final results comparison- CEC 13 Benchmark set

f(x) GPSO GPSO Lozi 1 GPSO Lozi 2 A1 vs.
A2

A1 vs.
A3

A2 vs.
A3

f1 -1.40E+03 -1.40E+03 -1.40E+03 0 0 0
f2 1.59E+05 1.75E+05 7.72E+04 1 2 2
f3 1.73E+06 7.13E+06 4.20E+06 1 1 2
f4 -7.45E+02 -8.15E+02 -2.13E+02 2 1 1
f5 -1.00E+03 -1.00E+03 -1.00E+03 0 0 0
f6 -8.89E+02 -8.90E+02 -8.92E+02 2 2 2
f7 -7.97E+02 -7.95E+02 -7.96E+02 1 1 2
f8 -6.80E+02 -6.80E+02 -6.80E+02 0 0 0
f9 -5.97E+02 -5.96E+02 -5.97E+02 1 0 2
f10 -5.00E+02 -4.99E+02 -5.00E+02 1 0 2
f11 -3.98E+02 -3.97E+02 -3.98E+02 1 0 2
f12 -2.87E+02 -2.88E+02 -2.91E+02 2 2 2
f13 -1.81E+02 -1.82E+02 -1.88E+02 2 2 2
f14 1.42E+02 1.20E+02 1.60E+02 2 1 1
f15 5.96E+02 7.28E+02 5.79E+02 1 2 2
f16 2.01E+02 2.01E+02 2.01E+02 0 0 0
f17 3.14E+02 3.13E+02 3.15E+02 2 1 1
f18 4.34E+02 4.22E+02 4.26E+02 2 2 1
f19 5.01E+02 5.01E+02 5.01E+02 0 0 0
f20 6.02E+02 6.03E+02 6.02E+02 1 0 2
f21 1.08E+03 1.09E+03 1.10E+03 1 1 1
f22 1.00E+03 1.07E+03 1.04E+03 1 1 2
f23 1.65E+03 1.66E+03 1.64E+03 1 2 2
f24 1.20E+03 1.21E+03 1.20E+03 1 1 2
f25 1.30E+03 1.30E+03 1.30E+03 1 2 2
f26 1.35E+03 1.35E+03 1.33E+03 2 2 2
f27 1.63E+03 1.63E+03 1.63E+03 1 1 0
f28 1.74E+03 1.74E+03 1.76E+03 2 1 1
Best: 11 10 13 16.5 :

11.5
14.5 :
13.5

9.0 :
19.0
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of the effect of CPRNG on the PSO algorithm and accumulated enough data for
further extension of this approach as will be presented further.

6.6 Chaos PSO - application

In this section the results of application of chaotic PSO on a real-life problem
is presented. In this case a PID controller was designed using evolutionary
computational techniques. In this example four chaos enhanced PSO variant
were used: PSO enhanced with CPRNG based on Lozi map, Dissipative map,
Tinkerbell map and Burgers map.

6.6.1 Problem design

The PID controller contains three unique parts; proportional, integral and deriva-
tive controller [38, 39]. A simplified form in Laplace domain is given by (7.3)

G(s) = K

(
1 +

1

sTi
+ sTd

)
(6.3)

The PID form most suitable for analytical calculations is given by (7.4)

G(s) = kp +
ki
s
+ kds (6.4)

The parameters are related to the standard form through: kp = K, ki = K/Ti

and kd = KTd. Acquisition of the combination of these three parameters that
gives the lowest value of the test criterions was the objective of this research.

Two different systems were used in this research. First was the DC motor system
given by (7.5)
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G(s) =
0.9

0.00105s3 + 0.2104s2 + 0.8913s
(6.5)

Second used system was the 4th order system that is given by (7.6)

G(s) =
1

s4 + 6s3 + 11s2 + 6s
(6.6)

6.6.2 Cost function

Test criterion measures properties of output transfer function and can indicate
quality of regulation [11, 39, 40]. Following four different integral criterions were
used for the test and comparison purposes: IAE (Integral Absolute Error), ITAE
(Integral Time Absolute Error), ISE (Integral Square Error) and MSE (Mean
Square Error). These test criterions (given by (7.7) - (7.10) were minimized
within the cost functions for the enhanced PSO algorithm.

Integral of Time multiplied by Absolute Error (ITAE)

IITAE =

∫ T

0
t|e(t)|dt (6.7)

Integral of Absolute Magnitude of the Error (IAE)

IIAE =

∫ T

0
|e(t)|dt (6.8)

Integral of the Square of the Error (ISE)
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IISE =

∫ T

0
e2(t)dt (6.9)

Mean of the Square of the Error (MSE)

IMSE =
1

n

n∑
i=1

(e(t))2 (6.10)

6.6.3 Results

In following Tables 7.12 and 7.13 the results of optimization using four above
described criterions as CF are presented. The results of chaos enhanced PSO
variants are compared with previously published results of heuristic and non-
heuristic methods [11, 40].

Furthermore examples of the step responses of the systems with PID controllers
designed by different chaos-driven PSO algorithms are depicted in Figure 7.16
and 7.17.

Tab. 6.12 Results - DC motor PID controller design

Criterion IAE ITAE ISE MSE
Z-N (step response) 0.51760 3.38050 2.34670 0.01170
Kappa-Tau 0.51880 3.31130 2.25030 0.07778
Contin. cycling 0.56000 7.82000 3.20000 0.01600
EP 0.48910 0.07210 1.02770 0.00510
GA 0.77120 0.37810 1.04350 0.00520
PSO 0.91610 0.02290 1.00160 0.00500
PSO Lozi 0.21673 0.00667 0.01839 0.00092
PSO Disi 0.22306 0.00862 0.01839 0.00092
PSO Burger 0.21026 0.00569 0.01839 0.00092
PSO Tinker 0.20766 0.00899 0.01839 0.00092

In this example it was demonstrated that the chaos driven PSO algorithm is able
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Tab. 6.13 Results - 4th order system PID controller design

Criterion IAE ITAE ISE MSE
Z-N (step response) 34.94129 137.56500 17.84260 0.08921
DE Chaos 12.33050 15.38460 6.41026 0.03203
SOMA chaos 12.33050 15.38460 6.41026 0.03203
PSO Lozi 12.35760 16.09520 6.40521 0.03203
PSO Disi 12.34790 15.5334 6.40516 0.03203
PSO Burger 12.37382 16.40790 6.40538 0.03203
PSO Tinker 12.37004 15.25892 6.40517 0.03203
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Fig. 6.16 Comparison of system responses - DC motor system - ITAE criterion
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Fig. 6.17 Comparison of system responses - 4th order system - ITAE criterion

to find significantly better solutions for the PID controller design problem than
deterministic methods or canonical heuristics. Also it is depicted that different
CPRNG leads to different solution.

7 Multi-chaos PSO

The successful experiments with chaos driven PSO algorithm and the detailed
observations of inner dynamics of such algorithm led to the design of multi-
chaotic PSO. In this pioneering approach multiple (usually two) chaotic PRNGs
are used gradually within one run of the algorithm. The algorithm is started
with one CPRNG and later the CPRNGs are switched either manually or as a
result of adaptive process.

The inspiration for this method came mostly from the convergence graphs (Fig-
ure 7.11 and 7.11) of chaotic PSO. It is clear that some CPRNGs support the
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convergence rate at the cost of premature convergence risk and performance
stagnation and vice versa. Therefore based on the data from previous experi-
ments promising pairs of CPRNGs were selected and used in the multi-chaotic
approach. The goal was to benefit from fast initial convergence provided by the
first CPRNG and use second CPRNG to help the algorithm avoid premature
convergence into local extreme. Later various combinations of CPRNGs were
tested.

7.1 Initial design

In the initial design the Lozi map and Dissipative map were chosen as promising
pair of CPRNGs. The control parameters of PSO algorithm were set in the
following way:

Population size: 100; Iterations: 1000; wstart: 0.9; wend: 0.4; Dimension: 40.

For statistical reasons, optimization for each setting was repeated 50 times.

In the following sections four versions of PSO algorithm were used. The notation
is as follows:

• PSO Weight - PSO algorithm with inertia weight - non-chaotic number
generator

• PSO Lozi - PSO algorithm with inertia weight - chaotic number generator
- Lozi map

• PSO Disi - PSO algorithm with inertia weight - chaotic number generator
- Dissipative standard map

• PSO Chaos - PSO algorithm with inertia weight - two chaotic number
generators – Lozi map and Dissipative standard map (in given order).
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Within this preliminary study the ’switching point” was set manually and with
prior knowledge of the problem (test functions) as follows:

• Sphere function: 250 iterations

• Rosenbrock’s function: 380 iterations

• Rastrigin’s function: 300 iterations

• Schwefel’s function: 800 iterations

The results of the experiment are presented in Tables 8.1 - 8.4 and Figures 8.1 -
8.4. Based on the evidence it may be said that it is possible to further improve
the performance of chaos PSO when multi-chaotic approach is implemented.

Tab. 7.1 Results for Sphere function

PSO Chaos PSO Lozi PSO Disi PSO Weight
Mean CF Value: 0.002671 0.249126 0.0094585 0.159768
Std. Dev.: 0.00190698 0.118659 0.00573836 0.0801359
CF Value Median: 0.00188625 0.237395 0.00862576 0.155866
Max. CF Value: 0.00891579 0.569807 0.0350164 0.46442
Min. CF Value: 0.0004576 0.0601825 0.00180644 0.0493965

Tab. 7.2 Results for Rosenbrock’s function

PSO Chaos PSO Lozi PSO Disi PSO Weight
Mean CF Value: 37.3217 49.7668 38.0615 42.6178
Std. Dev.: 1.21635 8.87105 0.912696 2.4834
CF Value Median: 37.4701 46.2212 38.1459 41.8757
Max. CF Value: 39.3733 83.8619 39.6336 48.6175
Min. CF Value: 33.0365 41.1448 35.4239 39.285

7.2 Adaptive approach

After the initial experiments with multi-chaotic PSO the need for an adaptive
approach was addressed. Based on the results presented in the previous sec-
tions two promising combinations of chaotic PRNGs were selected. The first
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Tab. 7.3 Results for Rastrigin’s function

PSO Chaos PSO Lozi PSO Disi PSO Weight
Mean CF Value: 28.1264 72.5002 34.9056 61.6047
Std. Dev.: 7.17803 17.6654 10.5036 14.9645
CF Value Median: 26.5129 73.3243 30.6565 58.826
Max. CF Value: 47.6554 114.168 61.038 102.034
Min. CF Value: 13.2115 40.724 23.6007 37.218

Tab. 7.4 Results for Schwefel’s function

PSO Chaos PSO Lozi PSO Disi PSO Weight
Mean CF Value: -7286.05 -7509.91 -6853.9 -7435.39
Std. Dev.: 549.805 537.325 740.796 661.692
CF Value Median: -7270.66 -7571.91 -6853.54 -7311.83
Max. CF Value: -6013.95 -6069.7 -5267.61 -6133.73
Min. CF Value: -8523.44 -8383.6 -8284.54 -8927.9

Fig. 7.1 History of mean gBest value for Sphere function
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Fig. 7.2 History of mean gBest value for Rosenbrock’s function

Fig. 7.3 History of mean gBest value for Rastrigin’s function
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Fig. 7.4 History of mean gBest value for Schwefel’s function

combination (noted GPSO Chaos 1) utilized Tinkerbell and Burgers maps. The
second one (noted GPSO Chaos 2) combined together Lozi and Burgers maps.
As presented previously (Figure 7.11 and 7.12) the GPSO algorithm driven by
either Lozi or Tinkerbell map based CPRNGs has manifested very fast speed
of initial convergence in comparison with the canonical GPSO. To represent the
opposite trend, i.e. permanent and slow trend towards the global extreme, the
Burgers map based CPRNG was used for the second phase of the optimization.

The exact moment of the CPRNGs switch is determined dynamically thus may
be different for each run of the algorithm. The :improvement” of the gBest
value over the time is continuously determined and the CPRNGs are switched
over when the algorithm falls into stagnation of "significant duration” in terms
of the gBest value. In the presented experiments, the "significant duration”
is considered as a 1/10 of the total number of iterations. In the experiment
presented here, the population size was set to 40 and the number of iterations
was 5000. To acquire the statistical indicators all experiments were repeated 25
times
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The detailed statistical overview of the performance of newly designed PSO
Chaos 1 and PSO Chaos 2 versions is presented in Tables 8.5 and 8.6. The
overall comparison with the both original (canonical) GPSO algorithm and the
OLPSO-G [20] is given in table 8.7. Furthermore for better understanding of
the multi-chaos CPRNG influence to the PSO behavior, it is presented the mean
history of gBest value in the case of Schwefel’s (fs2) function 8.5.

Tab. 7.5 Statistical overview - GPSO Chaos 1

GPSO Chaos 1 fs1 fs2 fs3 fs4 fs5 fs6 fs7
Mean CF Value: 6.86

E-92
1.34
E-10

9.35
E+00

3.77
E-03

3.01
E+03

2.31
E+01

6.98
E-15

Std. Dev.: 3.43
E-91

6.68
E-10

1.35
E+01

2.03
E-03

4.99
E+02

4.77
E+00

1.33
E-15

CF Value Median: 1.64
E-104

8.34
E-16

8.11
E+00

3.46
E-03

2.93
E+03

2.24
E+01

7.55
E-15

Max. CF Value: 1.72
E-90

3.34
E-09

6.84
E+01

1.02
E-02

3.86
E+03

3.10
E+01

7.55
E-15

Min. CF Value: 5.52
E-112

9.00
E-22

1.43
E-05

9.60
E-04

2.32
E+03

1.23
E+01

4.00
E-15

Tab. 7.6 Statistical overview - GPSO Chaos 2

GPSO Chaos 2 fs1 fs2 fs3 fs4 fs5 fs6 fs7
Mean CF Value: 1.59

E-108
2.04
E-32

1.21
E+01

4.43
E-03

3.34
E+03

2.49
E+01

7.12
E-15

Std. Dev.: 7.93
E-108

9.73
E-32

1.41
E+01

4.02
E-03

5.98
E+02

6.46
E+00

7.11
E-16

CF Value Median: 3.73
E-113

1.22
E-39

1.28
E+01

3.44
E-03

3.28
E+03

2.36
E+01

7.55
E-15

Max. CF Value: 3.97
E-107

4.87
E-31

7.02
E+01

2.17
E-02

4.69
E+03

4.23
E+01

7.55
E-15

Min. CF Value: 4.41
E-117

1.34
E-50

2.36
E-02

9.18
E-04

2.25
E+03

1.66
E+01

4.00
E-15

Presented evidence strongly supports the proposed method. The performance of
multi-chaotic PSO variants is comparable and often better than the performance
of original PSO and a state-of-art method OLPSO-G.
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Tab. 7.7 Mean results and std. dev. comparison for GPSO, GPSO
Chaos 1, GPSO Chaos 2 and OLPSO-G

f(x) GPSO GPSO Chaos
1

GPSO Chaos
2

OLPSO-G

fs1 9.90E-35±
2.08-E34

6.86E-92 ±
3.43E-91

1.58E-108 ±
7.93E-108

4.12E-54 ±
6.34E-54

fs2 1.57E-21 ±
5.46E-21

1.34E-10 ±
6.67E-10

2.03E-32 ±
9.73E-32

9.85E-30 ±
1.01E-29

fs3 42.61 ±
27.67

9.34 ± 13.47 12.06 ± 14.06 21.52 ± 29.92

fs4 7.01E-03 ±
2.67E-03

3.76E-3 ±
2.02E-3

4.43E-3 ±
4.01E-3

1.16E-2 ±
4.10E-3

fs5 3789.28 ±
449.18

3007.47 ±
498.70

3338.27 ±
597.90

384 ± 217

fs6 26.50 ± 8.95 23.08 ± 4.77 24.88 ± 6.45 1.07 ± 0.99
fs7 1.13E-14 ±

3.69E-15
6.98E-15 ±
1.32E-15

7.12E-15 ±
7.10E-16

7.98E-15 ±
2.03E-15
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8 Multi-chaotic Differential evolution

In reaction to very positive results of multi-chaos PSO the concept was embedded
into another popular evolutionary computational technique - the Differential
Evolution.

8.1 Differential Evolution (DE)

DE is a population-based optimization method that works on real-number-coded
individuals [6]. For each individual ~xi,G in the current generation G, DE gener-
ates a new trial individual ~x′i,G by adding the weighted difference between two
randomly selected individuals ~xr1,G and ~xr2,G to a randomly selected third in-
dividual ~xr3,G. The resulting individual ~x′i,G is crossed-over with the original
individual~xi,G. The fitness of the resulting individual, referred to as a perturbed
vector ~ui,G+1, is then compared with the fitness of ~xi,G. If the fitness of ~ui,G+1

is greater than the fitness of~xi,G, then ~xi,G is replaced with~ui,G+1; otherwise,
~xi,G remains in the population as~xi,G+1. DE is quite robust, fast, and effective,
with global optimization ability. It does not require the objective function to be
differentiable, and it works well even with noisy and time-dependent objective
functions. Please refer to [1] for the detailed description of the used DERand1Bin
strategy (9.1) (both for ChaosDE and Canonical DE).

ui,G+1 = xr1,G + F · (xr2,G − xr3,G) (8.1)

8.2 The Concept of ChaosDE

As two different types of numbers are required in ChaosDE; real and integers,
the use of modulo operators is used to obtain values between the specified ranges,
as given in the following equations (9.2) and (9.3):
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rndreal = mod(abs(rndChaos), 1.0) (8.2)

rndint = mod(abs(rndChaos), 1.0) · Range+ 1 (8.3)

Where abs refers to the absolute portion of the chaotic map generated number
rndChaos, and mod is the modulo operator. Range specifies the value (inclusive)
till where the number is to be scaled.

8.3 Results

The novelty of this approach represents the utilization of discrete chaotic maps as
the multi-chaotic pseudo random number generator for the DE. In this paper, the
canonical DE strategy DERand1Bin and the Multi-Chaos DERand1Bin strategy
driven alternately by two different chaotic maps (ChaosDE) were used.

The previous research [41, 42] showed that through utilization of Burgers and
Tinkerbelt map the unique properties with connection to DE were achieved:
strong progress towards global extreme, but weak overall statistical results, like
average (benchmark function) Cost Function (CF) value and std. dev. Whereas
through the utilization of the Lozi and Delayed Logistic map the continuously
stable and very satisfactory performance of ChaosDE was achieved. The idea
is then to connect these two different influences to the performance of DE into
the one novel multi-chaotic concept. The moment of manual switching over
between two chaotic maps as well as the parameter settings for both canonical
DE and ChaosDE were obtained analytically based on numerous experiments
and simulations (see Table 9.1)

Within this initial research, one type of experiment was performed. It utilizes
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Tab. 8.1 Parameter set up for canonical DE and ChaosDE

DE Parameter Value
Popsize 75
F 0.8
Cr 0.8
Dimensions 30
Generations 100D = 3000
CFE limit 225000

the maximum number of generations fixed at 3000 generations. This allowed the
possibility to analyze the progress of DE within a limited number of generations
and cost function evaluations. The optimum of the cost functions was shifted
randomly so the position of the optimum for En: (x 1,x 2. . . xn) = s,

Where si is a random number from the 50% range of function interval; s vector
is randomly generated before each run of the optimization process.

The statistical results of the experiments are shown in Tables 9.2, 9.4, 9.6, which
represent the simple statistics for cost function values, e.g. average, median,
maximum values, standard deviations and minimum values representing the best
individual solution for all 50 repeated runs of canonical DE and several versions
of ChaosDE and Multi-ChaosDE.

Tables 9.3, 9.5 and 9.7 compare the progress of several versions of ChaosDE,
Multi-ChaosDE and Canonical DE. These tables contain the average CF values
for the generation No. 750, 1500, 2250 and 3000 from all 50 runs. The bold val-
ues within the all Tables 9.2 - 9.7 depict the best obtained result. Furthemore
it is presented in Fig. 9.1 - 9.3 the mean progression of CF Value. The im-
pact of CPRNG switching on the convergence behavior can be clearly observed.
Following versions of Multi-ChaosDE were studied:

Burgers-Lozi-Switch-500 : Start with Burgers map CPRNG, switch to the Lozi
map CPRNG after 500 generations.



TBU in Zlín, Faculty of Applied Informatics 71

Lozi-Burgers-Switch-1500 : Start with Lozi map CPRNG, switch to the Burgers
map CPRNG after 1500 generations.

Tab. 8.2 Simple results statistics for the shifted Sphere function – 30D

DE Version Avg CF Median CF Max CF Min CF StdDev
Canonical
DE

5.929778 5.435726 11.69084 2.53501 2.432546

Lozi-No-
Switch

3.73E-05 2.27E-05 0.000222 1.54E-06 4.17E-05

Burger-No-
Switch

1.02E-14 2.88E-15 5.73E-14 5.98E-17 1.49E-14

Burger-Lozi-
Switch-500

1.78E-06 4.2E-07 2.95E-05 1.59E-08 4.61E-06

Lozi-Burger-
Switch-1500

8.34E-10 2.75E-10 1.2E-08 2.81E-11 1.76E-09

Tab. 8.3 Comparison of progress towards the minimum for the shifted
Sphere function

DE Version Generation
No.750

Generation
No.1500

Generation
No. 2250

Generation
No. 3000

Canonical DE 482.4017 114.3075 26.34619 5.929778
Lozi-No-
Switch

90.40304 0.74516 0.004854 3.73E-05

Burger-No-
Switch

0.531726 1.33E-05 4.32E-10 1.02E-14

Burger-Lozi-
Switch-500

2.764289 0.022319 0.000201 1.78E-06

Lozi-Burger-
Switch-1500

87.49406 0.709014 3.15E-05 8.34E-10

Obtained numerical results support the claim that all Multi-Chaos/ChaosDE
versions have given better overall results in comparison with the canonical DE
version. Although the shifted benchmark functions were utilized, from the pre-
sented data for the unimodal Sphere function it follows, that Multi-Chaos DE
versions driven by Lozi/Burgers Map have given very satisfactory results, never-
theless the single-chaos concept of original ChaosDE has given the best overall
results. High sensitivity of the differential evolution on the selection, settings
and internal dynamics of the chaotic PRNG is fully manifested in the case of
multi-modal functions.
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Tab. 8.4 Simple results statistics for the shifted Ackley’s function – 30D

DE Version Avg CF Median CF Max CF Min CF StdDev
Canonical
DE

3.791676 3.841045 4.518592 2.95934 0.341008

Lozi-No-
Switch

0.005533 0.00452 0.014929 0.00154 0.003334

Burger-No-
Switch

0.067287 6.34E-08 1.501747 5.47E-09 0.27714

Burger-Lozi-
Switch-500

8.04E-04 7.24E-04 0.002667 1.85 E-04 4.84E-04

Lozi-Burger-
Switch-1500

1.77E-05 1.03E-05 7.6E-05 1.95E-06 1.46E-05

Tab. 8.5 Comparison of progress towards the min. for the shifted
Ackley’s function

DE Version Generation
No.750

Generation
No.1500

Generation
No. 2250

Generation
No. 3000

Canonical DE 13.16276 8.511778 5.506989 3.791676
Lozi-No-
Switch

8.199525 1.79389 0.081797 0.005533

Burger-No-
Switch

1.548046 0.071167 0.067307 0.067287

Burger-Lozi-
Switch-500

2.797948 0.168713 0.009855 8.04E-04

Lozi-Burger-
Switch-1500

7.852258 1.621723 0.003654 1.77E-05

Tab. 8.6 Simple results statistics for the shifted Rastrigin‘s function – 30D

DE Version Avg CF Median CF Max CF Min CF StdDev
Canonical
DE

270.9612 273.2324 305.4176 234.2218 15.99992

Lozi-No-
Switch

50.68194 45.70853 110.4599 21.52906 21.71585

Burger-No-
Switch

44.36785 43.06218 80.76961 16.9143 15.17985

Burger-Lozi-
Switch-500

38.67436 36.68143 82.46749 16.18175 11.82373

Lozi-Burger-
Switch-1500

42.94927 43.09553 72.74598 20.8219 13.53718
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Tab. 8.7 Comparison of progress towards the minimum for the shifted
Rastrigin‘s function

DE Version Generation
No.750

Generation
No.1500

Generation
No. 2250

Generation
No. 3000

Canonical DE 790.1378 404.8734 308.3072 270.9612
Lozi-No-
Switch

370.954 177.9286 93.68944 50.68194

Burger-No-
Switch

189.6604 55.04461 44.56468 44.36785

Burger-Lozi-
Switch-500

221.8914 116.8081 60.55444 38.67436

Lozi-Burger-
Switch-1500

365.1778 171.6624 57.50722 42.94927
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For the Burgers-Lozi-Switch-500 version the progressive Burgers map CPRNG
secured the faster approaching towards the global extreme from the very begin-
ning of evolutionary process. The very fast switch over to the Lozi map based
CPRNG helped to avoid the Burgers map based CPRNG weak spots, which are
the weak overall statistical results, like average CF value and std. dev.; and
tendency to stagnation.

Through the utilization of Lozi-Burgers-Switch-1500 version, the strong progress
towards global extreme given by Burgers map CPRNG helped to the evolutionary
process driven from the start by mans of Lozi map CPRNG to achieve almost
the best avg. CF and median CF values.

9 Multiple-Choice strategy for PSO

During the experiment witch chaos driven PSO and multi-chaos PSO the inner
dynamic of the PSO algorithm was investigated very closely. As a reaction to
several weaknesses of the original PSO design a novel Multiple-Choice strategy
for PSO (MC-PSO) was developed.

This strategy alters the original way (4.1) of calculating the particle velocity in
next generation. At first, three numbers b1, b2 and b3 are defined at the start
of algorithm. These numbers represent border values for different rules, so they
should follow the pattern: b1 < b2 < b3. In this study following values were
used: b1 = 0.2, b2 = 0.4, b3 = 0.7. Afterwards during the calculation of new
velocity of each particle a random number r is generated from the interval <0,
1>. Than the new velocity is calculated following these four rules:

If r < b1 the new velocity of particle is given by (10.1).

v(t+ 1) = 0 (9.1)

If b1 < r < b2 the new velocity of particle is given by (10.2).
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v(t+ 1) = w · v(t) + c ·Rand · (xr(t)− x(t)) (9.2)

Where xr(t) is the position of randomly chosen particle.

If b2 < r < b3 the new velocity of particle is given by (10.3).

v(t+ 1) = w · v(t) + c ·Rand · (pBest− x(t)) (9.3)

If b3 < r the new velocity of particle is given by (10.4).

v(t+ 1) = w · v(t) + c ·Rand · (gBest− x(t)) (9.4)

The priority factors c1 and c2 from original PSO formula (4.1) are replaced
within this novel approach with single parameter c. Within this new strategy
parameter c defines not the priority (which is given by b1, b2 and b3 setting)
but the overstep value. Within this research, c was set to 2.

9.1 MC-PSO Experiment

In the experiment it was investigated the performance of MC-PSO on large-scale
(high dimensional) problems. The algorithm was set up accordingly (see Table
10.1) and four previously described benchmark functions were used: Sphere
function, Rosenbrock’s function, Rastrigin’s function and Schwefel’s function.

Two versions of PSO algorithm were used. The notation is as follows:

PSO Weight – PSO algorithm with linear decreasing inertia weight

MC-PSO – Multiple choice PSO algorithm with linear decreasing inertia weight

The results for each test function and two versions of PSO algorithms are sum-
marized in the statistical overview given in Tables 10.2 - 10.5 . The best results
(cost function values) and the best mean results are highlighted by bold numbers
within these Tables 10.2 - 10.5. Also the history of gBest values for dimension
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= 1000 was tracked and it is depicted in Figures 10.1 - 10.4.

Tab. 9.1 Experiment setup

Population size: 200
Iterations: 1000
c1, c2, c: 2
w: Linear 0.9 -> 0.4
vmax 0.2
Dim: 250, 500, 750, 1000
Repeated runs: 30
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Tab. 9.2 Results for Sphere function

Dimension: 250 500 750 1000
PSO Version: PSO

Weight
MC-PSO PSO

Weight
MC-PSO PSO

Weight
MC-PSO PSO

Weight
MC-PSO

Mean Value: 38.5933 3.59432 275.316 24.2015 275.316 24.2015 430.702 36.7424
Std. Dev.: 4.436 0.539777 24.67 1.92985 24.67 1.92985 43.5069 2.79294
Median: 38.9674 3.60291 270.794 24.1434 270.794 24.1434 427.56 36.4451
Worst result: 47.6534 4.69833 350.85 28.9283 350.85 28.9283 542.402 43.9094
Best result: 30.6938 2.61684 223.634 20.9344 223.634 20.9344 345.921 31.715

Tab. 9.3 Results for Schwefel’s function

Dimension: 250 500 750 1000
PSO Version: PSO

Weight
MC-PSO PSO

Weight
MC-PSO PSO

Weight
MC-PSO PSO

Weight
MC-PSO

Mean Value: -21107 -35402.5 -29678.9 -53198.6 -37137.8 -68255.5 -41384.9 -80269.4
Std. Dev.: 1634.78 2674.73 2580.65 3322.55 3277.72 4314.53 4009.01 4922.38
Median: -21323.9 -34573.3 -29390.3 -53151.5 -37604.3 -67788.2 -41412.2 -81508
Worst result: -17224.9 -29375.1 -22540.4 -46185.3 -28237.1 -59119 -32664 -66661.7
Best result: -24627.7 -41099.7 -34761.6 -59739.5 -45600.7 -77153.4 -51770.9 -89149.9
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Tab. 9.4 Results for Rastrigin’s function

Dimension: 250 500 750 1000
PSO Version: PSO

Weight
MC-PSO PSO

Weight
MC-PSO PSO

Weight
MC-PSO PSO

Weight
MC-PSO

Mean Value: 1534.4 936.438 3816.35 2713.02 6222.51 4665.34 8681.53 6766.28
Std. Dev.: 105.157 94.4946 124.55 162.63 198.081 210.484 196.055 253.688
Median: 1526.65 932.761 3812.5 2702.53 6232.57 4642.29 8730.42 6752.56
Worst result: 1793.88 1196.54 4076.89 3095.76 6578.13 5086.7 8973.59 7549.17
Best result: 1283.73 746.202 3593.85 2336.36 5673.58 4199.21 8217.97 6338.89

Tab. 9.5 Results for Rosenbrock’s function

Dimension: 250 500 750 1000
PSO Version: PSO

Weight
MC-PSO PSO

Weight
MC-PSO PSO

Weight
MC-PSO PSO

Weight
MC-PSO

Mean Value: 8315.57 741.837 38871.7 2050.54 79568.8 3403.36 131934 4977.79
Std. Dev.: 1506.54 76.9678 7066.53 143.774 15812.2 292.3 21813.9 385.606
Median: 7906.02 727.182 38170.1 2040.09 77810.5 3339.45 132155 4899.54
Worst result: 11901.1 973.58 53198.3 2340.47 123287 4240.53 191451 6229.1
Best result: 5250.74 629.908 23867.5 1761.37 53897.2 2902.29 73943.6 4320.05
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Fig. 9.1 History of mean gBest value for Sphere function, Dim = 1000
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Fig. 9.2 History of mean gBest value for Rosenbrock’s function, Dim = 1000

The results presented here strongly support the claim that the multiple choice
strategy for PSO algorithm as presented in this paper seems to have significant
positive effect on the performance of the PSO algorithm in the task of large
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Fig. 9.3 History of mean gBest value for Rastrigin’s function, Dim = 1000
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Fig. 9.4 History of mean gBest value for Schwefel’s function, Dim = 1000
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scale optimization problems. The newly proposed algorithm seems to exhibit
much faster convergence and better overall performance on the used set of four
basic test functions over the given number of iterations. In all the experiments
performed the newly proposed MC-PSO algorithm managed to obtain better
results.

Moreover during the detailed results analysis it was found out that the new MC-
PSO version seems to be also faster in terms of total time demands required for
all repeated 50 runs. Example of these results is presented in following Table
10.6 where the average times in seconds are listed for the case study of dim =
1000. The bold number represents the best value.

Tab. 9.6 Time Demands Comparison

Dim = 1000 PSO Weight (s) MC-PSO (s)
Sphere 439 270
Rosenbrock 506 334
Rastrigin 639 489
Schwefel 1387 925

10 The Gathering Algorithm

Within the previous experiments with Multiple-Choice strategy for PSO, it has
been found out that it may be very beneficial to make some particles stop for
a given number of iterations in order to prevent premature convergence and
improve the exploration capability of PSO. In our new design the velocity cal-
culation formula is altered significantly. One random particle from the swarm
is selected and the difference between the random particle and active particle is
multiplied by a random number from the interval [-0.2,1.2] as given in (11.1).
The interval bounds were acquired by tuning with multiple benchmark sets. The
maximum velocity is not limited in this proposed design.

vt+1
i = Rand(−0.2, 1.2) · (xtrandom − xti) (10.1)
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It is clear from (11.1) that the position of pBest or gBest is not used in the
velocity calculations, even though the gBest and pBest values and positions are
recorded.

During the initialization phase, each particle is assigned a counter that is set
to zero. As long as the counter value for active particle remains zero, the ve-
locity and new position of the active particle is calculated by (11.1). If new
pBest or gBest is encountered, the counter value of the corresponding particle is
set to 10 (pBest) or random integer number from interval [50, 70] (gBest).The
aforementioned values were also set by means of extensive tuning with multiple
benchmark sets and combinations of settings.

If the counter for active particle is not zero, the particle becomes a "stationary”
particle. In the stationary mode, two different dimensional mutation operations
(type A or type B) are randomly selected. Firstly the dimension index is selected
randomly. A copy of active particle is created and noted as a trial particle.
Thereafter, the type of mutation operation is randomly chosen (50% : 50%
chance).

Mutation type A: random number from interval defined by the lower and upper
bounds specified for that dimension is generated and stored into the trial particle
in corresponding dimension index (11.2). This mutation operation improves
exploration.

xtrialj = Rand(lowj , highj) (10.2)

where:

j – Randomly selected dimension.
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xtrialj – jth dimension component of trial particle.

lowj , highj – Lower and upper bounds of jth dimension.

Mutation type B: the current value of active particle in the selected dimension
is multiplied by a random real number from interval [0.99, 1.01] and the result
is stored into the trial particles corresponding to the dimension index (11.3).

xtrialj = xtij ·Rand(0.99, 1.01) (10.3)

If the trial particle CF value is better than the pBest of the active particle, the
counter is increased by 5. If a new gBest is found by the trial particle, the counter
is increased even further by 10. In both cases, the active particle is replaced by
the trial particle. Otherwise the active particle remains intact. At the end of
the iteration loop, the counter value for the active particle is decreased by 1.

For better clarity, the full pseudo-code of the main part of the proposed algorithm
is given in Figure 11.1.

10.1 Initial experiment

For the initial performance evaluation and for better understanding of func-
tionality and dimension dependency, the commonly used Schwefel’s benchmark
function was used with different dimension settings. The dimension of the prob-
lem was set to the following values: 2, 5, 10, 20, 30 and 50.

The performance was compared with the original PSO [1, 2] with global topol-
ogy, linear decreasing inertia weight and velocity limited to 0.2 of the range
(noted GPSO). The mean results for 100 runs are summarized in Table 11.1.
It may be clearly observed that in comparison with GPSO, the performance of
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For each iteration (t)
For each particle (i)

random = RandomInteger(1,popsize)
 if HcounteriL � 0

For each dimension H jL
vij

t+1 = RandomRealH-0.2, 1.2L × Ixrandomj
t - xij

t M
xi

t+1 = xi
t + vi

t+1

If Hnew pBestL counteri = 10;
If Hnew gBestL counteri = RandomIntegerH50, 70L;

if HcounteriL != 0
j = RandomIntegerH1, DimL
if HRandomRealH0, 1L £ 0.5L

xtrialj = RandomRealIlow j , highj M
else xtrialj = xi

t × RandomRealH0.99, 1.01L
ifHCFHxtrialL < pBestiL

xi
t+1 = xtrial

counteri += 5
ifHCFHxtrialL < gBestiL

counteri += 10
counteri --

Fig. 10.1 Pseudocode of the main part of the proposed algorithm

the Gathering algorithm (noted hereafter as GATHER in Tables and Figures)
was promising in terms of dependency of the results on the dimensionality of the
problem. This trend is highlighted in Figure 11.2 where the results of Gathering
algorithm and GPSO are compared graphically. This hints that the proposed de-
sign is very resistant to the notorious "two step forward, one step back” problem
of PSO.

Tab. 10.1 Mean results comparison - 100 runs

DIM 2 5 10 20 30 50
GPSO 2.55 E-

05
2.19
E+02

6.56
E+02

2.25
E+03

4.19
E+03

8.49
E+03

GATHER 1.09 E-
04

2.50 E-
03

1.43 E-
02

6.81 E-
02

8.92
E+00

6.51
E+02
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Fig. 10.2 Mean result comparison for different dimension settings - 100 runs

10.2 Benchmark results

In this section, the results of performance testing for the Gathering algorithm on
the CEC´13 benchmark set are presented. The statistical overview for all three
different dimensional setting (10, 30 and 50) is given in Table 11.2, 11.3 and 11.4.
The unimodal functions are denoted with u basic multimodal functions are de-
noted with m and the composition functions are denoted with c. Furthermore,
in Tables 11.5, 11.6 and 11.7, the mean results are compared with two PSO
based algorithms participating in the CEC´13 competition: the self-adaptive
heterogeneous PSO for real-parameter optimization [43] noted fk-PSO and the
Particle Swarm Optimization and Artificial Bee Colony Hybrid algorithm noted
ABS-SPSO [44]. The best mean results are highlighted by bold numbers. The
analysis of the results follows afterwards. Presented results indicate encouraging
performance of the Gathering algorithm for complex and multimodal optimiza-
tion problems. The lack of performance in the case of unimodal functions hints
that the local-search capability should be improved in the future modification.
In the case of dim = 10, (See Table 11.5) the Gathering algorithm managed to
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obtain solo best mean results for six functions (f6, f17, f21, f24, f25, f28). In
the case of dim = 30 (See Table 11.6) the Gathering algorithm outperformed
other compared algorithm on five functions (f14, f21, f22, f26, f27). With dim =
50, the proposed algorithm managed to obtain individual best results for three
functions (f14, f21, f26) (See Table 11.7).

Tab. 10.2 Results for D = 10

fx Best Worst Median Mean Std
f1u -1.40E+03 -1.40E+03 -1.40E+03 -1.40E+03 3.12E-05
f2u 3.81E+05 4.64E+06 1.57E+06 1.87E+06 1.35E+06
f3u 8.05E+06 5.67E+08 8.78E+07 1.26E+08 1.15E+08
f4u 7.35E+03 3.20E+04 1.32E+04 1.49E+04 5.05E+03
f5u -1.00E+03 -1.00E+03 -1.00E+03 -1.00E+03 5.29E-04
f6m -9.00E+02 -8.98E+02 -9.00E+02 -8.99E+02 5.05E-01
f7m -7.84E+02 -7.37E+02 -7.58E+02 -7.59E+02 1.16E+01
f8m -6.80E+02 -6.79E+02 -6.79E+02 -6.79E+02 1.12E-01
f9m -5.98E+02 -5.92E+02 -5.95E+02 -5.95E+02 9.95E-01
f10m -4.97E+02 -4.90E+02 -4.94E+02 -4.94E+02 1.74E+00
f11m -4.00E+02 -3.98E+02 -4.00E+02 -4.00E+02 4.76E-01
f12m -2.89E+02 -2.65E+02 -2.79E+02 -2.78E+02 6.96E+00
f13m -1.87E+02 -1.53E+02 -1.64E+02 -1.66E+02 8.02E+00
f14m -9.99E+01 -9.63E+01 -9.97E+01 -9.92E+01 1.23E+00
f15m 4.13E+02 1.16E+03 8.10E+02 8.29E+02 1.64E+02
f16m 2.00E+02 2.01E+02 2.00E+02 2.00E+02 1.85E-01
f17m 3.01E+02 3.13E+02 3.09E+02 3.09E+02 3.58E+00
f18m 4.25E+02 4.56E+02 4.41E+02 4.41E+02 7.25E+00
f19m 5.00E+02 5.01E+02 5.00E+02 5.00E+02 1.71E-01
f20m 6.02E+02 6.05E+02 6.03E+02 6.03E+02 6.62E-01
f21c 7.00E+02 9.01E+02 8.00E+02 8.30E+02 5.39E+01
f22c 8.01E+02 8.41E+02 8.16E+02 8.16E+02 6.86E+00
f23c 1.48E+03 2.21E+03 1.94E+03 1.92E+03 1.64E+02
f24c 1.11E+03 1.18E+03 1.13E+03 1.13E+03 1.27E+01
f25c 1.21E+03 1.32E+03 1.31E+03 1.28E+03 4.00E+01
f26c 1.31E+03 1.34E+03 1.32E+03 1.33E+03 6.27E+00
f27c 1.61E+03 1.70E+03 1.70E+03 1.70E+03 1.36E+01
f28c 1.50E+03 1.70E+03 1.50E+03 1.54E+03 8.02E+01
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Tab. 10.3 Results for D = 30

fx Best Worst Median Mean Std
f1u -1.40E+03 -1.40E+03 -1.40E+03 -1.40E+03 1.63E-04
f2u 6.28E+06 2.31E+07 1.48E+07 1.48E+07 4.33E+06
f3u 8.29E+08 7.30E+09 3.92E+09 3.87E+09 1.77E+09
f4u 4.64E+04 1.23E+05 9.05E+04 8.96E+04 1.73E+04
f5u -1.00E+03 -1.00E+03 -1.00E+03 -1.00E+03 1.77E-03
f6m -8.92E+02 -8.73E+02 -8.79E+02 -8.79E+02 4.43E+00
f7m -7.28E+02 -6.19E+02 -6.78E+02 -6.79E+02 2.02E+01
f8m -6.79E+02 -6.79E+02 -6.79E+02 -6.79E+02 7.71E-02
f9m -5.76E+02 -5.64E+02 -5.70E+02 -5.70E+02 2.86E+00
f10m -4.94E+02 -4.57E+02 -4.75E+02 -4.75E+02 8.89E+00
f11m -3.99E+02 -3.94E+02 -3.96E+02 -3.96E+02 1.21E+00
f12m -1.71E+02 -5.14E+01 -1.01E+02 -1.04E+02 2.93E+01
f13m -3.03E+01 1.27E+02 8.29E+01 7.55E+01 3.57E+01
f14m -9.43E+01 -7.91E+01 -8.85E+01 -8.80E+01 3.87E+00
f15m 2.04E+03 4.51E+03 3.79E+03 3.81E+03 4.51E+02
f16m 2.00E+02 2.02E+02 2.01E+02 2.01E+02 3.66E-01
f17m 3.18E+02 3.50E+02 3.41E+02 3.41E+02 4.99E+00
f18m 5.93E+02 8.40E+02 7.35E+02 7.31E+02 5.47E+01
f19m 5.01E+02 5.03E+02 5.02E+02 5.02E+02 4.90E-01
f20m 6.12E+02 6.15E+02 6.15E+02 6.15E+02 5.79E-01
f21c 8.07E+02 9.23E+02 9.01E+02 8.83E+02 2.92E+01
f22c 8.20E+02 9.40E+02 8.40E+02 8.52E+02 3.34E+01
f23c 4.16E+03 7.14E+03 5.71E+03 5.67E+03 6.25E+02
f24c 1.24E+03 1.31E+03 1.29E+03 1.29E+03 1.09E+01
f25c 1.38E+03 1.42E+03 1.41E+03 1.41E+03 9.75E+00
f26c 1.40E+03 1.40E+03 1.40E+03 1.40E+03 2.90E-01
f27c 1.70E+03 2.57E+03 1.70E+03 1.99E+03 3.84E+02
f28c 1.53E+03 2.26E+03 1.92E+03 1.85E+03 2.14E+02
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Tab. 10.4 Results for D = 50

fx Best Worst Median Mean Std
f1u -1.40E+03 -1.40E+03 -1.40E+03 -1.40E+03 5.08E-03
f2u 1.25E+07 4.51E+07 2.68E+07 2.62E+07 6.18E+06
f3u 3.94E+09 2.37E+10 1.72E+10 1.67E+10 3.98E+09
f4u 1.06E+05 2.09E+05 1.54E+05 1.58E+05 2.09E+04
f5u -1.00E+03 -1.00E+03 -1.00E+03 -1.00E+03 5.53E-03
f6m -8.59E+02 -8.51E+02 -8.54E+02 -8.54E+02 1.46E+00
f7m -6.87E+02 -6.11E+02 -6.51E+02 -6.48E+02 1.86E+01
f8m -6.79E+02 -6.79E+02 -6.79E+02 -6.79E+02 5.09E-02
f9m -5.50E+02 -5.35E+02 -5.42E+02 -5.42E+02 4.07E+00
f10m -4.50E+02 -3.87E+02 -4.18E+02 -4.19E+02 1.47E+01
f11m -3.95E+02 -3.89E+02 -3.92E+02 -3.92E+02 1.64E+00
f12m 5.18E+01 3.81E+02 2.07E+02 2.10E+02 6.94E+01
f13m 3.47E+02 5.99E+02 4.98E+02 4.92E+02 5.02E+01
f14m -8.73E+01 -6.50E+01 -7.53E+01 -7.50E+01 5.53E+00
f15m 5.78E+03 9.26E+03 7.69E+03 7.68E+03 6.48E+02
f16m 2.01E+02 2.02E+02 2.02E+02 2.02E+02 3.94E-01
f17m 3.47E+02 3.83E+02 3.72E+02 3.71E+02 7.17E+00
f18m 1.01E+03 1.41E+03 1.24E+03 1.24E+03 1.05E+02
f19m 5.03E+02 5.06E+02 5.05E+02 5.05E+02 6.96E-01
f20m 6.23E+02 6.25E+02 6.25E+02 6.25E+02 4.18E-01
f21c 8.20E+02 9.40E+02 9.09E+02 9.04E+02 2.35E+01
f22c 8.34E+02 8.71E+02 8.49E+02 8.51E+02 8.74E+00
f23c 9.24E+03 1.29E+04 1.10E+04 1.09E+04 8.22E+02
f24c 1.32E+03 1.41E+03 1.37E+03 1.37E+03 1.38E+01
f25c 1.48E+03 1.55E+03 1.51E+03 1.51E+03 1.27E+01
f26c 1.40E+03 1.40E+03 1.40E+03 1.40E+03 7.10E-01
f27c 1.70E+03 3.46E+03 3.22E+03 3.12E+03 4.30E+02
f28c 1.80E+03 1.81E+03 1.81E+03 1.81E+03 2.83E+00
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Tab. 10.5 Mean Results Comparison for D = 10

fx fmin fk-PSO GATHER ABS-SPSO
f1u -1400 -1.40E+03 -1.40E+03 -1.40E+03
f2u -1300 1.43E+05 1.87E+06 1.48E+05
f3u -1200 6.74E+05 1.26E+08 1.27E+05
f4u -1100 -6.84E+02 1.49E+04 1.30E+03
f5u -1000 -1.00E+03 -1.00E+03 -1.00E+03
f6m -900 -8.97E+02 -8.99E+02 -8.95E+02
f7m -800 -7.98E+02 -7.59E+02 -8.00E+02
f8m -700 -6.80E+02 -6.79E+02 -6.80E+02
f9m -600 -5.97E+02 -5.95E+02 -5.96E+02
f10m -500 -4.99E+02 -4.94E+02 -5.00E+02
f11m -400 -4.00E+02 -4.00E+02 -4.00E+02
f12m -300 -2.93E+02 -2.78E+02 -2.94E+02
f13m -200 -1.89E+02 -1.66E+02 -1.94E+02
f14m -100 -6.22E+01 -9.92E+01 -9.96E+01
f15m 100 5.54E+02 8.29E+02 5.96E+02
f16m 200 2.00E+02 2.00E+02 2.00E+02
f17m 300 3.11E+02 3.09E+02 3.10E+02
f18m 400 4.16E+02 4.41E+02 4.17E+02
f19m 500 5.01E+02 5.00E+02 5.00E+02
f20m 600 6.03E+02 6.03E+02 6.02E+02
f21c 700 1.08E+03 8.30E+02 1.10E+03
f22c 800 9.22E+02 8.16E+02 8.13E+02
f23c 900 1.42E+03 1.92E+03 1.50E+03
f24c 1000 1.20E+03 1.13E+03 1.20E+03
f25c 1100 1.31E+03 1.28E+03 1.30E+03
f26c 1200 1.39E+03 1.33E+03 1.33E+03
f27c 1300 1.67E+03 1.70E+03 1.65E+03
f28c 1400 1.73E+03 1.54E+03 1.69E+03
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Tab. 10.6 Mean Results Comparison for D = 30

fx fmin fk-PSO GATHER ABS-SPSO
f1u -1400 -1.40E+03 -1.40E+03 -1.40E+03
f2u -1300 1.59E+06 1.48E+07 8.77E+05
f3u -1200 2.40E+08 3.87E+09 5.16E+07
f4u -1100 -6.22E+02 8.96E+04 4.92E+03
f5u -1000 -1.00E+03 -1.00E+03 -1.00E+03
f6m -900 -8.70E+02 -8.79E+02 -8.89E+02
f7m -800 -7.36E+02 -6.79E+02 -7.49E+02
f8m -700 -6.79E+02 -6.79E+02 -6.79E+02
f9m -600 -5.82E+02 -5.70E+02 -5.71E+02
f10m -500 -5.00E+02 -4.75E+02 -5.00E+02
f11m -400 -3.76E+02 -3.96E+02 -4.00E+02
f12m -300 -2.44E+02 -1.04E+02 -2.36E+02
f13m -200 -7.70E+01 7.55E+01 -8.53E+01
f14m -100 6.04E+02 -8.80E+01 -8.45E+01
f15m 100 3.52E+03 3.81E+03 3.65E+03
f16m 200 2.01E+02 2.01E+02 2.01E+02
f17m 300 3.53E+02 3.41E+02 3.31E+02
f18m 400 4.68E+02 7.31E+02 4.90E+02
f19m 500 5.03E+02 5.02E+02 5.02E+02
f20m 600 6.12E+02 6.15E+02 6.11E+02
f21c 700 1.01E+03 8.83E+02 1.02E+03
f22c 800 1.66E+03 8.52E+02 8.84E+02
f23c 900 4.47E+03 5.67E+03 5.08E+03
f24c 1000 1.25E+03 1.29E+03 1.25E+03
f25c 1100 1.35E+03 1.41E+03 1.38E+03
f26c 1200 1.50E+03 1.40E+03 1.46E+03
f27c 1300 2.08E+03 1.99E+03 2.21E+03
f28c 1400 1.80E+03 1.85E+03 1.73E+03
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Tab. 10.7 Mean Results Comparison for D = 50

fx fmin fk-PSO GATHER ABS-SPSO
f1u -1400 -1.40E+03 -1.40E+03 -1.40E+03
f2u -1300 2.76E+06 2.62E+07 4.94E+05
f3u -1200 9.68E+08 1.67E+10 1.21E+08
f4u -1100 -5.75E+02 1.58E+05 3.78E+03
f5u -1000 -1.00E+03 -1.00E+03 -1.00E+03
f6m -900 -8.45E+02 -8.54E+02 -8.59E+02
f7m -800 -7.22E+02 -6.48E+02 -7.27E+02
f8m -700 -6.79E+02 -6.79E+02 -6.79E+02
f9m -600 -5.62E+02 -5.42E+02 -5.42E+02
f10m -500 -5.00E+02 -4.19E+02 -5.00E+02
f11m -400 -3.14E+02 -3.92E+02 -4.00E+02
f12m -300 -1.55E+02 2.10E+02 -1.27E+02
f13m -200 7.40E+01 4.92E+02 8.65E+01
f14m -100 1.86E+03 -7.50E+01 -7.36E+01
f15m 100 6.73E+03 7.68E+03 7.52E+03
f16m 200 2.01E+02 2.02E+02 2.01E+02
f17m 300 4.16E+02 3.71E+02 3.52E+02
f18m 400 5.32E+02 1.24E+03 6.16E+02
f19m 500 5.08E+02 5.05E+02 5.05E+02
f20m 600 6.21E+02 6.25E+02 6.20E+02
f21c 700 1.53E+03 9.04E+02 1.60E+03
f22c 800 3.02E+03 8.51E+02 8.51E+02
f23c 900 8.30E+03 1.09E+04 9.94E+03
f24c 1000 1.30E+03 1.37E+03 1.31E+03
f25c 1100 1.40E+03 1.51E+03 1.46E+03
f26c 1200 1.59E+03 1.40E+03 1.60E+03
f27c 1300 2.62E+03 3.12E+03 2.93E+03
f28c 1400 1.80E+03 1.81E+03 2.25E+03
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11 Conclusions and discussions

In this work there have been intensively studied various approaches for modifi-
cation and performance enhancement of evolutionary computational techniques,
mainly the Particle swam optimization algorithm. The PSO was chosen as the
most prominent representative of Swarm intelligence based group of algorithms.
As many SI algorithms share certain similarities it seems likely that approaches
that manage to enhance the performance of PSO algorithm may also enhance
the performance of other SI algorithms.

The main research direction dealt with the possibility of incorporation chaotic
pseudo-random number generators instead of canonical PRNGs (that are typ-
ically used for ECTs). The general idea for chaotic PRNG is that for nature-
inspired methods such as the ECTs it may be more convenient to use nature-
based PRNGs. This research was motivated by previous successful experiments
conducted by other researchers.

The second research direction focused on altering the inner principles of PSO
in such way that the performance was improved. In this research direction
several promising modifications were proposed and tested on common benchmark
problems.

11.1 Chaos PSO summary

As has been mentioned in above sections the mutual interaction of CPRNGs
and ECTs (even the PSO) has been studied by several researchers previously.
However the studies concentrated mostly only on the performance of chaos en-
hanced ECTs and many questions remained unanswered. One the main goal of
this work was to answer (at least partially) these questions.

Firstly it was investigated in detail the way of implementation of chaotic system
as a CPRNG and the incorporation into PSO. Six chaotic maps in total were
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used during this research and based on the literature it was decided to use the
CPRNG only for the velocity calculation formula. Several methods of CPRNG
creation were proposed and tested. After this detailed study is was concluded
that:

• Different ways of implementation of chaotic map as CPRNG have signifi-
cant effect on the performance of chaos enhanced PSO algorithm.

• Using absolute value to transform negative numbers to positive seems like
a promising method in comparison to common “shift” approach.

After the method for CPRNG creation was selected it was further tested the
effect of different chaotic systems used as CPRNGs for PSO on the performance
and the convergence behavior of the algorithm. The set of commonly used bench-
mark problems and CEC’13 Benchmark suite were used during this performance
and behavior investigation. There have been many tests with various algorithm
settings performed and the results and observations led to following conclusions:

• When Lozi chaotic map is employed as a CPRNG for PSO algorithm the
convergence of the algorithm is typically very fast. This may improve
the performance significantly on low-dimensional and unimodal or basic
multi-modal problems. Also this may prove very helpful for strictly time-
restricted optimization or real-time optimization. The fast convergence
however typically leads to premature convergence into local extreme and
therefore Lozi CPRNG enhanced PSO lacks performance on complex and
high-dimensional optimization task.

• The performance and convergence behavior of PSO algorithm enhanced
with CPRNG based on Tinkerbell map is very similar to the Chaos PSO
enhanced by Lozi chaotic map based CPRNG. The avoidance of premature
convergence into locals is slightly better and therefore the performance may
differ in certain cases but overall the performance of these two versions is
mostly comparable.
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• The Sinai chaotic map does not seem to have a significant effect on the
performance and behavior of PSO algorithm. The numerical results are
mostly the same or very similar as are those of PSO with canonical PRNG.
From the convergence lines it is clear that the convergence behavior is also
almost the same.

• CPRNG based on Arnold’s Cat map also seems to have only marginal
effect. The performance is very comparable to canonical PSO and does
not bring any significant advantage against other compared versions.

• Dissipative standard map as CPRNG significantly decreases the conver-
gence speed of PSO algorithm. The slower convergence speed improves
(to certain degree) the ability of PSO to avoid local extremes and there-
fore this particular version is very promising for very complex optimization
tasks and large-scale optimization. The disadvantage is that the time de-
mands of the algorithm are significantly higher. This method therefore is
not feasible for simple real-time optimization.

• The last chaotic system that was tested as candidate CPRNG for PSO was
the Burgers map. The PSO enhanced with Burgers map based CPRNG
exhibits very promising overall performance. The initial convergence speed
is very typically comparable with that of Dissipative map enhanced PSO
but the behavior is very problem-dependant. That said the Burgers map
based CPRNG enhanced PSO seems like a good overall initial optimizer
for such tasks as black box optimization

After the analysis of different CPRNGs for PSO algorithm the research had
to deal with a question: “Is the difference in performance and behavior given
only by the different distributions of used CPRNGs? “ To answer this question
and uncover more about the relation of particular chaotic system and the inner
dynamics of PSO an extensive tuning experiment was performed. The Lozi
map based CPRNG was tuned extensively using the controlling parameters of
the chaotic map. After detailed analysis and visualizations of the results it is
possible to conclude the following points:
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• It is possible to improve the performance of PSO algorithm driven by
CPRNG on a particular optimization task by tuning the control parameters
of the chaotic system.

• Tuning the chaotic system may worsen the performance of the PSO on
other types of optimization problems.

• It is possible to tune the chaotic system in such way that the distribution
of CPRNG is very different but the performance of PSO is very similar.
Therefore it seems likely that the distribution of the CPRNG does not
have overly prominent or dominant role.

• It seems very likely that the sequencing of numbers given by the inner
mechanism of the chaotic system has at least similar role in affecting the
behavior of PSO algorithm as the distribution of generated numbers by
the CPRNG.

The theoretical research of Chaotic PSO was supplemented by an example of
application. It was demonstrated that the differences between PSO algorithms
driven by different CPRNGs are maintained even in real-world optimization tasks
such as the PID controller design. It was also demonstrated that using chaos
enhanced PSO it is possible to acquire better performing PID controller designs
than by deterministic methods or canonical metaheuristics

As a main result of the research the innovative multi-chaotic approach for PSO
(and ECTs. In general) was developed.

11.2 Multi-chaos PSO summary

The multi-chaotic approach for PSO was developed as a reaction to the disadvan-
tages of particular CPRNGs. The main goal was to combine the advantages of
multiple CPRNGs and achieve such behavior that cannot be otherwise achieved
without extensive modification of the algorithm. This approach uses more than
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one chaotic system during the run of ECT and switches between these systems
either manually or by adaptive approach. By the author’s best knowledge such
approach has never been proposed or tested and may be considered pioneering
in the area of chaos enhanced metaheuristics.

In the initial experiment two systems with opposite convergence behavior were
selected. The Lozi map and Dissipative map based CPRNGs were manually
switched during the optimization. The goal was to achieve fast initial conver-
gence (as exhibited by PSO with Lozi map based CPRNG) but avoid premature
convergence into locals (typical for Dissipative map based CPRNG). The exper-
iments and results may be concluded into these points:

• It is possible to manually switch two different CPRNGs during one run of
the PSO algorithm and achieve better performance on various problems.

• This technique however requires good knowledge of the problem and its
characteristics (modality, complexity etc.).

• The best switching point is different for each problem and typically requires
either extensive tuning or setting by an expert.

• Overall the manual approach proved that it is possible to combine two
CPRNGs and gain advantages of both but it is not usable for routine
optimization of various tasks especially dynamic optimization.

Following the encouraging results of the above described manual approach for
multi-chaotic PSO an adaptive method was proposed. For the adaptive switching
of CPRNGs it was tracked the change of the best solution. In such way it
is possible to detect premature convergence or stagnation and use the second
CPRNG to continue the optimization process. Several combinations of CPRNGs
were selected and tested. The research concluded into these findings:

• The combinations of Tinkerbell map and Burgers map based CPRNGs and
Lozi map and Burgers map based CPRNGs seem most promising.
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• It is possible to successfully use the adaptive approach over variety of
different optimization problems without need of any further knowledge
about the problems.

• The multi-chaotic PSO typically achieves better results than PSO driven
either by single CPRNG or canonical PRNG.

• The basic PSO with multi-chaotic PRNG is able to compete with more
complex state of art methods (based on PSO).

• It is also possible to outperform the state of art methods in some cases.

• The adaptive approach improves the overall performance of chaotic PSO
across different optimization tasks and seems very promising for black-box
optimization, large scale optimization and also real-time optimization.

After these successful results the multi-chaotic approach was embedded into
another chaos enhanced metaheuristic the Differential Evolution. The initial
results presented here hint that this approach may be beneficial for DE as well
as PSO and in extension to other ECTs. During the experiments witch chaotic
and multi-chaotic PSO the inner dynamics of the algorithm were studied in
detail and as a reaction to uncovered inner dynamics and disadvantages several
modifications were proposed with different purposes.

11.3 Summary of proposed modifications of PSO

The first proposed modification named the Multiple-choice strategy for PSO
(MC-PSO) was intended to reduce or possibly remove of the notorious disad-
vantages of PSO – the premature convergence into locals. The goal was to allow
particles different behavior patterns in such way that the whole swarm would
never converge into single area. The experimental part provided data for these
conclusions:
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• The MC-PSO outperforms the original PSO on variety of different opti-
mization problems.

• The MC-PSO significantly outperforms the original PSO in the task of
large-scale optimization.

• The convergence speed of MC-PSO is significantly faster but the algorithm
still manages to avoid premature convergence significantly longer than the
original PSO.

• The MC-PSO is up to 40% faster than the original PSO.

• Based on these findings the MC-PSO seems very promising for the needs
of fast and real-time optimization.

The second proposed modification that is presented here is the Gathering al-
gorithm. It is and extensive modification of the PSO that alters some of the
fundamental inner principles of PSO and its variants. The key points and con-
clusions from the testing are summarized here:

• It is possible to find high quality solution without the sharing of gBest
position within the swarm.

• The “snowball effect” can be used as way to measure the quality of the
solution and its neighborhood and also as a way of distribution of particles
among several promising regions.

• The performance o Gathering algorithm is comparable or better than the
performance of the best performing PSO based methods on the given
benchmark.

• The increasing dimensionality of the problem does not significantly worsen
the performance of the algorithm in comparison with original PSO.

• Te design is almost immune to premature convergence because of the
“heuristic search” component in the form of mutation of stationary par-
ticles.
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The Gathering algorithm hints that swarms may not need a central point of
attraction to work effectively.

11.4 Recommendation for future works

Based on all published and presented results and analysis the author summarizes
the following recommendation for future work:

• Using PRNGs based on chaotic systems is a very simple but effective way
to improve the performance of ECTs. It can be used as a simple plug-in
for any existing ECT and authors of ECTs should be encouraged to do so
by this work.

• Very basic and simple ECTs can compete with more complex state of art
method when proper CPNRG is implemented.

• It is possible to combine two CPRNGs to achieve demanded behavior of
the algorithm. Combination of more than 2 CPRNGs is one of the open
topics for future research.

• The exact influence and mutual interaction of CPRNGs and ECTs remains
an open question. However strong support has been given here for the
research of the sequencing of pseudo-random numbers for ECTs.

• Heterogeneous swarms seem to be a very promising direction for SI algo-
rithms.

• SI algorithms may use various attraction mechanisms and successfully find
high quality solutions.

11.5 The goals of the dissertation

All five main goals of the dissertation are addressed here:
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1. Evaluation of the current state of the research area: Evolution-
ary algorithms (EAs), non-deterministic pseudo-random number
generators (PRNGs). The stare of the research was investigated during
the first part of the research. The most typically used PRNG for EAs from
literature seemed to be the Mersenne Twister. It was afterwards utilized
as a PRNG for the “canonical” versions of ECTs. The most dynamically
developing group of EAs are the algorithms based on Swarm Intelligence
(SI). Among them the PSO remains the most prominent. Another highly
significant EA is the Differential Evolution (DE).

2. Definition of the field of research - finding a suitable algorithm
for implementation of alternative approaches and modifications.
After the literature review and given the author’s previous experiences
the PSO algorithm has been chosen as the most suitable algorithm for
the research. The PSO is for a long time one the most popular and widely
used ECTs and shares notable similarities with many other ECTs especially
from the SI category.

3. The proposal of modifications and alternative strategies. Finding
alternative PRNGs and their implementation into EAs. Six alter-
native PRNGs based on six different chaotic systems were proposed and
implemented. The way of implementation was selected both experimen-
tally and based on literature review. Furthermore a multi-chaotic PRNG
was designed and implemented. Several modifications of PSO algorithm
were proposed. The two most notable are the Multiple-choice strategy for
PSO (MC-PSO) and the Gathering algorithm.

4. Testing and benchmarking of proposed algorithms. All proposed
algorithms and modifications were extensively tested using typically used
benchmark problems. As a benchmark it was used the IEEE CEC’13
Benchmark set. The performance of most promising methods was bench-
marked against state of the art methods based on PSO.

5. Evaluation of results, analysis and recommendations for future
works. The results were regularly published in journals and conference
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proceedings alongside with analysis. The summary of the results and anal-
ysis is given in this work. The recommendations for future work were
presented.

It may be stated that all main goals of the dissertation were successfully fulfilled.
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