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ABSTRAKT

Tato prace se zabyva analyzou zvukového signdlu kytary ¢i basy za ucelem ziskani zakladni
frekvence tonu v redlném case. Pro tento ucel jsou zde zkoumdny a porovndvany vlastnosti
a vhodnost riznych algoritmt.

Prakticka ¢ast fesi implementaci plug-inu v technologii VST, jez produkuje signal s vySkou
tonu vstupniho signélu uzitim nejvhodnéjsiho algoritmu pro extrakcei zakladni frekvence s moznosti

modulace vystupniho signalu.

Kli¢ova slova: VST plug-in, detekce vysky tonu, zakladni frekvence.

ABSTRACT

This thesis deals with guitar and bass sounds analysis in order to gain fundamental frequency in

real-time. For this case, I examine and compare properties and suitability of different algorithms.

The practical part deals with the implementation of a plug-in in VST technology, which produces

signal on input signal’s fundamental frequency with further options for output signal modulation.

Keywords: VST plug-in, pitch detection, fundamental frequency.
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INTRODUCTION

The sound is all around us. Every day from morning when the sound of alarm wakes us, we listen
to radio on our way to work, when we converse with someone or when we fall asleep to the sound
of wind floating through the trees outside the window.

Even though human do not have this sense so well developed as many other species, it can
be trained and enhanced to a certain extent. People, who deal with music and sounds, such as sing-
ers, musicians, sound designers, have usually highly developed or trained hearing so they are able
to train their ears to recognize tiniest changes, notes or frequencies that an ordinary person would
not be able to even notice.

As the progress in computer science started to grow more and more faster, it did not miss the
field of signals including sound. Common analogue devices, such as amplifiers, radios, TVs are
these days processing the signal digitally, tapes were replaced by CDs or MP3 and music editor
software are widely available on the internet either paid or as a freeware and can be used even by
less experienced users. However digital sound processing (DSP) can ease and speed up work espe-
cially to musicians, who work with signals on a daily basis. Advanced music software can help
them not even to record and edit the existing sound, but also create new sounds using different
oscillators, modulations and effects, which could not be done in the analogue way.

Music carries huge amount of information. Some of them can be easily obtained without any
complex analysis, however some of them require deeper and more complex approach to reach de-
sired information. There are still many unknown practices in the area of music analysis. It is still
great unknown, how the human brain processes the sound. While the brain can extract required
data practically immediately, it is not so easily achievable this in DSP. There have been proposed
many solutions for music extraction. There are thought often limitations in accuracy or they can
only be used on pre-recorded sound.

This thesis aims at obtaining of some of the sound information, particularly extraction of
fundamental frequency and beginning and end of the guitar or bass tone respectively, while the
emphasis is placed on speed of pitch detection algorithms and their usage in real-time. As next goal
is to generally dive in the problematics of digital signal processing. In this field I focus especially
the one used for sound processing, particularly on the digital filters.

Practical part deals with implementation of the algorithm as the VST plug-in for analysis and
modulation of monophonic guitar or bass signal respectively. This can be further used for helping
musicians in performances or as a part of more complex system. Such fundamental frequency is
then used in oscillator to create new sound with different types of wave and further process the

signal with amplifier and filter. Implemented algorithms are proven in Matlab.
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1. MUSIC THEORY

First of all, it is important to understand the basics of the music concept. Music is made of individ-
ual notes that each has attributes, which human can perceive naturally, such as loudness, timbre,
duration and pitch. These properties are together called psychological. On the other hand, they are
difficult to measure in computer, so there are also physical properties of the sound, such as pres-
sure, frequency, spectrum, duration and envelope, which can be quite well measured, but are more
problematical for human perception. These properties are called physical. Yet there is strong rela-

tion between both groups.

Subjective quality
Loudness | Pitch | Timbre | Duration
Sound pressure | strong weak weak weak
Physical Frequency weak strong | weak weak
property Spectr.um weak weak | strong weak
Duration weak weak weak strong
Envelope weak weak | moderate weak

Table 1 Relations among physical properties and subjective quality

1.1. Psychological properties

Psychological quality also referred to as subjective quality of sound is set of sound properties per-
ceived by human.

Duration determines how long a certain note lasts, and is measured in “beats” or fractions of
beats.

Pitch is another human subjective perception of sound. It is how we perceive tone height in
comparison with another one. Western music divided pitch into 12 different semi-tones together
creating so called octave. While pitch is logarithmic, corresponding semi-tones in octaves have
frequency multiplied with 2. So if we take the 49" tone (counted on 88-key piano keyboard) pitch
standard A with frequency 440 Hz, we can easily compute frequency of any other note using the
following equation.

n—49
1z

fn) = 2°12 - 440 [Hz] (1)

Loudness refers to the amplitude of the sound so basically determines how strong the sound
is. It is measured in phons and is often confused with sound pressure. There is non-linear relation

between loudness and sound pressure as shown in Figure 1. [1]
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Figure 1: Relation between loudness and sound pressure [2]

Timbre is often referred to as the “colour” of the note. For each instrument is unique and
cannot be measured. Even though the pitch is similar, the sound is different. It is given by the addi-
tional harmonics with various amplitudes, envelope, attack transients, vibrato, tremolo and others,
which depends not only on the material the instrument is made of and the instrument shape, the
way it is played, but also on the outer atmospheric conditions. While timbre is easy for humans to
distinguish, it is quite difficult to do the same thing using computers, because the principle of hu-
man perception of sound is not yet understood. While in computer we are able to distinguish the
frequencies, amplitudes and other sound characteristics, it is still mystery, how human are able to
perceive the harmonies as one sound even in polyphonic' tone. This is an important problem in

psychoacoustics?.

! Polyphony represents more tones playing simultaneously

2 Psychoacoustics studies the relationship between acoustic sound signals, the auditory system physiology,
and the psychological perception to sound, in order to explain the auditory behavioral responses of human
listeners, the abilities and limitations of the human ear, and the auditory complex processes that occur inside
the brain.
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1.2. Physical properties

Sound pressure is measured in dB as ratio between the measured pressure and the reference one.
Our ears respond to extremely small sound pressure fluctuation. The auditory threshold is used as

the reference sound pressure.
Po = 2- 1[]_5Pﬂ, (2)

Using the reference value and measured sound pressure, the sound pressure level can be ob-

tained using following equation comparing these two squared values in logarithmic scale.

Lp =logyp (;—;)[B] 3)

0

After adjusting the equation and converting to dB units, we get the equation of sound pres-

sure level.

Ly =20 logio (%) [4B] @)

Below can be seen table of typical sounds and their sound pressure levels.

Jet aircraft, 50m away 140 dB
Threshold of pain 130 dB
Threshold of discomfort 120 dB
Chainsaw, 1m distance 110 dB
Disco, 1m from speaker 100 dB
Diesel truck, 10m away 90 dB
Urban street 80 dB
Vacuum cleaner, distance 1m 70 dB
Conversational speech, 1m 60 dB
Average home 50 dB
Quiet library 40 dB
Quiet bedroom at night 30dB
Background in TV studio 20 dB
Rustling leaves in the distance | 10 dB
Hearing threshold 0dB

Table 2: Typical sounds and their sound pressure levels

Frequency of the tone is meant as the fundamental frequency. This frequency is the most

important and creates the pitch of the sound.
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Spectrum of the sound consists of all frequencies the sound is made of. Even though human
can perceive sound as one pitch, it may be composed of many various frequencies. Basically it is
fundamental frequency, harmonics, inharmonic frequencies® and noise®.

Harmonic frequencies are integer multiples of fundamental frequency. Easily calculable ac-

cording to following equation, where n is integer:

f=n-folHz] (5)

For example, the note 43 has fundamental frequency of 220 Hz. The harmonic frequencies
occur at 440 Hz, 660 Hz, 880 Hz, etc. Other than fundamental frequencies difficult the analysis,
because the fundamental frequency does not always have the biggest magnitude and the first har-
monics of the note (in this case 440 Hz) also represent the fundamental frequency of the note one
octave higher (in this case A4).

Duration is in physics measured time (usually in milliseconds) stating how long the sound
resonates.

Envelope is both a physical and psychological property. There are different types of articula-
tions of tones in music terminology such as pizzicato®, legato®, staccato’ and many others, which
are given by the playing technique. These techniques are very closely connected with the envelope

(for more details about envelope see 3.1.2).

1.3. Guitar and bass

Standard guitars have six strings and usually at least 21 frets. Strings are numbered from the right
to the left when looking directly at the fretboard. The first string has the highest pitch and the sixth
string has the lowest pitch. Individual notes are played by pressing down on a string above a certain
fret and picking (plucking) the string. As the frets get closer to the body of the guitar, the pitch of
its corresponding note increases in semi-tone intervals.

One of the characteristics of the guitar is that there are many different ways to play the same
note. In standard tuning, the lowest note of the guitar is the £, E2 to be precise, on the open sixth
string. Five frets up there is an 4 note which sounds the same as the open note on the fifth string.
These notes that have the same pitch but different locations are said to be enharmonic. Some notes

may occur as many as five times throughout the neck. The notes of the open strings from the sixth

3 Inharmonic frequencies are such frequencies, which are not integer multiples of fundamental frequency

4 Noise in acoustics stands for unwanted sounds, which cause interference of original sound. However, noise
in music is usually part of the sound timber.

5 Pizzicato is playing technique that involves plucking the string of a string instrument.

6 Legato is playing technique during which the notes are played long and continuously as they were connect-
ed.

7 Staccato designated notes are played shortly. It is opposite to legato.
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string to the first string in standard tuning are EADGBe with the capital E being two octaves lower
than the lowercase e. At standard acoustic guitar has the lowest possible note is £2, the highest is
D6, on the other hand, bass has the lowest tone £/ and the highest 4. In addition to standard tun-
ing, guitarists may prefer to use an alternate tuning, where strings are tuned different to notes, for
example DADGAD. This changes the location of notes throughout the guitar neck, thereby creating
different technique for playing the instrument, such as different hand and finger positions for mak-
ing chords.

To actually produce the sound, acoustic guitars have a hollow body where the vibrations
from the strings resonate. In contrast, electric guitars use magnetic coils at the bridge of the guitar
to translate the vibrations into an electrical signal that is transmitted to an amplifier. Some acoustic
guitars also have a microphone preamp built into them, following them to connect to an amplifier

as well. [3]
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2. DIGITAL SIGNAL PROCESSING

In this chapter we focus on signals in digital world. How to obtain data from real world, transform

them to digital form, process them and reproduce them back.

2.1. Digital signals

Sound is made up of energy in the form of waves. Nowadays the technology doesn’t allow us to
capture the signal in continuous form, so the state of the signal has to be transferred to discrete

form. The process of capturing waveform is called sampling.

2.1.1. Sampling
During this process the analogue signal x(t) is discretized by analogue-to-digital converter (ADC).

The ADC performs sampling in fixed time intervals into a series of samples that describe the am-
plitude of the waveform at each segment of time. The number of samples received per second is
called the sampling rate or sampling frequency. Sampling interval between two adjacent samples

can be calculated using

T.=+ (6)

A common sampling rate for music is 44100 samples per second and is the standard for CD quality

audio. This value was chosen to prevent aliasing of the signal.

2.1.1.1. Aliasing

Aliasing is a phenomenon, that describes the situation when the signal is converted or displayed
with imperfection causing misinterpretation or perceptible difference between original and pro-
cessed signal.

To prevent from aliasing we have to follow the Nyquist-Shannon sampling theorem?,
fe Z 2fmax @)

that says the sampling rate must be at least twice as high as the highest frequency to avoid the alias-
ing.

For example, if we apply this equation to frequency 22050Hz, which is generally stated as the max-
imum frequency human ear is able to perceive, we obtain the minimum sample rate must be 44100

Hz so the undersampling is prevented.

8 Nyquist-Shannon sampling theorem was independently discovered by Harry Nyquist, Claude Shannon, E.
T. Whittaker, Vladimir Kotelnikov, so the theorem is also known as a composition of their last names.
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Undersampling is phenomenon, which occurs if the Nyquist sampling theorem is violated.

In such case the signal is misinterpreted with another signal.

1.2000
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Figure 2: (A) Sine wave of frequency greater than sampling frequency.

(B) Harmonically sampled sine wave. [4]

Oversampling is the opposite phenomenon, which states the signal has been sampled with
frequency higher than the frequency stated by the Nyquist sampling theorem. This improves resolu-
tion, reduces noise and helps avoid aliasing and phase distortion by relaxing anti-aliasing filter
performance requirements. On the other hand it’s performance is decreased and takes more re-
sources for sampling and saving the signal. The signal oversampling factor is N where N states

how many times the sampling frequency is higher than Nyquist rate.
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2.1.2. Quantization

As the samples have been obtained, the value has to be converted to digital data. This pro-
cess is part of ADC and is called quantization. ADC measures the value of the signal in given
frequency and this value is then stored as the velocity of the signal in exact time. The value is
equally distributed to assigned word, where the accuracy is highly dependent on the word-size of
the value. For example, we have signal with limit values from OV to 1V. 3-bit word provides §
values with resolution 125mV whereas the 4-bit word provides 16 values with resolution 62,5mV

and 5-bit word with 32 values can reach resolution of 31,25mV.

Unquantized signal 32 levels

s
0.8} FoN

/) 1 J o
0.6} / \ ,ff HI" o
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N\ / ! | JI__ :,_:. - .fJ |
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Figure 3: Example of analogue signal quantization with different word size [5]

To process this data for spectral analysis, computers typically take a window of samples (for

example, 1024 samples), do desired processing, and then wait for the next window. Window size is
important as larger windows contain more information about the signal but are received less often
than smaller windows. With a window size of 1024, windows will be received every 23 millisec-
onds, whereas 4096-sample windows would be received every 93 milliseconds.
However, there is solution to this problem using principles of sliding window with a hop size
parameter. Last input windows are stored and used for completing upcoming windows. For exam-
ple, if the actual buffer size is 512 samples, the computer can save the last few windows and do

calculations on a larger window of say 4096 samples. This introduces overlap which can help re-
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duce artefacts and improve resolution in the frequency domain. On the other hand, larger window

covers larger time period, so the changes in frequency domain will be more delayed. [3]

2.1.3. Causality

Causality in digital signals defines that the output y(n) at time n depends only on the current
input x(n) at time n and its past input sample value such as x(n-1), x(n-2),.... Simply put, causal
system reacts only to its past and present input. System, which react to future input values, such as
x(n+1), x(n+2),..., the system is noncausal. This terms are very closely related to real-time pro-

cessing, because noncausal systems cannot be realized in real time.

2.2. Fourier Transform

Fourier transform is one of the basic building blocks of DSP. Within DPS it is used to obtain in-

formation about frequency spectrum of a signal and vice versa. It is defined as follows

Flw) = [ g(t)e 2riwtq; (8)

and inverse
g(®) = [T F(§)e*metdz, ©)

For discrete signals there is also discrete Fourier transform

FU) = SV fn)e N (10)

and inverse discrete Fourier transform

Tmikn

f) = SN F (e v (11)

2.2.1. Window functions

When we apply Fourier transformation to the sampled data, we theoretically expect following as-
sumptions:

e Sampled data are periodic to themselves

e Sampled data are continuous to themselves and band limited to folding frequency
The second assumption is often violated, which leads to undesired harmonic frequencies in final
spectrum. This unwanted effect is called spectral leakage. We cannot fully prevent it, unless abide
both assumptions stated above. But we can alleviate this using window functions.

Applying window function to the data sequence creates new data sequence with beginning

and end heading to zero, which soften transition between them and minimize the spectral leakage.

Common window functions are listed as follows:
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e The rectangular window (no window function):
wgin) =1, (12)
e The triangular window:

| 2n—n+1]
Wepiln) =1 — T (13)

e The Hamming window:

Wam(n) = 0.54 — 0.46c0s (=), (14)

e The Hanning window:

Why,(n) = 0.5 — 0.5cos (f"m ), (15)

e The Bartlett window:

2 (N-1 N-1
wb(n}zh-‘—l( z —|n— 2

) (16)

e The Bartlett-Hann window:

n 1

wyr(n) = 0.62 — 0.48 |- —

— 0.38- cas(“” ) (17)

e The Blackman window:

a= 016 (18)
e The Cosine window:

w.(n) = cns(:—: - ;—?:] = sin :—:), (19)
e The Lanczos window:

w;(n) = sinc (% - 1), (20)

e The Gaussian window:

_z .'1—[?.‘—*_3.-'1‘}5
H-'g(']"l} — g zhtalN-2)/z. ,

a= 05 @1)

The n is defined in interval 0 =n =N —1
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2.3. Key DSP operations

There are plenty of DSP algorithms. However, all these algorithms, including the most complex,

require similar basic operations.

2.3.1. Convolution

Convolution is one of the most frequently used operation in DSP. It is a mathematical operation on
two functions creating third function, that is typically viewed as a modified version of one of the

original functions. The definition of continues convolution is
(f =)0 £ [T f@) g(t —Ddr (22)

However, in DSP we work with discrete signals, so we need discrete convolution. Given two finite
and causal sequences, x(n) and h(n), of length N; and N, respectively, their convolution is defined

as

() = hin) = x(n) = Z h(K) x(n — k) = Z () x(n — k),
k=0

k=—o

n=01,..,(M—-1) (23)

where the symbol * is used to denote convolution and M = Ny + N, — 1.

2.3.2. Auto-Correlation

Autocorrelation refers to the correlation of a time series with its own past and future values.
Res(D) = (£(0) « (- @) = [Tf @) Ft — Dat (24)

Positive autocorrelation might be considered a specific form of “persistence”, a tendency for a sys-
tem to remain in the same state from one observation to the next. Autocorrelation complicates the
application of statistical tests by reducing the number of independent observations. Autocorrelation
can also complicate the identification of significant covariance or correlation between time series
(e.g., precipitation with a tree-ring series). Autocorrelation can be exploited for predictions: an
autocorrelated time series is predictable, probabilistically, because future values depend on current
and past values.

Autocorrelation can be also estimated using FFT using Wiener-Khinchin theorem as follows

R(r) = [_S{w)elZ = gf (25)

Slw) = _]"_i R(r)e itmetdr (26)



UTB Zlin, Faculty of Applied Informatics 23

2.4. Pitch Detection

“We can define pitch detector (PD) or pitch estimator as a software or hardware device that takes
sound signal as input and attempts to determine the fundamental pitch period of that signal. That is,
it attempts to find the frequency that a human listener would agree to be the same pitch as the input
signal (assuming there is one such pitch).” [6]

The pitch detection can be used only under certain conditions on limited set of sounds. Not
all sounds have clear pitch, such as cymbal crash, brief impulse, or complex sound masses, so it
would be pointless to determine pitch.

The principles of human pitch perception are not fully understood. Human can perceive pitch
even in very noisy environment, follow multiple pitches simultaneously and also detect tiniest pitch
changes, such as vibrato®. In such case, the goal of PD is to filter the signal from noisy surround-
ings, recognize multiple different tones and locate the centre pitch respectively.

In summary, the requirements for PD are quite high and very much depend on current sce-
nario. In some cases, it is desired to be precise and accurate, in others we need the pitch detector to
tolerate small deviations.

There are many methods of detecting pitch. In this thesis I focus only on the real-time ones.

2.4.1. Difficulties and Problems

As mentioned before, pitch detection is not easy and straightforward process and it is accompanied
by many problems.

If the tones are played in legato or just in rapid sequence, the tone transition can cause
make analysis unclear and short-time PD confusion.

Attack transient is high amplitude, short-duration sound at the beginning of the waveform.
This can cause confusion during detection process. Detailed analysis of the waveform of many
instruments reveals chaotic and instable attack. If a fundamental frequency is present in the attack,
it is probably obscured by noise and inharmonic partials. For example, with string instruments it is
caused by the initial finger motion until the string find and settle in the stable pitch. With some
instruments this may take 100 ms or more. During this period the detection is impossible.

PDs using spectrum analysis algorithms usually have problems with acquiring low frequen-
cies. It is useful to combine such PD with time-domain one. It is difficult for any PD to identify
low pitches in real time. In order to determine the low-frequency fundamental pitch, at least three

cycles of the steady-state waveform should be sampled before the analysis can begin. For example,

° Vibrato is musical effect of regular, pulsating changes of pitch of the vocal, string, or wind instruments.
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an A at 55 Hz, three cycles take 54 ms to sample. If such sound contains also the attack transient,
adding the delay of PD algorithm makes the evaluation delay inevitable.

As the low frequency pitch cause problem to frequency-domain algorithms the high fre-
quencies can also cause problems to some real-time PDs in time-domain. As the frequency rises,
one pitch period is represented by fewer samples. The resolution with which pitch can be deter-
mined in the time domain is directly affected by the length of the pitch period or the number of
samples of delay used in comparing a signal with its past.

All PDs start with an analysis of narrow time segment that lasts from about 20 to 50 ms. In
contrast, human pitch perception is not so time-localized. Since PDs work only from local details
they may myopically track irrelevant details that were produced unintentionally, such as unsteadi-
ness at the beginning of a note or excessive vibrato.

The acoustical ambience within which a sound is heard affects the PD accuracy. A closely
miked and compressed studio recording may exaggerate incidental playing noises, such as bow
scraping, key clicking, or breathing sounds, overlapping the signal heard by the PD. By contrast,
tones bathed in reverberation and echoes smear early notes over the start of new notes. Provided

that the analysis is carried out in non-real time, an attempt at ambience removal may help the PD.

(6]

2.4.2. Time-Domain Methods

There are two main approaches of detecting the pitch of a sound. The first is by analysing in-
formation in the time domain (the explicit data contained in the samples), and other is by analysing
the frequency domain (the distribution of the different frequencies spread throughout the frequency
spectrum). Fundamental period methods look at the input signal as a fluctuating amplitude in the
time domain, like the signal that appears on the screen of an oscilloscope. They try to find repeat-
ing patterns in the waveform that give clues as to its periodicity. Perhaps a more suitable term for
these types of pitch detectors would be "periodicity detector". [3] [6]

In the time domain, the note envelope is the shape of the amplitude or loudness of a musical
note throughout its entire duration. The envelope is made up of four main parts. The first part,
called the attack, is when the note is first picked, and can be seen as a sharp increase in amplitude
from zero to the peak. After the attack, the decay is the period during which amplitude falls down
from the peak to the main portion of the note called the sustain. During the sustain, the note gradu-
ally falls until the release, when the note is silenced or becomes inaudible. By paying attention to
the relative amplitudes, note onsets can be inferred by sudden increases in amplitude. While this
can suggest timing and temporal location of a note, it does not show us which pitch or how many
notes are being played at a time. [3]

Pre-processing by filters may improve the accuracy of time domain PDs and make them very

accurate, especially in lower frequencies, where frequency-domain PDs cannot reach such accura-
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cy. For example, in case of zero-crossing algorithm the lowpass filter can significantly reduce

higher frequencies, which can cause multiple crossing of the axis in one crossing point.

2.4.2.1. Simple time-domain methods

One type of pitch detector tries to find periodicities in the waveform by looking for repeating zero-
crossings. A zero-crossing is a point where the waveform's amplitude goes from positive to nega-
tive or vice versa. For example, a sine wave crosses the zero amplitude threshold at the middle and
end of its cycle. By measuring the interval between zero-crossings and comparing successive inter-
vals, the PD infers a fundamental frequency.

A variation on zero-crossing detection is peak rate detection, involving measuring the dis-
tances between peaks. In general, zero-crossing and peak PDs are relatively simple and inexpen-
sive, but they are also less accurate than more elaborate methods. This is because other frequencies
that are not the pitch frequency may also generate waveforms that cross the zero point or exhibit

peaks.

2.4.2.2. Autocorrelation Function

One popular time domain algorithm is called autocorrelation. It looks for the highest peaks of each
wave in the sample window, and measures the distances between them. With these distances, the
period of the wave can be inferred, and the frequency can be detected. This method works well for
individual pitches or notes, but when there is more than one note sounding at a time, the algorithm
is unable to classify them.

Autocorrelation is not so fast as previous time-domain methods, because it involves applying
autocorrelation to input signal. Unlike the methods above having linear time complexity, the fastest

known autocorrelation algorithm has time complexity 8(N - log{IV)) (see 2.3.2).

2.4.3. Frequency-Domain Methods

To analyse a sample window in the frequency domain (FD), a common technique is to run
the samples through a function called the Fourier transform. This function takes in an array of am-
plitudes at discrete points in time, and outputs an array of frequency bins that contain the magni-
tude and phase of different parts of the frequency spectrum. By locating the bins with the largest
magnitudes, it is possible to see which frequencies are present. In the case of a guitar note, the bin
containing the fundamental frequency as well as any bins containing the frequencies of any har-
monics will have significant magnitudes. [3]

As mentioned previously, the Fourier transform, (specifically the discrete Fourier transform)
takes in a vector of audio samples and produces a vector of frequency bins with both magnitude

and phase information corresponding to different ranges of the spectrum.
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TR

e=2TNix(n)e™™ N —w<k <o (1.27)

Because calculating the DFT is on the order of #(N?), a fast Fourier transform (FFT) is used
instead to calculate the same result in & (N.log(N)) operations. When the FFT is taken repeatedly

over short periods of time (often using overlapping windows), the result is called a short-time Fou-
rier transform or STFT. The STFT can be visualized to show the change in local frequencies over
time. [3]

The Fourier transform result gives us information about equal spaced frequency bands from
0 Hz up to the Nyquist frequency which is equal to half of the sampling rate. The number of useful
bands is equal to half of the number of samples in the input window. So, for example, if we are
using a window of 1024 samples and using a sampling rate of 44.1 kHz, we will end up with 512
frequency bands spanning the total range of frequencies between 0 and 22050 Hz. [7]

In addition to there being many notes with lots of harmonics, different notes may have over-
lapping harmonics. For example, the first four harmonics of the note A2 are 110, 220, 330 and 440.
For E2, they are 82.4, 164.8, 247.2, and 329.6. At 44.1 kHz, it would take a very long window size
to compute an FFT with high enough resolution for 329.6 and 330 to end up in separate bins. As
more notes are sounding simultaneously, there is a larger chance of harmonic overlap. Also, this
shows that bandwidth of the FFT bins is important. For example, with a window size of 1024 sam-
ples, the bandwidth of FFT bins will be 43.1 Hz. The lowest notes on the guitar have fundamental
frequencies that differ by less than 10 Hz, so at this resolution, many of the first harmonics will
overlap with each other, making it difficult to distinguish between notes.

Another issue with the FFT output is that during the initial attack, there is a lot of noise asso-
ciated when the finger or pick strikes the strings. Not until the actual sustain are frequency bins
generally representative of the true harmonics of the sounding notes. While this attack period is
very short, it must be taken into account. [3]

Before FFT is computed, we apply the Hanning windowing function to the sample buffer.
Window functions are used to scale the samples in the time domain, and help to reduce edge effects

that cause spectral leakage in the resulting FFT. [3]
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2.4.3.1. Strongest frequency

The easy and fast method of finding the pitch is to select the strongest frequency as the fundamen-
tal. More sophisticated way might be find harmonics and subtracting adjoining harmonics will lead
to the fundamental frequency. Depending on sound nature and spectral distribution of harmonics
power the strongest frequency does not always have to be fundamental. This can be enhanced by
autocorrelation of the signal. This method increases the power of lower frequencies and suppress

he high ones. Applying Wiener-Khinchin theorem we can compute autocorrelation using two FFTs

accordingly:
Fr(w) = FFT[x(8)] (28)
5(w) = Fglw)- Fglw) (29)
R(t) = IFFT[S(w)] (30)

As we want the spectrum of autocorrelated function, adding another FFT would be redun-

dant, since we can omit the last step instead and attain the same effect.

FFT(IFFT[S(w)]) = 5{w) 31)
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3. SYNTHESIZER

A sound synthesizes is an electronic instrument or a software capable of producing wide range of
sound. It can both imitate other instruments as well as create new sounds. Synthesizers are built

from blocks, that every one of them generates or modulates the signal.

3.1. Basic synthesis controls

3.1.1. Oscillator

The tones produced by synthesizer are generated by oscillator. The oscillator can generate three

types of wave. The sine wave

y(n) = A-sin (ZTEH L Eﬁ) (32)
Iz
square wave
- 1 0=n<?®
yin) = N - 33
-1 Zznan (33)
and saw-tooth wave
Ay — 2 VS
ym)=2-(n-3)7 (34)

3.1.2. ADSR Envelope Generator

The loudness produced by many instruments is not always the same for all the time it sounds. The
attack and decay have a great effect on the instrument’s sonic character. Sound synthesizer often
applies envelope generator that controls a sound’s parameters over the duration. Most often is an
ADSR (attack decay sustain release) envelope. The envelope can be applied to control not only
amplitude, but also filter frequency, oscillator frequency and other synthesizer parameters. The
contour of an ADSR envelope is specified using four parameters:
e Attack time is the time taken for initial run-up of level from nil to peak, beginning when
the key is first pressed.
e Decay time is the time taken for the subsequent run down from the attack level to the des-
ignated sustain level.
o Sustain level is the level during the main sequence of the sound's duration, until the key is

released.
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e Release time is the time taken for the level to decay from the sustain level to zero after the

key is released.

Amplitude

Sustain

Tirmwe
Attack Decay _

_—

Release

Ky on

Figure 4: Schema of ADSR envelope

3.1.3. Filter
The various types of filters can be defined according to the following classification (see Figure 5):

o Lowpass (LP) filters select low frequencies up to the cut-off frequency f: and attenuate fre-
quencies higher than fc. Additionally, a resonance may amplify frequencies around fc.

e Highpass (HP) filters select frequencies higher than f:and attenuate frequencies below f,
possibly with a resonance around f-.

e Bandpass (BP) filters select frequencies between a lower cut-off frequency fand a higher
cut-off frequency fo. Frequencies below foand frequencies higher than fer are attenuated.

e Bandreject (BR) filters attenuate frequencies between a lower cut-off frequency fozand a
higher cut-off frequency fer. Frequencies below foand frequencies higher than for are
passed.

e Allpass filters pass all frequencies, but modify the phase of the input signal.

The lowpass with resonance is very often used in computer music to simulate an acoustical resonat-
ing structure; the highpass filter can remove undesired very low frequencies; the bandpass can pro-
duce effects such as the imitation of a telephone line or of a mute on an acoustical instrument; the

bandreject can divide the audible spectrum into two bands that seem to be uncorrelated.
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Figure 5: Filter classification [8]

3.1.3.1. Canonical filters

There are various ways to implement a digital filter. The simplest being the canonical filter, as

shown in Figure 2.2 for a second-order filter, which can be implemented by the difference equa-

tions
xpn)=xn) —ax,in— 1) —azx,(n—2)
y(n) = bgx, (n) + byx,(n— 1) + byxp(n—2)

Table 3: Coefficients for first-order filters. [8]

bo b1 a1

K K |(K-1)
Lowpass | (x +1) [ (K +1) | (K +1)

_ K-1
Highpass | (g +1) | (K +1) | (K + 1)

(K —-1)
(K +1) 1

(K—-1)
(K +1)

Allpass

and leads to transfer function

H(z} _ b:.+b._z_"-+b5,z_‘:‘
1t+a,=2"taqz—*

(35)

(36)

(37

By setting @; = by = 0, this reduces to a first-order filter which, can be used to implement an all-

pass, lowpass or highpass with the coefficients of Table 3 where K depends on the cut-off frequen-

cy feby
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K =tan (ﬂ.’ f:] (38)

For the allpass filter, the coefficient K likewise controls the frequency fc when —90° phase shift is

reached.
b
Xg?) n I @D y(n)
-1
—ay * b,
XD
2—1
—a, b
T —,

Figure 6: Canonical second-order digital filter [§]
For the second-order filters with coefficients shown in Table 4, in addition to the cut-off fre-
quency (for lowpass and highpass) or the centre frequency (for bandpass, bandreject and allpass)
we additionally need the Q factor with slightly different meanings for the different filter types:

e For the lowpass and highpass filters, it controls the height of the resonance. For = %, the
W &

filter is maximally flat up to the cut-off frequency; for lower Q, it has higher pass-band at-

tenuation, while for higher O, amplification around fc occurs.

e For the bandpass and bandreject filters, it is related to the bandwidth f; by @ = % /b, ie., it

is the inverse of the relative bandwidth f—h.
C

e For the allpass filter, it likewise controls the bandwidth, which here depends on the points
where £90° phase shift relative to the —180° phase shift at fc are reached.

While the canonical filters are relatively simple, the calculation of their coefficients from pa-

rameters like cut-off frequency and bandwidth is not. In the following, we will therefore study filter

structures that are slightly more complicated, but allow for easier parameterization.

bo b b, ap :P)

K2Q 2K2Q K2Q 2Q(kK*—-1) |KQ-K+¢Q
Lowpass | k20+K+Q | K2Q+K+Q |K2Q+K+Q |K2Q+K+Q |K2Q+K +Q
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. Q 3 2Q Q@ 2Q0(K*-1) |K’Q-K+¢Q
Highpass | k204 K+Q | K2Q+K+Q| K2Q+K+Q |K2Q+K+Q |KXQ+K+Q
K _ K 2Q(k%—1) |KZQ-K+Q

Bandpass | 20+ k + @ 0 KQ+K+QKQ+K+Q |KXQ+K+(Q
QIL+K9) 20(KZT—1) Q1 +K%) | 20(k*—-1) |KQ—-K+¢Q

Bandreject | k204 k4 Q | K2Q+K+Q |K2Q+K+Q |K2Q+K+Q |KIQ+K+Q
K2Q-K+Q | 2Q(K*—-1) 20(K*—1) |K2Q—-K+Q

Allpass | k294 K +Q | KZQ+ K +Q 1 KIQ+K+Q |K2Q+K+Q

Table 4: Coefficients for second-order filters. [8]

3.1.4. Amplifier

In practical implementation, the signal coming out of the filter circuitry must be brought up in level

so that the output signal shall be strong enough to drive the line level inputs. This is done by an

amplifier. The function of amplifier is

y(n) = k- x(n)

(39)

where k is the gain level. If k<[ the signal is reduced and for k>1 is strengthened. It usually con-

sists of a knob for setting the overall gain level, and one input and one output port. Most important-

ly, it has also a control input for temporal amplitude level change for connecting signal from ADSR

envelope generator.




UTB Zlin, Faculty of Applied Informatics 33

3.2. On-Set filter

To activate ADSR envelope attack and release, we need detector, which indicates the beginning of
the note and the end, respectively. For this purpose, is used On-Set filter (OS). OS use envelope
detector, sometimes also called envelope follower, and one or two thresholds to detect note start

and end.

3.2.1. Envelope detector

Signal’s envelope is equivalent to its outline and an envelope detector connects all the peaks
in this signal. Envelope detection has numerous applications in the fields of signal processing and
communication, one of which is amplitude modulation (AM) or On-Set filter. There are multiple

methods of finding the envelope.

3.2.1.1. Squaring and Lowpass Filtering

This envelope detection method involves squaring the input signal and sending this signal through
a lowpass filter. Squaring the signal demodulates the input by using the input as its own carrier
wave. This means that half the energy of the signal is pushed up to higher frequencies and half is
shifted down toward DC. You then downsample this signal to reduce the sampling frequency. You
can do downsampling if the signal does not have any high frequencies which could cause aliasing.
Otherwise an FIR decimation should be used which applies a low pass filter before downsampling
the signal. After this, pass the signal through a minimum-phase, lowpass filter to eliminate the high
frequency energy. Finally, you are left with only the envelope of the signal.

To maintain the correct scale, you must perform two additional operations. First, you must
amplify the signal by a factor of two. Since you are keeping only the lower half of the signal ener-
gy, this gain matches the final energy to its original energy. Second, you must take the square root
of the signal to reverse the scaling distortion that resulted from squaring the signal.

This envelope detection method is easy to implement and can be done with a low-order fil-

ter, which minimizes the lag of the output.

3.2.1.2. Envelope follower with different attack and release

This envelope detection method involves LPF to smoothen the signal and then transposition of
negative values to the positive ones, which can be done by simply by taking the absolute value of
the sample. If the value of current sample is higher than the previous one, set the envelope current
sample proportionally by the attack coefficient, otherwise decrease the amplitude using release

coefficient.
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cale(t —1) — x(1)), x(t) = e(t)

e(t) = Lﬂeft — 1) —x(t)), x(t) =e(t)

(40)

3.2.1.3. The Hilbert Transformation

This envelope detection method involves creating the analytic signal of the input using the Hilbert
transform. An analytic signal is a complex signal, where the real part is the original signal and the
imaginary part is the Hilbert transform of the original signal.

Mathematically the envelope e(?) of a signal x(z) is defined as the magnitude of the analytic

signal as shown by the following equation.

e(t) =/ x(t)? + x(t)* (41)

where £(t) is the Hilbert transform of x(?).

You can find the Hilbert transform of the signal using a 32-point Parks-McClellan FIR filter.
To form the analytic signal, you then multiply the Hilbert transform of the signal by sqrt(-1) (the
imaginary unit) and add it to the time-delayed original signal. It is necessary to delay the input sig-
nal because the Hilbert transform, which is implemented by an FIR filter, will introduce a delay of
half the filter length.

You find the envelope of the signal by taking the absolute value of the analytic signal. The
envelope is a low frequency signal compared to the original signal. To reduce its sampling frequen-
cy, to eliminate ringing and to smooth the envelope, you downsample this signal and pass the result

through a lowpass filter.

3.2.2. Thresholds

We need the thresholds to indicate, where the signal envelope level is so high or low, the note starts
or ends, respectively. On-Set Filter can implement either one threshold for both, start and end of
the note, or hysteresis!®, for start and end independently. One to set the output and another, set a
few dB below, to reset the output. This means that once a signal has dropped below the close
threshold, it has to rise to the open threshold, so that a signal that crosses over the close threshold

regularly does not set the filter and cause chattering.

10 Hysteresis is the dependence of a system not only no its current state or environment but also on its past
one. The dependency arises because the system can be in more than one internal state. To predict its future
development, either its internal state or its history must be known.


https://en.wikipedia.org/wiki/Hysteresis
https://en.wikipedia.org/wiki/Decibel
https://en.wikipedia.org/w/index.php?title=Chattering&action=edit&redlink=1
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II. PRACTICAL PART
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4. VST PLUG-IN

As a practical part of this thesis is to create plug-in in VST technology implementing suitable algo-
rithm to analyse string instrument sound, extract the fundamental frequency and further process it

with voltage-controlled amplifier (VCA) and voltage-controlled filter (VCF).

4.1. Virtual studio technology

Virtual studio technology is software interface developed by Steinberg Media Technologies for
audio synthesizers and effects to simulate traditional recording studio techniques. VST plug-in
cannot run by itself and relies on other software using the VST interface. Such software is mostly
the digital audio workstation.

“From the host application’s point of view, a VST Plug-In is a black box with an arbitrary
number of inputs, outputs (Midi or Audio), and associated parameters. The Host needs no
knowledge of the Plug-In process to be able to use it.” [9]

The VST provides interface for inputs and outputs as well as for the parameters, that can be
automatized using the host application. The input and output values can move within the range

from -1.0 to 1.0 inclusive and the parameters can reach values from 0.0 to 1.0 inclusive.
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4.2. Digital audio workstation

Digital audio workstation (DAW) is a computer software or electronic device providing functional-
ity for creating, recording and edition sound. It can use multiple software plug-ins as well as the
hardware components, of which both of them can also be partly or fully controlled from the inside

of the DAW.

4.2.1. Interface

DAW can have several user interfaces of which the most common nowadays applies the
multitrack tape recorder metaphor. This is based on the technique when the sounds are recorded
separately and then played and recorded together allowing adding delay, changing the level and
tone or applying effect to each sound without affecting the others. All tracks are then mixed togeth-

Cr.

Figure 7: Ableton Live 9
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4.2.2. Functionality

Each track!! has its own parameters, such as the sound level, pan (for stereo sounds) and slots for
additional effects. In case of midi also the sound-generating device has to be added.

The multitrack metaphor requires a mixer to put the tracks together. Mixer is the fundamen-
tal part of DAW since it is the place, where the tracks are compiled together. Each track can have
set the amplitude, pan and sometimes other parameters, such as solo parameter.

‘.I
HNaea

Ié”élél [

EE] 2

Figure 8: Ableton Live mixer

Automation is user defined function of the parameter of effect. The process can be set using
the breakpoints. Between each breakpoint there is defined function stating the value for the pa-
rameter in each moment. The function can be linear or exponential or logarithmic depending on the

DAW. For each parameter can be set only one automation.

Figure 9: Ableton Live automation

4.3. Prerequisites

The plug-in is written in C# language using .NET Framework 2.0. To open the solution in Visual
Studio it is required to have installed .NET minimum version 2.0 and VST host program. For edit-
ing and compilation, the source is required Visual Studio 2012 and ILMerge. VST.NET v1.0 and

Exocortex.DSP libraries are included in the solution.

4.4. Implementation

The goal of the practical part is to implement VST plug-in for guitar or bass signal consisting of
two switchable signal paths as shown in Figure 10. While first path leaves the input signal for fur-
ther modulation, second way consist of pitch detector, which analyse the input signal and sets the

fundamental frequency.

! Track is referred to as a single sound in the multitrack tape recorder metaphor technique
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The signal from either of these ways is then modulated by both VCF and VCA. The intensity
is controlled by separate ADSR envelope. On-Set filter (On-Set) indicates the beginning and end of
the tone from input signal. This signal is used to control bypass of VCO and setting ADSR enve-

lopes.
— ON-SET ADSR ADSR
x(n) f, y(n)
Ol PD VCO = VCF — VCA )

data signal
control signal

Figure 10: VST plug-in schema

This schema can be described with following equations

y(n) = k(boxy(n) + byx,(n— 1) + byx, (n—2)) (42)
where xpln) is canonical filter described in equation
xpn)=x(n) —a;x,(in— 1) —a,x;,(n—2)
(39).
All modules are stand-alone modules and can separately. In case of need they can be reor-

ganized or completely switched off, so the order and connection and dependency of the modules

can be changed by the developer inside the source code.
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4.4.1. Pitch detector

Pitch detector is implemented as algorithm taking strongest frequency of autocorrelated input sig-
nal described in 2.4.2.2. Implementation of this algorithm is done by autocorrelation of the buffered
samples and getting the power spectral density of the autocorrelation result. Here the strongest

frequency is considered to be the fundamental frequency.

Ctne Sided Power Spectra]l Density of autocomelsted signal

'3.33|— T TTTIT T T TTITT I || T TTIT T T T TTTI T .“'T'
0.025 — I' -
o 0.02
E
@
]
[
g 0.015
[=1
0
B
o
o 091 |[— —
0.005
" il I | | I -L-=p-_._/|\_J|l_A1 iipiil 1 |
o

-1 ] 1 2 3 4 5
10 10° 10 10 10 10 10
Frequeancy (Hz)

Figure 11: Power spectral density of autocorrelated signal with the peek in
fundamental frequency
For increased performance, the enhancements are implemented, such as frequency range to
have better control over the process and processing frequency that sets number of detection cycles
within second. The own pitch detection uses buffer, over which the FFT is computed with use of

Hann window.
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IVstPluginBypass
|SampleRate

»

| PitchDetector

Class

Fields

= Properties
& Bypass
& Frequency
&  FrequencyChangeTolerance
& HighestRequiredFrequency
& LowestRequiredFrequency
&  MagnitudeTolerance
& ProcessingFrequency
& SampleRate

= Methods
@ Bypass_PropertyChanged
@ PitchDetector
@ ProcessSample

= Events
£ FrequencyChanged

Figure 12: PitchDetector class

For still sound there can be set the frequency change tolerance, so if the oscillates within this

toleration, the event FrequencyChanged is not triggered.

Another optimization improves performance by setting the processing gap every n sample.

Since the FFT is computationally expensive operation it is better not to process whole buffer each

step.

4.4.1.1. Window

Windows for FFT are defined in its own separate class, where are defined various types of win-

dows. The implemented windows are as follows:

Bartlett
Bartlett-Hann
Blackman
Cosine
Gaussian
Hamming
Hann
Lanczos

Rectangular
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e Triangular

The definition of the windows can be found in 2.2.1.

4.4.2. Envelope follower

Envelope follower creates envelope from the signal. The basic idea is to create the positive enve-
lope following the course of the wave. The basic is to get the absolute values of the wave. To finish
the envelope, we need to set the parameters of attack and release. Attack and release influences the

envelopes ascension or descent respectively.

B

- EnvelopeDetector
Class
+ DspBase

* Fields
=l Properties
& Amplitude
& Attack
& Bypass
& Release
& SampleRate
= Methods
@  EnvelopeDetector

@ ProcessSample
@, Recomputedttack

@, RecomputeRelease
=l Events

£ AmplitudeChanged

Figure 13: EnvelopeDetector class

The attack and release are calculated using attack and release coefficient cat or cqs, Where the
value of the attack or release is given in milliseconds.
log 0.0

€ gpp = BT 0001 (43)

The final value of the amplitude is then calculated using following equation

y(n) = cgp (y(in— 1) — |x(m)]) + [x(n)| (44)

The decision if is used attack or release coefficient is given by condition [x(n)>y(n-1). If ab-
solute value of current input sample is higher than the previous output sample, the attack is used,
otherwise is used release.

For demonstration is example of the envelope for sine wave with 1000Hz, attack 1ms and re-

lease 3ms.
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Envelope follower with attack 1ms and rslease 3ms
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Figure 14: Envelope follower with attack 1ms and release 3ms

In current implementation we want to notify the rising edge immediately and also eliminate
the oscillation of output as much as possible but with acceptable delay at the tone’s end, so the

attack is set to Oms and release to 10ms. With this setting the envelope looks as follows.
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Envelope folowsr with atteck Oms and release 10ms
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Figure 15: Envelope follower with attack Oms and release 10ms

4.4.3. On-Set filter

On-Set filter is implemented as envelope follower to detect when the tone is on.

| OnSetFilter A
Clazs
=+ DspBase

* Fields
= Properties

& Active

& SampleRate
= Methods

@ CloseThreshold_PropertyChanged
@  OCnSetFilter

@ OpenThresheld_PropertyChanged
@ ProcessSample

= Events
#  ActiveChanged

Figure 16: OnSetFilter class

2.1
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The filter uses the envelope follower with attack Oms and release 10ms to get the current
amplitude. The amplitude is compared to the open and close threshold stating the moment the on-

set filter activity is triggered on and off.

Envelope follower with attack Oms and release 10ms

q - . - - T 5 o
]
|
|
0.5 = s
| =
L] . .
g =
E
=
0.5 = -+
L . |
1
a 0.0:02 0. 004 0.006 2.008 2.01
Time{s)

Figure 17: On-set filter with open and close threshold
On the graph can be seen the envelope of sine wave with open threshold marked with green
line and close threshold marked with red line. So in this case the filter will be to active state since
approximately the beginning at time 0 and deactivated in time 0.008. The delay depends on the
setting of the thresholds, which can be set by user.

4.4.4. Oscillator

Oscillator produces the sound at given frequency, which is in this program set to fundamental fre-

quency gained from PD.
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I5ampleRate
IVstPluginBypass
| Oscillator A
Clazs

Fields

= Properties

Amplitude
AmplitudeChangeTolerance
Bypass

Frequency

SampleRate

Yeerer

Shape
ethods
ActiveChanged

ArmplitudeChanged
Bypass_PropertyChanged

=

GenerateSample
CnFreqguencyChanged

e aeaead =

Shape_PropertyChanged

Figure 18: Oscillator class

The Oscillator class consist of multiple properties influencing the generated wave.
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4.4.4.1.8ine wave
Sine wave generation is implemented using sine function described in equation

y(n) = A-sin (21rn£ + lﬁ)
: (32) and produces only one frequency without any harmonic nor

inharmonic frequencies. The wave looks as follows.

Sine WWave f=1000Hz

LY | f | | {
3 | [ |
E a -Il' 3 1 f | | i —~1
E l I | f
Lo 1 |I |I
| f .l .'.
05 p— ' / | - —
| W |
3 /| | | |
a 0.0005 0001 0.0015 0.002 0.0025 0003

me{s]

Figure 19: Sine wave
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tne Sided Power Spectra]l Density of Sine Wave =1000Hz
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Figure 20: Power spectral density of sine wave
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Figure 21: Power spectral density of sine wave in logarithmic scale
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4.4.4.2. Square wave

Square wave generation is implemented using square function described in equation

N
=n=—

"
r

1

1z ©

y(n) = N (33) and produces only one frequency without any harmonic nor
-1 =n<N

(]

inharmonic frequencies. The wave looks as follows.

Sguare Wave F=1000Hz

L]
(%]

Amplitude
L]
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Figure 22: Square wave
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Power Spectral Density

Power Spectral Density

One Sided Power Spectral Density of Square Wave =1000Hz
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Figure 23: Power spectral density of square wave
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Figure 24: Power spectral density of square wave in logarithmic scale
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4.4.4.3. Saw tooth

Saw tooth wave generation is implemented using saw tooth function described in equation

yn)=2- (’n - ;)? (34) and like a square wave produces multiple harmonic frequencies, just
=4 Jg

in different power. The wave looks as follows.

Sawtooth Wawve =1000Hz
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Figure 25: Saw tooth wave

On the power spectral density graph can be seen the harmonic frequencies in the multiplica-

tions of the fundamental frequency as described in equation (5)
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Power Spectral Density

Power Spectral Density

One Sided Power Spectral Density of Sawtooth Wave f=1000Hz
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Figure 26: Power spectral density of saw tooth wave
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Figure 27: Power spectral density of saw tooth wave in logarithmic scale
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4.4.5. ADSR Envelope

The ADSR generates envelope that is used by other DSP effect. The generated ratio is the value of

ADSR envelope function in certain time. The ratio is then applied with the effect on the input val-

uc.

y(n) =r - x(n) + (1 — ) - x:(n)

The 1, stands for the ratio generated by the envelope in method GetRatio() and xf(n} 1s fil-

tered sample. This equation is applied in method Apply().

Q ISampleRate

=

-
AdsrEnvelope
Sesled Clzss

e

2000 2008 =

et

Fields

= Properties

Attack
Decay
Motefctive
Release
SampleRate
Sustain

hods
Apply
AttackMgr_PropertyChanged
DecayMagr_PropertyChanged
GetRatic
MoteChanged
MoteCff
MoteCn
ReleaselMgr_PropertyChanged
SustainMgr_PropertyChanged
UpdateParameters

Figure 28: AdsrEnvelope class
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4.4.6. Amplifier

The amplifier multiplies the input signal with gain value. The ADSR envelope sets the ratio in

which the amplification is applied.

Amplifier A
Class
=+ DspEffectWithEnvelope

* Fields
=l Properties
& Bypass
A SampleRate
= Methods
@ Gain_PropertyChanged
@ ProcessSample

Figure 29: Amplifier class

4.4.7. Basic filter

Basic filter is the simplest implementation of filter removing high frequency noise by using moving

average algorithm, which basically takes average of two following samples.

y(n) = Xrixtnl (46)

"
r

4.4.8. Filter

Filter is implemented as canonical second-order filter described in equation

H(z) = %. (37). Can be set to four types of filtering — highpass, lowpass, bandpass and

bandreject. Depending on the frequency and Q parameter the input is filtered. Filtered output is
also driven through the ADSR envelope. Internally it contains small buffer to keep the last three

input samples needed for processing the filter.
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| Filter A
Class
= DspEffectWithEnvelope

Fields

=l Properties
Bypass
Frequency
8]

SampleRate
Type

m
S v

Ly
=
7

ComputeCoeficients
ComputekFactor

Filter
Frequency_PropertyChanged
PowerSwitch_PropertyChanged
ProcessSample
C_PropertyChanged
Type_PropertyChanged

00000000

Figure 30: Filter class

The filter was tested on white Gaussian noise:
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Figure 31: White Gaussian noise
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Figure 32: Spectral Density of White Gaussian noise
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Figure 33: Spectral Density of lowpass filtered White Gaussian noise
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One Sided Power Spectral Density of filtered White noise
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Figure 34: Spectral Density of highpass filtered White Gaussian noise
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Figure 35: Spectral Density of bandpass filtered White Gaussian noise
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One Sided Power Spectral Density of filtered White noise
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Figure 36: Spectral Density of bandreject filtered White Gaussian noise

4.4.9. Parameter Managers

Parameter managers are classes creating VST automations and binding. Each effect that has a VST
automation has its own manager and each instance of the class will create the defined automations.
For example, in AdsrEnvelopeParameterManager there are automations for each parameter of At-

tack, Decay, Sustain and Release.

-
AdsrEnvelopeParameterManager #
Sesled Class
=+ WstManagerBasze

= properties
K AttackMgr
¥, DecayMgr
£, Releaselgr
#, SustainMgr
= Methods

%, AddParameterManagersHostAutomaticn
@ AdsrEnvelopeParameterManager
E’* InitializeParameters

Figure 37: AdsrEnvelopeParameterManager class
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4.4.10. Audio processor

Audio processor is the base class defining the processing pipeline. In constructor all the effects and

managers are created and event and data bindings are set. Then the Process() method receives the

input sample and returns output sample. Inside this method the whole processing pipeline is done.

q) VstPluginBypass

-

m
-

=

\

AudioProcessor
Sealed Class
=+ VstPluginAudicProcessorBaze

= Fields

@ defaultTimelnfoFlags
liia _inputBuffers

=

=

@
W

I:Im I:IE I:Im I:Im [Iﬁ [Itl [Itl

[Ihihlhlﬁ 'Ih'lh 'I*'Ihlhlt 'Ih'lh ‘Ihlhlh

a _plugin

_sampleRate

_sequencer

_timelnfo

AudiclnputCount
AudicOutputCount
InitialTail5ize
SampleRateToBufferSizeRatio

roperties

AmplifierParameterManager
Arplifiers

Bypass
FilterEnvelcpeParameterfanager
FilterParameterhManager

Filters
OnSetFilterParameterfanager
OnSetFilters
CscillaterParameterfManager
Cscillators

Pitc hDetectorParameterManager
PitchDetectors

Powerhdeters

SampleRate

Timelnfo

ethods

AudioProcessor

Process [+ 1 overload)

E’a SetBuffersSize

AmplifierEnvelopeParameterilan...

Figure 38: AudioProcessor class
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4.5. Graphic user interface

To create graphic user interface (GUI) I have used WinForms technology. It provides extensive
amount of tools and controls for creating and programming GUI. One of the most useful feature of

the controls are the events, which allows me to utilize the observer pattern.

GuitarPitchDetector/3-Operator ﬂ
Pitch detection Filter Gain
v Pitch detection ON [+ Filter ON Master
Oscillator Type Gain Left Right
(5 Sine " HPF (™ BPF 0.14 0.00 0.00
C Saw " LPF ' BRF T
(™ Square Farameters
Frequency 10,924 Hz
l
p
Q 0.11
[
P
Envelope Envelope
Attack Decay Sustain Release Attack Decay Sustain Release
0.00 0.55 0.00 0.00 0.00 0.55 0.00 0.00
L J
P - P P - I

Figure 39: Plug-in GUI

4.6. Tests and Verification

Software was tested on sequencer and VST host program Ableton Live. Algorithms of all synthe-

sizer blocks were verified using Octave or Matlab. Source codes are included on CD.
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4.7. Compilation

In post-build actions there are defined merge action for the output and C#NET library using IL
Merge library. The merged library with extension vstdll is created and ready for use in DAW.

4.8. 3" Party libraries

The plugin is based on VST.NET library, which is under LGPL licence. As other library was used

Exocortex.DSP containing implementation of complex numbers and FFT.



UTB Zlin, Faculty of Applied Informatics 62

5. CONCLUSION

Aim of this thesis was to design and implement algorithm for pitch detection of guitar signal in
VST technology.

In theoretical part I deal with digital sound processing in general and focus on the methods
of pitch extraction, their types, positive and negative sides and suitability for usage in real-time
processing and guitar and bass signals and detecting the edges of the notes. For one of these meth-
ods I designed solution as the VST plug-in.

In practical part the chosen method of pitch detection was implemented as VST plug-in ef-
fect supplied with synthesizer using oscillator generating varies waves, filter and amplifier, both
driven by ADSR envelope.

From testing I managed, computationally the most difficult and slowest block was the pitch

detection, which can cause processing delay up to 50ms.

5.1. Future Work Perspectives

As mentioned before, PD is not straightforward technique and needs to be researched deeper. Until
we know the principles of human pitch perception, we need to try to find optional way of reliable
PD. There is possibility for deeper research in the field of monophonic sounds, but for extensive
and practical usage will be needed especially algorithms, which are able to extract pitch from poly-

phonic signals.

5.2. Personal Conclusion

This project brought me lots of new experience, opportunity to get deeper into signal processing,
see the way the DSP works, better understand real-time VST technology and new perspectives of
viewing signal processing. [ have had the opportunity to consult my thoughts and ideas with inter-

nationally acknowledged specialist.
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LIST OF ABBREVIATIONS

ADC  Analog-to-Digital converter

ADSR  Attack-Decay-Sustain-Release Envelope
BPF Bandpass Filter

BRF Bandreject Filter

DAC  Digital-to-Analog converter

DAW  Digital audio workstation

DSP Digital Sound Processing

DTF Discrete Fourier Transformation
FFT Fast Fourier Transformation

GUI Graphical User Interface

HPF Highpass Filter

LFO Low Frequency Oscillator

LPF Lowpass Filter

OS On-Set Filter

PD Pitch Detection

STFT  Short-Time Fourier Transformation
VCA  Voltage-Controlled Amplifier

VCF Voltage-Controlled Filter

VCO  Voltage-Controlled Oscillator

VST Virtual Studio Technology
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