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PREFACE 

Automation is an inseparable part of our contemporary society. It helps to make 

human’s lives more comfortable and safer by replacing of many stereotype, dangerous 

or just, for human itself, unmanageable activities. Moreover, the utilization of 

automation usually significantly reduces the production and operational costs. Thanks 

to this, many areas of automation have been very attractive and deeply studied 

disciplines for decades, in the broad sense of the word, even for millennia. 

This doctoral thesis intends to append a tiny piece into the mosaic of knowledge in 

the field of automatic control theory and its application. 
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RESUMÉ 

Předkládaná disertační práce se zabývá problematikou robustního řízení 

jednorozměrných systémů obsahujících parametrickou neurčitost. 

Návrh studovaných a vylepšených spojitých řídicích algoritmů je založen na 

obecných řešeních Diofantických rovnic v okruhu ryzích a stabilních racionálních 

lomených funkcí. Množina stabilizujících regulátorů je dána Youla-Kučerovou 

parametrizací, přičemž volba vhodného regulátoru vzhledem k požadavkům uživatele 

spoléhá na využití podmínek dělitelnosti v daném okruhu. Jedna z výhod této 

algebraické syntézy spočívá v existenci jediného kladného ladicího parametru, který 

slouží k dodatečnému ovlivnění výsledného regulačního chování. 

Robustní stabilitu systémů řízení, které obsahují navržený regulátor a řízený 

systém s parametrickou neurčitostí lze ověřit prostřednictvím některého ze 

specifických nástrojů, jehož volba závisí především na struktuře neurčitosti. Mezi 

možné techniky patří např. Charitonovův teorém, věta o hranách, věta o 32 hranách či 

princip množiny hodnot v kombinaci s větou o vyloučení nuly. Popis nejen těchto ale i 

dalších metod je rovněž součástí práce. 

Vybrané algoritmy jsou implementovány do programového produktu, který je 

vytvořen v prostředí MATLAB + SIMULINK s podporou Polynomial Toolboxu. 

Možnosti programu jsou ukázány na sadě ilustrativních příkladů pro řízený systém 

s intervalovou neurčitostí. Mimo to, další provedené simulační experimenty naznačují 

využitelnost navržených zákonů řízení také pro zcela odlišný typ neurčitosti, v tomto 

konkrétním případě pro systémy s periodicky variantními parametry, obecně též 

s dopravním zpožděním. 

V neposlední řadě disertace prezentuje reálné identifikační a řídicí experimenty na 

laboratorním modelu teplovzdušného tunelu. Řada výsledků, získaných při řízení 

teploty žárovky a rychlosti proudění vzduchu, zcela jasně potvrzuje praktickou 

aplikovatelnost použitého přístupu. 

 



 

 



 

 

ABSTRACT 

The doctoral thesis is focused on robust control of single-input single-output 

systems affected by parametric uncertainty. 

The proposed and improved continuous-time control design is based on general 

solutions of Diophantine equations in the ring of proper and Hurwitz-stable rational 

functions. The set of stabilizing controllers is given by known Youla-Kučera 

parameterization and the choice of the appropriate controller according to user 

requirements consists in utilization of divisibility conditions in the specified ring. One 

of advantages of this algebraic synthesis lies in the existence of single positive tuning 

parameter which serves for additional influencing of final closed-loop control 

behaviour. 

The robust stability of control systems containing designed regulator and 

controlled plant with parametric uncertainty can be verified via some specific tool. Its 

selection depends primarily on the uncertainty structure. For example the Kharitonov 

theorem, the edge theorem, the thirty-two edge theorem or the value set concept in 

combination with the zero exclusion condition belong among the potential techniques. 

However, not only these ones are described in this work. 

Moreover, the chosen algorithms are implemented into program created in 

MATLAB + SIMULINK environment with the support of the Polynomial Toolbox. 

The capabilities of the program are demonstrated on the set of illustrative examples for 

controlled system with interval uncertainty. Furthermore, additionally performed 

simulation experiments indicate utilizability of obtained control laws also for 

fundamentally different type of uncertainty, here specifically for systems with 

periodically time-varying parameters, generally with time delay. 

Last but not least, the thesis presents identification and control experiments on real 

laboratory model of hot-air tunnel. An array of results gained during control of bulb 

temperature and airflow speed clearly affirms the practical applicability of the 

approach.  
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Abbreviations 

SISO Single-Input Single-Output 

MIMO Multi-Input Multi-Output 

RPS Ring of Proper and (Hurwitz-)Stable rational functions 

LQR Linear Quadratic Regulation 

LQG Linear Quadratic Gaussian 

LTI Linear Time-Invariant 
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2DOF two Degrees Of Freedom 
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CPU Central Processing Unit 
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RAM Random Access Memory 

A/D, D/A Analog/Digital, Digital/Analog 

ISE Integrated Squared Error 

TBU Tomas Bata University 

 

 

Besides aforementioned more or less general symbols and abbreviations, there are also 

other ones used “locally”, i.e. for the only purpose, in the thesis. Their meaning should 

be always clear from the context. 
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1. INTRODUCTION 

This preliminary chapter is supposed to give an explanation of the work motivation 

and background of the problem. Moreover, it clarifies the structure of the thesis and 

elucidates adopted conception of notation and numeration. 

1.1. Motivation and background 

The principle of the closed loop has been the fundamental tool used for control of 

processes and objects in many fields of human activity in relatively unchanged form 

since antiquity. In the second half of the last century, the one of thorny problems 

emerged in theory of automatic control. New analytical methods of synthesis, which 

work on an assumption of exact mathematical model, have insufficiently taken note of 

uncertainty caused by imperfections in modelling or changeable physical properties. 

On that account, uncertain systems have become very attractive from the point of view 

of scientific research and also applications during previous almost three decades. It is 

fully natural, that an array of approaches to solve the related problems has been 

developed and improved during this long-term interest. 

The classical and probably also the most frequent task is to ensure appropriate 

control of the system which is affected by some changes, variations, perturbations or 

disturbances. In a very simplified way it can be said, that nowadays two basic 

principles, how to solve given problem, predominate. The first possibility is to assure 

unremitting adjusting of the controller according to changing conditions, i.e. its 

adaptivity.  Adaptive controllers are elegant and attractive from the perspective of 

some “intelligent” behaviour, unfortunately they are comparatively complex and not 

always reliable. The second eventuality is to design the one fixed controller which 

guarantees suitable behaviour not only for nominal system, but also for some 

neighbourhood. In this case, it is spoken about robustness of the controller. Robust 

controllers are favoured in practice, simple and easily utilizable. On the contrary, the 

abilities of these compensators are limited at great or fast changes in controlled system 

or operating conditions and, furthermore, robust control responses need not to be 

always “nice”. Obviously, many problem formulations associated with uncertainty do 
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not fit neatly into only these two categories, e.g. stochastic problems, fuzzy control 

problems or singular perturbation problems. Moreover, there is no strict demarcation 

among mentioned problem areas in real world, but they are often interconnected. 

Contemporary practice quite clearly prefers usage of one, fixed, robust controller. 

This work is focused on theory, simulation and practical application problems 

related to control of single-input single-output (SISO) linear dynamical systems with 

parametric uncertainty via continuous-time regulators designed through the general 

solutions of Diophantine equations in the ring of proper and Hurwitz-stable rational 

functions (RPS). 

1.2. Overview of the thesis 

The content of this work is divided into 10 main chapters. In an attempt to 

facilitate the orientation in the text for reader, a simple guideline throughout the thesis 

is provided. 

This first, introductory, part is intended for explaining the motivation for writing 

the thesis and background of the issue and, furthermore, it includes thesis overview and 

ends with clarification of adopted notation and numeration. 

The second chapter describes the current state of the art, inclusive of references to 

momentous literature. 

Then, the main goals of the thesis are defined in the third section. 

Next, fourth chapter starts with basic terms and theoretical aspects of robustness 

and continues with classification of systems with parametric uncertainty and 

description of typical tools of robust stability analysis for each individual uncertainty 

structure. Moreover, it includes many examples to illustrate given problems. 

The fifth part focuses on proposed algebraic approach to control design. Excluding 

the theoretical basis, it contains specific derivation of controller for first and second 

order plants for the sake of better demonstration of the synthesis process. Furthermore 

it is also concentrated on possible tuning of controllers via single positive parameter. 

The following, sixth, chapter is aimed to describe created MATLAB program for 

control and (closed-loop) robust stability analysis of interval systems. The capabilities 

of the product are shown on illustrative examples. 
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In an effort to test the utilizability of control algorithms also for other kind of 

perturbations and not only for parametrically uncertain systems, the seventh chapter 

deals with control of systems with periodically time-varying parameters, including 

time delay. 

The subsequent, eight, section presents results of identification and robust control 

experiments realized on two selected loops in real laboratory model of hot-air tunnel. 

The aim of the ninth chapter is to sum up main contribution of the thesis both for 

science community and practical applications. 

The final, tenth, chapter concludes the whole work. 

1.3. Adopted notation and numeration 

The numeration of subsections is done within each main chapter. The numbers of 

figures, tables, equations and examples are always compound of number of main 

section, the dot and number of the item itself within the bounds of the section – e.g. fig. 

8.2, tab. 5.1, equation (5.10) or example 4.15. Used literature is referred to by numbers 

enclosed by square brackets – e.g. [75]. The new terms or important information are 

highlighted using italics. 
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2. STATE OF THE ART 

In all classical control theory, the synthesis begins with a model of the controlled 

process. However, the behaviour of the real system is almost always different from the 

behaviour of the model. In a nutshell, the reason can be seen in inaccurate, simplified 

modelling and changes in physical parameters (the beginning of subhead 4.1 describes 

the origin of uncertainty in more detail). This incongruity begs the fundamental 

question, which is nicely formulated in [14]: “If we use an inexact mathematical model 

to derive the controller, will the system perform satisfactorily?” 

The introduction chapter has already outlined that two main approaches to 

overcome uncertainty predominate at present – adaptive control [7], based on 

continuous (on-line) identification of the process and on adjusting of the controller to 

current conditions, and robust control [1], [24], [51], [64], [82], ensuring preservation 

of certain properties of the control loop for the whole family of controlled plants. And 

just robust control has achieved great progress in last decades as a consequence of 

insufficient practical application of classical optimal control theories (LQR/LQG 

control, H2 optimal control, etc.). Robust control has been developed both in frequency 

(based on input-output model) and time (based on description in state space) domain. 

Moreover, the most of control problems has been solved, in compliance with the 

natural human behaviour, first for simpler systems described as SISO and only 

afterward for general MIMO systems. 

In brief, trio of principal tasks related to robustness can be seen in robust stability 

analysis, robustness margin problem and robust synthesis. Tools of robust stability 

investigation check (with necessary and sufficient or „only“ with sufficient condition) 

stability of closed control loop with uncertain plant and a priori designed controller. 

The aim of robustness margin question is to find the maximal uncertainty bounds under 

which the performance specification is satisfied. And finally, robust synthesis means 

setting of controller parameters to ensure robustness of closed loop. 

The determination of a low-order linear time-invariant (LTI) model from a 

physical system represents a separate problem. It can be distinguished between two 

different approaches. The first way obtains a simplified version of a very complex 
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mathematical description, usually based on complicated physical laws, such as a set of 

partial differential equations or a time delayed or a high order set of ordinary 

differential equations. This purely mathematical procedure of model simplification is 

called approximation [31], [33], [34]. The second technique, general identification, 

consists in computing a mathematical model from experimentally measured output of 

the system when a particular input signal is injected. Here, the classical parameter 

identification [43], [69] or more recent robust identification methods exist [2], [44]. 

Anyway, the outcome of these procedures should be some family of models. In other 

words, the idea of robust control assumes the physical plant as LTI model plus 

uncertainty. 

There are two principal uncertainty types and consequently two sorts of uncertain 

models. The first class, called parametric (or structured) uncertainty model, is often 

used when precise values of the actual parameters are not known and second one, 

nonparametric (or unstructured) model of uncertainty, is more suitable at disregarding 

of fast dynamics, nonlinearities, etc. [42]. Here, the additive and multiplicative form of 

uncertainty models can be distinguished. From the practical point of view, uncertainty 

is present in the plant in both the dynamics and the parameters. Their combination 

leads to the mixed uncertainty problem [17], [64], [72]. Furthermore, uncertainty 

bounding set is a ball in some appropriate norm. The most important are boundaries of 

a box or sphere shape. 

Many authors have aimed their attention to robust stability analysis of systems 

under parametric uncertainty and sequentially to synthesis of appropriate control 

systems [1], [14], [17]. The Kharitonov theorem [37] became the true milestone in this 

field. This instrument for testing of robust stability of interval polynomials uses four 

specially constructed ordinary polynomials, whose stability is equipollent to stability of 

the interval one. It is a curiosity, that the theorem got known, among others thanks to 

very complicated original proof, to scientific community not until its “rediscovery” in 

[13] and [19] all four years after the first publication. Afterward, many researchers 

picked up the threads of Kharitonov’s work by an array of new tools for more 

complicated uncertainty structures – for example the edge theorem [15], the thirty-two 

edge theorem alias the generalized Kharitonov theorem [22] which serve for systems 
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with affine linear uncertainty structure, the sixteen plant theorem [11] representing the 

specific tool for the same, but somehow restricted structure or the mapping theorem 

[14], [17], [78] for multilinear uncertainty. Furthermore, the universal graphical test of 

robust stability based on the value set concept and the zero exclusion condition [14] 

can be utilized not only for even more complicated uncertainty structures, but actually 

for all. 

In the matter of systems with nonparametric uncertainty, remind that the closed 

loop is indispensable for control “only” because of uncertainty and unknown 

disturbances or initial behaviour. In conventional feedback system, sensitivity reflects 

the measure of output disturbance rejection and tracking, and sensitivity to small 

additive parameter variations, i.e. it should be as small as possible to have good 

tracking of the reference signal and disturbance rejection, while complementary 

sensitivity reflects the capacity to suppress sensor noise and is also used as a measure 

of stability margin, thus, in order to prevent propagation measurement noise to the 

error and output signals, the complementary sensitivity must be low. The fact that the 

sum of these two functions is identical to one represents the serious restriction for 

design of controller, which should simultaneously guarantee stability, performance and 

robustness [16], [77]. The frequency separation and the choice of precedency in 

synthesis is known as loop shaping [25], [64]. The main principle of robust stability 

investigation for systems with nonparametric uncertainty can be seen in nowadays 

already classical small gain theorem defining the stability of closed loop in dependence 

on a norm (advantageously, utilizing the norm H∞) of transfer function of stable open 

loop [25], [80], [79]. 

Another model of nonparametric uncertainty used in control theory is in the 

absolute stability problem [17] where a fixed system is perturbed by a family of 

nonlinear feedback gains that are known to lie in a prescribed sector. By replacing the 

fixed system with a parameter dependent one, the more realistic mixed uncertainty 

problem is obtained. 

The control system synthesis has been very attractive and deeply studied discipline 

since approximately early 40s of the last century. The development of control design 

has gone from “classical” through “modern” up to “postmodern” approaches and the 
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outcome is a countless number techniques. The rudimentary tuning of PID controller 

by Ziegler and Nichols is believed to be basic, in common practice so far often 

sufficient, methodology. Among many others, the well known conventional tuning are 

Cohen-Coon, Chien-Hrones-Reswick and Naslin method, item standard forms of 

Whiteley or Butterworth, etc. Examples of relatively newer methods can be dynamics 

inversion [76] or balanced tuning of PI controllers [39]. Furthermore, there are 

methods using measuring of step responses or relay experiment. Åström and Hägglund 

in [5] purvey the overview of tuning of PI and PID-like controllers, as still the most 

used control devices. 

A period of late 1970s has brought polynomial techniques with controller design 

via solutions of Diophantine equations. The foundation stone of method proposed and 

improved in this thesis is an algebraic approach developed by Vidyasagar [75] and 

Kučera [41] and elaborated e.g. in [56], [59]. The control design is based on general 

solutions of Diophantine equations not in the common ring of polynomials but in the 

ring of proper and Hurwitz-stable rational functions. This method utilizes 

(Bongiorno)-Youla-Kučera parameterization of all stabilizing controllers and the 

choice of appropriate one according to user requirements is based on conditions of 

divisibility in the mentioned ring. The synthesis introduces the single positive scalar 

parameter which can be used for tuning of final controllers and for influencing control 

performance, robust stability, etc. Moreover, the methodology is utilizable also for 

unstable plants [57] or for time-delay systems [58], [62].  

And finally, the researchers of “postmodern” era have been focused e.g. on theory 

of the structured singular value µ. It represents an important method both for analysis 

and synthesis of SISO and MIMO uncertain systems. The key idea consists in 

minimalization of µ with the assistance of so-called D-K iterations via repeated 

solution of H∞ problem [8], [53]. Other attractive techniques of last years are these 

ones based on LMIs (Linear Matrix Inequalities) [21]. It allows solving a wide 

spectrum of problems, including various restrictions. Once the problem is formulated 

in the LMI sense, it can be effectively resolved through algorithms of convex 

optimization. Furthermore, also the modern methods counting for example upon 

adaptive algorithms, predictive methods, fuzzy control systems, neural networks or 
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other achievement of artificial intelligence [81] can be utilized. However, this is a 

different story. 

From the practical, computational and programmer point of view, many tasks of 

analysis and synthesis are conveniently solvable via suitable software products. 

Generally, the packages such as MATLAB, Mathematica and Maple belong to the 

most known and used. The MATLAB + SIMULINK [73] environment combines 

efficient computation, visualization and programming. From an array of extensions, 

e.g. the Control System Toolbox, Robust Control Toolbox, LMI Control Toolbox, Mu-

Analysis and Synthesis Toolbox, and Polynomial Toolbox [55] are exploitable for 

robust control problems. Especially the Polynomial Toolbox contains many useful 

functions for solving of Diophantine equations, robust stability of systems with 

parametric uncertainty, etc. For illustration, some other programs are described in [71] 

(analysis of interval systems), [70], [54] (LMI solver and interface), [36] (control 

design and simulation for time-delay systems), [61] (for systems with periodic 

parameters) or [47] (for plants with interval uncertainty). 
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3. GOALS OF THE THESIS 

The principal goal of this doctoral thesis is to utilize proposed and improved robust 

control laws achieved through the general solutions of Diophantine equations in RPS 

for systems affected by parametric uncertainty. 

The work deals not only with theoretical aspects of robustness, uncertain systems, 

algebraic control design and tuning of controllers but also with implementation of 

selected algorithms into user-friendly MATLAB program, applicability of control laws 

for periodically time-varying systems and last but not least with problems of practical 

application, represented by utilization of designed robust regulators for control of bulb 

temperature and airflow speed in laboratory model of hot-air tunnel. 

 

Ergo, the main aims of the thesis can be summarized into the following points:  

1. Classification of mathematical models affected by various uncertainties with 

emphasis on systems with parametric uncertainty. Overview of typical tools 

for robust stability analysis. 

2. Formulation of algebraic approach to design of SISO continuous-time 

controllers in RPS. 

3. Analysis of effect of tuning parameter 0m >  on closed-loop control behaviour 

from the viewpoint of nominal and robust stability and performance. 

4. Implementation of appropriate analysis and synthesis methods into the 

program created in MATLAB + SIMULINK environment with utilization of 

the Polynomial Toolbox. Demonstration on suitable simulation examples.  

5. Simulative verification of proposed design technique in control of systems 

with periodically time-varying parameters 

6. Application of robust control algorithms on real laboratory model of hot-air 

tunnel. 
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4. SYSTEMS WITH PARAMETRIC UNCERTAINTY 

4.1. Basic terms and classification 

Most of the industrial processes can be modelled as LTI systems, in spite of the 

fact, that their real behaviour is oftentimes different, much more complicated. The 

motivation is evident – owing to this, the transfer functions can be used for description 

of such systems and subsequently also the control theory of linear systems, which is 

very well-developed, can be applied. However, an effort to create the simple enough 

model almost always leads to the origin of uncertainty. Their emergence often consists 

in neglect of “less important properties”, especially from the realms of fast dynamic 

effects, nonlinearities or time-variant behaviours of the plant. 

Nevertheless, the presence of uncertainty can not be excluded even if the processes 

are in essence linear, because, strictly speaking, the physical parameters are never 

exactly known, possibly they can vary according to operating conditions. Ergo, the 

principal problem is, if the controller designed for nominal system will keep some 

properties of the feedback control loop also for really controlled system, which falls 

into certain neighbourhood – in other words, if the controller will keep these properties 

not only for one nominal system, but for the whole family of systems [42]. 

The uncertainty in constructed mathematical model and thus the size of 

neigbourhood which should the controller cope with can be taken into consideration 

and described in the two main ways – as parametric or nonparametric uncertainty. The 

former, nonparametric description of uncertainty lies in restriction of area of possible 

appearance of frequency characteristic. It is associated with unmodelled dynamics, 

truncation of high frequency modes, nonlinearities, randomness in the systems, etc. For 

instance, it is often embodied into model by replacing the transfer function of the 

controlled plant ( )G s  by the perturbed version ( ) ( )G s G s+ ∆  (additive nonparametric 

uncertainty) and letting ( )G s∆  range over a ball of H∞ functions of prescribed radius 

[17]. 
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The latter, parametric approach then represents known structure but uncertain 

knowledge of actual physical parameters of the controlled system. Their possible 

values are usually bounded by intervals. In literature, also the classification into 

structured and unstructured uncertainty often appears – it can be understood as 

equipollent to the parametric and nonparametric cases. For adequate notion about 

possible structure of robustness problems, “a problem tree for robust systems” from 

[14], shown in fig. 4.1 can help. 

 

 

Fig. 4.1 – A problem tree for robust systems 

 

This thesis deals primarily with systems with parametric uncertainty, i.e. the 

systems which have the known structure of their model, but the values of one or more 

parameters are uncertain (not known precisely). The issues consist in robustness 

analysis, robustness margin and robust synthesis problems. First, if the system is 

called robust, it means the following: Suppose that every member of family F (e.g. 

family of polynomials) has a property P (e.g. stability) – the family F is then 

designated as robust (or e.g. robustly stable). Next, the goal of robustness margin 

problem is to find the maximal uncertainty bounds under which preservation of 

property P (robustness) is satisfied. And finally, a characteristic of the robust synthesis 

problem is the presence of adjustable design parameters which need to be selected. 

More specific, the family of systems description is expanded to include design 

parameters which are chosen so as to guarantee that the subsequent robustness analysis 
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All other systems 
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distributed, etc.)
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succeeds. It is obvious that from the control theory point of view, the adjustable design 

parameters above are related to a controller in a feedback control system. 

The systems with parametric uncertainty are often described via a vector of real 

uncertain parameters q. In a simplified way, vector q is frequently called the 

uncertainty. If the uncertainty is l-dimensional, it can be written either as: 

 ( )1 2, , , lq q q q= …  (4.1) 

or in other cases, it may be convenient to take q to be a column vector – it depends on a 

context. However, simple notation lq∈R  is used in either event. The overwhelming 

majority of literature works with transfer functions and polynomials in Laplace 

transform with the only complex variable s in the argument. The possible and often 

used general description of uncertain systems is in the form of transfer function: 

 ( , )( , )
( , )

b s qG s q
a s q

=  (4.2) 

where ( , )b s q  and ( , )a s q  are polynomials in s with coefficients depending on q: 

 
0

( , ) ( )
m

i
i

i
b s q q sβ

=

=∑  (4.3) 

 
0

( , ) ( )
n

i
i

i
a s q q sα

=

=∑  (4.4) 

or otherwise, assuming conventional state space representation ( ) ( )x t Ax t=� , the 

systems can be described as: 

 ( ) ( ) ( )x t A q x t=�  (4.5) 

where ( )A q  is an uncertain matrix. 

Occasionally, it is useful to introduce a second vector of uncertain parameters, e.g. for 

distinguishing of uncertain parameters entering to the numerator or denominator of the 

plant transfer function. The very frequent subject of investigation is the uncertain 

characteristic polynomial of the closed-loop control system. Assume, that this 

polynomial is described by: 

 
0

( , ) ( )
n

i
i

i
p s q q sρ

=

=∑  (4.6) 
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In robustness problems, the vector of uncertain parameters q is often supposed to 

be confined by the uncertainty bounding set Q, which is usually given a priory, e.g. 

directly by user requirements. Generally, the set Q is taken to be a ball in some 

appropriate norm. The two most important cases are represented by L∞ and L2 norms. 

For the norm L∞ of the vector (4.1) it holds true: 

 max ii
q q

∞
=  (4.7) 

which implies that a ball in this norm is a box. For example, the description of a box 

with center q∗  and unit radius can be accomplished via the relation 1q q∗

∞
− ≤ . The 

box is mostly set by components, thus: 

 { }:  pro 1,2, ,l
i i iQ q q q q i l− += ∈ ≤ ≤ =R …  (4.8) 

For the L2 event, the standard Euclidean norm: 

 

1
2

2
2

1

l

i
i

q q
=

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∑  (4.9) 

is considered and a ball in this norm is refered to as a sphere, e.g. 
2

1q q∗− ≤ . This 

work deals with the case when the set Q is a box in shape. 

Actually, the uncertain system is described by (4.2) as ( , )G s q . Combination of 

this transfer function with its uncertainty bounding set Q – eg. (4.8) – constitutes a 

family of systems. Naturally, the thought can be analogously applied to a family of 

polynomials, etc. 

It is demonstrable that the controllers designed as robust hardly assure the optimal 

control response from the viewpoint of selected criterion for the whole family of 

systems. It is rather concerned with guarantee of such properties of the control circuit 

as stability, asymptotic tracking or at most with the preservation of values of some 

criterion in given margins. The most important problem consists in ensuring of stability 

and hence the control engineers are very often interested in a robust stability. It is 

familiarly known, that the polynomial ( )p s  is stable if all its roots lie in the left half of 

the complex plane or, in other words, if all its roots have negative real part. The family 



 

- 43 - 

of polynomials { }( , ) :P p q q Q= ⋅ ∈  is robustly stable, if ( , )p q⋅  is stable for all q Q∈ , 

i.e. all roots of ( , )p s q  must be located in the left complex half plane for all q Q∈ . 

The uncertainty enters into the polynomial (4.6) through the coefficient functions 

( )i qρ . Nevertheless, the way how the uncertain parameters enter into the coefficients 

of this polynomial is very significant. In accordance with this, several basic structures 

of uncertainty with increasing generality are distinguished: 

• independent (interval) uncertainty structure 

• affine linear uncertainty structure 

• multilinear uncertainty structure 

• nonlinear uncertainty structure (polynomial, general) 

Moreover, the single parameter uncertainty is considered as a special case. 

4.2. Single parameter uncertainty 

The robust stability analysis of systems with single parameter uncertainty is a 

specific case which is, however, definitely worth to deal with. Apart from its clearness, 

the main reason is that a wide range of more complex robust stability questions can be 

reduced to the task of single parameter uncertainty – e.g. the edge theorem [15] enables 

to convert the more-parameter problem to the finite numbers of one-parameter 

problems. 

The common description of the polynomial with one uncertain parameter is: 

 0 1( , ) ( ) ( )p s q p s qp s= +  (4.10) 

where 0 ( ) ( ,0)p s p s=  is a stable polynomial (its stability determines so-called nominal 

stability), 1( )p s  is an arbitrary polynomial and q is a real uncertain parameter which 

can vary within the interval ;q q q− +∈ . 

 

Example 4.1: 

The family of first order controlled systems: 
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 2( , ) ; 3G s q q
s q

= ≤
−

 (4.11) 

is connected with the unit proportional compensator: 

 ( ) 1C s =  (4.12) 

in the feedback control system. The family of uncertain characteristic closed-loop 

polynomials is then given by: 

 ( , ) 2p s q s q= + −  (4.13) 

For the nominal system from the set (4.11) with the transfer function: 

 1( ,0)G s
s

=  (4.14) 

is polynomial (4.13) and consequently the whole closed-loop system stable – i.e. it is 

nominal stable. However, it is not robustly stable, because the root of (4.13) does not 

lie in the left half of the complex plane for 2q ≥ . 

 

Example 4.2: 

Consider the uncertain polynomial borrowed from [14]: 

 ( ) ( )2( , ) 2 3p s q s q s q= + − + −  (4.15) 

The task is to find an interval of parameter q (uncertainty bounding set) which 

guarantees the stability. 

Consideration of the necessary condition of stability, which is grounded in the 

positivity of all polynomial coefficients, leads to the outcome ( );2q∈ −∞ . Because the 

polynomial (4.15) is of second order, the condition modifies to necessary and sufficient 

one. For illustration, the roots of the polynomial (4.15) can be computed and plotted to 

the complex plane for various q – see fig. 4.2 where roots are depicted for 0;4q∈ . 

Furthermore, the robust stability can be analyzed also with the assistance of 

classical root locus (and on the top of that sometimes with the help of Nyquist methods 

[14]). The key idea involves creation of a fictitious plant in feedback control loop with 

gain q. Polynomial (4.15) can be simply rewritten to the form (4.10) as: 
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 ( ) ( )2( , ) 2 3 1p s q s s q s= + + − +  (4.16) 

Fictitious plant is given by transfer function: 

 2

1( )
2 3

sG s
s s

+
= −

+ +
 (4.17) 

and whole closed-loop system is shown in fig. 4.2. 

 

 

Fig. 4.2 – The feedback system for example 4.2 

 

It is evident from root locations demonstrated in fig. 4.3 that crossing of stability 

boundary really arises at 2q = . 
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Fig. 4.3 – Root locations for example 4.2 

 

Nevertheless, it can also happen that the branches of the root locus “leapfrog” from 

the strict left half plane into the strict right half plane without crossing the imaginary 

-
q  ( )

2

1
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s

s s
− +
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axis. Videlicet, stability loss can also occur at infinity by degree dropping, as shown in 

the following example. 

 

Example 4.3: 

Assume the family of polynomials: 

 2( , ) 2; 0;1p s q qs s q= − − ∈  (4.18) 

For boundary values of q it holds true: 

 1( ,0) 2 a stable root 2p s s s= − − ⇒ = −  (4.19) 

 2
1 2( ,1) 2 one unstable root 2, 1p s s s s s= − − ⇒ = = −  (4.20) 

but concurrently there is no root on stability border: 

 2( , ) 2 0, , 0;1p j q q j qω ω ω ω= − − − ≠ ∀ ∈ ∈R  (4.21) 

 

Unfortunately, many analysis methods work on the principle of watching over the 

boundary of stability, which means that they start from some stable member and during 

consecutive changes in uncertain parameter watch the stability boundary crossing. On 

that account, almost all described tools for testing of robust stability suppose 

investigated polynomials with invariant degree for all q Q∈ . 

4.2.1. Maximal stability interval and Bialas eigenvalue criterion 

Suppose the polynomial affected by single parameter uncertainty: 

 0 1( , ) ( ) ( )p s q p s qp s= +  (4.22) 

with a stable polynomial 0 ( )p s  and 0 1deg ( ) deg ( )p s p s> . The object is to find the 

maximal stability interval max min max;Q q q− +=  for the polynomial (4.22), i.e. the largest 

interval for which ( , )p s q  is stable for all maxq Q∈ . 

The solution of this problem is provided by Bialas eigenvalue criterion [20]. The 

main idea is based on the watchkeeping of singularity of the Hurwitz matrix:  
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 0 1 0 1

0 1

( ) ( ( ) ( )) ( ( )) ( ( ))
( ) ( )

H p H p s qp s H p s qH p s
H p qH p

= + = + =
= +

 (4.23) 

Remind that the matrix ( )H p  for a fixed polynomial: 

 1
1 1 0( ) n n

n np s p s p s p s p−
−= + + + +"  (4.24) 

with 0np >  is the n n×  array (constructed the same way as in well-known Hurwitz 

stability criterion): 
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Bialas eigenvalue criterion says that maximal interval for stability of (4.22) is 

determined by: 

 
( )

( )

max 1
max 0 1

min 1
min 0 1

1
( ) ( )

1
( ) ( )

q
H p H p

q
H p H p

λ

λ

+
+ −

−
− −

=
−

=
−

 (4.26) 

where maxλ+  is the maximal positive real eigenvalue and minλ−  is minimal negative real 

eigenvalue. If some of these real eigenvalues do not exist, then relevant limits are 

maxq+ = +∞  and/or minq− = −∞ . 

The proof of the criterion grounded in Orlando’s formula and more detailed 

analysis of related problems can be found e.g. in [14], [20], [66]. 

 

Example 4.4: 

Find the maximal stability interval for the uncertain polynomial: 

 
( ) ( )

( )
4 3 2

4 3 2 3

( , ) 6 12 10 3

6 12 10 3

p s q s q s s q s

s s s s q s s

= + + + + + + =

= + + + + + +
 (4.27) 

which has been defined in [35], [66]. 
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The matrixes 0( )H p  and 1( )H p  from (4.23) equal to: 

 0 1

6 10 0 0 1 1 0 0
1 12 3 0 0 0 0 0

( ) ; ( )
0 6 10 0 0 1 1 0
0 1 12 3 0 0 0 0

H p H p

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (4.28) 

Eigenvalues of the matrix 1
0 1( ) ( )H p H p−−  are {0; 0; -0.0879; -0.1777}. Application 

of (4.26) leads to conclusion that min 5.6277q− = −  and because there is no positive real 

eigenvalue, it follows the upper bound maxq+ = +∞ . 

For practical investigation of the maximal stability interval, the command 

“stabint” from the Polynomial Toolbox can be used. 

4.2.2. Convex combinations, directions and extreme point results 

The derivations of many analytical methods suppose the polynomial with single 

uncertain parameter (4.22) expressed in the expedient form of convex combination. 

Appending of ,Q q q− +=  to the polynomial (4.22), the family of polynomials with 

two extreme points ( , )p s q−  and ( , )p s q+  is obtained. Moreover, putting the given 

q Q∈  into this polynomial, the respective member of family can be viewed as a point 

of a line segment joining ( , )p s q−  and ( , )p s q+  in the space of polynomials. 

Consequently, polynomial (4.22) can be formularized as a convex combination (unit 

simplex) of ( , )p s q−  and ( , )p s q+  by introduction of: 

 0;1q q
q q

λ
+

+ −

−
= ∈

−
 (4.29) 

in the notation: 

 ( )( , ) ( , ) 1 ( , )p s q p s q p s qλ λ− += + −�  (4.30) 

On the contrary, for every 0;1λ∈ , there corresponds some ;q q q− +∈  such that 

( , ) ( , )p s p s qλ =� . Ergo, it is only a matter of appropriateness and applicability if the 
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object of the interest is the original family of polynomials P or the equivalent family 

{ }( , ) : 0;1P p λ λ= ⋅ ∈� �  defined by: 

 ( )0 1( , ) ( ) 1 ( )p s p s p sλ λ λ= + −� � �  (4.31) 

where 0 ( )p s�  a 1( )p s�  are fixed polynomials. Thus, it follows P P= � . Of course, the 

fixed polynomials associated with P  and P�  are not identical. 

Furthermore, the same family of polynomials can be written also with the 

assistance of: 

 ( )
0 1

1

( ) ( ) ( )

( ) ( )

f s p s q p s

g s q q p s

q q
q q

µ

−

+ −

−

+ −

= +

= −

−
=

−

 (4.32) 

as a direction: 

 ( , ) ( ) ( ); 0;1p s f s g sµ µ µ= + ∈  (4.33) 

The natural question which emerges is if the stability of extreme points ( , )p s q−  

and ( , )p s q+  implies the stability of whole line segment. Unfortunately, the answer is 

no. The stability of extreme points does not suffice, as it demonstrates the following 

example. 

 

Example 4.5: 

Assume the family of polynomials from [18]: 

 
( ) ( )

( )
3 2

3 2 2

( , ) 10 1 6 2 0.57

10 6 0.57 2 1 ; 0;1

p s q s q s q s q

s s s q s s q

= + + + + + + =

= + + + + + + ∈
 (4.34) 

Either extreme points: 

 
3 2

3 2

( ,0) 10 6 0.57
( ,1) 10 2 8 1.57

p s s s s
p s s s s

= + + +

= + + +
 (4.35) 

are stable, but the intermediate polynomial: 

 3 2( ;0.5) 10 1.5 7 1.07p s s s s= + + +  (4.36) 
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is unstable. This fact can be also illustrated by fig. 4.4 where two conjugate complex 

roots of (4.34) for 0;1q∈  with step 0.01 are plotted (the third root is always in the 

strict left complex half plane). As can be clearly seen, depicted roots really twice cross 

the imaginary axis. 
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Fig. 4.4 – Conjugate complex roots of (4.34) 

 

The stability of entire line segment follows from the stability of its extreme points 

if their difference polynomial is so called convex direction (Rantzer’s growth condition 

[63]) – this condition is not necessary, but “only” sufficient (and very strong). Further, 

for robust stability solution the segment or vertex lemma [17] can be applied. 

The overview of problems related to the discrete systems, other, more general 

stability regions than left half plane or MIMO systems is purveyed in e.g. [1], [14], 

[17], [66]. 

4.3. Interval uncertainty 

The basic, the simplest and the highly specialized case of an uncertainty structure 

is the interval uncertainty. However, many techniques for more general uncertainty 

structures draw on the theoretical results from this chapter and, besides, more complex 
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structure can be sometimes advantageously overbound by an independent one. The 

essential condition for existence of systems with interval uncertainty is the 

independence of its uncertainty structure. An uncertain polynomial: 

 
0

( , ) ( )
n

i
i

i
p s q q sρ

=

=∑  (4.37) 

is said to have an independent uncertainty structure if each component qi of q enters 

into only one coefficient. 

A family of polynomials: 

 { }( , ) :P p q q Q= ⋅ ∈  (4.38) 

is called an interval polynomial family (or an interval polynomial for short) if it has an 

independent uncertainty structure, each coefficient depends continuously on q and Q is 

a box. The examples are: 

 

( ) ( ) ( ) ( )

( ) ( )

3 2
1 3 2 1 0

3 2
2 3 2 1

1 2 3

( , ) 3 9 5 2 ;

1;1

( , ) 2 4 2 3 6;

0.5;2 , 1;3 , 1;2

i

p s q q s q s q s q

q

p s q s q q s q s

q q q

= + + + + + + +

∈ −

= + + + + + +

∈ ∈ − ∈

 (4.39) 

Such a representation of the interval uncertainty relatively often involves a redundancy 

(see the coefficient at 2s  in the second polynomial). Therefore, simplified notation in 

which each uncertain coefficient is expressed only as an interval is used instead. The 

new family is sometimes called a lumped version of the original one. 

 

Example 4.6: 

Consider the family of polynomials: 

 
( ) ( ) ( )3 2

2 3 1 4 0( , ) 4 2 8 3 2 5

1i

p s q s q q s q q s q

q

= + + + + + + + +

≤
 (4.40) 

The incorporated uncertainty can be easily “lumped” by defining of new uncertain 

parameters: 
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2 2 3

1 1 4

0 0

4 2
8 3 2
5

q q q
q q q
q q

= + +
= + +
= +

�
�
�

 (4.41) 

with respective new uncertainty bounding set: 

 2 1 01; 7 ; 3;13 ; 4; 6q q q∈ ∈ ∈� � �  (4.42) 

and the new uncertain polynomial: 

 3 2
2 1 0( , )p s q s q s q s q= + + +� � � � �  (4.43) 

Naturally, the resulting polynomial is shortly written as: 

 [ ] [ ] [ ]3 2( , ) 1; 7 3;13 4; 6p s q s s s= + + +� �  (4.44) 

Generally speaking, the ordinarily used shorthand notation of an interval 

polynomial looks like: 

  
0

( , ) ;
n

i
i i

i
p s q q q s− +

=

⎡ ⎤= ⎣ ⎦∑  (4.45) 

4.3.1. The Kharitonov theorem 

The veritable milestone in robust stability analysis of systems under parametric 

uncertainty has become the Kharitonov theorem [37] (or in some literature 

Kharitonov’s theorem, etc.). Even though it was published in a Russian differential 

equations journal as early as in 1978, it has been “discovered” for the control 

community by Barmish [13], [14] and also Bialas [19] entire four years later. This 

fundamental theorem says that an interval polynomial family with invariant degree is 

stable if and only if its four Kharitonov polynomials are stable. Thus, it is not 

necessary to check the stability of all possible extreme variations (which is 2l  if 
lq∈R ), but always only of four polynomials without regard to the number of 

uncertain parameters. It is obvious that this reduction is of immense significance. The 

construction of Kharitonov polynomials is very simple and based on special fixed 

sequence of upper and lower bounds of coefficients in interval polynomial (4.45) 

according to the scheme: 
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2 3 4 5 6
1 0 1 2 3 4 5 6

2 3 4 5 6
2 0 1 2 3 4 5 6

2 3 4 5 6
3 0 1 2 3 4 5 6

2 3 4 5 6
4 0 1 2 3 4 5 6

( )

( )

( )

( )

K s q q s q s q s q s q s q s

K s q q s q s q s q s q s q s

K s q q s q s q s q s q s q s

K s q q s q s q s q s q s q s

− − + + − − +

+ + − − + + −

+ − − + + − −

− + + − − + +

= + + + + + + +

= + + + + + + +

= + + + + + + +

= + + + + + + +

"
"
"
"

 (4.46) 

To make the theorem easy-to-remember, a simple rule called „Kharitonov melody“ [1] 

can be utilized – …two high, two low, two high,… (the polynomials are arranged in 

different order here): 

 

+ − − + + − − +
+ + − − + + − −
− + + − − + + −
− − + + − − + +

 (4.47) 

 

Example 4.7: 

Decide on the stability of the interval polynomial: 

 [ ] [ ] [ ] [ ]3 2( , ) 0.5;1.5 3; 4 1; 2 0.5;1p s q s s s= + + +  (4.48) 

All four Kharitonov polynomials: 

 

2 3
1

2 3
2

2 3
3

2 3
4

( ) 0.5 1 4 1.5

( ) 1 2 3 0.5

( ) 1 1 3 1.5

( ) 0.5 2 4 0.5

K s s s s

K s s s s

K s s s s

K s s s s

= + + +

= + + +

= + + +

= + + +

 (4.49) 

are stable and hence the original interval polynomial (4.48) is also stable. 

The Kharitonov polynomials can be constructed in the Polynomial Toolbox via the 

command „kharit“. 

The original Kharitonov’s proof of his theorem is complicated and relatively hard 

to understand. Substantially simpler geometric proofs, grounded also in ideas from 

next subhead, can be found e.g. in [3], [23], [50]. 

Besides, an array of improvements of the Kharitonov theorem can be found in 

literature. Among the most frequent ones the following are counted: the simplification 

for low-degree polynomials (e.g. for the polynomial degree 3n =  and 0 0q− >  to check 

3K  is enough) [4]; extensions with degree dropping [52]; an alternative technique of 
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robust stability investigation in a form of positivity condition of the frequency 

sweeping function [12]; or Kharitonov’s generalization of his theorem for an interval 

polynomials with complex coefficients [38]. 

4.3.2. The Kharitonov rectangle 

The Kharitonov rectangles are special kind of the value set, which will be 

generally defined later and which plays the essential role in solving robust stability 

problems. Suppose an interval polynomial (4.45) and substitute the complex variable s 

for jω  with a fixed real frequency 0ω . The value set of interval polynomial is then a 

two-dimensional set of all possible complex values which arise in complex plane 

letting q range over the Q, i.e. letting all coefficients range over their intervals. Such a 

value set is always of a rectangular shape (rarely line segment as a special degraded 

case) and its sides are parallel to the axis. As mentioned above, this value set is called 

Kharitonov rectangle for the frequency 0ω . 

The proof of this fact is nowise complicated. Consider an interval polynomial 

family: 

 
0

( , ) , ;
n

i
i i i i

i
p s q q s q q q− +

=

⎡ ⎤= ∈⎣ ⎦∑  (4.50) 

where 0s jω=  and divide it into the real and imaginary part: 

 
( )0 0

 even

2 4 6 8
0 2 0 4 0 6 0 8 0

Re ( , ) i
i

i
p j q q j

q q q q q

ω ω

ω ω ω ω

= =

= − + − + −

∑
"

 (4.51) 

 
( )0 0

 odd

3 5 7 9
1 0 3 0 5 0 7 0 9 0

1Im ( , ) i
i

i
p j q q j

j
q q q q q

ω ω

ω ω ω ω ω

= =

= − + − + −

∑
"

 (4.52) 

Notice that each iq  enters to the one and only coefficient which allows investigating of 

either equation separately and moreover minimizing or maximizing of each term 

individually. The real part is always between: 

 
2 4 6 8

0 0 2 0 4 0 6 0 8 0

1 0

min Re ( , )

Re ( )
q Q

p j q q q q q q

K j

ω ω ω ω ω

ω

− + − + −

∈
= − + − + − =

=

"
 (4.53) 
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and 

 
2 4 6 8

0 0 2 0 4 0 6 0 8 0

2 0

max Re ( , )

Re ( )
q Q

p j q q q q q q

K j

ω ω ω ω ω

ω

+ − + − +

∈
= − + − + − =

=

"
 (4.54) 

Hitherto, the sign of 0ω  does not matter, because all powers are even. However, as far 

as imaginary part is concerned, one must pay attention to it. For 0 0ω ≥  it follows: 

 3 5 7
0 1 0 3 0 5 0 7 0 3 0min Im ( , ) Im ( )

q Q
p j q q q q q K jω ω ω ω ω ω− + − +

∈
= − + − + ="  (4.55) 

and for 0 0ω < : 

 3 5 7
0 1 0 3 0 5 0 7 0 4 0min Im ( , ) Im ( )

q Q
p j q q q q q K jω ω ω ω ω ω+ − + −

∈
= − + − + ="  (4.56) 

In the maximization problem, the same type of reasoning can be used. Therefore, for 

imaginary part it results in: 

 3 0 0
0

4 0 0

Im ( ) pro 0
min Im ( , )

Im ( ) pro 0q Q

K j
p j q

K j
ω ω

ω
ω ω∈

≥⎧
= ⎨ <⎩

 (4.57) 

 4 0 0
0

3 0 0

Im ( ) pro 0
max Im ( , )

Im ( ) pro 0q Q

K j
p j q

K j
ω ω

ω
ω ω∈

≥⎧
= ⎨ <⎩

 (4.58) 

Using obtained minimal and maximal values, four relevant points can be plotted into 

the complex plane for selected frozen frequency. As a result, the rectangular figure 

0( , )p j Qω  is gained indeed. The key point to note is that each vertex corresponds to 

unique Kharitonov polynomial. Provided that 0 0ω ≥ , it holds for vertexes: 

 

1 0 3 0

1 0 1 0

1 0

2 0 4 0

2 0 2 0

2 0

2 0 3 0

3 0 3

lower left vertex: Re ( ) Im ( )
Re ( ) Im ( )

( )
upper right vertex: Re ( ) Im ( )

Re ( ) Im ( )
( )

lower right vertex: Re ( ) Im ( )
Re ( ) Im (

K j j K j
K j j K j

K j
K j j K j

K j j K j
K j
K j j K j

K j j K j

ω ω
ω ω

ω
ω ω
ω ω

ω
ω ω
ω

+ =

= + =
=

+ =

= + =
=

+ =

= + 0

3 0

)
( )K j

ω
ω

=
=

  

 



 

- 56 - 

 
1 0 4 0

4 0 4 0

4 0

upper left vertex: Re ( ) Im ( )
Re ( ) Im ( )

( )

K j j K j
K j j K j

K j

ω ω
ω ω

ω

+ =
= + =
=

  

The said situation is illustrated by the Kharitonov rectangle of interval polynomial 

(4.48) for frequency 0 0.2ω =  with highlighted vertexes which is shown in fig. 4.5. 

0.2 0.4 0.6 0.8 1
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Real Axis

Im
ag

 A
xi

s

K
4
(jω

0
) K

2
(jω

0
) 

K
1
(jω

0
) K

3
(jω

0
) 

p(jω
0
,Q) 

 

Fig. 4.5 – Kharitonov rectangle of interval polynomial (4.48) for 0 0.2ω =  

 

So far, the discussion of the Kharitonov rectangle has been in the context of a fixed 

frequency 0ω ω= . However, the notion of sweeping the frequency is needful to 

entertain. Increasing of ω  results in motion of the Kharitonov rectangle, i.e. a 

rectangle moves around the complex plane – see fig. 4.6, where Kharitonov rectangles 

for interval polynomial (4.48) are depicted (with the assistance of the Polynomial 

Toolbox command „khplot“) for frequencies 0;1ω∈  in the range of 50 samples. 
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Fig. 4.6 – Kharitonov rectangles of interval polynomial (4.48) for 0;1ω∈  

4.3.3. Graphical test of robust stability 

An interval polynomial family { }( , ) :P p q q Q= ⋅ ∈  with invariant degree and at 

least one stable member 0( , )p s q  is robustly stable if and only if the Kharitonov 

rectangles are excluded from the origin of the complex plane at all nonnegative 

frequencies, that is 0 ( , ) 0p j Qω ω∉ ∀ ≥ . This rule, known as the zero exclusion 

condition, is very important, because in conjunction with the value set concept it 

represents powerful and sometimes practically the one and only conceivable method of 

robust stability analysis for much more complicated uncertainty structures. The usage 

of this test is essentially superfluous in the case of interval uncertainty, because the 

Kharitonov Theorem is simpler, nevertheless the main ideas can be easily graphically 

verified and demonstrated – see e.g. fig. 4.6, where the interval polynomial family 

(4.48) contains a stable member and the zero point is excluded from the Kharitonov 

rectangles and hence the family is robustly stable. If the rectangles encompass the 

origin, it is apparent that the family will harbour the polynomial with root on imaginary 

axis (the stability border) – remember also the stability testing of polynomials via the 
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Mikhailov(-Leonhard) criterion [49]. The example of robustly unstable interval 

polynomial can be: 

 [ ] [ ] [ ] [ ] [ ]5 4 3 2( , ) 3; 5 5.5;10 6.5;10 3; 5 0.5;1p s q s s s s s= + + + + +  (4.59) 

The Kharitonov rectangles, plotted again in the Polynomial Toolbox (for frequencies 

0; 3ω∈  with the step 0.015), for this once cross the zero as shown in fig. 4.7 and fig. 

4.8, while the second graph is zoomed to see better what is happening in the 

neighbourhood of the point [0; 0j]. Therefore, the interval polynomial (4.59) is not 

robustly stable. In addition, it can be readily confirmed by the stability of only three of 

four Kharitonov polynomials – the unstable one is 2 ( )K s : 

 

2 3 4 5
1

2 3 4 5
2

2 3 4 5
3

2 3 4 5
4

( ) 0.5 3 10 10 3

( ) 1 5 6.5 5.5 5

( ) 1 3 6.5 10 5

( ) 0.5 5 10 5.5 3

K s s s s s s

K s s s s s s

K s s s s s s

K s s s s s s

= + + + + +

= + + + + +

= + + + + +

= + + + + +

 (4.60) 
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Fig. 4.7 – Kharitonov rectangles of interval polynomial (4.59) for 0; 3ω∈  
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Fig. 4.8 – Kharitonov rectangles of interval polynomial (4.59) – detailed view 

 

Furthermore, suggested simple graphical procedure for checking robust stability 

can be improved by finding of some finite precomputable frequency (so called cutoff 

frequency) at which the frequency sweep can be terminated, i.e. the graphical test 

concluded. Suppose the interval polynomial (4.45) with 0iq− >  for 0,1, ,i n= … . 

According to [14], the cutoff frequency cω  can be taken as the largest real root of the 

polynomial: 

 
1

1
( )

n
n i

n i
i

f q qω ω ω
−

− +

=

= −∑  (4.61) 

Possibly, assuming 0nq− > , the usually less conservatively estimation: 

 
{ }0 1 1max , , ,

1 n
c

n

q q q
q

ω
+ + +

−

−= +
…

 (4.62) 

follows from the results based on [45]. 
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4.3.4. The value set concept and the zero exclusion condition 

The main idea and the application of the value set concept and the zero exclusion 

condition have been already adumbrated in the previous chapters. Now, these terms 

will be defined more generally, because the attention of next parts will be no longer 

restricted to interval polynomials. For rather complex uncertainty structures, the value 

set is seen to be a generalization of the Kharitonov rectangle. 

Assume a family of polynomials { }( , ) :P p q q Q= ⋅ ∈ . The value set at frequency 

ω∈R  is given by: 

 { }( , ) ( , ) :p j Q p j q q Qω ω= ∈  (4.63) 

In other words, ( , )p j Qω  is the image of Q under ( , )p jω ⋅ . For example, 

substitute s for jω  in a family { }( , ) :P p s q q Q= ∈ , fix ω  and let the vector of 

uncertain parameters q range over the set Q. For the case of family with single 

parameter uncertainty, the value set is a straight line segment. For example, the value 

sets of the polynomial family (4.34) are depicted in fig. 4.9 with frequency step 0.02. 

Incidentally, it confirms robust instability of (4.34), which has been tested by different 

method in example 4.5. However, in this passage, the figure serves more or less for 

illustration of the mentioned segmental shape. 
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Fig. 4.9 – The value sets of (4.34) 
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The zero exclusion condition for Hurwitz stability of family of continuous-time 

polynomials { }( , ) :P p q q Q= ⋅ ∈  says: Suppose invariant degree of polynomials in the 

family, pathwise connected uncertainty bounding set Q, continuous coefficient 

functions ( )i qρ  for 0,1, 2, ,i n= …  and at least one stable member 0( , )p s q . Then the 

family P is robustly stable if and only if the complex plane origin is excluded from the 

value set ( , )p j Qω  at all frequencies 0ω ≥ , that is P is robustly stable if and only if: 

 0 ( , ) 0p j Qω ω∉ ∀ ≥  (4.64) 

Roughly speaking, the requirement of pathwise connectedness of the set Q means 

that any two points from Q can be connected by continuous curve, which entire lie 

within Q. It is obvious that all convex sets (such as a box or a sphere) are pathwise 

connected. The term of convexity is defined in subhead 4.4.1. 

The validity of the zero exclusion condition is very universal – it can be applied to 

wide range (also more complex) problems (complicated uncertainty structures, time-

delay systems, more general regions of stability, etc.). The generalization for another 

stability region (problems of robust D-stability) can be found e.g. in [1], [14], [17], 

[66]. In that event, only the frequency ω , serving actually for parameterization of the 

imaginary axis, is used no more during plotting of the value sets. Instead of ω  the 

function D∂  denoting the boundary of an open subset of the complex plane D is 

introduced and parameterized via a boundary sweeping function by so called 

generalized frequency. 

4.3.5. The overbounding method 

However, it remains true that the interval uncertainty structure is considerably 

idealized and restrictive state because uncertain parameters typically enter into more 

than the only one coefficient (e.g. as it will be shown later, even an interval system in 

closed control loop leads, except for some specific cases, to the closed-loop 

characteristic polynomial with affine linear structure of uncertainty). In spite of that, 

the tools for robust stability analysis of interval systems can be utilized also for these 

more general events as an alternative to “their own” more general results. That is, 

complicated uncertainty structure can be “overbounded” by the interval one and this 
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new family is sequentially tested. Unfortunately, this method brings into the analysis 

certain degree of conservatism due to ignoring of mutual dependencies among 

coefficients in the original family. As a result, robust stability is investigated only with 

sufficient (i.e. stronger) and not necessary and sufficient condition. 

The preceding consideration is demonstrated on following two examples. 

 

Example 4.8: 

The family of polynomials (with multilinear uncertainty structure), which has 

appeared in [14], is described by: 

 
( ) ( )
( ) ( )

4 3 2
1 2 1 2 1 2 2

1 2 1 2

( , ) 5 0.2 0.1 0.1 6 3 4

6 6 8 0.5 3

p s q s q q q q s q q q s

q q s q q

= + + + − + + − +

+ + − + −
 (4.65) 

and uncertainty bound 0.25iq ≤  for 1,2i = . The objective is to determine whether 

(4.65) is robustly stable. New bounds can be computed as: 

 

( )

( )

( )

( )

0 1 20 0.25 0.25

0 1 20 0.25 0.25

1 1 21 0.25 0.25

1 1 21 0.25 0.25

min ( ) min 0.5 3 0.3125

max ( ) max 0.5 3 0.6875

min ( ) min 6 6 8 2.5

max ( ) max 6 6 8 9.5

i

i

i

i

q Q q

q Q q

q Q q

q Q q

q a q q q

q a q q q

q a q q q

q a q q q

−

∈ − ≤ ≤

+

∈ − ≤ ≤

−

∈ − ≤ ≤

+

∈ − ≤ ≤

= = − =

= = − =

= = + − =

= = + − =

 (4.66) 

Analogical computations yield to the coefficients 2 4.8125q
−
= , 2 7.1875q

+
= , 

3 4.9475q
−
= , 3 5.0375q

+
= . The overbounding interval family of polynomials is given 

by: 

 
[ ] [ ]
[ ] [ ]

4 3 2( , ) 4.9475, 5.0375 4.8125, 7.1275

2.5, 9.5 0.3125, 0.6875

p s q s s s

s

= + + +

+ +
 (4.67) 

By applying the Kharitonov theorem or graphical test, it is straightforward to verify 

that the family (4.67) is robustly stable. Therefore, it can be concluded that the original 

family (4.65) must also be robustly stable. Thus, the overbounding method has been 

successful in this case. Several original value sets of the family (4.65) and its 
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overbounding Kharitonov rectangles for (4.67) are depicted in fig. 4.10 for elucidation 

of the idea (step of frequency is 0.07). 
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Fig. 4.10 – Graphical representation of the overbounding method (successful case) 

 

However, be careful. As it was adumbrated hereinbefore, if the new overbounding 

family was not robustly stable, it could not to be decided about the authentic family, 

i.e. although the Kharitonov rectangles would cover the origin of the complex plane, 

the value sets of the original family would not necessarily have to include it. This is 

illustrated in next example. 

 

Example 4.9: 

The polynomial family (with affine linear uncertainty structure), adopted from 

[66], is given by: 

 
( ) ( )
( ) ( )

4 3 2
2 1 2

2 1 2

( , ) 2 1 2 4

1 2 2

p s q s q s q q s

q s q q

= + + + − + +

+ + + − +
 (4.68) 

and uncertainty bounds 1 20.5, 2 , 0.3, 0.3q q∈ − ∈ − . The overbounding interval 

polynomial is then: 

 [ ] [ ] [ ] [ ]4 3 2( , ) 0.4,1.6 2.7, 8.3 0.7,1.3 0.9, 4.6p s q s s s s= + + + +  (4.69) 
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As can be easily verified by the Kharitonov theorem, the overbounding family (4.69) is 

not robustly stable so it can not be said anything about robust stability of (4.68) and it 

has to be tested with the assistance of a more advanced method (several of them are 

described in next chapters), i.e. the overbounding method is unsuccessful here. 

Apropos, the family (4.68) is robustly stable in fact. For illustration, the value sets of 

both (4.68) and (4.69) are plotted in fig. 4.11 (step 0.1). 
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Fig. 4.11 – Graphical representation of the overbounding method (unsuccessful case) 

 

4.4. Affine linear uncertainty 

Another, more general level in description of parametrically uncertain processes is 

represented by systems with affine linear uncertainty. An uncertain polynomial: 

 
0

( , ) ( )
n

i
i

i
p s q q sρ

=

=∑  (4.70) 

has an affine linear uncertainty structure, if each coefficient ( )i qρ  is an affine linear 

function of q, that is, there exists a column vector iα  and a scalar iβ  such that it holds: 

 ( ) T
i i iq qρ α β= +  (4.71) 
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where T
iα  is transposed iα . Analogically, assuming an uncertain transfer function: 

 ( , )( , )
( , )

b s qG s q
a s q

=  (4.72) 

where both numerator and denominator have affine linear uncertainty structures, the 

whole function (4.72) is said to have the same structure. The frequent notation, 

equivalent to (4.70), is: 

 0
1

( , ) ( ) ( )
l

i i
i

p s q p s q p s
=

= +∑  (4.73) 

For robust stability investigation purposes, the relatively important property of the 

affine linear uncertainty structure is its preservation in the closed-loop connection, i.e. 

in the simple feedback system as shown in fig. 4.12. 

 
C(s) 

-
G(s,q)

w y 

 

Fig. 4.12 – Closed-loop connection preserving uncertainty structure 

 

A controller is supposed to be given by transfer function: 

 ( )( )
( )

C

C

q sC s
p s

=  (4.74) 

and a controlled plant: 

 
0

1

0
1

( ) ( )
( , )( , )
( , ) ( ) ( )

l

i i
i
l

i i
i

b s q b s
b s qG s q
a s q a s q a s

=

=

+
= =

+

∑

∑
 (4.75) 

contains affine linear uncertainty structure (or the interval one as the special case). 

Under these preconditions, the transfer function of whole closed loop has also the 

affine linear structure of uncertainty: 
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[ ]

0
1

0 0
1

( , ) ( )( , ) ( )( , )
1 ( , ) ( ) ( , ) ( ) ( , ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

C
W Y

C C
l

C i i C
i
l

C C i i C i C
i

b s q q sG s q C sG s q
G s q C s a s q p s b s q q s

b s q s q b s q s

a s p s b s q s q a s p s b s q s

=

=

= = =
+ +

+
=

+ + +

∑

∑

 (4.76) 

Finally, the same structure has, quite naturally, the closed-loop characteristic 

polynomial, that is the denominator of the fraction (4.76). 

4.4.1. Convex set and convex hull 

Prior to the robustness analysis itself, short review of some basics from the theory 

of convex analysis will be given in the next two subheads. The set kC ⊆ R  is said to be 

a convex, if the line joining any two points c1 and c2 in C remains entirely within C. To 

put it differently, it must hold true: 

 ( )1 2 1 21 , 0;1c c C c c Cλ λ λ+ − ∈ ∀ ∈ ∈  (4.77) 

The expression ( )1 21c cλ λ+ −  is then called a convex combination of c1 a c2. The main 

thought is illustrated in simple fig. 4.13. 

 

Fig. 4.13 – Examples of convex and nonconvex sets 

 

The convex hull of a set kC ⊂ R  (both convex and nonconvex) can be defined as 

the “smallest” convex set containing C. More precisely, if the convex set which 

contains C is termed as C +  and the array of all C+  as +C , then the convex hull is 

given by: 

c1

c2 

Convex set Nonconvex set
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 conv 
C

C C
+ +

+

∈

=
C
∩  (4.78) 

Apparently, the convex hull includes the assumed set and if the set is convex, its 

convex hull is identical to this set itself. The example of the convex hull is shown in 

fig. 4.14. 
 

 

Fig. 4.14 – A nonconvex set and its convex hull 

 

4.4.2. Polytopes, extreme points and edges 

A polytope P in kR  is the convex hull of a finite set of points { }1 2, , m kp p p ∈R… . 

Thus, it is described as: 

 { }conv ip=P  (4.79) 

The group of points { }1 2, , mp p p…  is said to be the set of generators of the polytope 

P. For illustration, the polytopes in 2R  are the convex polygons, but not nonconvex 

polygons (e.g. stars). Note that the set of generators is nonunique, for example the 

points 3 5,p p  and 7p  in fig. 4.15 are optional for subsumption in a generating set of 

depicted polytope. 

The boundary 
of original 
nonconvex set 

The boundary
of convex hull
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Fig. 4.15 – An example of a polytope in 2R  

 

The unambiguous set of generators is given by the set of extreme points (vertices) 

of a polytope. Suppose { }conv ip=P  is a polytope in kR . Then a point p∈P  is 

called an extreme point of P if it can not be expressed as a convex combination of any 

two different points in P – the polytope from fig. 4.15 has extremes 

{ }1 2 4 6 8, , , ,p p p p p . Actually, the set of extreme points is a minimal generation set. 

Every point p∈P  in a polytope { }1 2conv , , mp p p=P …  can be written as a 

convex combination of the ip , i.e. there exist real scalar numbers 1 2, , 0mλ λ λ ≥…  such 

that it holds good: 

 
1

m
i

i
i

p pλ
=

=∑  (4.80) 

and 

 
1

1
m

i
i

λ
=

=∑  (4.81) 

The sum (4.81) represents so called unit simplex. 

 

2p

1p 3p
8p

7p

6p
4p

5p
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Example 4.10: 

Consider the polygon in fig. 4.15, which can be, according to [14], divided into 

three triangles. One of them is described by { }1 6 8conv , ,p p p=1P . Any point p∈ 1P  

can be expressed as a convex combination 1 6 8
1 6 8p p pλ λ λ+ + . For example, the point 

7p  might be obtained with 1 6 8 1 3λ λ λ≅ ≅ ≅ ; the point 3p  for 1 8 60, 0, 0λ λ λ≠ ≠ =  

and extreme point 6p  if 6 1 81, 0λ λ λ= = = . To conclude, the description of points 

p∈P  via convex combinations of extreme points is nonunique – e.g. the point 7p  can 

be expressed not only with the assistance of 1 6 8, ,p p p , but also possibly 2 6 8, ,p p p . 

 

The special and important shape, straight line segment ,a bx x⎡ ⎤⎣ ⎦  with boundary 

points ,a b kx x ∈R  can be written as: 

 ( ), : 1a b a bx x x x x xλ λ⎡ ⎤∈ = + −⎣ ⎦  (4.82) 

where 0;1λ∈ . 

The edge of polytope is, roughly speaking, a line segment which does not intersect 

another line segment of polytope with boundary points out of the line itself. Ergo, 

mathematically formulated, the line segment: 

 1 2,i ip p⎡ ⎤ ⊆⎣ ⎦ P  (4.83) 

is an edge of P if for whatever: 

 1 2, ; , ,i ia b a bp p p p p p⎡ ⎤⎡ ⎤∈ ∉⎣ ⎦ ⎣ ⎦P  (4.84) 

it holds true: 

 1 2, ,i ia bp p p p⎡ ⎤⎡ ⎤ ∩ =∅⎣ ⎦ ⎣ ⎦  (4.85) 

For example, the polytope from fig. 4.15 has, needles to say, edges 1 2,p p⎡ ⎤⎣ ⎦ , 

2 4,p p⎡ ⎤⎣ ⎦ , 4 6,p p⎡ ⎤⎣ ⎦ , 6 8,p p⎡ ⎤⎣ ⎦  and 8 1,p p⎡ ⎤⎣ ⎦ . 

Moreover, basic operations such as summation, multiplication by scalar, 

intersection, unification or linear transformation can be defined for polytopes. 
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Additional information can be found e.g. in [14], [17] and nice illustrative examples in 

[66]. 

4.4.3. Polytopes of polynomials and its value set 

Now, the theory of polytopes will be utilized in the polynomial context. A family 

of polynomials { }( , ) :P p q q Q= ⋅ ∈  is said to be a polytope of polynomials, if ( , )p s q  

has an affine linear uncertainty structure and Q is a polytope. If { }conv iQ q= , then 

( , )ip s q  is called the i-th generator for P. 

 

Example 4.11: 

Suppose a polytope of polynomials ( ) ( )2
1 2 1 2( , ) 6 2 3 3 5p s q s q q s q q= + + + + − + , 

where 1 1q ≤ , 2 1q ≤ . The uncertainty bounding set Q has four extremes – 

( )1 1, 1q = − − , ( )2 1,1q = − , ( )3 1, 1q = − , ( )4 1,1q = . The four associated generators are 

determined by 1 2( , ) 5 3p s q s s= − + , 2 2( , ) 1p s q s s= − + , 3 2( , ) 7 9p s q s s= + +  and 

4 2( , ) 11 7p s q s s= + + . 

 

There is absolute analogy among the polytope of polynomials, the polytope of 

polynomial coefficients and the polytope of uncertain parameters, that is these 

polytopes are isomorphic, i.e. equipollent. 

As mentioned above, advantageous graphical test of the robust stability can be 

performed via the visualization of the value set. Since an interval polynomial is a 

special case of a polytope of polynomials, the relevant value set is a generalization of a 

Kharitonov rectangle (see e.g. fig. 4.5). 

Let { }( , ) :P p q q Q= ⋅ ∈  be a polytope of polynomials with uncertainty bounding 

set { }conv iQ q= . Then, for fixed z∈C , the value set ( , )p z Q  is a polygon with 

generating set { }( , )ip z q , id est: 

 { }( , ) conv ( , )ip z Q p z q=  (4.86) 
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Moreover, all edges of the polygon ( , )p z Q  are obtained from the edges of Q in 

the following meaning: If 0z  is a point on an edge of ( , )p z Q , then 0
0 ( , )z p z q=  for 

some 0q  on an edge of Q. Nevertheless it does not hold true to the contrary. If 0q  is on 

an edge of Q, then 0
0 ( , )z p z q=  does not need to be on an edge of ( , )p z Q , because 

the edge can be mapped to the interior of ( , )p z Q  – see. fig. 4.16. 

 

Fig. 4.16 – Mapping an edge of Q into the interior of ( , )p z Q  

 

Example 4.12: 

Assume the uncertain polynomial from [14]: 

 
( ) ( )
( ) ( )

3 2
1 2 3 1 2 3

1 2 3 1 2 3

( , ) 2 1 3 3 3

3 3 2 3

p s q q q q s q q q s

q q q s q q q

= − + + + − + + +

+ + + + + − + +
 (4.87) 

and uncertainty bounding set Q described by 0.245iq ≤  for 1,2,3i = . Three uncertain 

parameters indicate that the value set ( , )p z Q  is a polygon with 32 8=  generators. For 

its calculation, routine „ptopex“ from the Polynomial Toolbox can be used. For 

example, corresponding to the particular generator ( )5 0.245; 0.245;0.245q = −  the 

polynomial 5 3 2( , ) 1.98 4.715 3.735 3.98p s q s s s= + + +  is obtained. In spite of 8 

3( , )ip z q  

This edge maps 
to the inside 

2( , )ip z q  

1( , )ip z q1iq

1q  

3q  

2q  

3iq

2iq

Q

( , )p z Q  

Re  

Im

( , )p z ⋅

This edge maps to an edge 



 

- 72 - 

generators, the value set ( , )p z Q  has only 6 extremes (it is a hexagon) thanks to the 

fact that 2 extremes are mapped to the inside (the cube has 8 vertices, but its projection 

to the plane has always 6 vertices at most). The hexagonal shape of the value set is 

confirmed by fig. 4.17, where ( , )p j Qω  are depicted for frequencies 0;1.5ω∈  in the 

range of 30 samples. Visual representation has been created again in the Polynomial 

Toolbox (command „ptopplot“). 
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Fig. 4.17 – Polygonal value sets for the polynomial (4.87) 

 

The family of polynomials contains a stable member. According to [14], [45] it can 

be verified that 1.5cω =  tallies with the cutoff frequency and thus the graphical test 

can be concluded here. As a result of 0 ( , )p j Qω∉  for cω ω> , it follows from the zero 

exclusion condition robust stability of considered family. 

 

If a family is given by a polynomial with affine linear uncertainty structure and the 

uncertainty bounding set is a box, than it can be considered as a special type of 

polytope of polynomials – so called parallelotop of polynomials (the opposite edges of 

polygonal value set are always parallel). Nevertheless, this term is not used commonly. 
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If { }( , ) :P p q q Q= ⋅ ∈  is a parallelotop with l parameters, i.e. polytope of 

polynomials with Q as a box in lR , then for an arbitrary complex z is a value set 

( , )p z Q  in the shape of parallel polygon (parapolygon) with no more than 2l edges. 

As will be shown in the subsequent parts, the closed control loop with interval 

plant and fixed feedback controlled has the characteristic polynomial in the form of 

special polytope, which value set is always (at most) octagonal without regard to 

number of uncertain parameters in the interval plant. 

4.4.4. The edge theorem 

The investigation of robust stability for systems with affine linear uncertainty 

structure can be performed also with the assistance of other, analytical tools. The one 

of them is the edge theorem [15]. Preceding chapters suggest that the interior of the 

value sets is practically unimportant from the robust stability point of view, because 

before the origin of the complex plane gets into the inside of the value set it must 

appear on an edge. Consequently, it is advantageous to limit the investigation only to 

the edges. As it was mentioned above, the edges of ( , )p z Q  are associated with the 

edges of Q (but not in reverse) and therefore the robust stability of the family results 

from the stability on the edges (and also vice versa). The strength of this approach is 

that the edge has the one and only parameter and it can be expressed as a line segment 

(in the space of polynomials): 

 ( )
1 2 1 2, ( , ) ( ) 1 ( )i i i ip s p s p sλ λ λ= + −  (4.88) 

where 1

1
( ) ( , )i

ip s p s q= , 2

2
( ) ( , )i

ip s p s q=  are extremes of polytope of polynomials and 

thus they are images of vertices 1iq  and 2iq , which represents extreme points of an 

edge of Q. The investigation of robust stability for families with single uncertain 

parameter is relatively easy task, but pay attention to the example 4.5, where it has 

been demonstrated that the stability of both extremes does not automatically imply the 

stability of entire line segment. 

The edge theorem [15] says: Assume that D is an open subset of the complex plane 

C with boundary sweeping function :D I CΦ → , where I ⊆ R  is a real interval and let 
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{ }( , ) :P p q q Q= ⋅ ∈  be a polytope of polynomials with invariant degree. Then P is 

robustly D-stable if and only if for each pair of extreme points 1iq  and 2iq  

corresponding to an edge of the set Q, the polynomial (4.88) is D-stable for all 

0;1λ∈ . 

In related literature there can be found many modifications and embellishments of 

the classical edge theorem. For example, the stronger version of this principle suppose 

checking of only those edges 1 2, ( )i iq Qλ ⊂  which correspond to the edges of polytope 

of coefficients ( )1 2, ( )i iqρ λ , i.e. to the edges of polytope of polynomials. Although the 

number of edges which have to be analysed is smaller, it is not trivial to determine 

them at all and for that reason the stronger version is practically not frequently used. 

Another variant of the edge theorem is based on the spectral set (root set) of P. 

Furthermore, subsequent information about refinements of the edge theorem for more 

general classes of D regions are provided e.g. in [28] and for time delay systems e.g. in 

[29]. 

The robust stability investigation through the edge theorem can be accomplished in 

the Polynomial Toolbox via the function „edgetest“. 

4.4.5. The thirty-two edge theorem 

In spite of enormous computational capacity of current computer equipment, the 

edge theorem has a weighty demerit from the application viewpoint. The drawback lies 

in combinatoric explosion in the number of edges of Q which emerges during 

increasing quantity of uncertain parameters. If Q is given as an l-dimensional box, it 

follows for the number of its edges: 

 1
edge 2lN l −=  (4.89) 

which means that e.g. 10 uncertain parameters generate 5120 edges to investigate. 

Hence, it is a question if some smaller amount of significant edges sufficient for robust 

stability testing could not be selected. The polytope of polynomials defined at the end 

of the subhead 4.4.3, has Q with (4.89) edges, but the value set ( , )p z Q  only with 2l 

edges at most. Unfortunately, the edges of ( , )p z Q  vary by changes in z and so 
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generally it is not possible to determine which edges of Q belong to these significant 

ones. 

In a sense of automatic control theory the very frequent case of system with affine 

linear uncertainty structure is the control loop from fig. 4.18, where controlled plant is 

an interval system: 

 0

0

,
( , )( , , )
( , ) ,

m
i

i i
i

n
i

i i
i

q q s
b s qG s q r
a s r r r s

− +

=

− +

=

⎡ ⎤⎣ ⎦
= =

⎡ ⎤⎣ ⎦

∑

∑
 (4.90) 

and controller is given by transfer function: 

 ( )( )
( )

C

C

q sC s
p s

=  (4.91) 

 
C(s) 

-
G(s,q,r) 

w y 

 

Fig. 4.18 – Closed control loop with an interval plant 

 

Resulting closed-loop characteristic polynomial: 

 ( , , ) ( , ) ( ) ( , ) ( ); ,CL C Cp s q r a s r p s b s q q s q Q r R= + ∈ ∈  (4.92) 

is a polytope of special kind with m n+  parameters: 

 { }( , , ) : ,CL CLP p q r q Q r R= ⋅ ∈ ∈  (4.93) 

Since the set of its uncertain parameters is ( )m n+ -dimensional box with the number 

of edges: 

 ( ) 1
edge 2 2n mN n m + += + + ×  (4.94) 

it could appear that computing demandingness will dramatically increase again owing 

to increase of m and n. Nevertheless, that is not that case, because in this instance the 

value set ( , , )CLp j Q Rω  has for one fixed ω∈R  no more than eight edges and for 



 

- 76 - 

varying ω  four possible groups of eight edges, i.e. in total 32 edges can arise. This 

leads to 32 distinguished edges which are instrumental to robust stability analysis. 

This idea is formulated in the thirty-two edge theorem [22]: Consider a closed-loop 

connection as indicated in fig. 4.18, where controlled interval plant is described by 

transfer function (4.90) having Kharitonov polynomials 1( )B s , 2 ( )B s , 3 ( )B s , 4 ( )B s  

and 1( )A s , 2 ( )A s , 3 ( )A s , 4 ( )A s  for the numerator and denominator, respectively, and 

controller is given by relation (4.91). Supposing the resulting family of closed-loop 

characteristic polynomials (4.92) has invariant degree, its robust stability is guaranteed 

if and only if all edge polynomials of the form: 

 
1 2 3,( , ) ( ) ( ) ( , ) ( )i C i i Ce s B s q s A s p sλ λ= +  (4.95) 

with { }1 1,2,3,4i ∈  and ( ) ( ) ( ) ( ) ( ){ }2 3, 1,3 , 1,4 , 2,3 , 2,4i i ∈  and: 

 
1 2 3,( , ) ( , ) ( ) ( ) ( )i i C i Ce s B s q s A s p sλ λ= +  (4.96) 

with ( ) ( ) ( ) ( ) ( ){ }1 2, 1,3 , 1,4 , 2,3 , 2,4i i ∈  and { }3 1,2,3,4i ∈  are stable for all 0;1λ∈ . 

Remind that 
2 3, ( , )i iA s λ  and 

1 2, ( , )i iB s λ  are line segments (sometimes also called 

Kharitonov segments), which can be in the form, e.g.: 

 ( )
1 2 1 2, ( , ) ( ) 1 ( )i i i iB s B s B sλ λ λ= + −  (4.97) 

This theorem features in literature burden with certain nonuniformity in term and 

related nomenclature. The theorem has been published in [22], where it is called the 

box theorem. The commonly used name is the generalized Kharitonov theorem, which 

is employed in [17] and later on e.g. in [71], [74]. The term the thirty-two edge 

theorem has appeared in [14] and thereof subsequently in [35], [66], etc. – furthermore, 

these works are more detailed in analysis and proofs of the fact, that the value set is 

always no more than octagonal. 

4.4.6. The sixteen plant theorem 

As can be anticipated from previous parts, the various known restrictions allow to 

reduce the complexity of problems connected with robust stability of systems with 
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affine linear uncertainty structure. Another step in this simplification is represented by 

typical and frequent case of closed-loop connection containing an interval plant: 

  0
1

0

,
( , )( , , ) ;
( , ) ,

m
i

i i
i

n
n i

i i
i

q q s
b s qG s q r m n
a s r s r r s

− +

=
−

− +

=

⎡ ⎤⎣ ⎦
= = <

⎡ ⎤+ ⎣ ⎦

∑

∑
 (4.98) 

and first order controller in a form: 

 ( )( )( )
( )

C

C

k s zq sC s
p s s p

−
= =

−
 (4.99) 

which leads to an closed-loop characteristic polynomial: 

 ( ) ( )( , , ) ( , ) ( , )CLp s q r k s z b s q s p a s r= − + −  (4.100) 

constituting a family of polynomials: 

 { }( , , ) : ,CLP p q r q Q r R= ⋅ ∈ ∈  (4.101) 

with special properties. 

Determining the Kharitonov polynomials 1( )B s , 2 ( )B s , 3 ( )B s , 4 ( )B s  and 1( )A s , 

2 ( )A s , 3 ( )A s , 4 ( )A s  for the numerator and denominator of an interval system (4.98), 

respectively, the 16 Kharitonov plants can be defined by: 

 1

1 2

2

,

( )
( )

( )
i

i i
i

B s
G s

A s
=  (4.102) 

where { }1 2, 1,2,3,4i i ∈ . 

The above described closed loop can be thereafter associated with 16 closed-loop 

characteristic polynomials (one to each of Kharitonov plants): 

 ( ) ( )
1 2 1 2, ( ) ( ) ( )i i i ip s k s z B s s p A s= − + −  (4.103) 

The sixteen plant theorem [11] runs: The first order compensator (4.99) robustly 

stabilizes the strictly proper interval plant family (4.98) if and only if it stabilizes each 

of the sixteen Kharitonov plants (4.102), that is, if and only if all sixteen characteristic 

polynomials (4.103) are stable. 
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This theorem is one of a few for polytopes which is based on extremes. In certain 

circumstances, it can be utilized for the synthesis of the controller. 

4.5. Multilinear and more complicated uncertainties 

Recapitulate that systems with parametric uncertainty are classified according to 

the uncertainty structure into the several basic sorts with following hierarchy: 

 
independent (interval) affine linear

multilinear nonlinear (polynomial, general)
⊂ ⊂

⊂ ⊂
 (4.104) 

An uncertain polynomial: 

 
0

( , ) ( )
n

i
i

i
p s q q sρ

=

=∑  (4.105) 

is said to have a multilinear uncertainty structure if each of the coefficient functions 

( )i qρ  are multilinear, i.e., if all but one component of the vector q is fixed, then ( )i qρ  

is affine linear in the remaining component of q. 

A polynomial (4.105) has a polynomial (polynomic) uncertainty structure if each 

of the coefficient functions ( )i qρ  is a multivariable polynomial in the components of 

q. 

 

Example 4.13: 

The uncertain polynomial adopted from [14]: 

 
( )
( ) ( )

3 2
1 2 3 1 3

2 3 1 2 1 1 2

( , ) 2 5 1

3 8 4 3

p s q s q q q q q s

q q q q q s q q

= + − + +

+ + + + + −
 (4.106) 

has a multilinear uncertainty structure. If the coefficient of s changes e.g. to: 

 2
1 2 3 1 2 1( ) 3 8a q q q q q q= + +  (4.107) 

then (4.106) has a polynomic uncertainty structure. Thus, a nonlinear dependency can 

not occur towards iq  in multilinear uncertainty. 
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Unfortunately, from the investigation of robust stability viewpoint, the methods 

based on extremes or edges are useless. It is due to the fact that for example the value 

set for the family of polynomials with multilinear uncertainty is not only nonconvex 

but moreover its boundary is not comprised only from images of the edges but also 

from images of inner points – see nice graphical demonstration in [66]. Probably the 

best known tool for robust stability analysis of multilinear uncertain systems is the 

mapping theorem [14], [17], [78], which allows to obtain the tightest possible 

polytopic overbound for the value sets and coefficient sets of interest – it suppose the 

overbounding of the original structure by the convex hull of extreme points. However, 

the cost is some level of conservatism, that is “only” sufficiency of the condition. 

Furthermore, the value set for family of polynomials with polynomial uncertainty 

structure is not only nonconvex but also curves outward form the convex hull of 

extremes. As a result, the mapping theorem does not hold good. The polynomial 

uncertainty structure can be transformed to the multilinear one by the substitution of 

new parameters for each power [67]. This technique simplifies the structure indeed, but 

the number of parameters increases and the shape of uncertainty bounding set Q 

changes, so the mapping theorem can not be used anyway. Thus, for multilinear and 

polynomial uncertainty structures, it suggests the application of the value set concept 

and the zero exclusion condition. In fact, for even more general and complex 

uncertainty structures it is the only eventuality, because theoretical tools to all intents 

and purposes do not exist. Prerequisite to usage of zero exclusion condition is that 

polynomial coefficients have to be continuous functions on considered intervals. The 

Polynomial Toolbox facilitate the plotting of the value sets for multilinear, polynomial 

and general uncertainty structures via functions „vset“ and „vsetplot“ as demonstrate 

the following three examples. 

 

Example 4.14: 

First, consider the family of polynomials with multilinear uncertainty structure 

from [10] described by: 
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( )
( )
( )
( )

4 3
1 2

2
1 2 1 2

1 2 1 2

1 2 1 2

( , ) 2.56

2.06 1.561 2.871

1.06 4.841 1.561 3.164

4.032 3.773 1.985 1.853

p s q s q q s

q q q q s

q q q q s

q q q q

= + + + +

+ + + + +

+ + + + +

+ + + +

 (4.108) 

with uncertainty bounds 10 1q≤ ≤  and 20 3q≤ ≤ . The fig. 4.19 shows value sets of 

(4.108) for frequencies 0;2ω =  with step 0.05. As can be seen, the origin of the 

complex plane is included in these value sets and consequently the polynomial (4.108) 

is not robustly stable. 

 
Fig. 4.19 – The value sets of family (4.108) (full view and detail) 

 

Example 4.15: 

Next, the family with polynomial uncertainty structure is given by: 

 
( ) ( )
( )

3 2 3 3
1 2 1 2 1 2 2

3 3
1 2 1 2 2

( , ) 2 10

5

p s q s q q s q q q q q s

q q q q q

= + + + − − + + +

+ + + + +
 (4.109) 

and 1 2, 1;1q q ∈ − . The value sets for 0;5ω =  and step size 0.25 are depicted in fig. 

4.20. Now, the family (4.109) has a stable member and, moreover, the origin is 

excluded from the value sets, thus it represents the robustly stable case. 
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Fig. 4.20 – The value sets of family (4.109) (full view and detail) 

 

Example 4.16: 

Finally, suppose the polynomial family with general uncertainty structure: 

 
[ ]3 2

1 2 1 2 1 2

1 2 1 2

( , ) cos( ) 5 3sin cos( ) 4

4 sin cos( ) 0.1

p s q s q q s q q q q s

q q q q

⎡ ⎤= + + − − + +⎣ ⎦
⎡ ⎤+ − + + +⎣ ⎦

 (4.110) 

again with 1 2, 1;1q q ∈ − . The value sets of this event are shown in fig. 4.21 

( 0;4ω =  and step 0.2). Due to the position of the zero point inside of the value sets, 

the investigated family is concluded to be robustly unstable. 

 
Fig. 4.21 – The value sets of family (4.110) (full view and detail) 
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4.6. Uncertain time delay 

The above explained and exploited graphical approach to robust stability analysis 

using the value set concept in combination with the zero exclusion condition is insofar 

universal tool, that it applicable even for uncertain time-delay systems. The brief 

outline of the test is shown in the next example. 

 

Example 4.17: 

The controlled process is given by first order uncertain (dominant) time-delay 

transfer function: 

 [ ]5; 355( , )
1 10 1

d sT s
d

KG s T e e
Ts s

−−= =
+ +

 (4.111) 

while the designed conventional feedback controller equals to: 

 
( ) ( )

2 2
2 1 0

1

0.04768 0.007104 0.0002592( )
0.06384b

q s q s q s sC s
s s p s s
+ + + +

= =
+ +

� � �
�

 (4.112) 

The question is, if this regulator stabilizes the whole family of plants (4.111) for all 

possible values of uncertain time-delay. The family of closed-loop characteristic 

quasipolynomials is described by: 

 
( )( ) ( )2 2

1 2 1 0( , ) 1

5, 35

dT s
CL d

d

p s T Ts s p Ke q s q s q

T

−= + + + + +

∈

� � � �
 (4.113) 

Strictly speaking, the object (4.113) has the single parameter uncertainty structure. 

However, because of the uncertain parameter in exponent, the value set is not only a 

straight line segment (compared with fig. 4.9), but it is a more complex single 

parameter curve. The fig. 4.22 depicts value sets for 0, 0.15ω =  with step 0.001. The 

quasipolynomial (4.113) and thus also whole control system is robustly stable, because 

the family has a stable member and the origin of the complex plane is excluded from 

the value sets. 
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Fig. 4.22 – The value sets of family (4.113) 
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5. ALGEBRAIC CONTROL DESIGN IN RPS 

5.1. Theoretical background 

5.1.1. Rings and fields 

The ring Ω  is a nonempty set for the members of which ( Ω∈cba ,, ), the 

operations of addition and multiplication are defined while the following axioms are 

fulfilled: 

I:  

• a b+ ∈Ω  

• a b b a+ = +  

• a a a∃ ∈Ω + = + =0 0 0  (existence of the zero element) 

• ( ) ( )a a a a∀ ∈Ω ∃ − ∈Ω + − = 0  

II:  

• a b⋅ ∈Ω  

• abba ⋅=⋅  (for commutative ring) 

• a a a∃ ∈Ω ⋅ = ⋅ =1 1 1  (existence of the unit element) 

III:  

• ( )a b c a c b c+ ⋅ = ⋅ + ⋅  (the distributive law) 

• ( ) ( )a b c a b c+ + = + +  (the associative law) 

• ( ) ( )a b c a b c⋅ ⋅ = ⋅ ⋅  (the associative law) 

If moreover: 

• ( )1 1a a a a− −∀ ≠ ∈Ω ∃ ∈Ω ⋅ =0 1  (the division axiom) 

holds true, then Ω  is called a field. 
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If the aforementioned definitions and axioms are summarized, the ring is the set of 

elements in which these members can be summed (subtracted) and multiplicated by 

force of associative, commutative and distributive operations. In addition to this, if it 

can be divide in this set, it is said to be a field. In algebraic words, the ring is the 

Abelian group towards addition and Abelian semigroup towards multiplication. The 

examples of the rings are the set of integers or polynomials whereas the example of the 

field can be the set of rational numbers or rational functions. From the point of view of 

proposed synthesis method, the very important is RPS. 

5.1.2. Transfer functions in RPS 

The RPS is the ring of proper and Hurwitz-stable rational functions. The 

properness of function means that the degree of polynomial in its denominator is 

higher or at least equal as the degree of polynomial in its numerator. The stability is 

ensured by location of all poles in left complex half plane. For illustration: 

 
( ) ( )PS PS2 3

1 3 1 1 2; ; R ; ; ; ; R
1 5 13 3

s s ss
s s s ss s

− +
∈ ∉

+ + −+ −
 (5.1) 

The conversion from the polynomial representation to the RPS notation is very 

simple. It is just division of both numerator and denominator by the same stable 

polynomial of appropriate order. Concretely, the transposition can take a form: 

 ( )

( )

( )
( ) ( )( ) ( )( ) ( )

n

n

b s
s mb s B sG s a sa s A s
s m

+
= = =

+

 (5.2) 

where 0m >  is a free parameter and { }max deg ( ),deg ( )n a s b s= . Generally, it is not 

necessary to use the polynomial with multiple real root, but arbitrary stable polynomial 

with adequate order. However, the choice of multiple root 0m >  brings into the 

synthesis the single real scalar tuning parameter which will be subsequently used as a 

tool influencing the properties of closed-loop control responses.  
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5.1.3. Divisibility in RPS 

The divisibility in RPS is defined somewhat abstractly: ( )
( )

x s
y s

 divides ( )
( )

x s
y s
�
�

 if and 

only if all zeros of ( )
( )

x s
y s

 (roots of ( )x s ) located in right complex half plane (including 

imaginary axis and infinity) are also zeros of ( )
( )

x s
y s
�
�

 (roots of ( )x s� ). For instance: 

 
1

s
s +

 divides ( )
( )2

1

2

s s

s

−

+
 

( )2

1
2s +

 divides 
( )33

s
s +

 

 
1

s
s +

 does not divide 1
3s +

 
( )2

1
2s +

 does not divide 1
2s +

 

The common factor of two members of the ring a, b is the member d, which 

divides both of these members a, b. The greatest common factor ( ),GCF a b  is such 

member d� , which divides both a and b and which is moreover divisible by all 

common factors. The greatest common factor can be generally found by the Euclidean 

algorithm – for more details see [75]. 

5.1.4. Diophantine equations 

The Diophantine equations play essential role in algebraic structures called ring. It 

is a case of equation with two unknowns and their solution has no sense in fields. The 

Diophantine equation is formulated as follows: A, B, C are considered to be members 

of a ring and the aim is to find all possible pairs X, Y (again from the supposed ring) 

which fulfill the relation: 

 AX BY C+ =  (5.3) 

The solution consists in two steps. The former, it is necessary to decide if the 

assumed equation has solution anyway, the latter how to find it. The first question can 

be answered after verifying the condition: The solution exists if and only if D divides 

C, where ( ),D GCF A B= . If this term holds good, the equation (5.3) can be divided 

by this D resulting in the form: 
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 0 0 0A X B Y C+ =  (5.4) 

where 0A , 0B  are coprime. Then, the equation (5.4) has infinitely many solutions 

which are given by: 

 0 0

0 0

X X B F
Y Y A F

= +
= −

 (5.5) 

where F is an arbitrary member of the ring and 0X , 0Y  constitute particular solution of 

(5.4). From the control theory point of view the equation (5.3) represents the condition 

for stability of the closed control loop, the notation (5.4) can be formulated as 

coprimeness condition for transfer function which influence e.g. reachability and 

controllability of continuous-time linear system and finally, relations (5.5) determine 

all stabilizing controllers and they are known as (Bongiorno-)Youla-Kučera 

parameterization. 

5.2. Controller design 

The utilization of supra described algebraic tools allows to introduce fractional 

approach to synthesis based on works of Vidyasagar [75] and Kučera [41]. This 

method suppose description of linear systems in RPS bounded with classical transfer 

function by relation (5.2). The parameter 0m > , which enters into the synthesis 

process, can be used as a “tuning knob” for influencing of final control response. 

The general closed control loop with presence of disturbance signals can be 

realized according to fig. 5.1. It should be emphasized that all functions and signals 

depicted in fig. 5.1 are considered to belong to RPS. 

w 
G 

F 
w 

w 
= 

G(s)
B
A

=

n
G
F

n

n 
= 

yu

v
G
F

v

v
=

C(s)

 

Fig. 5.1 – General control loop 
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This circuit can have separated feedback ( )( )
( )

C
b

C

Q sC s
P s

=  and feedforward 

( )( )
( )

C
f

C

R sC s
P s

=  part (control system with two degrees of freedom – 2DOF, FBFW). In 

that event, assuming zero disturbances ( )0n v= = , control signal u is generated by: 

 ( )f b f b

w
u C C C w C y

y
⎛ ⎞

= = −⎜ ⎟−⎝ ⎠
 (5.6) 

If ( )( ) ( ) ( )
( )

C
b f

C

Q sC s C s C s
P s

= = =  then fig. 5.1 constitutes conventional feedback 

loop (control system with one degree of freedom – 1DOF, FB) working with tracking 

error e in compliance with: 

 ( )b bu C w y C e= − =  (5.7) 

Signals w, n, v represent reference value, load disturbance in the input and 

disturbance in the output of the controlled plant, respectively. Usually, w and n are 

considered as step signals and disturbance v is modelled to have a harmonic shape. 

Hence, the denominators of these signals in RPS are: 

 
( )

2 2

2;w n v
s sF F F

s m s m
ω+

= = =
+ +

 (5.8) 

where ω is angular frequency and 0m > . 

The first and definitely the most important requirement is to ensure the stability of 

control loop from fig. 5.1. Stabilizing controllers are given by ratio: 

 0

0

C C

C C

Q Q AF
P P BF

−
=

+
 (5.9) 

where F  is free in RPS, 0 0CP BF+ ≠  and 0 0,C CP Q  is some particular solution of 

Diophantine equation: 

 1C CAP BQ+ =  (5.10) 
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The formula (5.9) says that there exists either infinite amount of stabilizing 

regulators or none and it is called (Bongiorno-)Youla-Kučera parameterization of 

controllers. 

Another important property is the convergency of tracking error e to zero. Working 

on an assumption that no disturbances affect the control system in fig. 5.1 ( )0n v= =  

it follows for circuits given by (5.7) and (5.6), respectively: 

 C w

C C w

AP Ge
AP BQ F

=
+

 (5.11) 

 1 C w

C C w

BR Ge
AP BQ F

⎛ ⎞
= −⎜ ⎟+⎝ ⎠

 (5.12) 

Algebraic analysis of (5.11), (5.12) and substitution of (5.10) to (5.11), (5.12) 

results in fact that for zero tracking error:  

 [ ]
0

lim ( ) lim ( ) 0
t s

e t s e s
→∞ →

= ⋅ =  (5.13) 

the expression wF  must disappear from denominators of (5.11), (5.12). Therefore it 

follows: 

a) wF  must divide product CAP  for structure 1DOF (5.7) 

b) wF  must divide ( )1 CBR−  for structure 2DOF (5.6) 

which implies the second Diophantine equation: 

 1w CF Z BR+ =  (5.14) 

Utilizing this technique, the controller can be designed also for rejection of 

disturbances n and v. The situation during synthesis is similar, only a little bit more 

complicated [58], [60]. Suppose coprime ratios: 

 0 0

0 0

,
v v n n

A BA B
F F F F

= =  (5.15) 

then the equation of stability (5.10) takes the form: 

 0 0 1v n C CAF F P BQ+ =  (5.16) 

and the transfer function of feedback part of the controller is: 
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0 0

C
b

C v n

QC
P F F

=  (5.17) 

The feedforward part is given again by (5.14). 

More details about ideas and tools which is the proposed control design method 

based on can be found in [75], [41] and concrete controller design and tuning e.g. in 

[56], [59]. The utilization of the methodology for stable or unstable time delay systems 

is described for example in [62], [57] and for extension in the sense of simultaneous 

tracking and disturbance rejection see [58] or [60]. Furthermore, comparison of 

solutions of Diophantine equations in the ring of polynomials and in RPS and some 

useful remarks and analyses for time delay systems are provided in [36]. 

5.3. Derivation of controller for first order system 

The whole process of controller design, described in previous part, can be 

illustrated by representative simple synthesis for first order controlled plant: 

 0

0

( ) bG s
s a

=
+

 (5.18) 

After transposition of all transfer functions in RPS the basic “stabilizing” Diophantine 

equation (5.10) can be written in the form: 

 0 0
0 0 1s a bp q

s m s m
+

+ =
+ +

 (5.19) 

Its particular solution is given by: 

 0
0 0

0

1; m ap q
b
−

= =  (5.20) 

Consequently, all stabilizing controllers can be obtained with the assistance of Youla-

Kučera parameterization: 

 0 0
0 0;C C

b s aP p F Q q F
s m s m

+
= + = −

+ +
 (5.21) 

where F is an arbitrary member of RPS. Supposing the step changes in reference signal 

(and thus w
sF

s m
=

+
), it is now necessary to choose such controller from the set (5.21) 
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in order to Fw divides CAP  (or in this case CP  is enough) – see section 5.1.3 to remind 

divisibility in RPS. Hence, it has to be found appropriate 0F f= . After simple 

adjustment it follows that complying 0f  is the one and only, scilicet 0
0

mf
b

= − . By its 

substitution into (5.21) the numerator and denominator of the controller, which will not 

only stabilize the controlled plant in closed-loop system but it will also guarantee the 

asymptotic tracking of the reference signal, are obtained: 

 

2
0

0 0 0 0

0 0

2

;C C

m a ms
m a s a b bs mP Q

s m b s m b s m

−
+

− +
= = + =

+ + +
 (5.22) 

As can be clearly seen, the final controller of PI type is described by transfer function: 

 

2
0

0 0 1 0

2

C
b

C

m a ms
Q b b q s qC
P s s

−
+

+
= = =

� �
 (5.23) 

And hence it is obvious that both controller coefficients 0
1

0

2m aq
b
−

=�  and 
2

0
0

mq
b

=�  are 

generally nonlinear functions of real scalar parameter 0m > . 

If 2DOF control structure described by (5.6) is considered, it is necessary to solve 

one more Diophantine equation (5.14), this time in the concrete form: 

 0
0 0 1bs z r

s m s m
+ =

+ +
 (5.24) 

with particular solution 0 0
0

; 1mr z
b

= =  and with general solution 0C
sR r F

s m
= +

+
� , 

where F�  is again free in RPS (e.g.  0F =� ). The control law (5.6) is in RPS: 

 0 0 1 0r s r m q s qs u w y
s m s m s m

+ +
= −

+ + +
� �

 (5.25) 

Due to equality 
2

0 0
0

mr m q
b

= =�  the last equation (5.25) can be easily rewritten to: 
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 [ ]0
1 0

1

( ) ( ) ( ) ( ) ( )ru t q w t y t q w t y t dt
q
⎡ ⎤

= − + −⎢ ⎥
⎣ ⎦

∫� �
�

 (5.26) 

The relation (5.26) is exactly generalized PI controller according to [5], [6], which, in 

compliance with empirically established results, in many cases reduces overshoots and 

produces smoother control responses. 

5.4. Derivation of controller for second order system 

In this case, let the controlled plant to be given by a second order transfer function: 

 1 0
2

1 0

( ) b s bG s
s a s a

+
=

+ +
 (5.27) 

The basic Diophantine equation (5.10) can be expressed as: 

 
( ) ( )

2
1 0 1 0 1 0 1 0

2 2 1s a s a p s p b s b q s q
s m s ms m s m

+ + + + +
+ =

+ ++ +
 (5.28) 

Its particular solution is: 

 

1
2 2 2 2 3

0 1 0 0 1 0 1 0 1
0 2 2

1 0 1 0 0 1

1 0
1

1
3

0 0
0

0

1

3 3

3

p

m b b a b b mb a b b mp
a b b b a b

m a pq
b

m a pq
b

=

− − + −
=

− −

− −
=

−
=

 (5.29) 

Youla-Kučera parameterization purveys all solutions of the equation (5.28): 

 
( )

0 1 0
0 2C C

s p b s bP P BF F
s m s m
+ +

= + = +
+ +

 (5.30) 

 
( )

2
1 0 1 0

0 2C C
q s q s a s aQ Q AF F
s m s m
+ + +

= − = −
+ +

 (5.31) 

This set represents all stabilizing controllers. However, similarly as in previous case of 

first order plant, there is a need to find the controller with desired properties, i.e. one 

which fulfill the appropriate condition of divisibility (Fw has to divide CAP  – ensuring 
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of asymptotic tracking). It can be done with the assistance of suitable choice of free 

parameter F. Again, from the consideration analogical to the previous event, it follows 

that F is given by expression: 

 0
0

0

p mF f
b

= = −  (5.32) 

Hence, the final solution can be written: 

 
( ) ( )

2 1
0 0 2

0 1
2 2C

bs s p m p m
b s p sP

s m s m

⎛ ⎞
+ + −⎜ ⎟

+⎝ ⎠= =
+ +

�
 (5.33) 

 ( )

( )

2 0 0 0
1 0 1 1 0 0

0 0 0
2

2
2 1 0

2

C

p m p m p ms q s q q m a a q m
b b b

Q
s m

q s q s q
s m

⎛ ⎞ ⎛ ⎞
+ + + + + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠= =
+

+ +
=

+

� � �
 (5.34) 

and thus the transfer function of feedback controller is obtained in the form: 

 
( )

2
2 1 0

1

C
b

C

Q q s q s qC
P s s p

+ +
= =

+
� � �

�
 (5.35) 

with parameters: 

 

1
1 0 0

0

0
2 1

0

0
1 0 1 1

0

0
0 0 0

0

bp p m p m
b

p mq q
b

p mq q q m a
b

p mq q m a
b

= + −

= +

= + +

= +

�

�

�

�

 (5.36) 

For 2DOF control structure, the Diophantine equation (5.14) takes the form: 

 
( )

1 0 1 0
02 1z s z b s bs r

s m s m s m
+ +

+ =
+ + +

 (5.37) 
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The useful term of particular solution is 
2

0
0

mr
b

= . For 0C
sR r F

s m
= +

+
�  with 0F =�  it 

follows: 

 

( )

2 2 2
0 0 0 0 2 1 0

2 2 2
1 1 1

2

2C
f

C

R r r s r ms r m r s r s rC
s p sP s p s s p s
s m

+ + + +
= = = =

+ + +
+

� � �
� � �

 (5.38) 

 
Provided that the second order system has the relative order 2, that is 

 0
2

1 0

( ) bG s
s a s a

=
+ +

 (5.39) 

the equation (5.28) changes into: 

 
( ) ( )

2
1 0 1 0 0 1 0

2 2 1s a s a p s p b q s q
s m s ms m s m

+ + + +
+ =

+ ++ +
 (5.40) 

with particular solution: 

 

1

0 1

2
0 1 1 0

1
0

3
0 0

0
0

1
3

3

p
p m a

m a p a pq
b

m a pq
b

=
= −

− −
=

−
=

 (5.41) 

After the application of Youla-Kučera parameterization and choice of right solution for 

asymptotic tracking, the final controller has again the form of transfer function (5.35). 

This time, its parameters are given by: 

 

1 0 1

0
2 1

0

0
1 0 1 1

0

0
0 0 0

0

p p p m
p mq q
b

p mq q q m a
b

p mq q m a
b

= +

= +

= + +

= +

�

�

�

�

 (5.42) 

Furthermore, 2DOF configuration of control loop brings Diophantine equation: 
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( )

1 0 0
02 1z s z bs r

s m s m s m
+

+ =
+ + +

 (5.43) 

which again leads to 
2

0
0

mr
b

=  and lastly to regulator (5.38). 

5.5. Tuning of controllers 

As it has been already shown, the methodology based on RPS representation 

implies the fact that controller parameters and closed-loop control response can be 

further simply tuned with the help of single real scalar tuning parameter 0m > . 

However, the very topical question is how to choose appropriate m to gain the 

controller which would fulfill additional user requirements. The simplest nevertheless 

practically often sufficient solution is to select this parameter more or less “randomly” 

or on the basis of “engineering feeling” and subsequently test the regulation by 

simulation. Even an inexperienced user is usually able to find a suitable m after several 

steps. 

Another two possibilities, discussed e.g. in [36], [56], [59] allow to tune the 

controller to be robust enough. The former way is to utilize the robust stability 

conditions [41], [75]. As far as both nominal and perturbed systems are known, the 

parameter m which guarantee robust stability of the closed control loop can be 

obtained. The latter method consists in minimization of sensitivity function [25], [41], 

[75] in the sense of the norm H∞ . In this instance, such m which tunes the “most 

robust” controller towards changes in controlled system (or in closed loop transfer 

function) is found. On the other hand, resultant control responses do not need to be 

practically acceptable at all. 

Moreover, this work includes investigation of technique for selection of m based 

on user-defined nominal control behaviour, while the parameters of nominal transfer 

function are known. The proposed preliminary analysis deals with the simplest case of 

stable first order system and PI regulator. 
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5.5.1. Robust stability conditions 

Before the description of robust stability conditions itself, it would be useful to 

remind the notion of the H∞  norm which is defined as: 

 
Re 0 Re
sup ( ) sup ( )

s
G G s G j

ω
ω

≥ ∈
= =  (5.44) 

for SISO systems or possibly:  

 ( ) ( ){ }
1

2 2 21
1 2 1 2

Re 02

sup
s

G
G G G s G s

G ≥
= = +  (5.45) 

for two-dimensional systems. In other words, the norm (5.44) represents the radius of 

the smallest circle with the centre in the origin of the complex plane which includes the 

Nyquist plot of given system. Apropos, here comes out one of the advantages of the 

transcription to RPS. The conception of norm or distance can be defined in the ring of 

polynomials quite difficultly but in RPS all functions are stable and thus they have finite 

values of the norm H∞ . 

Let the nominal plant to be denoted by transfer function ( ) ( ) ( )G s B s A s=  and the 

perturbed one by ( ) ( ) ( )G s B s A s=� �� . Their mutual distance can be quantified by simple 

inequalities: 

 1 2,A A B Bε ε− ≤ − ≤� �  (5.46) 

 A A B B ε− − ≤� �  (5.47) 

Now, the conditions for robust stability of closed loop with controller designed e.g. in 

accordance with (5.9), (5.10) and perturbed plant complying (5.46), (5.47) can be 

formulated. Their proof is not trivial and it is related to Nyquist criterion. The stronger, 

sufficient condition is published in [41] in the form: 

 1C CA A P B B Q− ⋅ + − ⋅ <� �  (5.48) 

to write it differently: 

 1 0 2 0 1C CP BF Q AFε ε+ + − <  (5.49) 

The necessary and sufficient condition is proven in [75]: 
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 1C

C

P
A A B B

Q
− − ⋅ <� �  (5.50) 

thus 

 0

0

1C

C

P BF
Q AF

ε
+

<
−

 (5.51) 

All four previous expressions plainly suggest that left sides of inequalities are 

nonlinear functions of scalar parameter 0m > . 

5.5.2. Sensitivity function 

During the process of robust control design also the inverse situation can be met 

with. In other words, no perturbations in the meaning of (5.46), (5.47) are known and 

the task is to design in certain intent the “most robust” controller for nominal system. 

The term of sensitivity function can serve well for this purpose – see e.g. [25], [41], 

[75]. The sensitivity function is the ratio of change in transfer function of whole closed 

loop to change in transfer function of controlled system. The relative sensitivity 

function can be then written as: 

 
0

lim

W Y

W Y W Y

G
W Y

G
G dGGS G G dG

G
∆ →

∆

= = ⋅
∆

 (5.52) 

After derivation and subsequent adjustment, the expression 

 ( )0
1 1

1 1

C
W E C

Cb C C

C

APS G A P BFBQGC AP BQ
AP

= = = = = +
+ ++

 (5.53) 

is reached 

Hence, the norm of sensitivity function (5.53) is again nonlinear function of 

parameter 0m > . Minimum of this norm therefore determines “the most robust” 

controller for nominal plant from the viewpoint of sensitivity. If it does not exist the 

only minimum and sensitivity function is a non-increasing one from certain value of m, 

the control law can be called as highly robust. It is needful to remark that robust 

regulators designed and tuned by this approach (and robust controller generally, of 
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course) usually do not provide optimal control responses. The control time is often 

long and its behaviour contains overshoots. On the contrary, non-robust controllers 

have nice, fast and smooth control responses but, unlike robust ones, they are tuned 

only for nominal systems. 

If the 2DOF control system (5.6) is used, then the feedforward part of the 

controller does not have impact on the robust stability of the closed loop. 

5.5.3. Nominal performance 

Both preceding techniques have solved the question how to select or reject the 

parameter m from the available set when the aim is to tune a robust controller. 

However, there is a lack of rules for nominal systems. This chapter proposes a possible 

approach developed by author in [46], [48]. 

First of all, it is necessary to choose the criterion for evaluation of nominal 

performance. For this outline and from the point of view of control engineers, a 

reasonable criterion can be seen in the overshooting and undershooting of control 

responses. The analysis is visualized for three couples of { }0 0,b a : 

 0 01; 0.5b a= =  (5.54) 

 0 01; 1b a= =  (5.55) 

 0 01; 2b a= =  (5.56) 

in first order transfer function: 

 0

0

( ) bG s
s a

=
+

 (5.57) 

where 0 0a > , i.e. stable system is assumed. 

Supposing the 1DOF configuration, PI controllers (5.23) were designed and tuned 

by 0.05;15m∈  for these three systems. Fig. 5.2 shows relations between the 

parameter m and the percentage of the first undershoot while fig. 5.3 represents a 

similar dependence for the overshoots. Graph in fig. 5.2 is zoomed for better view. 

Typical shapes of the control responses with first undershoot or overshoot can be seen 

in fig. 5.4. 
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Fig. 5.2 – Relation between m  and undershoot for: 
(5.54) – blue, (5.55) – green, (5.56) – red 
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Fig. 5.3 – Relation between m  and overshoot for: 
(5.54) – blue, (5.55) – green, (5.56) – red 
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Fig. 5.4 – Typical control responses with first undershoot or overshoot 

 

The deeper insight into these simulations gives an important result. If the ratio of m 

and a0 is a constant, then the control loop produces response with the same size of 

undershoot or overshoot. In other words, the control results of “same quality”, from the 

viewpoint of selected criterion, can be obtained if: 

 
0

m
a

κ=  (5.58) 

where κ  is a constant. 

The closed-loop system generates the control responses with first undershoot if: 

 0.5κ <  (5.59) 

However, the bulk of industrial processes requires the regulation with shorter settling 

time (and without undershoots). This requirement can fulfill a higher value of κ . The 

corresponding constant κ  for several values of first overshoot in percentage can be 

found in tab. 5.1. 
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Tab. 5.1 – Relation between κ  and overshoot 

Overshoot [%] κ  
0 1.00 
1 1.62 
2 1.87 
3 2.14 
4 2.44 
5 2.80 
6 3.25 
7 3.81 
8 4.58 
9 5.67 
10 7.38 

 
 

Probably the most significant consequence from this analysis is that there exists 

some interval of m which does not produce any overshoot or undershoot. The 

“optimal” choice of m seems to be if the response is as fast as possible but still without 

overshoot. For this case, constant κ  from (5.58) equals to 1 (see also tab. 5.1). As a 

result of this: 

 0m a=  (5.60) 

By further simulations it was found out that the value of parameter b0 does not 

influence the choice of 0m > . The curves in fig. 5.2 and fig. 5.3 would be the same for 

every b0. 

Putting (5.60) into (5.23) gives the “optimal” parameters of PI controller: 

 
2

0 0
1 0

0 0

;a aq q
b b

= =� �  (5.61) 

If the controlled system is assumed in the form: 

 ( )
1

KG s
Ts

=
+

 (5.62) 
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where 0

0

bK
a

=  and 
0

1T
a

= , then equations (5.58), (5.60) and (5.61) change into, 

respectively: 

 Tm κ=  (5.63) 

 1m
T

=  (5.64) 

 1 0
1 1;q q
K KT

= =� �  (5.65) 

These ideas and simulation results can be also confirmed by analysis of the closed 

loop transfer function (see fig. 5.1 and suppose 1DOF configuration): 

 ( )
( )

( ) ( )
( )

( )
( ) ( )

0 1 0
2

0 1 0

0 0 1 0 0 0 1 0
2

1 1

C

b C C
W Y

Cb C C

C

BQ
GC AP BQG BQGC AP BQ

AP
b q s q

s m b q s q
s a s b q s q s a s b q s q

s m

= = = =
+ ++

+

+ +
= =

+ + + + + +

+

� �
� �

� � � �

 (5.66) 

Assuming controller parameters in (5.23), it holds for the numerator of (5.66): 

 ( )
2

0
0 1 0 0

0 0

2m a mb q s q b s
b b

⎛ ⎞−
+ = +⎜ ⎟

⎝ ⎠
� �  (5.67) 

For example, it can be seen that the closed-loop system has non-minimum phase 

behaviour (first undershoot for input signal positive step change) if: 

 00.5m a<  (5.68) 

which concurs with equations (5.58) and (5.59). 

The succeeding set of examples demonstrates possibilities of this tuning method 

under the simulation conditions as follows: Reference signal 1 with step change to 2 in 

1/3 of simulation time and step load disturbance 0.2n = −  (example 5.1) or 1n = −  

(example 5.2) which starts to affect the signal from the controller in 2/3 of simulation 

time. 

 



 

- 104 - 

Example 5.1: 

The controlled system is supposed to be given by transfer function: 

 5 0.5( )
10 1 0.1

G s
s s

= =
+ +

 (5.69) 

For obtaining output value without overshoot, tuning parameter 

 0.1m =  (5.70) 

is assumed. Equations (5.61) give PI controller: 

 ( ) 0.2 0.02( )
( )

C
b

C

Q s sC s
P s s

+
= =  (5.71) 

The simulation results can be seen in fig. 5.5. 
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Fig. 5.5 – Control behaviour of 1DOF system with plant (5.69) and controller (5.71) – 

control response (black), manipulated variable (blue) 

 

The applicability of the above derived tuning rules can be confirmed also by 

another, known approaches – e.g. the controller with the same parameters is obtained 

by desired model method (formerly known as dynamics inversion method) supposing 

time constant of the closed-loop equals to the time constant of the controlled system 

( wT T= ) – see e.g. [76]. 
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Example 5.2: 

In this part, which should demonstrate robustness of considered PI controllers and 

their applicability to higher order systems, the following transfer functions: 

 
( )1 3

1( )
1

PG s
s

=
+

 (5.72) 

 
( )2 7

1( )
1

PG s
s

=
+

 (5.73) 

are assumed to be controlled systems and they are simply approximated by: 

 1
1 0.3( )

3 1 0.3NG s
s s

= =
+ +

 (5.74) 

 2
1 0.1429( )

7 1 0.1429NG s
s s

=
+ +
�  (5.75) 

PI controllers tuned according to (5.61) computed for nominal systems (5.74) and 

(5.75) are described by transfer functions, respectively: 

 1
1

1

( ) 0.3( )
( )

C
b

C

Q s sC s
P s s

+
= =  (5.76) 

 2
2

2

( ) 0.1429( )
( )

C
b

C

Q s sC s
P s s

+
= =  (5.77) 

The results of closed-loop control both for nominal and perturbed (higher order) 

systems are shown in fig. 5.6 and fig. 5.7. As can be seen, output signals seem to be 

acceptable for most common applications.  
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Fig. 5.6 – The closed-loop control: PI regulator (5.76) for higher order system (5.72) 

(solid) and nominal one (5.74) (dotted) 

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

t [s]

w
(t

),
 y

(t
)

 
Fig. 5.7 – The closed-loop control: PI regulator (5.77) for higher order system (5.73) 

(solid) and nominal one (5.75) (dotted) 
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6. SOFTWARE IMPLEMENTATION 

AND SIMULATION EXAMPLES 

This chapter introduces user-friendly program for synthesis and simulation of 

control systems under assumption that controlled plants are affected by interval 

uncertainty. It incorporates selected controller design algorithms and tools for robust 

stability analysis as they have been described hereinbefore. The developed software 

takes advantage of functions and graphical user interface (GUI) of MATLAB 6.5.1 and 

also benefits of simulation environment SIMULINK and support of the Polynomial 

Toolbox 2.5. In pastness, it has been already created several similar programs in 

Faculty of Applied Informatics and formerly in Faculty of Technology – e.g. it has 

been packages for control of time delay systems [36] or its embellishment for control 

of systems with time-varying (periodic) parameters [61]. The main menu window of 

the described product is shown in fig. 6.1. 

 
Fig. 6.1 – The window of main menu 
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It follows a very brief depiction of program possibilities according to numbered 

items from fig. 6.1: 

1) The definition of nominal system (with fixed parameters) which is used for 

controller design. 

2) The definition of perturbed system (with interval parameters) which is used 

for simulation of control. 

3) Size of perturbations (expressed in percentage). 

4) The choice of strategy for controller tuning. The first eventuality allows user 

to define an arbitrary value of tuning parameter 0m >  while the second one 

minimizes the sensitivity function and searches for the “most robust” 

regulator to given nominal plant. 

5) The selection of one from two basic closed control loop configurations – 

1DOF or 2DOF control system. 

6) The option of desired properties of the controller – either asymptotic tracking 

of reference signal or simultaneous tracking and disturbance rejection. 

7) Adjustments of basic simulation parameters such as simulation time, 

reference signal, load disturbance and controller saturation. 

8) Possibility of harmonic disturbance setting (in the output of the controlled 

plant). 

9) Possibility of ramp disturbance setting (in the output of the controlled plant). 

10) The selection of simulation results which should be displayed. The important 

item is “Number of partial intervals for simulation” defining how many 

intervals is each uncertain parameter in controlled system divided into. In 

other words, this number increased by one expresses the quantity of 

“sampled” values in individual uncertain coefficients. The aim is to create 

some “representative set of systems” (RSS) used for simulation process. 

However, be careful, the higher numbers noticeably increase computational 

time. 

11) The buttons for start of simulation and exit from the program. 

 

The capability of developed software is demonstrated on the following examples. 
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Example 6.1: 

The controlled plant is given as the second order interval system described by 

uncertain transfer function: 

 1 0
2

1 0

( , , )i i
b s bG s b a

s a s a
+

=
+ +

 (6.1) 

where 1 0 1 0, , , 0.5;1.5b b a a ∈ . The system (6.1) in which the parameters are not 

uncertain, but they supposed to be fixed 1 0 1 0 1b b a a= = = =  is considered as the 

nominal one. The simulation conditions were used as follows: All uncertain parameters 

of the system (6.1) are divided into 6 partial intervals (sampled into 7 certain values), 

i.e. the curves corresponding to responses of 47 2401=  members of RSS from the 

family (6.1) appear in graphs; in control simulations, the reference signal with step 

change from 1 to 2 is assumed in one third of simulation time and the step load 

disturbance of the size -1 is injected to the input of the controlled plant during the last 

third of simulation. 

The step responses of 2402 members of the interval family (2401 systems from RSS 

depicted in black + 1 nominal system in red) are shown in fig. 6.2. 
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Fig. 6.2 – Step responses of 2402 systems from interval family (6.1) – (the red curve 
represents the nominal plant) 
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The task is to design the regulator which guarantees the asymptotic tracking of the 

reference signal and robust stability of the closed control loop, i.e. stability of control 

system for all members of interval family (6.1). The synthesis is performed via 

methodology described in chapter 5. The choice 0.6m =  and putting into relations 

(5.29), (5.35), (5.36) lead to PID controller for 1DOF configuration: 

 
2 2

2 1 0
2 2

1

0.4256 0.24 0.1296
0.9744

C
b

C

Q q s q s q s sC
P s p s s s

+ + − +
= = =

+ +
� � �

�
 (6.2) 

As can be easily verified, the nominal system will be stabilized by this controller in 

closed loop. The question runs, if the control circuit is robustly stable. The closed loop 

characteristic polynomial has affine linear uncertainty structure: 

 
( ) ( ) ( )

( )

4 3 2
1 1 2 1 0 1 1 1 1 0 2

0 1 1 0 0 1 0 0

, ,i ip s b a s a b q p s a a p b q b q s

a p b q b q s b q

= + + + + + + + +

+ + + +

� � � � �

� � � �
 (6.3) 

thus: 

 

( ) ( )
( )
( )

4 3
1 1

2
0 1 1 0

0 1 0 0

, , 0.4256 0.9744

0.9744 0.24 0.4256

0.9744 0.1296 0.24 0.1296

i ip s b a s a b s

a a b b s

a b b s b

= + + + +

+ + − + +

+ + − +

 (6.4) 

First, the robust stability of (6.4) is investigated through the overbounding method. 

Apart from other things, the overbounding interval polynomial and four related 

Kharitonov polynomials can be seen in fig. 6.3 which represents final result of robust 

stability analysis from the program. 

 

Fig. 6.3 – Results of robust stability investigation from the program 
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It is effortless to check that only two of Kharitonov polynomials are stable. 

Kharitonov rectangles from fig. 6.4 (depicted actually only for illustration) ergo 

distinctly indicate robust instability of the overbounding polynomial because they 

cover the origin of the complex plane (frequencies from 0 to 2 with step 0.02). 

However, generally it does not point to any conclusion about robust stability of 

original structure (6.4) because the mutual dependence among polynomial coefficients 

has been ignored. 

 

0 5 10

-25

-20

-15

-10

-5

0

Real Axis

Im
ag

 A
xi

s

-0.6 -0.4 -0.2 0 0.2

-0.4

-0.2

0

0.2

0.4

0.6

Real Axis

Im
ag

 A
xi

s

Fig. 6.4 – The Kharitonov rectangles of overbounding interval polynomial 
(full view and detail) 

 

Nevertheless, the “true” value sets of the polytope of polynomials (6.4) in fig. 6.5 

reveal the closed-loop system is not robustly stable indeed. 
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Fig. 6.5 – The value sets of polytope of polynomials (6.4) (full view and detail) 
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Besides, this fact is confirmed by RSS control behaviour itself gained as an output 

from 1DOF control structure constructed in SIMULINK environment. The simulation 

scheme is shown in fig. 6.6 while the control response can be seen in fig. 6.7. 
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Fig. 6.6 – SIMULINK scheme of 1DOF control system 
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Fig. 6.7 – Control of RSS of interval family (6.1) and nominal system (red curve) by 
controller (6.2) 

 

If the feedback controller (5.35) is tuned by value 1m = , it holds: 

 
2

2

2 2 1C
b

C

Q s sC
P s s

+ +
= =

+
 (6.5) 

This regulator results in polytope of polynomials (6.3) in the form: 
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( ) ( ) ( )

( )

4 3 2
1 1 0 1 1 0

0 1 0 0

, , 2 1 2 2

2
i ip s b a s a b s a a b b s

a b b s b

= + + + + + + + +

+ + + +
 (6.6) 

The Kharitonov rectangles of overbounding interval polynomial for (6.6) are plotted in 

fig. 6.8 analogically to previous case. The overbounding method is not successful again 

so robust stability can not be resolved and on that account the value sets of original 

structure (6.6) are shown in fig. 6.9 (frequencies from 0 to 3.5 with step 0.04). Now, 

the zero point is excluded from the value sets thus the polytope of polynomials (6.6) 

and hence also the closed-loop control system is robustly stable. 
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Fig. 6.8 – The Kharitonov rectangles of overbounding interval polynomial 
(full view and detail) 
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Fig. 6.9 – The value sets of polytope of polynomials (6.6) (full view and detail) 
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Robust stability of the closed loop is vindicated by control simulation of RSS 

depicted in fig. 6.10. 
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Fig. 6.10 – Control of RSS of interval family (6.1) and nominal system (red curve) by 
controller (6.5) 

 

The shorter settling time can be obtained by further tuning of controllers by 

parameter m. Assuming the 1DOF configuration of control system, the selection 

1.5m =  gives the feedback regulator:  

 
2

2

4.0625 7.5 5.0625
0.9375

C
b

C

Q s sC
P s s

+ +
= =

+
 (6.7) 

and the computation for 2DOF structure adds the feedforward part: 

 
2

2

2.25 6.75 5.0625
0.9375

C
f

C

R s sC
P s s

+ +
= =

+
 (6.8) 

 For this once, only the final simulations of control behaviour are shown without 

deeper insight both for 1DOF and 2DOF configurations – see fig. 6.11 and fig. 6.12, 

respectively. However, the costs for “faster” regulation are much more aggressive 

control signals. 
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Fig. 6.11 – Control of RSS of interval family (6.1) and nominal system (red curve) by 
controller (6.7) – 1DOF 
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Fig. 6.12 – Control of RSS of interval family (6.1) and nominal system (red curve) by 
controller (6.7), (6.8) – 2DOF 
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7. CONTROL OF PERIODICALLY TIME-VARYING 

SYSTEMS 

The section pays attention to possible utilizing of continuous-time robust 

compensators designed with the assistance of methodology from chapter 5 to control of 

periodic systems. 

7.1. System description 

The capability of proposed robust algorithms is demonstrated on control of time-

varying continuous-time dynamical systems with periodically perturbed parameters, 

generally also with time-delay. Unlike systems with parametric uncertainty, here the 

parameters change significantly in time. Under assumption of zero initial conditions, it 

is described through differential equation: 

 

( ) ( )

( ) ( )

1
1 0

1
1 0

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ( )) ( ) ( ( )) ( ) ( ( ));

n n
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m m
m d m d d

a t y t a t y t a t y t

b t u t T t b t u t T t b t u t T t
m n
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…  (7.1) 

with t-variant coefficients: 
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 (7.2) 

where , ,m n dβ α τ  are real constants; , ,bm an dτλ λ λ  amplitudes and , ,bm an dτω ω ω  

angular frequencies. The choice 0bm an dτλ λ λ= = =  or 0bm an dτω ω ω= = =  represents 

time-invariant system. 

Due to the simplification of notation, it can be used also the non-standard hybrid 

“transfer functions” which depend both on complex variable s and on time t: 
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 (7.3) 
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If the controlled plant does not contain any delay ( 0dT = ), the nominal system is 

described by expressions (7.3), (7.2) under fulfillment of prerequisite 0bm anλ λ= =  or 

0bm anω ω= = . However, even in the case of invariant system, the model (7.3) is not 

suitable for algebraic synthesis if the transfer function of the process includes time-

delay. It is necessary to approximate this delay before control design itself. For 

example, the well-known and popular Padé approximation seems appropriate for this 

purpose. Its first order version is: 

 
1

2

1
2

d

d

T s

d

T s
e T s

−
−

≈
+

 (7.4) 

On the other hand, also other modifications are conceivable – see e.g. [56], [60], [59]. 

The substitution (7.4) leads to the nominal system in a form of linear transfer function: 

 
1

1 0
1

1 0

( ) ;
m m

m m
n n

n n

b s b s bG s m n
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−
−
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…
…

 (7.5) 

Naturally, the polynomial orders m, n differ from these ones in (7.3). Then, the really 

controlled (perturbed) system can contain the periodic parameters, including time-

delay term. 

Fig. 7.1 and fig. 7.2 show how interestingly can the step responses of periodic 

systems look like. The first case represents the nominal and perturbed integrator given 

by (7.7) and (7.6), respectively, while the second figure illustrates the step responses 

for second order systems described by (7.9) and (7.8). 
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Fig. 7.1 – Comparison of step responses of first order systems (7.6) and (7.7) 
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Fig. 7.2 – Comparison of step responses of second order systems (7.8) and (7.9) 
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7.2. Simulation experiments 

The simulation experiments have been done for three types of controlled plants. In 

all cases, the following conditions have been considered: The feedback controller 

(1DOF control loop configuration) ensuring asymptotic tracking has been designed to 

nominal system and sequentially it has been tuned for various values of parameter 

0>m . Further, it has been assumed the step reference signal changing from 1 to 2 in 

1/3 of simulation time and the step load disturbance -1 which influences the input to 

the controlled plant during the last third of simulation. The program designed in 

MATLAB/SIMULINK environment [61] has been utilized in presented simulation 

experiments. 

7.2.1. First order integrator 

The controlled plant is assumed as first order plant with periodically perturbed 

parameters described by differential equation and hybrid “transfer function”: 

 
( ) ( )

( )
( )

( ) 0.5sin 0.5 ( ) 1 0.5sin 0.2 ( );

1 0.5sin 0.2
( , )

0.5sin 0.5

y t t y t t u t

t
G s t

s t

′ + ⎡ ⎤ = ⎡ + ⎤⎣ ⎦ ⎣ ⎦
+

=
+

 (7.6) 

Thus, the nominal system is supposed as ideal first order integrator: 

 1( )G s
s

=  (7.7) 

The mutual comparison of step responses of nominal (7.7) and perturbed (7.6) system 

is shown in fig. 7.1. 

In the case of nominal system (7.7), the term wF  has already divide CAP  for 

particular solution (P controller) because s is incorporated in the numerator of A. In 

spite of this, the formerly derived relations have been used and, utilizing proposed 

technique, PI controller has been designed for (7.7) according to expression (5.23). The 

choice of three different 0m >  successively results in parameters of controller in 

compliance with tab. 7.1. 
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Tab. 7.1 – Various parameters of controller (5.23) 

m 1�q  0�q  

1 2 1 
2 4 4 
5 10 25 

 
The closed-loop control responses using compensators tuned this way are depicted 

in fig. 7.3. As can be seen, increasing values of m afford the „faster“ control responses 

which are less sensitive towards periodic changes in parameters. Nevertheless, higher 

and “more aggressive” control signals are costs for it. 
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Fig. 7.3 – Control of plant (7.6) 

 

7.2.2. Second order plant 

The second controlled plant is represented by: 
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 (7.8) 



 

- 122 - 

whereas nominal system is described by transfer function: 

 2

2( )
3 2

G s
s s

=
+ +

 (7.9) 

The step responses both for nominal and periodic case are compared in fig. 7.2. Real 

PID regulator (5.35) with coefficients (5.42) can be reached applying the synthesis 

method from chapter 5 to second order system (7.9). Analogously to previous example, 

various values of 0m >  lead to numbers from tab. 7.2. 

 

Tab. 7.2 – Various parameters of controller (5.35) 

m 2�q  1�q  0�q  1�p  

1 0.5 1 0.5 1 
3 12.5 45 40.5 9 
5 48.5 233 312.5 17 

 

The outputs from closed loops containing the controllers tuned according to tab. 7.2 are 

shown in fig. 7.4. 
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Fig. 7.4 – Control of plant (7.8) 
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7.2.3. First order plant with time-varying delay 

Finally, the differential equation or “transfer function”: 

 
( ) [ ] [ ]

( )
( )10 sin

( ) 0.1 0.01sin 0.5 ( ) 0.1 0.01sin ( 10 sin );
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 (7.10) 

describing the first order plant affected by time-varying delay is assumed to be a 

controlled system. Time delay, which entails complications in process control itself, is 

moreover considered in (7.10) as time-varying. For control design purpose, it has been 

superseded by Padé approximation (7.4). The nominal system can be hence written as:  

 ( )
( )( )

0.1 1 5
( )

0.1 1 5
s

G s
s s

−
=

+ +
 (7.11) 

The final controller takes the form (5.35) again, now with parameters (5.36). In this 

instance, it has been tuned by the single parameter 0.2m =  which produces 2 3.6q =� ; 

1 1.13q =� ; 0 0.08q =� ; and 1 0.86p =� . Resulting closed-loop control behaviour is 

demonstrated in fig. 7.5. 
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Fig. 7.5 – Control of plant (7.10) 
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The output signal from fig. 7.5 appears to be relatively acceptable for most of 

common applications with respect to time-variability of delay which represent severe 

problem. 
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8. REAL EXPERIMENTS 

The main aim of this chapter is to test and evaluate practical utilizability of the 

proposed control algorithms on the set of real experiments. 

8.1. Description of hot-air tunnel and used equipment 

The controlled plant has been represented by laboratory model of hot-air tunnel 

constructed in VŠB – Technical University of Ostrava [68]. Generally, this object can 

be seen as MIMO system, however, the experiments have been done on two selected 

SISO loops. The model is composed of the bulb, primary and secondary ventilator and 

an array of sensors covered by tunnel. The bulb is powered by controllable source of 

voltage and serves as the source of light and heat energy while the purpose of 

ventilators is to ensure the flow of air inside the tunnel. All components are connected 

to the electronic circuits which adjust signals into the voltage levels suitable for CTRL 

51 unit. Finally, this control unit is connected with the personal computer (PC) via 

serial link RS232. The real visual appearance is shown in fig. 8.1. 

 

Fig. 8.1 – Model of hot-air tunnel connected to PC via CTRL 51 unit 
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The fig. 8.2 presents the simplified diagram (only by reason of convenient model 

orientation and “nicer” illustration, the secondary ventilator is formally depicted on the 

opposite side than in the real case). 

 
Fig. 8.2 – Scheme of hot-air tunnel and whole control system 

 
The CTRL 51 unit has been produced by Institute of Information Theory and 

Automation, Academy of Sciences of the Czech Republic [40] and it has the following 

technical parameters [68] (factually verified): 

• CPU Intel 8751 
• 4 KB internal EPROM 
• 128 B internal + 256 B external RAM 
• 16 analog inputs and 4 analog outputs 
• A/D converter with 0-10 V range and 12 bit resolution 
• D/A converter with 0-10 V range, 12 bit resolution and no more than 3 % of 

mutual influence 
• Communication with PC via standard serial interface RS232 (parameters: 

max. speed 9600 Bd, 8 data bits, 1 stop bit, without parity) 
• Power voltage +5 V at current consumption 0.6 A and +15 V at 0.1 A 
• Outer dimensions approximately 6 x 17 x 21 cm 
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The tab. 8.1 denotes the meaning of input and output channels of CTRL 51 unit. 

 

Tab. 8.1 – Connection of input and output signals of CTRL 51 unit 

Input 
channel Sensor Output 

channel Actuator 

Input 1 (y1) Light intensity of the 
bulb (photoresistor) Output 1 (u1)

Bulb voltage (control of 
light intensity and bulb 

temperature) 

Input 2 (y2) 
Temperature a few mm 

from the bulb 
(2nd thermistor) 

Output 2 (u2)
Voltage of the primary 
ventilator (control of 

revolutions) 

Input 3 (y3) Temperature of the bulb 
(1st thermistor) Output 3 (u3)

Voltage of the secondary 
ventilator (control of 

revolutions) 

Input 4 (y4) 
Temperature at the end 

of the tunnel 
(3rd thermistor) 

  

Input 6 (y6) Airflow speed 
(thermoanemometer)   

Input 7 (y7) Airflow speed 
(vane flowmeter)   

 

All presented identification and control experiments were performed using the 

notebook HP Compaq nc6120 with Intel Pentium M processor 1.86 GHz, 512 MB 

DDR-333 SDRAM, Windows XP and MATLAB 6.5.1. The communication between 

MATLAB and CTRL 51 unit was arranged through four user function (for 

initialization, reading and writing of data and for closing) and the synchronization of 

the program with real time was done via „semaphore“ principle (furthermore, the 

utilization of MATLAB functions „tic“ and „toc“ as an alternative were tested). To 

ensure the sufficient emulation of the continuous-time control algorithms, the sampling 

time 0.1 s was set. However, this short sampling period was not observed and the real 

one was approximately by 25 % higher. The detailed information about utilization of 

serial link under MATLAB including mentioned user routines, program 

synchronization mechanism and several tests can be found in [26]. The discretization 

of integrative part of control laws was carried out by left rectangle approximation 

method (the trapezoid method was also tried with the very similar results). 
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8.2. Bulb temperature 

The first considered loop covers bulb voltage u1 (control signal) which influences 

temperature of the bulb y3 (controlled variable). The other actuating signals were 

preset to constant values – primary ventilator voltage u2 to 2 V and secondary one u3 

to 0 V (in spite of it, the fan revolved). 

8.2.1. System identification 

Naturally, the first task was to determine static and dynamic behaviour of the 

system. The trio of static characteristics measured during three different days is plotted 

in fig. 8.3 (the points are averages of last 20 measured “steady” values – here 

exceptionally with period 0.5 s). 
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Fig. 8.3 – Static characteristics of the system (u1 – y3) 

 

Note, that the system properties markedly depend on current conditions and 

operating point and that it can be saturated in higher levels of u1. Therefore, the value 

10 V was excluded from the subsequent process of identification. The fig. 8.4 shows 

the set of step responses with the starting point 1 0Vu =  (nevertheless, the filament 

was slightly incandescent) while the final value of u1 is from 1 to 9 V and fig. 8.5 

depicts the similar responses from 1 5Vu =  to 6, 7, 8 and 9 V. 
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Fig. 8.4 – Step responses of the system (u1 – y3) for starting value 1 0Vu =  
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Fig. 8.5 – Step responses of the system (u1 – y3) for starting value 1 5Vu =  

 

All measured responses were normalized and approximated by step response of 

system with selected structure. In the first instance, it has been approximated by first 

order system, i.e. the transfer function has been simply assumed as: 
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 ( )
1

KG s
Ts

=
+

 (8.1) 

However, with respect to the character of dynamics which is initially very fast and 

gradually starts to slow, the first order plant represents simplified solution. On that 

account, also the second order system with transfer function: 

 ( )
( )( )1 2

1
( )

1 1
K s

G s
T s T s

τ +
=

+ +
 (8.2) 

has been assumed. The least squares method was employed for identification. Hence, 

the form of approximated function is: 

 ( ) 1
t
Th t K e

−⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (8.3) 

for (8.1) and: 

 1 21 2

1 2 1 2

( ) 1
t t

T TT Th t K e e
T T T T
τ τ− −⎛ ⎞− −

= + +⎜ ⎟⎜ ⎟− −⎝ ⎠
 (8.4) 

for (8.2). 

In an effort to stress the initial part of step responses with fast dynamics more, only 

first 100 seconds have been included in optimization process of T for first order 

identification. Furthermore, the gains of all the systems have not been involved in 

optimization at all. They have been fixed according to average of 20 measured values 

from step responses. 

The example of approximation by both first (8.1) and second order system (8.2) is 

given in fig. 8.6. It belongs to u1 step-change from 0 to 5 V. In this particular case, the 

functions have the form: 

 0.374( )
37.2064 1

G s
s

=
+

 (8.5) 

and 

 ( )
( )( )

0.374 76.1006 1
( )

6.6347 1 130.6889 1
s

G s
s s

+
=

+ +
 (8.6) 
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Fig. 8.6 – Example of approximation by first and second order system 

 

The complete identification results for first and second order cases are shown in 

tab. 8.2 and tab. 8.3. 

 

Tab. 8.2 – Results of identification for first order transfer function 

u1 [V] K [-] T [s] 
0 – 1 0.2435 41.2259 
0 – 2 0.2833 47.2704 
0 – 3 0.3594 43.3580 
0 – 4 0.4274 48.2019 
0 – 5 0.3740 37.2064 
0 – 6 0.4107 37.2289 
0 – 7 0.4599 41.2868 
0 – 8 0.4889 37.9254 
0 – 9 0.4680 30.7657 
5 – 6 0.5656 35.1384 
5 – 7 0.5505 34.5624 
5 – 8 0.5676 28.0184 
5 – 9 0.5403 26.0924 
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Tab. 8.3 – Results of identification for second order transfer function 

u1 [V] K [-] τ  [s] 1T  [s] 2T  [s] 

0 – 1 0.2435 27.1160 3.6437 72.1970 
0 – 2 0.2833 33.6512 3.2631 92.8624 
0 – 3 0.3594 115.9249 11.9881 186.0546 
0 – 4 0.4274 109.6962 10.8675 195.5283 
0 – 5 0.3740 76.1006 6.6347 130.6889 
0 – 6 0.4107 119.7679 9.5334 186.3907 
0 – 7 0.4599 119.2653 9.5686 194.5886 
0 – 8 0.4889 114.5048 9.5139 180.0520 
0 – 9 0.4680 93.7720 9.4876 137.8641 
5 – 6 0.5656 79.5117 4.9491 137.3248 
5 – 7 0.5505 90.2150 9.6484 139.7103 
5 – 8 0.5676 93.1630 8.1383 135.3549 
5 – 9 0.5403 94.5474 11.5862 123.6040 

 

The set of data from previous tables and advisement of substantive properties have led 

to the construction of models with parametric uncertainty. The lower bound of time 

constant T in model (8.7) has been moved down to 5 s because of fast initial dynamics 

which should also be taken into consideration. Thus, the chosen parametric models are: 

 [ ]
[ ]

0.2; 0.7
( , , )

1 5; 50 1
KG s K T

Ts s
= =

+ +
 (8.7) 
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0.2; 0.7 25;130 11
( , , , , )

1 1 3;14 1 70; 210 1
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T s T s s s

τ
τ

++
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+ + + +
 (8.8) 

8.2.2. Control experiments 

First, the uncertain model (8.7) and nominal system (for controller design): 

 0.5 0.02( )
25 1 0.04NG s

s s
= =

+ +
 (8.9) 

has been assumed. The choice of (8.9) has been based on control conditions and 

relevance of identified coefficients from tab. 8.2. The tuning parameter 0.0748m = , 
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which correspond to 2% of first overshoot from tab. 5.1, has been selected. The 

computed 1DOF PI controller is: 

 1 0( ) 5.48 0.2798( )
( )

C
b

C

Q s q s q sC s
P s s s

+ +
= = =

� �
 (8.10) 

The characteristic polynomial of closed control loop containing plant (8.7) and 

controller (8.10) can be easily formulated as: 
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2
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2

, , 1

5; 50 2.096; 4.836 0.05596; 0.1959

p s K T Ts Kq s Kq

s

= + + + =

= + +

� �
 (8.11) 

This simple polynomial is robustly stable, i.e. the whole system is robustly stable. The 

real closed-loop control behaviour can be seen in fig. 8.7. The control signal is 

depicted only in 25% of its true size because of better perspicuity of the controlled 

variable. 
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Fig. 8.7 – Control of bulb temperature by regulator (8.10) 

 

Next, it has been supposed the system with parametric uncertainty (8.8) and the 

nominal plant: 
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0.5 100 1 0.037 0.00037( )
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s sG s
s s s s
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 (8.12) 
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Unfortunately, the single tuning parameter entails limitation in control design here and 

it is not facile to find appropriate one with “quality” control response. The chosen 

value 0.025m =  results in 1DOF PID controller: 

 
2 2
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 (8.13) 

The plant (8.8) and regulator (8.13) leads to closed-loop characteristic polynomial: 
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 (8.14) 

Unluckily, the system is not robustly stable with assumed range of uncertain 

parameters (it can be analysed e.g. via graphical test – the Polynomial Toolbox 

commands „vset“ and „vsetplot“ – see section 4.5). The boundaries in (8.8) are too 

broad, i.e. the requirements are too strong. Margins have to be narrowed to gain the 

closed loop robustly stable with the controller (8.13). However, the real system has 

been stable (with non-minimum phase behaviour), as can be seen in fig. 8.8. 
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Fig. 8.8 – Control of bulb temperature by regulator (8.13) 
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If 2DOF structure and 0.02m =  is used, the final controller arises in the form: 
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 (8.15) 

The feedforward part does not influence robust stability, i.e. this controller would 

ensure it under similar conditions as in the previous case. Fig. 8.9 presents the control 

results. 
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Fig. 8.9 – Control of bulb temperature by regulator (8.15) 

 

Another possibility of simplifying (instead of approximation by first order model) 

can be done via additional order reduction in identified second order system. The order 

reductions first only in numerator and afterward both in numerator and denominator 

lead to nominal transfer functions, respectively: 

 
( )( )

( )
( )( )

2

0.00037 0.5( )
9 1 150 10.117 0.00074

0.5 100 1
9 1 150 1

NG s
s ss s

s
s s

= = ≈
+ ++ +

+
≈

+ +

 (8.16) 



 

- 136 - 

 ( )
( )( )

0.5 100 10.003145 0.5( )
0.006289 159 1 9 1 150 1N

s
G s

s s s s
+

= = ≈
+ + + +

 (8.17) 

The former approximation (8.16) and 0.04m =  result in controller: 
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while the latter one (8.17) and 0.0204m =  (6% first overshoot for case of nominal 

system) leads to: 
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 (8.19) 

The plant (8.8) and the controller (8.18) give, again, the closed-loop characteristic 

polynomial with structure (8.14). However, in this instance, it is robustly stable. 

Furthermore, the controlled system (8.8) and the regulator (8.19) yield the polynomial: 
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 (8.20) 

which is also robustly stable. 

The fig. 8.10 and fig. 8.11 demonstrate the final control responses for both cases. 
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Fig. 8.10 – Control of bulb temperature by regulator (8.18) 
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Fig. 8.11 – Control of bulb temperature by regulator (8.19) 

 

8.3. Airflow speed 

The second assumed control system consists of voltage of primary ventilator u2 

(control signal) and airflow speed at the end of the tunnel measured through vane 

flowmeter y7 (controlled variable). The constant adjustment of other signals was 

1 0Vu =  and 3 0Vu = . 

8.3.1. System identification 

Analogously to the previous system, three static characteristics were measured, 

each in a different day. These curves are depicted in fig. 8.12 (again, the points are 

averages of last 20 measured “steady” values – now with period 0.1 s). 
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Fig. 8.12 – Static characteristics of the system (u2 – y7) 
 

In this instance, it seems that the behaviour of the system depends on the 
operational point more then in the previous case (the reference signal in control 
experiments will be 5 and 6 V). Needless to say, the sets of step responses follow – in 
fig. 8.13 for the starting point 2 1Vu =  and the final value 2 2 10Vu = ∼  while in fig. 
8.14 for ventilator voltage from 2 5Vu =  to 2 6 10Vu = ∼ . 
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Fig. 8.13 – Step responses of the system (u2 – y7) for starting value 2 1Vu =  
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Fig. 8.14 – Step responses of the system (u2 – y7) for starting value 2 5Vu =  

 

In this case, the normalized responses have been approximated by step responses 

of a second order system with double time constant described by: 

 ( ) 1 1
t
Tth t K e

T
−⎡ ⎤⎛ ⎞= − +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 (8.21) 

Such a system has the transfer function: 
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The fig. 8.15 shows the graphical example of approximation using the least squares 

method for step-change of u2 from 1 to 5 V, where the identified system is described 

by: 
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Fig. 8.15 – Example of approximation by second order system with double time 
constant 

 

The entire results of identification are displayed in tab. 8.4. 

 

Tab. 8.4 – Results of identification for second order transfer function with double time 
constant 

u2 [V] K [-] T [s] 
1 – 2 1.0714 2.8485 
1 – 3 1.0191 2.5034 
1 – 4 0.9613 2.2757 
1 – 5 0.8891 2.0505 
1 – 6 0.8269 1.8646 
1 – 7 0.7762 1.7636 
1 – 8 0.7410 1.6958 
1 – 9 0.6934 1.6018 

1 – 10 0.6526 1.5528 
5 – 6 0.7205 1.7621 
5 – 7 0.6162 1.5425 
5 – 8 0.5849 1.5341 
5 – 9 0.5509 1.4461 

5 – 10 0.5222 1.3962 
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Further, the mathematical model with parametric uncertainty was constructed on the 

basis of data from the tab. 8.4. Although the intended working point corresponds to 

reference values of y7 at 5 and 6 V, the model is going to cover all measured area. 

Identification by higher revolutions would lead to even smaller gain K and shorter time 

constant T. Therefore, the final model takes it into account: 
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 (8.24) 

8.3.2. Control experiments 

It has been supposed the second order uncertain model (8.24) and nominal system 

with transfer function: 
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The choice of tuning parameter 0.6m =  results in the regulator: 
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The closed-loop characteristic polynomial for plant (8.24) and controller (8.26) can be 

easily formulated as: 
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 (8.27) 

The analysis has indicated that the polynomial and thus also control system is robustly 

stable. The fig. 8.16 illustrates the closed-loop control behaviour. 

Possibly, the controller with both feedback and feedforward part (for 2DOF 

configuration and the same parameter 0.6m = ) is given by: 
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 (8.28) 



 

- 142 - 

and it changes control in the way which can be seen in fig. 8.17. 
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Fig. 8.16 – Control of airflow speed by regulator (8.26) 
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Fig. 8.17 – Control of airflow speed by regulator (8.28) 

 

The last experiment relies again on simplification based on model order reduction. 

Hence, the trivial approximation results in new nominal system: 
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The control design works on the presumption that nominal response should be without 

first overshoot, i.e. 0.2632m = , which represent the controller: 
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 (8.30) 

and together with the uncertain model (8.24), it produces robustly stable closed-loop 

characteristic polynomial: 
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Finally, the fig. 8.18 depicts resultant control behaviour. 
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Fig. 8.18 – Control of airflow speed by regulator (8.30) 
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8.4. Results and discussion 

The objective evaluation of quality has been performed by meaning of integrated 

squared error (ISE) criterion: 

 2

0

ISE ( )e t dt
∞

= ∫  (8.32) 

The quantification for bulb temperature is expressed in tab. 8.5, which indicates 

that controllers (8.18) and (8.10) achieve the best results. Nonetheless, the regulator 

(8.10) generates “less aggressive” actuating signal after step-changes of reference 

value. On the contrary, controller (8.13) is the worst, moreover with non-minimum 

phase control behaviour. Not an application of 2DOF structure – controller (8.15) – 

brings about considerable improvement. It is worth to take notice of problems in 

control, which emerge during use of identified second order model (8.8) and nominal 

system (8.12). To tell the truth, a disadvantage of single tuning parameter, causing 

control design limitation, arises here as the cost for tuning simplicity. Moreover, the 

control system is theoretically not robustly stable for controllers (8.13) and (8.15) 

under assumed range of uncertain parameters in controlled plant. Hence, lower order of 

nominal system (gained via “simpler” identification or model order reduction) can 

paradoxically result in better performance. 

 

Tab. 8.5 – Outcomes of ISE calculations for bulb temperature 

Controller ISE 
(8.10) 19.2579
(8.13) 370.7898
(8.15) 166.0868
(8.18) 18.8931
(8.19) 28.4738

 

The values of ISE for airflow speed, shown in tab. 8.6, are quite similar for all 

three used controllers. In comparison with 1DOF (8.26), 2DOF control structure (8.28) 

have brought modest reduction of control signals after step changes. However, not a 
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(8.26) has generated any noticeable overshoot and respective closed-loop behaviour is, 

from the ISE viewpoint, better. PI controller (8.30) represents a little bit longer settling 

time owing to tiny undershoot during process of control. 

 

Tab. 8.6 – Outcomes of ISE calculations for airflow speed 

Controller ISE 
(8.26) 16.0646
(8.28) 21.1741
(8.30) 18.5004

 

All identification experiments have been accomplished during common working in 

the research laboratory to ensure subsumption of these operating conditions into the 

uncertain models. On the other hands, the depicted results of control experiments, 

especially for bulb temperature, were obtained under “ideal” conditions, e.g. by night 

or at the weekend, because of comparability of evaluated algorithms. Nevertheless, 

stability and “acceptable” quality of control responses were successfully tested also 

during normal operation mode. 
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9. CONTRIBUTION TO SCIENCE AND PRACTICE 

The thesis contributes to development of some theoretical aspects of robust control 

as well as to problems of practical application of these algorithms. 

In accordance with supra specified aims, it first intends to clarify the classification 

of mathematical models containing uncertainty. Special attention is paid to systems 

under parameter variations. The work also purveys the overview of characteristic 

techniques for robust stability analysis of single parameter (special case), interval, 

affine linear, multilinear, polynomial and general uncertainty structures. Besides, it 

briefly outlines the inspection of robust stability for time-delay systems. 

Moreover, the thesis describes contemporary state of an algebraic synthesis and 

furthermore formulates and refines a fractional approach to design of SISO continuous-

time controllers based on general solutions of Diophantine equations in RPS, Youla-

Kučera parameterization and conditions of divisibility. Furthermore, it lays the 

groundwork for nominal and robust tuning of regulators via single scalar parameter 

0m > . The nominal analysis is provided for first order controlled systems and 

obtained results are utilized also to higher order systems. 

One of practical outputs is represented by the user-friendly program developed in 

the environment of MATLAB 6.5.1 + SIMULINK + Polynomial Toolbox. This 

software incorporates control design for 1DOF and 2DOF control structure, controller 

tuning, robust stability analysis, simulation procedure, etc. It works with the controlled 

interval plants and its capabilities are demonstrated on a set of simulation examples. 

The product is usable both for research and pedagogical purposes. 

To illustrate utilizability of proposed control laws also for another than parametric 

uncertainty, the thesis contains several examples aimed to control of systems with 

periodically time-varying parameters, including time-delay. 

From the practical realization point of view, the main contribution of the thesis lies 

in a range of control experiments, which have been done on two selected control loops 

in laboratory model of hot-air tunnel modelled as systems with parametric uncertainty. 

The results and subsequent discussion indicate both pros and cones of used synthesis. 

The interesting thing is especially the existence of the single parameter m, which is 
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believed to entail tuning simplicity, but which on the other hand causes the constriction 

in gamut of possible controllers. However, the proposed control design method has 

finally brought the satisfactory behaviour for control of bulb temperature and also 

airflow speed. The used control laws have been of standard PI or PID type. 
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10. CONCLUSION 

The crucial complication in real control applications is an omnipresent uncertainty 

and thus it is no wonder that problems of systems under some perturbations have been 

considered in control theory for decades. Among many approaches, the current practice 

apparently prefers the usage of one simple cheap off-line controller with fixed 

parameters which guarantees preservation of essential properties of control loop not 

only for one, but for the whole family of controlled systems. Such regulators are called 

robust. 

This doctoral thesis has been focused on issues of continuous-time robust control 

under parametric uncertainty. First, it has provided relatively detailed overview of 

various uncertainty structures and tools for robust stability investigation. In the next 

parts, the proposed synthesis method based on general solutions of linear Diophantine 

equations in RPS, Youla-Kučera parameterization of all nominally stabilizing 

controllers and utilization of divisibility conditions has been described. Moreover, the 

work has also dealt with additional nominal and robust tuning of controllers via single 

positive parameter m. 

The selected algorithms have been implemented into the software product for 

control design, robust stability analysis and simulation of control process, which has 

been created in MATLAB, SIMULINK and Polynomial Toolbox environment. The 

controlled systems are supposed as interval ones. Abilities of the program have been 

verified on illustrative examples. Besides, the effectiveness of the controllers has been 

proved also through the set of simulation experiments for time-varying plants with 

periodically changing parameters. 

And finally, the practical part of the thesis has shown real identification and 

control experiments on the laboratory model of hot-air tunnel. To sum up, the 

responses obtained during closed-loop control of bulb temperature and airflow speed 

have indicated the simplicity and practical applicability of the algebraic approach. 
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