

Big Data Ecosystem

Roman Hanzlík

Bachelor's Thesis
2019

*** Scanned submission page 1 ***

*** Scanned submission page 2 ***

I hereby declare that:

 I understand that by submitting my Diploma thesis, I agree to the publication of my

work according to Law No. 111/1998, Coll., On Universities and on changes and

amendments to other acts (e.g. the Universities Act), as amended by subsequent

legislation, without regard to the results of the defense of the thesis.

 I understand that my Diploma Thesis will be stored electronically in the university

information system and be made available for on-site inspection, and that a copy of the

Diploma/Thesis will be stored in the Reference Library of the Faculty of Applied

Informatics, Tomas Bata University in Zlín, and that a copy shall be deposited with my

Supervisor.

 I am aware of the fact that my Diploma Thesis is fully covered by Act No. 121/2000

Coll. On Copyright, and Rights Related to Copyright, as amended by some other laws

(e.g. the Copyright Act), as amended by subsequent legislation; and especially, by §35,

Para. 3.

 I understand that, according to §60, Para. 1 of the Copyright Act, TBU in Zlín has the

right to conclude licensing agreements relating to the use of scholastic work within the

full extent of §12, Para. 4, of the Copyright Act.

 I understand that, according to §60, Para. 2, and Para. 3, of the Copyright Act, I may use

my work - Diploma Thesis, or grant a license for its use, only if permitted by the

licensing agreement concluded between myself and Tomas Bata University in Zlín with

a view to the fact that Tomas Bata University in Zlín must be compensated for any

reasonable contribution to covering such expenses/costs as invested by them in the

creation of the thesis (up until the full actual amount) shall also be a subject of this

licensing agreement.

 I understand that, should the elaboration of the Diploma Thesis include the use of

software provided by Tomas Bata University in Zlín or other such entities strictly for

study and research purposes (i.e. only for non-commercial use), the results of my

Diploma Thesis cannot be used for commercial purposes.

 I understand that, if the output of my Diploma Thesis is any software product(s),

this/these shall equally be considered as part of the thesis, as well as any source codes,

or files from which the project is composed. Not submitting any part of this/these

component(s) may be a reason for the non-defense of my thesis.

I herewith declare that:

 I have worked on my thesis alone and duly cited any literature I have used. In the case

of the publication of the results of my thesis, I shall be listed as co-author.

 That the submitted version of the thesis and its electronic version uploaded to IS/STAG

are both identical.

In Zlín; dated: May 15, 2019 Roman Hanzlík v. r.

 Student´s Signature

ABSTRAKT

Cílem této bakalářské práce je představení technologií Big Data a jejich možné využití v

praxi. Hlavním cílem této práce v teoretické části je poskytnout přehled v oblasti Big Data a

NoSQL databází pro všechny začátečníky. V praktické části je detailně představen Apache

Hadoop a projekty s ním svázané. Součástí práce jsou postupy, jak dané technologie

nainstalovat včetně příkladů a scénářů použití.

Klíčová slova: Big Data, NoSQL, CAP teorém, Apache Hadoop, HDFS, YARN,

MapReduce, Apache Hadoop Ecosystem, Spark, Pig, Hive, Sqoop

ABSTRACT

This bachelor‘s thesis presents Big Data technologies and their possible real-world use cases

and applications. The main goal of this thesis is to provide the first introduction to Big Data

and NoSQL databases for newcomers. In practical part, Apache Hadoop and its surrounding

projects are presented in detail. Integral part of this thesis is light cookbook how to install

particular technologies itself with functional demo examples of possible use cases and

scenarios.

Keywords: Big Data, NoSQL, CAP Theorem, Apache Hadoop, HDFS, YARN, MapReduce,

Apache Hadoop Ecosystem, Spark, Pig, Hive, Sqoop

MOTTO

Study the past if you would define the future.

Confucius

Scientia potentia est, sapientiae privilegium.

[Knowledge is power, wisdom privilege.]

Sir Francis Bacon/Roman Hanzlík

Where is the wisdom we have lost in knowledge?

Where is the knowledge we have lost in information?

Thomas Stearns Eliot

CONTENTS

INTRODUCTION ... 9

STRUCTURE OF THESIS ... 10

AIM OF THESIS ... 11

I THEORY ... 12

1 BIG DATA .. 13

1.1 HISTORY OF DATA PROCESSING .. 13

1.2 KNOWLEDGE PYRAMID .. 14

1.3 FROM RELATIONAL DATABASES TO NOSQL ... 16

1.4 MOTIVATIONS TO USE NOSQL DATABASES ... 18

1.5 DEFINITION OF BIG DATA... 19

1.6 HOW BIG IS BIG DATA .. 20

1.7 THE V’S OF BIG DATA .. 24

1.8 DATA SCIENCE VS. BIG DATA VS. DATA ANALYTICS ... 30

1.9 APPLICATION OF BIG DATA .. 35

2 NOSQL .. 39

2.1 INTRODUCTION ... 39

2.2 DISTRIBUTION .. 39

2.3 CONSISTENCY... 40

2.4 CAP THEOREM .. 41

2.5 CLASSIFICATION OF DATABASE MANAGEMENT SYSTEMS 44

2.6 KEY VALUE DATABASES .. 48

2.7 DOCUMENT DATABASES .. 49

2.8 COLUMN BASE DATABASES ... 50

2.9 GRAPH DATABASES ... 51

2.10 MULTI-MODEL DATABASES ... 52

II ANALYSIS .. 54

3 APACHE HADOOP ECOSYSTEM .. 55

3.1 APACHE HADOOP ... 58

3.1.1 Overview of History and Release Versioning .. 59

3.1.2 Distribution .. 61

3.1.3 Core Components ... 62
3.1.4 Deploying Hadoop ... 63

3.1.4.1 Java Installation ... 65

3.1.4.2 SSH Configuration ... 66
3.1.4.3 Hadoop Installation .. 67
3.1.4.4 Setup Hadoop Configuration Files .. 69
3.1.4.5 Format Namenode .. 70
3.1.4.6 Start Hadoop Cluster .. 72

3.1.4.7 Test Hadoop Cluster .. 73
3.1.5 HDFS .. 76

3.1.5.1 HDFS Architecture .. 78
3.1.5.2 Replication ... 79

3.1.5.3 Data Read and Write Operations in HDFS .. 80

3.1.5.4 HDFS Command Line ... 82
3.1.6 YARN .. 84
3.1.7 MapReduce .. 86

3.1.7.1 Examples of MapReduce usage ... 88
3.1.8 Summary .. 95

3.2 GENERAL DATA PROCESSING ... 95

3.2.1 Apache Spark ... 95
3.2.1.1 Spark Introduction ... 96
3.2.1.2 Deploying Spark .. 101
3.2.1.3 Examples of Spark usage ... 105

3.2.1.4 Summary .. 110

3.3 DATA ANALYTICS .. 111

3.3.1 Apache Pig ... 111

3.3.1.1 Pig Introduction ... 111
3.3.1.2 Deploying Pig .. 113
3.3.1.3 Examples of Pig usage ... 114
3.3.1.4 Summary .. 118

3.3.2 Apache Hive ... 118
3.3.2.1 Hive Introduction ... 118

3.3.2.2 Deploying Hive .. 119
3.3.2.3 Examples of Hive usage .. 122
3.3.2.4 Summary .. 128

3.4 DATA INGESTION.. 129

3.4.1 Apache Sqoop .. 129
3.4.1.1 Sqoop Introduction .. 129
3.4.1.2 Deploying Sqoop ... 130

3.4.1.3 Examples of Sqoop usage .. 131
3.4.1.4 Summary .. 135

CONCLUSION .. 136

BIBLIOGRAPHY .. 138

LIST OF ABBREVIATIONS ... 147

LIST OF FIGURES ... 148

LIST OF TABLES ... 150

LIST OF SOFTWARE .. 151

TBU in Zlín, Faculty of Applied Informatics 9

INTRODUCTION

Look around, and tell me what do you see? One could say “Cities, fields, mountains ... “,

other one “Twittering of the birds, the noise of the rivers, a hastiness of people ...” and I? I

see the data all around. Data in form of temperature, wind, humidity when I wake up and

open the window. I see the stock market price in the morning news, when I switch the TV

on. I see the traffic data during my commute to the office. I see the data behind the attendance

system, once I check in. I see the data in surveillance cameras. I see the data in Twitter and

Facebook, every time I connect. I see … I see the data everywhere. Working with data for

almost 25 years I just DO see them.

When I was a kid, I remember myself doing tables of ski races results and collecting them,

in that time just collecting. When I became older, I did tables of soccer matches scores of

most of the national leagues and try to predict next matches results. And when I left the high

school and went to business I surrounded myself with data or better said, data just surrounded

me. It started as a hobby and turned into passion, passion for data. Even now, when I look at

you, I see data, I can utilize. Data are like time, they’re with us from the very beginning.

Data flow with time like inseparable twins, they’re getting older, one faster than the other.

One piece of data is old and useless the very next second, the other one could be valuable

for a long time even forever.

There were 4 milestones in the era of human which dramatically change the amount of

data recording. First - c. 6000 BC start of using language and writing, second - Gutenberg’s

printing press in mid of 15th century, third - 40s of 20th century invention of computers; and

finally, fourth – Internet and surrounding technologies. At each of these evolution steps, the

amount of data increased dramatically. The first record of data being reliably stored in a

mechanized medium was using paper tape in 1846 by Alexander Bain – the inventor of the

electric printing telegraph [1]. Since then, with every single year the technology innovations

continue to accelerate the data in diverse characteristics. Not only volume, but also velocity

and variety of data increased in last couple of years exponentially, traditional approaches are

not able to fulfil expectation of businesses or governments, everything is getting bigger and

faster, so the new technologies must come on board. We are going to discuss the volume of

the data from historical perspective deeply in further chapter.

TBU in Zlín, Faculty of Applied Informatics 10

Structure of Thesis

The structure and outline of this thesis contains two parts. In the first part, the theoretical

aspects of Big Data technologies and NoSQL databases are presented with their possible

real-world use cases and applications. In the second, practical part, the Apache Hadoop

Ecosystem is presented and explained in detail, with practical installation and configuration

cookbook and demo examples how to use them.

Figure 1 – The structure of the Bachelor’s thesis

TBU in Zlín, Faculty of Applied Informatics 11

Theoretical part initially gives an overview of the data history, information processing

and presents factors which led to need for this new approach, continues with the definition

of Big Data and the V’s of Big Data. Next, in the second section of theoretical part, NoSQL

are presented together with CAP theorem, and the most popular and used NoSQL databases

from each type such as Key-value stores, Wide-column stores, Document databases, and

Graph databases are listed.

The practical part starts with description of the big picture of Apache Hadoop Ecosystem,

continues with detail presentation of Apache Hadoop itself. Main principles of Hadoop are

described, such as a distributed storage (HDFS), a resource management (YARN) and a data

processing (MapReduce). Step-by-step installation and configuration instructions are also

provided as well as for other chosen technologies from surrounding ecosystem. For each

particular technology exists a set of demo examples with the functional lines of codes to

demonstrate usage of technology.

Finally, in the end, the conclusion of the thesis summarizes this work. Bibliography, list

of figures and tables and list of used software and their versions are integral part of this work.

Aim of Thesis

The primary aim of this thesis is to extend my current knowledge of area around

Datawarehouse, Business Intelligence and Datamining to new emerging technologies of Big

Data so I could in my consulting practice provide broader knowledge and deeper expertise

to my customers.

The next one, equally important goal of this thesis is to provide the first introduction to

Big Data and NoSQL databases to all students at Tomas Bata University in the new course

started 2019/2020 named “Advanced Database Systems” with light cookbook how to install

particular technologies itself with examples of possible use cases and scenarios.

Last but definitely not least goal is to build the technology background, so I can continue

on top of it in Master and/or Doctoral study in the area of Data Science.

TBU in Zlín, Faculty of Applied Informatics 12

I. THEORY

TBU in Zlín, Faculty of Applied Informatics 13

1 BIG DATA

1.1 History of data processing

From the very beginning (2.8 mil years ago) the Homo {„human being“} genus differs from

all other species around. Homo evolved through Homo habilis (2.3 – 1.4 mil years ago),

Homo erectus (1.8 mil – 30,000 years ago), Homo neanderthalensis (400,000 – 40,000 years

ago) into a current version of us: Homo sapiens specifically Homo sapiens sapiens {„wise

man“} (280,000 years ago until now). What differs this genus from others? Most of the

species transfer their knowledge through learning descendant from their parents. Human is

the one who transfers his knowledge via teaching and is a part of the other species who also

teach their descendant differ with precision of the transfer. The next thing, and definitely the

one what gives to human biggest advantage was a gradual ability to speak. It’s estimated that

around 100,000 years ago Homo started using language - first basic interjection of pain or

happiness, later nouns of things in surrounding nature and last with verb of daily activities.

This research [2] indicates that some Homo species had the ability to produce speech sounds

that overlap with the range of speech sounds of modern humans, and that species such as

Neanderthals possessed genes that play a role in language of humans. Next big milestone -

human started to record its information in form of pictures. The oldest pictures in caves are

dated about 30,000 years ago. Next logical step (for us in these days, not in that time) was

evolution of pictures into symbols what can be called first writing system used mostly for

recording and later also for communication. Writing preceded first with pictogram and

ideograms. The best-known examples are Jiahu symbols carved on tortoise shells in Jiahu

(6600 BC), Vinča symbols sometimes called Danube script (Tărtăria tablets, c. 5300 BC).

The invention of the first writing systems is roughly dated as of the late 4th millennium BC.

The Sumerian cuneiform script and the Egyptian hieroglyphs are generally considered the

earliest writing systems (c. 3400 to 3200 BC). It is generally agreed that Sumerian writing

was an independent invention; however, it is debated whether Egyptian writing was

developed completely independently of Sumerian or was a case of cultural diffusion. The

similar debate exists for Chinese script developed around (1200 BC). So-called modern

language appeared in the archaeological record only recently, with the advent of

lexicographic writing around 5,400 years ago [3].

The oldest record of counting is dated from around 5000 BC, when Sumerian merchants

used small clay beads to denote goods for trade. Counting on a larger scale, was the privilege

TBU in Zlín, Faculty of Applied Informatics 14

of the state, when governments for millennia have tried to keep track of their people by

collecting information. The ancient Egyptians conducted census, as did also the Chinese.

They’re mentioned in the Old Testament, and the New Testament tells us that a census

imposed by Caesar Augustus — “that all the world should be taxed” (Luke 2:1) — took

Joseph and Mary to Bethlehem, where Jesus was born [4].

With both these abilities (speaking and writing same language) started the Age of Data.

Ability to express own ideas led cultures to collect information and share knowledge and

wisdom to next generations.

1.2 Knowledge Pyramid

To understand Big Data, it’s necessary to start with defining some terms like data,

information, and knowledge, describe their context and continuity.

DIKW Pyramid, Knowledge Pyramid, Wisdom Hierarchy, Information Hierarchy are

some of the names referring to the popular representation of the relationships between data,

information, knowledge and wisdom. Each step up the pyramid graphically represented in

Figure 2 answers the questions about the initial data and adds value to it. The more questions

we answer, the higher we move up the pyramid. In other words, the more we enrich our data

with meaning and context, the more knowledge and insights we get out of it. At the top of

the pyramid, we have turned the knowledge and insights into a learning experience that

guides our actions.

Figure 2 – Knowledge Pyramid [5]

TBU in Zlín, Faculty of Applied Informatics 15

Data – a collection of facts in a raw or unorganized form. In informatics, text, number,

picture, sound, or everything we can process automatically with machines are understood as

data. However, mostly without any context, data can mean little.

Data could be divided into different groups by several conditions like their structure,

origin or what they are intended for. In the Table 1 is shown how data are classified by their

structure.

Table 1 – Data by their structure

Group Description Example

Structured data in predefined structure Relational data

Semi-structured not predefined structure, can be process them easily XML

Unstructured data with undefined internal structure PDF

Structured data – are data whose elements are addressable for effective analysis or further

processing. The data are organized into a formatted repository (typically a database). It

concern all data which can be stored in relational database in the form of table with rows and

columns. They have relational key and can be easily mapped into pre-designed fields. Today,

these kind of data are most processed and easily managed information. Structured data

represent only 5 to 10% of all informatics data. Examples of these kind of data could be:

Meta-data (Time and date of creation, File size, Author etc.), Library Catalogues (date,

author, place, subject etc.), Census records (birth, income, employment, place etc.),

Economic data (rates, GDP, VAT etc.).

Semi-structured data – are data which do not reside in a relational database but that have

some organizational properties that make it easier to analyze. With some process, you can

store them in the relational database, on the other hand it could be very hard for some semi-

structured data. Semi-structured data also represent only 5 to 10% of all informatics data.

Examples of these data could be e.g. personal data stored in XML or JSON files.

Unstructured data – are data that are not organized in a pre-defined manner or does not have

a pre-defined data model, thus they are not a good fit for a mainstream relational database.

This is one of the reason, why there are alternative platforms for unstructured data. These

data increasingly prevail in IT systems and are used by organizations in a variety of business

intelligence and analytics applications. Today, more than 80-95% of all data that exist

globally are estimated to be unstructured data. Examples of these data could be e.g. user-

generated content from social media (e.g., Facebook, Twitter, Instagram, and Tumblr),

TBU in Zlín, Faculty of Applied Informatics 16

images, videos, surveillance data, sensor data, call center information, geolocation data,

weather data, economic data, government data and reports, research, Internet search trends,

and web log files [6] [7].

Another possibility how could be data distinguish is by their origin, so they’re divided

into External/Internal, Primary/Secondary as listed in the Table 2.

Table 2 – Data by their origin

Group Description Example

External Data from public sector, or external companies Government data

Internal Data originated internally Orders, transactions

Primary Data originated in the system Customers in CRM

Secondary Data taken from other systems ERP sales reports

Information – is the next building block of the DIKW Pyramid. These are data that have

been “cleaned” of errors and further processed in a way that makes it easier to measure,

visualize and analyze for a specific purpose. Depending on this purpose, data processing can

involve different operations such as combining different sets of data (aggregation), ensuring

that the collected data are relevant and accurate (validation), etc. By asking relevant

questions about ‘who’, ‘what’, ‘when’, ‘where’ etc., can be derived valuable information

from the data that could be more valuable for us [8].

Knowledge – when is placed the question of ‘how’, this is what makes the leap from

information to knowledge. “How” are the pieces of information connected to other pieces to

add more meaning and value to us is the ‘Knowledge’.

Wisdom – is knowledge applied in action. We can also say that, if data and information are

like a look back to the past, knowledge and wisdom are associated with what we do now and

what we want to achieve in the future [8].

1.3 From relational databases to NoSQL

To explain motivation for emergence of NoSQL databases, it’s necessary to go back and

look at the traditional approach of building applications with the current mainstream usage

TBU in Zlín, Faculty of Applied Informatics 17

of the persistent storage. For the past 30 years, applications have been backed using an

RDBMS (Relational Database Management System) with a predefined schema that forces

data to conform to a schema on-write. Many people still think that they must use an RDBMS

for applications, even though records in their data sets have no relation to one another.

Additionally, those databases are optimized for transactional use, and data must be exported

for analytics purposes. NoSQL technologies have turned that model on their side to deliver

groundbreaking performance improvements [9].

The key impulse for emergence wider using alternative DBMS (Database Management

System) is dynamic growth of development of global business opportunities and business

models based on providing services and selling goods to millions of customers all around

the world. In the last few years the source of data become data captured from devices like

IoT (Internet of Things). With increasing data volumes and numbers of users, it is becoming

more difficult and costly to respond to this situation by scaling vertically, by investing in

more and more capacity of database servers. Therefore, there is a need to address this

problem by scaling horizontally, by running hundreds to thousands of commodity servers,

which at the same time must ensure the continued availability of services with adequate data

consistency, consistent with the specific strategy, objectives, content and business processes

of the enterprise. Google and Amazon were among the first companies to meet these limits

due to their activities. Both companies have created their own scalable database systems

based on searching data by keys. Bigtable (Google) [10] and Dynamo (Amazon) [11],

respectively database systems described in these papers, are considered the key impulses

that inspired and influenced the emergence and further development of NoSQL DBMS.

Google's Bigtable database system is a scalable distributed structured data repository run on

several thousand commodity servers. Google uses Bigtable for a variety of applications (such

as web page indexing, Google Earth) with varying data storage requirements. Stored data

range from individual URLs of web content to satellite imagery of Earth.

The second of the above-mentioned companies, which came up with their own persistent

data storage solution, based on principles different from relational DBMS and allowing

horizontal scalability, was Amazon. In the second half of the first decade of this century,

Amazon was in a position to run one of the largest e-commerce platforms with ten thousands

of servers in several data centers around the world. Such infrastructure was necessarily

associated with server downtime or, in more severe cases, whole data centers downtime.

Even in the event of disruptions to individual servers or part of the infrastructure, it was

TBU in Zlín, Faculty of Applied Informatics 18

necessary to ensure the availability of services, as even the slightest outage could mean

serious financial implications and permanently shake customers' trust. For example, it was

necessary to ensure that customers still see items placed in the shopping cart in the event of

any downtime. Amazon addressed these requirements by creating the Dynamo database

system, which ensures continued availability of core services. The system worked on the

key-value principle, extensively uses versioning of the objects. Unlike Bigtable, which

allows applications to query multiple-attribute data, Dynamo was designed for applications

that need simple data access based on a single key and with primary focus on a high degree

of availability, where interruption of connection with a part of the network infrastructure or

server failure does not reject UPDATE operations [11].

Soon other non-relational database systems began to emerge, generally named "NoSQL

database". Many of them were inspired by the above mentioned Bigtable and Dynamo

projects. For example, one of the systems is Cassandra, database developed by Facebook.

NoSQL is not associated with any fixed definition, but the history of its origin can be

mapped, and its current understanding is defined quite precisely. For the first time, the notion

of NoSQL was used in the late 1990s, paradoxically as the name of a relational database for

the UNIX operating system, which dates back to 1998 [12]. However, this act has nothing

to do with NoSQL databases in the current concept. The new meaning of NoSQL is attributed

to the software developer Johan Oskarsson, who held a meeting in 2009 to explore the latest

trends in new non-relational database technologies inspired by the already mentioned

Bigtable and Dynamo. Oskarsson tried to find a concise and easy-to-remember name for the

upcoming event. From the suggestions sent through the #cassandra IRC channel, he chose

the name "NoSQL", which quickly took over, not just as the name of the meeting, but even

unintentionally as an aggregate term referring to a whole set of database systems. The vast

majority of the professional public agree that the first two letters of the "NoSQL" acronym

do not mean "no SQL" but a "not only SQL" definition. While there is no official definition

of this term, it can be said that it is a group of databases with certain common attributes: a

non-relational model, very suitable for open-source clustering, without a fixed data schema

[13].

1.4 Motivations to use NoSQL databases

NoSQL’s shared nothing architecture (distributed computing architecture in which each

node is independent and self-sufficient (none of the nodes share memory or disk storage),

TBU in Zlín, Faculty of Applied Informatics 19

and there is no single point of contention across the system) makes it easy to support scale-

out architecture, whether on-premises or in the cloud, to deliver high linear scalability.

NoSQL is suitable for a variety of scale-out applications including social network, customer

analytical workloads, real-time reporting, embedded database applications, mobile

applications, the internet of things (IoT), and gaming applications.

NoSQL supports flexible data models to accommodate any type of data. Unlike relational

databases, NoSQL can accommodate structured, semi-structured, and unstructured data to

support new types of business applications. NoSQL offers more flexible approach in which

the application, rather than the datastore, defines the schema and access paths. NoSQL

supports a wide range of new data types, including textual types such as JSON as well as

many other unstructured and semi-structured data types.

NoSQL delivers an extreme read and write capabilities for demanding customer apps.

Applications that demand extensive data reads and writes, often experience excessive

latency input/output (I/O) bottlenecks, especially when the app has high volumes of both.

NoSQL database management systems are very efficient in reading very large amounts of

data.

NoSQL simplifies data management for any type of application. Not only deploying

traditional databases takes time and effort – managing them requires specialized database

administrators (DBAs) and designing data structures can also take months. NoSQL

accelerates deployment through automation and simplification processes, provisioning

capabilities, and flexible data structures. When using NoSQL, application developers have

complete control over data storage and access and don’t need a DBA to support the NoSQL

data store.

NoSQL lowers data management cost. Many NoSQL solutions are open source, and

others sell for much less than a full version of a commercial relational DBMS. Compared

with conventional DBMSs, enterprises report that NoSQL products saved them more than

50% of the cost [14].

1.5 Definition of Big Data

Back in 2013 Dan Ariely’s likened Big Data to “Big data is like teenage sex: everyone talks

about it, nobody really knows how to do it, everyone thinks everyone else is doing it, so

everyone claims they are doing it.” From that time many people tried to define or box this

TBU in Zlín, Faculty of Applied Informatics 20

new phrase, but the market is so fast and changing that we can’t still express exact definition.

I see Big Data as area within Information Technology industry which took place to analyze,

systematically extract information from, or otherwise deal with data sets that are too large

or too complex to be dealt with by traditional data processing application software within

the meaning of volume or/and time. In the early 2010s there was also a big discussion

regarding if Big Data is next big trend, if companies should take care of it. Now almost 10

years later I would modify Dan Ariely’s quote from 2013 to something like “Big Data is like

university student sex: Everybody talks about it, most of them claims they are doing it

regularly, only some of them really know how to do it. No one says he never heard about it.

Almost everybody looking for other who has know-how and real experience with it.”

1.6 How big is Big Data

To have a rough estimate how big are Big Data, first look into the Table 3 for some examples

of data volume related to metric prefixes.

Table 3 – Example of data volume

Unit Value Example

kilo 103 1 000 a paragraph of a text document

mega 106 1 000 000 a small novel

giga 109 1 000 000 000 Beethoven’s 5th Symphony

tera 1012 1 000 000 000 000 all the X-rays in a large hospital

peta 1015 1 000 000 000 000 000 half of all US academic research libraries

exa 1018 1 000 000 000 000 000 000 20% of the words ever spoken by human

zetta 1021 1 000 000 000 000 000 000 000 grains of sand on all the world’s beaches

Most of us can probably imagine size of mega or giga, maybe some of us even worked

with data of terabytes in volume, but petabytes is for most people like 4th dimension in

Euclidean geometry. To have a better idea, it’s necessary to look at the volume of data from

different perspective or to cut one of the dimensions – time – to smaller scale. As you can

see in Figure 3Figure 3 – How much data is generated every minute and Figure 4Figure 4 –

What happens online in 60 seconds the amount of data generated every minute is enormous.

TBU in Zlín, Faculty of Applied Informatics 21

Figure 3 – How much data is generated every minute [15]

Figure 4 – What happens online in 60 seconds [15]

TBU in Zlín, Faculty of Applied Informatics 22

The Figure 5 depicts the relative increase of data stored over time, together with the

diversity and number of users creating and using data, and the variety of use cases for data.

Complexity and cost are two other important factors that continue to increase. Therefore the

disciplines of Big Data are taking the key role in the 21st century.

Figure 5 – Data Volume (1800s – 2010) [17]

To have an idea about the volume increase in long-term time horizon, see Figure 6, where

you can see data volume in last 10 years with prediction for next 6. Any further prediction

especially in IT sector would be just divination from a crystal ball.

Figure 6 – Data Volume (2010 – 2025) [18]

TBU in Zlín, Faculty of Applied Informatics 23

Definitely we can agree that imagine the volume of data in peta or zetta bytes is like imagine

how far nearest Black hole is. To help you with this, following example of the amount of

data generated worldwide this year should definitely help you.

Source data:

 40 zettabytes of data generated this year = 40,000,000,000,000,000,000,000 bytes

 stack of 100 of 3.5” floppy disks measures 13 inches (33 cm) ⇒ 0.33 cm / 1 floppy disk

 capacity of one 3.5” floppy disk is 1.44 MB = 1,474,560 bytes

Calculation:

 # floppy disks to store all data generated this year

40,000,000,000,000,000,000,000 bytes of data / 1,474,560 capacity of 3.55” floppy disk =

27,126,736,111,111,111

 stack height of all floppy disks with data

27,126,736,111,111,111 floppy disks * 0.33 cm = 8,951,822,916,666,666 cm =

89,518,229,166 km

 # of stacks between Earth and Sun

89,518,229,166 km / 14,960,000 km (distance between Earth and Sun) = 600

To sum it up, all data generated this year worldwide could be stored in 600 stacks (towers)

of 3.5” floppy disk from Earth to Sun.

To complete the question „How big are Big Data“, it’s necessary to mention the key factor

for storing the data and it’s the cost of storage. Figure 7 shows cost of 1 gigabyte of storage

from 1980 till 2014. For the past 35+ years or so, hard drives prices have dropped, from

around $500,000 per gigabyte in 1981 to less than $0.03 per gigabyte today. In the last 5

years (2014-2019) the price dropdown is slowing and stabilized between $0.04 - $0.03 [19].

TBU in Zlín, Faculty of Applied Informatics 24

Figure 7 – History of storage cost per gigabyte (1980-2014) [20]

1.7 The V’s of Big Data

In the context of large amounts of data, it is often referred to as so-called 3 V’s, which are

generally recognized as characteristics of Big Data (for graphical representation of these

characteristics please see Figure 8). These distinctive 3 V’s were defined in 2001 by Dough

Laney, analyst in Gartner [21].

Figure 8 – The 3 V’s of Big Data [22]

TBU in Zlín, Faculty of Applied Informatics 25

Volume - Data Size

The first "V" is the volume, i.e. the size of the data being processed. With the ever-increasing

amount of data generated by modern technologies, the question of how to process these data

so that the analysis of these data results in the most inaccurate results in the shortest possible

time arose. Such data volume cannot be processed by traditional database tools. What size

of data already means "Big" is not said anywhere, but this boundary is constantly shifting as

technology evolves.

Velocity - Data Rate

The second "V" is the speed at which the data are produced. As data size increases, the speed

of data that an organization produces, processes, or just receives increases. The ability to

quickly receive and respond to data can be a significant competitive advantage or even a

necessity. However, in order for an organization to respond quickly to data, fast data

processing is necessary. For traditional database tools, it is very difficult to process

unstructured data or structured data of large volumes, the cost of such processing and storage

would be unbearable. In contrast, Big Data technologies allow this storage and processing

and are designed for it.

Variety - Data Diversity

The third "V" represents the diversity of data. Data rarely come from a single source and are

often not in a unified format. This diversity of data is a major difference from traditional

data storage methods, where fixed-structure data are used - structured data. Structured data

are described by their metadata, and analysis can be easily performed by using traditional

database systems. Opposite examples are unstructured data that are neither described nor

organized, so it is not easy to process. This type of data occurs, for example, in emails,

documents, or social networks. However, in the case of Big Data, it is also possible to

analyze such data from different sources and with different structures, which can be a great

benefit to organizations.

To these basic 3 V’s characteristics of Big Data some authors added later another V’s so-

called 4 V’s / 5 V’s as is visualized in Figure 9 and Figure 10.

TBU in Zlín, Faculty of Applied Informatics 26

Figure 9 – The 4 V’s of Big Data [23]

Veracity – Data Credibility

Credibility is highlighted for possible poor data quality at source. This non-quality and

unreliability of the data is then transferred to the analysis, which can result in distorted or

non-full results.

Figure 10 – The 5 V’s of Big Data [24]

TBU in Zlín, Faculty of Applied Informatics 27

Value – Data Usefulness

The term value is often understood as the most important one, because the result of the

analysis should bring added value and be useful for making the business more effective.

Very soon there was race who will discover next V’s so the competition continued with

other V’s, such as 8 V’s (see Figure 11).

Figure 11 – The 8 V’s of Big Data [25]

Visualization – Big Data visualization involves the presentation of data of almost any type

in a graphical format that makes it easy to understand and interpret. But it goes far beyond

typical corporate graphs, histograms and pie charts to more complex representations like

heat maps and fever charts, enabling decision makers to explore data sets to identify

correlations or unexpected patterns [26].

Viscosity – Viscosity measures the resistance to flow in the volume of data. This resistance

can come from different data sources, friction from integration flow rates, and processing

TBU in Zlín, Faculty of Applied Informatics 28

required to turn the data into insight. Technologies to deal with viscosity include improved

streaming, agile integration bus, and complex event processing [27].

Virality – Virality describes how quickly information gets dispersed across people to people

(P2P) networks. Virality measures how quickly data are spread and shared to each unique

node. Time is a determinant factor along with rate of spread [27].

Table 4 – The V's of Big Data [28]

Characteristics Elucidation Description

1 Volume Size of Data Quantity of collected and stored data

2 Velocity Speed of Data The transfer rate of data between source

and destination

3 Variety Type of Data Different type of data like pictures,

videos and audio arrives at the receiving

end

4 Veracity Data Quality Accurate analysis of captured data is

virtually worthless if it’s not accurate

5 Value Importance of Data It represents the business value to be

derived from Big Data

6 Visualization Data Act/ Data

Process

It is a process of representing abstract

7 Viscosity Lag of Event It is a time difference the event occurred

and the event being described

8 Virality Spreading Speed It is defined as the rate at which the data

are broadcast /spread by a user and

received by different users for their use

9 Variability Data Differentiation Data arrives constantly from different

sources and how efficiently it

differentiates between noisy data or

important data

10 Validity Data Authenticity Correctness or accuracy of data used to

extract result in the form of information

11 Vulnerability Data Security Big Data brings new security concerns.

12 Volatility Duration of

Usefulness

Big Data volatility means the stored data

and how long is useful to the user

13 Venue Different Platform Various types of data arrived from

different sources via different platforms

like personnel system and private &

public cloud

14 Vocabulary Data Terminology Data terminology likes data model and

data structures

TBU in Zlín, Faculty of Applied Informatics 29

Characteristics Elucidation Description

15 Vagueness Indistinctness of

existence

Vagueness concern the reality in

information that suggested little or no

thought about what each might convey

16 Verbosity Data Redundancy The redundancy of the information

available at different sources

17 Voluntariness Data Voluntariness The will full availability of Big Data to

be used according to the context

18 Versatility Data Flexibility The ability of Big Data to be flexible

enough to be used differently for

different context

19 Complexity Correlation of Data Data comes from different sources and it

is necessary to figure out the changes

whether small or large in data with

respect to the previously arrived data so

that information can get quickly

Table 4 shows many other examples of creativity of some authors in V’s race. To close

this race of defining more and more V’s, look at the Figure 12, where the first appearances

of these V’s are symbolized.

Figure 12 – First occurrence of V's by year [29]

TBU in Zlín, Faculty of Applied Informatics 30

1.8 Data Science vs. Big Data vs. Data Analytics

For companies, data are becoming more and more available, primarily due to the cost of

acquisition, processing and storage. The problem is not how to obtain the data, but how to

benefit of them. Every company has now huge amount of data and it brings new challenges

how to utilize them, how to find real value inside. That’s what will split them between

successful and losers.

It was interesting to watch Gartner’s Hype Cycle for Emerging Technologies for several

last years. Big Data appeared in viewfinder of Gartner around 2010-11, in 2012-2013

reached top of hype cycle and in 2015 surprisingly disappeared with explanation, that Big

Data is so pervasive that it can’t really be considered an emerging technology any longer.

But what appeared in Gartner’s Hype Cycle in 2014? The answer could be found in Figure

13. It is a Data Science – the new area worth to follow.

Figure 13 – Hype Cycle for Emerging Technologies, 2014 [30]

As it became common, there is always no proper definition, as everybody can see it from

different perspective, everybody add something own. There are hundreds of definitions what

TBU in Zlín, Faculty of Applied Informatics 31

Data Science is or could be. Definitely the best definition could be found on Wiki page where

the term Data Science is best described.

Data science is a multi-disciplinary field that uses scientific methods, processes, algorithms

and systems to extract knowledge and insights from structured and unstructured data [31].

But the key word in data science is not “data”, it is “science”. Data science is only useful

when the data are used to answer a question [32]. Data science is the same concept as Data

mining and Big Data: "use the most powerful hardware, the most powerful programming

systems, and the most efficient algorithms to solve problems" [33].

In 2012, when Harvard Business Review called it "The Sexiest Job of the 21st Century",

[34] the term "data science" became a buzzword. It is now often used interchangeably with

earlier concepts like business analytics, business intelligence, predictive modeling,

and statistics. In many cases, earlier approaches and solutions are now simply rebranded as

"data science" to be more attractive [35].

Figure 14 – Relations of Data Science with surrounding area [36]

It’s very hard to explain the differences between Data Mining, Data Analytics, Data

Analysis, Data Science and Big Data itself and how all fit together. Data Science helps in

discovering useful information from Big Data for efficient data analysis with the help of

https://en.wikipedia.org/wiki/Multi-disciplinary
https://en.wikipedia.org/wiki/Knowledge
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/Big_data
https://en.wikipedia.org/wiki/Harvard_Business_Review
https://en.wikipedia.org/wiki/Buzzword
https://en.wikipedia.org/wiki/Business_analytics
https://en.wikipedia.org/wiki/Business_intelligence
https://en.wikipedia.org/wiki/Predictive_modelling
https://en.wikipedia.org/wiki/Statistics

TBU in Zlín, Faculty of Applied Informatics 32

Artificial Intelligence and Machine Learning/Data Mining algorithms. Jonathan Nolis breaks

data science down into three components:

(1) business intelligence, which is essentially about “taking data that the company has and

getting it in front of the right people” in the form of dashboards and reports

(2) decision science, which is about “taking data and using it to help a company make a

decision”

(3) machine learning, which is about “how can we take data science models and put them

continuously into production.” Although many working data scientists are currently

generalists and do all three, we are seeing distinct career paths emerging, as in the case of

machine learning engineers [37].

Figure 15 – The Fields of Data Science [38]

One or more pictures (Figure 14, Figure 15 and Figure 16) could say more than 100 words

how all fit and relate together.

TBU in Zlín, Faculty of Applied Informatics 33

Data mining is analyzing data for the purpose of discovering unforeseen patterns or

properties. It makes messy unstructured data into useful info. It is the computational process

of discovering patterns in large data sets (involving Big Data abstraction) involving methods

at the intersection of artificial intelligence, machine learning, and database systems. Data

mining closely relates to data analysis. One can say that Data mining is data analytics

operating on big data sets, because no small data sets would issue meaningful analytics

insights. Data mining, shortly speaking, is the process of transforming data into useful

information. Data mining is more rooted on the database (static, already stored data) point

of view, whereas machine learning has been originated from a desire to make an Artificial

Intelligence (AI). Algorithms used in Data mining: Apriori (finding associations), DBSCAN

(finding clusters) and Decision trees.

Figure 16 – Data Science [39]

Data Analysis is a heuristic activity, where scanning through all the data the analyst gains

some insight (makes useful information). Data Analysis leverages statistical methods to

analyze aggregated or non-aggregated data.

Data Analytics is about applying a mechanical or algorithmic process to find insights. For

example, running through various data sets with a purpose of finding meaningful

TBU in Zlín, Faculty of Applied Informatics 34

correlation between them. This takes the use of statistics and data science tools. Analytics

are the result of analysis and the form of presentation of the analysis results; might simply

prediction interest.

Machine Learning finds patterns in (big) data that useful for researchers and are not visible

from human point of view. Machine Learning is not a static, hard-coded model but a self-

learning, self-adjusting model (machine learns and changes itself). Machine Learning or

Artificial Intelligence compared to Data Mining is more on incorporating acquired

knowledge into the framework for further (i.e. future) use in analysis.

Figure 17 – Data Science Is Multidisciplinary [40]

Data Science is a science field that includes methods and processes for operating over data.

It’s a cluster of mathematics, statistics, programming, and ingenious ways of capturing data

that may not be being captured right now. Data Science includes Machine Learning and other

methods like problem formulation, exploratory data analysis, data model compiling, data

visualization, data extraction, etc. [38].

TBU in Zlín, Faculty of Applied Informatics 35

As you can see, there are many views from different perspective on Data Science, Data

Analytics, Data Analysis, Data Mining, Machine Learning, Big Data and other popular term

used in the industry these days. It would be beneficial to finish this subchapter with last

picture (see Figure 17) of which all areas Data Science touch. There are so many discipline

involve, that we have to wait few years to let it settled down.

1.9 Application of Big Data

Listing all areas where Big Data are used today would be a superhuman task. In the last 10

years, this phenomenon has come to all areas of human activity. In the following paragraph

are presented some of the application of Big Data technology by the industry [41].

Retail/Consumer

 Merchandizing and market basket analysis

 Campaign management and customer loyalty programs

 Supply-chain management and analytics

 Event- and behavior-based targeting

 Market and consumer segmentations

Finances & Frauds Services

 Compliance and regulatory reporting

 Risk analysis and management

 Fraud detection and security analytics

 Credit risk, scoring and analysis

 High speed arbitrage trading

 Trade surveillance

 Abnormal trading pattern analysis

Web and Digital media

 Large-scale clickstream analytics

 Ad targeting, analysis, forecasting and optimization

 Abuse and click-fraud prevention

 Social graph analysis and profile segmentation

 Campaign management and loyalty programs

Health & Life Sciences

 Clinical trials data analysis

 Disease pattern analysis

TBU in Zlín, Faculty of Applied Informatics 36

 Campaign and sales program optimization

 Patient care quality and program analysis

 Medical device and pharmacy supply-chain management

 Drug discovery and development analysis

Telecommunications

 Revenue assurance and price optimization

 Customer churn prevention

 Campaign management and customer loyalty

 Call detail record (CDR) analysis

 Network performance and optimization

 Mobile user location analysis

Ecommerce & customer service

 Cross-channel analytics

 Event analytics

 Recommendation engines using predictive analytics

 Right offer at the right time

 Next best offer or next best action

To at least partially present Big Data in detail, use case from the automotive industry was

chosen and are presented in following paragraphs.

Automotive Industry Use Case of Big Data

The average vehicle on today's roads generates huge amounts of data. Vehicle sensors

monitor everything from tire pressure, engine speed to oil temperature and vehicle speed or

position. Thus, vehicles can produce anywhere from 5 to 250 GB of data per hour. The study

from 2014 by McKinsey states that the average connected car generates 25 GB of data per

hour [42]. Patrick Nelson from IDG, says a self-driving car can generate up to 4 TB of data

per day (details are depicted in Figure 18) [43]. Autonomous vehicles, such as Google,

generate about 1 GB of data every second. The vast majority of this data are used in real

time to check and report on vehicle functions and has no real long-term value. Taking

thousands of messages from the sensor saying "Normal tire pressure" does not bring any

further benefit, so car makers do not bother to store this data in the car or on servers.

However, some data are valuable. And if such information can be gathered from a substantial

TBU in Zlín, Faculty of Applied Informatics 37

portion of the billions of cars in operation today, we do not need more than basic knowledge

of arithmetic to understand why Big Data is attracting so much attention in the automotive

sector.

There is a great interest in collecting large data not only by OEMs (Original Equipment

Manufacturer), but also by companies that have nothing to do with OEM production or

delivery. These are companies that offer solutions to the surrounding ecosystem. Big Data

opens up many other possibilities. Another example how to use large amounts of data is to

understand how customers actually use their products. In most cars, some features are

unnoticed while others are highly valued. With large amounts of data, the OEM has the

opportunity to learn a lot more about how customers use the vehicle and what their

preferences are. By analyzing data, the data collected can be used to plan and develop other

features.

Figure 18 – The coming flood of data in autonomous vehicles [43]

It is useful for the automaker to monitor the habits of a particular customer group, the

number of their short trips on a single day or long rides on weekends, or the frequency of

rides in difficult winter conditions. In addition, manufacturers can begin to focus on

additional value-added services that can target specific demographic groups within their

customer base.

Interesting customers can be insurance companies that want to collect a particular subset

of car data - such as speed, driving time, braking and cornering - to find out how drivers

TBU in Zlín, Faculty of Applied Informatics 38

actually drive, rather than base their risk calculation on much less reliable sources like their

age or credit status. Insurance companies are already on the market with replacement

solutions that enable this data collection. An example of this is the AXA Drive application,

which is able to record driver’s driving style with GPS and gyro sensors. Patiently collects

data, records abrupt starts, passages of dangerous places, taking into account day, night,

meteorological conditions and other details. After driving, it offers tips for improvement and

greater safety, but how the data are utilize internally, there’s no evidence. But we can be

sure, they can score individual drivers and offer them better insurance rate. More and more

vehicle manufacturers are also offering insurance services through their partners, so there

are more data seekers who can provide them with sufficient details to calculate the risk.

Another example of how to profit from Big Data is that manufacturers can sell their data

to third parties. For example, USPS has priced for its large data and allows organizations to

access the National Address Change Database for $ 175,000 a year. Cisco has recently

calculated that the financial benefits of large data for vehicle manufacturers will be close to

$300 per vehicle per year. Most of this amount comes from lower warranty service costs and

improved concept design. In the same analysis, it was concluded that large data would help

drivers save $500 a year thanks to better navigation and smarter driving.

To collect data for car manufacturers, it is now necessary to wait for the driver to arrive

with their cars at a service whose technicians have access to the data through the on-board

diagnostic system. But not all drivers have their cars settled regularly, for example, 15,000

km, which means that data analysis from all the vehicles in operation is not going on in a

continuous and proactive way, and achieving this is still a challenge. With the arrival of cars

connected to the Internet respectively, using 5G mobile networks, car makers can have full

access to data from the car anywhere, anytime, making the analysis of this data easier and

more viable. But as long as these still connected cars do not make up the majority of the cars

they operate, the big data will be rather small data [44] [45].

TBU in Zlín, Faculty of Applied Informatics 39

2 NOSQL

2.1 Introduction

The main characteristics of NoSQL DBMS are flexible scalability, lower cost, flexible data

structure and availability. The capacity of the cluster is much easier to expand with

horizontal scaling (involves running multiple servers (nodes) within a cluster). In contrast

vertical scaling, data migration or at least shutdown of the system is necessary in case of

capacity increase. NoSQL databases are designed to allow new nodes to be easily added or

removed as needed without shutdown. High availability can be assured by other nodes taking

on the role of individual nodes in the event of failure or maintenance. A significant cost

factor is the fact that commodity hardware can be used as clustered servers, which is

significantly less expensive than large database servers. Vast majority of NoSQL databases

are available as open source products with the option to purchase support as commercial

services provided by third parties. Almost all NoSQL databases offer the ability to represent

data without a fixed data schema. As mentioned above, the main reason for interest in

NoSQL databases is the ability to run databases in clusters. Whether the database system

will perform optimally, for example, with a large number of write operations or whether it

will guarantee availability in the event of disruption between servers, depends on the

distribution model be chose.

2.2 Distribution

NoSQL databases, also known as distributed databases, are based on the principle of data

distribution, as the name implies. However, this does not mean that data distribution is

necessary when using the NoSQL database. If the size of the data allows it, only a minimum

to no data distribution can occur, what limit or eliminate the risks associated with the

distribution. The basic model is running a database system on a single server. Even in this

case, it may be worthwhile to use a NoSQL DBMS, if appropriate from the perspective of

the data structure that the application is working with. The following data distribution

techniques are used for ideal data processing.

First distribution model is called sharding, i.e. placing different parts of data on different

nodes. This approach is useful when different users access different parts of the data. Many

NoSQL DBMS supports auto-sharding, where the database system itself allocates data to

TBU in Zlín, Faculty of Applied Informatics 40

individual nodes. Sharding is a convenient way to simultaneously increase both read and

write performance.

Another distribution model is master-slave replication. The data are replicated to several

nodes, one of which is designated as a primary node (called master) and is generally

responsible for executing data update operations. The replication mechanism then

synchronizes the secondary nodes (called slaves) with the current data on the primary node.

Master-slave replication is useful when a large number of read operations are performed on

the data. Conversely, the Peer-to-Peer replication distribution model can help when data are

written frequently. There is no primary node, all nodes have the same weight and perform

read and write operations. Replication is performed between nodes. The downside of this

model is the risk of data violation. This occurs when several write operations attempt to

modify the same entry on different nodes. This problem can be solved by mutual

coordination between nodes, but this is associated with higher network traffic intensity. In

this case, it is not necessary to wait for the response of all nodes, but to ensure a high degree

of consistency, their absolute majority is sufficient. The number of nodes to receive

confirmation is called a quorum. The second possible solution is to allow the emergence of

such conflicts of enrollment operations and to subsequently address them within the

application in accordance with its business logic.

2.3 Consistency

Efficient and correct data processing requires consistency. Therefore, traditional, relational

databases require that the data contained therein meet certain restrictive conditions, so-called

integrity constraints. These database systems work with so-called transactions that are

logically related operations that convert data from one consistent state to another. At the end

of the transaction, all integrity restrictions must be met. For this reason, the following

features are required for transactions that are referred to as ACID transaction. An important

feature of NoSQL databases is the absence of a classic transaction approach and a different

view of data consistency. While traditional RDBMS is based on the principle of ACID

transactions (Atomicity, Consistency, Isolation, Durability), the principle of NoSQL

databases is BASE (Basic Availability, Soft state, Eventual consistency).

Atomicity - the database transaction is as an operation further indivisible (atomic). It is

performed either as a whole or not at all (and the database system gives the user a note, e.g.

by an error message).

TBU in Zlín, Faculty of Applied Informatics 41

Consistency - no integrity constraints are violated after the transaction. Database status after

transaction completion is always consistent, i.e. valid according to all defined rules and

restrictions. There is never a situation where the database is in an inconsistent state.

Isolation - operations inside a transaction are hidden from external operations. Returning a

transaction (ROLLBACK operation) does not affect another transaction, and if so, it must

be returned. This behavior may result in a cascading rollback.

Durability - changes made as a result of successful transactions are actually stored in the

database and can no longer be lost.

The term "Basic Availability" means if single node fails, part of the data won't be

available, while the remaining parts of the system remain functional. "Soft state" refers to

the fact that data may be overwritten by a newer version, which is closely related to the third

attribute of the BASE principle - "Eventual consistency". This term means that the database

may, under certain circumstances, be in an inconsistent state. Typically, this is where copies

of the same data are located on several nodes within a cluster. If a user or application updates

data on one of the servers, other copies of the data are inconsistent for a certain (usually

short) period until the NoSQL database replication mechanism updates all copies of the data.

Unlike ACID, BASE is not so strict and permits temporary data inconsistency to increase

availability and performance. For BASE access, the database is also available in case of

partial failures between nodes, or at least parts of it (e.g. in case of node failure). This results

in temporary data inconsistency. This also occurs with delays in synchronizing changes

between individual parts. However, if the connection is restored and the database is unloaded

for some time, a consistent state is restored. Since it does not block writing (as opposed to

ACID transactions), it is more responsive, even at the cost of temporary inaccuracies in

stored data.

2.4 CAP Theorem

CAP theorem also known as Brewer theorem was introduced by Eric Brewer in 2000 at ACM

Symposium on Principles of Distributed Computing and expresses a triple constraints related

to distributed database systems. It states that a distributed database system, running on a

cluster, can only provide two of the following three properties:

TBU in Zlín, Faculty of Applied Informatics 42

Consistency – a read from any node results in the same data across multiple nodes. A

guarantee that every node in a distributed cluster returns the same, most recent data.

Consistency refers to every client having the same view of the data. There are various types

of consistency models. Consistency in CAP (used to prove the theorem) refers to

linearizability or sequential consistency, a very strong form of consistency.

Availability – a read/write request will always be acknowledged in the form of a success or

a failure. Every non-failing node returns a response for all read and write requests in a

reasonable amount of time. The key word here is “every”. To be available, every node on

(either side of a network partition) must be able to respond in a reasonable amount of time.

Partition tolerance – the database system can tolerate communication outages that split the

cluster into multiple silos and can still service read/write requests. The system continues to

function and upholds its consistency guarantees in spite of network partitions. Distributed

systems guaranteeing partition tolerance can gracefully recover from partitions once the

partition heals.

Figure 19 – A Venn diagram summarizing the CAP theorem

In 2002, Seth Gilbert and Nancy Lynch of MIT published a formal proof of Brewer's

conjecture [46]. The theorem states that networked shared-data systems can only

TBU in Zlín, Faculty of Applied Informatics 43

guarantee/strongly support two of the three properties. The CAP theorem categorizes

systems into three categories:

CP (Consistent and Partition Tolerant) - At first glance, the CP category is confusing, i.e., a

system that is consistent and partition tolerant but never available. CP is referring to a

category of systems where availability is sacrificed only in the case of a network partition.

CA (Consistent and Available) - CA systems are consistent and available systems in the

absence of any network partition. Often a single node's DB servers are categorized as CA

systems. Single node DB servers do not need to deal with partition tolerance and are thus

considered CA systems. The only hole in this theory is that single node DB systems are not

a network of shared data systems and thus do not fall under the preview of CAP.

AP (Available and Partition Tolerant) - These are systems that are available and partition

tolerant but cannot guarantee consistency.

Figure 19 – A Venn diagram summarizing the CAP theorem shows the overlapping areas

between Consistency, Availability and Partition tolerance.

However, the CAP theorem cannot be taken literally, and its critics point out a few points

for discussion. Above all, it is the fact that the originally used definitions are not entirely

accurate and the particular theorem, which has been proven later, has other restrictive

conditions. Furthermore, some properties are questionable. E.g. while the lack of consistency

is assumed throughout the system's work, the lack of availability is only in the case of

network disconnection, that is, sometimes only. Thus, these two conditions do not have

symmetrical properties. Or if we understand the theorem literally, then it says that providing

a combination of consistency conditions and resistance to network disintegration means that

the system is not available at all after disconnection. This is, of course, a very bad feature

[47] [48] [49].

TBU in Zlín, Faculty of Applied Informatics 44

2.5 Classification of Database Management Systems

Before the basic types or classification of NoSQL databases will be presented, it is necessary

to step back and look at database classification from higher perspective and present top most

DBMS classification from different edges. There are several criteria based on which DBMS

are classified.

Based on the data model

Relational database - definitely most popular data model used worldwide. It is based on the

SQL and ACID transaction paradigm (Atomicity, Consistency, Isolation, Durability). A

relational database is a set of formally described tables from which data can be accessed or

reassembled in many different ways without having to reorganize the database tables. The

tables or the files with the data are called as relations that help in designating the row or

record, and columns are referred to attributes or fields. Examples: Oracle, MySQL.

Microsoft SQL Server.

Object oriented database - object oriented database management systems (often referred to

as object databases) were developed in the 1980s motivated by the common use of object-

oriented programming languages. The goal was to be able to simply store the objects in a

database in a way that corresponds to their representation in a programming language,

without the need of conversion or decomposition. Examples: InterSystems Caché, Versant

Object Database, Db4o.

Hierarchical database - in which the data are organized into a tree-like structure. The data

are stored as records which are connected to one another through links. A record is a

collection of fields, with each field containing only one value. The type of a record defines

which fields the record contains. Examples: IMS (IBM), Windows registry (Microsoft).

Network database – is a database model similar to a hierarchical database model that has

been almost exclusively used by the database model for a long time. In addition to the

hierarchical database model, it provides more to more relationships, so one entity could have

more parents. However, this data concept was overcome in 1970 by the relational database

concept. In addition, it also allows recursion, i.e. the entity can be the parent of its parent.

The disadvantage of using a network database is its inflexibility and the resulting difficult

change in its structure. Examples: RDM Server, Integrated Data Store (IDS).

TBU in Zlín, Faculty of Applied Informatics 45

Based on the number of users

Single user - supports only one user at one point of time. It is mostly used with the personal

computer on which the data resides accessible to a single person.

Multiple users - supports two or more simultaneous users concurrently. Data can be both

integrated and shared, a database should be integrated when the same information is not need

be recorded in two places.

Based on the distribution

Centralized database system - keeps the data in one single database at one single location.

In a centralized database system, a single machine called a database server hosts the DBMS

and the database.

Distributed database system – here, data and the DBMS software are distributed over several

sites but connected to the single computer. Main difference between centralized and

distributed database systems is, the data resides in several locations or on multiple servers at

the same location.

Parallel network database system - the advantage of improving processing input and output

speeds is in use of multiple processors such as cluster server that host the DBMS. Majorly

used in the applications that have query to larger database. It holds the multiple central

processing units and data storage disks in parallel.

Client-server database system - has two logical components namely client and server. Clients

are generally the personal computers or workstations whereas servers are the large

workstations, mini range computers or a main frame computer system.

Based on other criteria

There are many more classifications of DBMS such

 Based on cost (Low cost, Medium cost, High cost DBMS)

 Based on access (Sequential access, Direct access, Inverted file structure)

 Based on usage (OLTP – Online Transaction Processing, OLAP – Online Analytical

Processing, Big data and analytics DBMS, XML, Multimedia, GIS, Sensor, Mobile,

Open Source .. and many others)

TBU in Zlín, Faculty of Applied Informatics 46

NoSQL Databases Classification

Regarding the NoSQL databases, the classification would be possible depending on which

two properties of the CAP theorem the particular database system primarily focuses on. For

most NoSQL databases, there is a possibility of one of two solutions, either the database

system favors properties CP, or prefers the properties AP. For better visualization how

different type of NoSQL databases fit to AC, AP or CP group, please see Figure 20.

Figure 20 – Example of NoSQL databases by two of CAP [50]

According to the CAP Theorem, you can only pick two.

 Consistency means that each client always has the same view of the data.

 Availability means that all clients can always read and write.

 Partition tolerance means that the system works well across physical network

partitions.

TBU in Zlín, Faculty of Applied Informatics 47

CP (Consistent, Partition-Tolerant) - systems have trouble with availability while keeping

data consistent across partitioned nodes. Examples of some of the databases belonging into

CP systems are listed in the Table 5.

Table 5 – Examples of CP

Database Name Database Type

Bigtable column-oriented/tabular

Hypertable column-oriented/tabular

HBase column-oriented/tabular

MongoDB document-oriented

Terrastore document-oriented

Redis key-value

Scalaris key-value

MemcacheDB key-value

Berkeley DB key-value

AP (Available, Partition-Tolerant) - Systems achieve "eventual consistency" through

replication and verification. Examples of some of the databases belonging into CP systems

are listed in the Table 6.

Table 6 – Examples of AP

Database Name Database Type

Dynamo key-value

Voldemort key-value

Tokyo Cabinet key-value

KAI key-value

Cassandra column-oriented/tabular

CouchDB document-oriented

SimpleDB document-oriented

Riak document-oriented

The next classification could be based on the method of querying. However, most NoSQL

databases offer several ways how to query their data.

A high-level taxonomy of the NoSQL datastores based on the data model can classify

them into five major categories: key-value stores, document stores, wide-column (column-

oriented) stores, graph databases and multi-model databases. This classification is rather

common and we describe each of them in more detail in following subchapters.

TBU in Zlín, Faculty of Applied Informatics 48

2.6 Key Value Databases

Key value databases (stores) are the simplest form of NoSQL databases and are essentially

hash tables. From the perspective of the application's interaction with the database system,

Key-Value database solutions are characterized by a very straightforward way of storing and

reading data. The client application can read the value based on a particular key, save a value

under the key, or delete the key along with the value from the database.

Unlike relational databases, key-value databases do not contain tables or any equivalent.

Some database systems of this type support the creation of multiple namespaces within a

single database. An important feature of NoSQL key-value databases, which comes from

their very nature, is the fact that, unlike relational databases and other types of NoSQL

databases, it is not possible to search for data according to their value. Data are always

accessed via a key.

The advantage of these databases is the high speed and the fact that they can be easily

distributed. The negative of key-value database systems is that they cannot be searched for

by stored values.

Key-value databases are very simple, mean by their structure or operations on data. For

all systems of this type, only three basic operations are common, which are - to insert a value

for a given key (PUT), obtain a value for a given key (GET), and the last is to delete a key-

value pair (DELETE). Some systems of this type also allow for more complex operations,

but this foundation is common to all and sufficient to handle data in many applications.

Table 7 – DB-Engines Ranking of Key-value stores [51]

Rank DBMS Database Model

Score Link

1. Redis Key-value, Multi-model 146.38 [52]

2. Amazon DynamoDB Multi-model 56.01 [53]

3. Memcached Key-value 28.73 [54]

4. CosmosDB Multi-model 26.28 [55]

5. Hazelcast Key-value 8.35 [56]

6. Ehcache Key-value 6.49 [57]

7. Aerospike Key-value 6.21 [58]

8. OrientDB Multi-model 6.19 [59]

9. Riak KV Key-value 5.70 [60]

10. Ignite Multi-model 5.09 [61]

TBU in Zlín, Faculty of Applied Informatics 49

To choose the best or most used database in each category is un-human task, each of

particular database has its pros/cons and for individual project or usage it’s necessary to

weight them. For our purpose will be used the most recognized and reputed list of ranked

database by their popularity from site db-engines.com (see Table 7).

2.7 Document Databases

Document databases are more complex structures than key-value databases. Databases of

this type are suitable for storing and managing documents. The document in this case

represent a data structure with a self-descriptive character of the data. This means that in

addition to the data itself, the documents also contain metadata that describes the meaning

of the data. Unlike simple key-value storage, document databases allow content-based

searches.

Individual documents stored in this type of database are usually encoded in XML or JSON

formats, or binary form of JSON called BSON (Binary JSON). JSON (JavaScript Object

Notation) is a text format for data exchange. It represents four simple data types (string,

number, logical value, and null) and two structured types, which are object and array.

Structured data types can include any other arbitrary type, whether simple or structured. As

a result, JSON is a very flexible data format where almost any data can be written.

Table 8 – DB-Engines Ranking of Document stores [51]

Rank DBMS Database Model

Score Link

1. MongoDB Document 401.98 [62]

2. DynamoDB Multi-model 56.01 [53]

3. Couchbase Document 36.28 [63]

4. Cosmos DB Multi-model 26.28 [55]

5. CouchDB Document 20.44 [64]

6. MarkLogic Multi-model 14.47 [65]

7. Firebase Realtime Database Document 11.00 [66]

8. OrientDB Multi-model 6.19 [59]

9. RavenDB Document 4.66 [67]

10. Google Cloud Datastore Document 4.43 [68]

The key feature of document databases is the creation and use of search indexes. For

example, MongoDB automatically creates indexes at the _id level within all collections. It

TBU in Zlín, Faculty of Applied Informatics 50

also allows you to create a search index on any other value, including nested values. It is

generally recommended that each attribute that is expected to be searched for in the future

is assigned a custom index. If the index does not exist for the selection criteria in a given

collection, the database does a full table scan as well as in relational databases. This is

obviously undesirable in terms of time and unnecessary extraction of the I/O operations. In

the following Table 8 are again listed most used and popular Document Stores.

2.8 Column Base Databases

Column-oriented (column based, columnar, wide column) databases are probably the most

complex type of NoSQL databases in terms of basic structural elements. Some of the terms

known from relational databases, such as column and row, are commonly used for this type

of database, but their meaning is not identical and the differences with RDBMS are explained

below. The basic element for storing data in column-oriented databases is a column. The

column consists of a column name and a value. Some column-based database systems, along

with a column and value, also maintain a timestamp. The row then consists of a set of specific

columns. Each row of one column family can contain different columns. Similar to document

databases, column-oriented databases do not require a predefined fixed schema, and columns

can be arbitrarily added at runtime. Thus, although the data model structure may not be pre-

designed in complete and definite form, and any columns can be added at any time while the

application is running, the significant limitation is that the future performance and

performance of the database depend on the high-quality and sophisticated design of the data

model. Column-oriented databases are designed to support rows with a large number of

columns and database systems supporting several million columns are no exception.

Although column-oriented NoSQL databases may seem at first glance very similar to

relational databases, they differ significantly in the data models and implementation method

used. The most important difference is that column-oriented databases do not support JOIN

operations. This is why data are stored in denormalized form in column-oriented databases.

For data manipulation, they use SQL-like database-based database systems that support

basic statements such as SELECT, INSERT, UPDATE, and DELETE, but do not contain,

for example, any similar JOIN statement. As column-oriented databases do not use JOIN

operations, thus have very good scalability across distributed systems and enable efficient

TBU in Zlín, Faculty of Applied Informatics 51

data replication. In the following Table 9 you can find most used and popular Wide Column

Stores.

Table 9 – DB-Engines Ranking of Wide column stores [51]

Rank DBMS Database Model

Score Link

1. Cassandra Wide column 123.61 [69]

2. HBase Wide column 58.66 [70]

3. Cosmos DB Multi-model 26.28 [55]

4. Datastax Enterprise Wide column, Multi m. 9.17 [71]

5. Microsoft Azure Table Storage Wide column 4.50 [72]

6. Accumulo Wide column 4.12 [73]

7. Google Cloud Bigtable Wide column 1.81 [74]

8. ScyllaDB Wide column 1.62 [75]

9. MapR-DB Multi-model 0.75 [76]

10. Alibaba Cloud Table Wide column 0.21 [77]

2.9 Graph Databases

Another type of NoSQL database, graph databases are the last of 4 basic types of NoSQL

databases. They can be considered as a special type of NoSQL databases, suitable only for

data with a large number of mutual links. Graph databases allow you to store entities together

with relationships between these entities. Entities form graph nodes and have properties.

Relationships between entities are represented by oriented edges. Relationships between

entities can also be modeled in relational databases; a typical example could be employee-

boss relationship. The difference, however, is that if a representation of another similar

relationship is added to the relational database, it is generally necessary to make significant

changes to the data model. Graph databases are, unlike RDBMS, suitable for implementation

requiring multi-level graph browsing, not just searching for links between two adjacent

entities. Graph databases allow you to model relationships not only between domain entities,

but also relationships that allow, for example, to sort entities into certain categories or link

lists sorted by attributes. The number of links an entity can have is not limited in principle.

The search for entities, i.e. graph nodes, is done by specifying the edge orientation, the

property that the edge represents and the node from which the search should start. It is also

possible, for example, to query the shortest path between two nodes.

Unlike other NoSQL databases, it is very difficult to perform data scaling in graph

databases, i.e. to disperse data representing a single graph into multiple servers. This is due

TBU in Zlín, Faculty of Applied Informatics 52

to the close connection of the nodes within the graph. However, data replication can be

performed without problems, allowing better data reading performance. However, deploying

write operations to a database located on multiple servers can be difficult. In the Table 10

are again listed most used and popular Graph databases.

Table 10 – DB-Engines Ranking of Graph databases [51]

Rank DBMS Database Model

Score Link

1. Neo4J Graph 49.49 [78]

2. Cosmos DB Multi-model 26.28 [55]

3. OrientDB Multi-model 6.19 [59]

4. ArangoDB Multi-model 4.29 [79]

5. Virtuoso Multi-model 3.31 [80]

6. Amazon Neptun Graph 1.39 [81]

7. JanusGraph Graph 1.38 [82]

8. Giraph Graph 1.20 [83]

9. Dgraph Graph 1.08 [84]

10. GraphDB Multi-model 0.97 [85]

2.10 Multi-model Databases

In recent years, an enormous amount of new NoSQL databases appeared on the market to

address the Variety of Big Data. Most of them has been organized around a single data model

that determines how data can be organized, stored, and manipulated. In the coming years, as

companies began using these databases, they also began to realize that they had a different

databases specialized for different model of data or project supported by developers with

unique knowledge. Thus, there was a pressure on the developers of these new databases to

embed support in their already established databases for a different type of data. So, the so-

called multi-model NoSQL databases began to appear on the market, combining the support

of two or more types. Multi-model databases are designed to support multiple data models

against a single, integrated backend. In these days, most of the most used NoSQL databases

incorporated support for other data model, so it’s hard to present any list with ranked by

popularity. Anyway, to mention some of them, among multi-model databases are generally

considered these from the Table 11 (in alphabetic order) [86].

TBU in Zlín, Faculty of Applied Informatics 53

Table 11 – Multi-model databases [86]

Database Name Database Type

ArangoDB document (JSON), graph, key-value

Cosmos DB document (JSON), key-value, SQL

Couchbase document (JSON), key-value, N1QL

Datastax key-value, tabular, graph

EnterpriseDB document (XML and JSON), key-value

MarkLogic document (XML and JSON), graph triplestore, binary, SQL

Oracle

Database

relational, document, graph triplestore, property graph, key-value,

objects OrientDB document (JSON), graph, key-value, reactive, SQL

Redis key-value, document (JSON), property graph, streaming, time-series

SAP HANA relational, document (JSON), graph, streaming

TBU in Zlín, Faculty of Applied Informatics 54

II. ANALYSIS

TBU in Zlín, Faculty of Applied Informatics 55

3 APACHE HADOOP ECOSYSTEM

In practical part of this work, most popular and used technology of Big Data – Apache

Hadoop will be presented. First, core components of Hadoop itself like HDFS and YARN

will be introduced along with step-by-step installation and configuration instructions.

Presentation of technology will continue with MapReduce principles and practical examples

how to use it. In the second half of practical part, most of the significant surrounding projects

attached to Apache Hadoop will be shortly presented, again with installation and

configuration instructions and several examples how to use them.

Figure 21 – Apache Hadoop Ecosystem [87]

Going back to the very beginning of “Big Data”, among the triggers of all of this are

generally considered the search engine providers in the early 2000s, especially Google and

Yahoo (AltaVista). The search engine providers were the first group of users faced with

Internet scale problems, mainly how to process and store indexes of all of the documents in

the Internet universe. Yahoo and Google independently started working on projects to meet

this challenge. In 2003, Google released a whitepaper called “The Google File System.” [88]

Subsequently, in 2004, Google released another whitepaper called “MapReduce: Simplified

Data Processing on Large Clusters.” [89]. At the same time at Yahoo, Doug Cutting was

working on a web indexing project called Nutch (an open source web search engine, and a

TBU in Zlín, Faculty of Applied Informatics 56

part of the Lucene project). Google’s whitepapers inspired Doug Cutting to take the work he

had done to date on the Nutch project and incorporate the storage and processing principles

outlined in these whitepapers. By the middle of 2005 Nutch was using both MapReduce and

HDFS and the resultant product is what is known today as Hadoop. Hadoop was born in

2006 as an open source project under the Apache Software Foundation under Lucene project

[90]. By the beginning of 2008, Hadoop was a top-level project at Apache and was being

used by many companies. From that time many other open project originally or later

supported by Apache, has hooked up Hadoop and made it a center of what is now so-called

Hadoop Ecosystem [91].

Before the most important part of Hadoop Ecosystem will be explained, it’s necessary to

understand how each part fits together. As Figure 21 shows, there are many projects or

components associated with core Hadoop.

Short list of key components of Hadoop Ecosystem is also presented in the Table 12

together with their corresponding area.

Table 12 – Key Components of Hadoop Ecosystem

Area Project

Distributed Storage Hadoop HDFS

Resource Management Hadoop YARN

Processing Framework Hadoop MapReduce v2, Tez, Hoys

Data Collection/Movement Sqoop, Flume

Management & Coordination Ambari, Zookeper, Hue

Workflow Engine, Scheduling Oozie

Data Serialization Avro,

Table and Schema Management HCatalog

Columnar Store HBase

Scripting Pig

SQL Query, DWH Hive

Machine Learning Mahout, Spark MLlib, Hadoop Submarine

Analytics, Analysis, Processing Engine Spark, Drill, Impala

Streaming & Messaging Kafka, Storm

Searching & Indexing SOLR, Lucene

Ambari – an integrated set of Hadoop administration tools for installing, monitoring, and

maintaining a Hadoop cluster. Also included are tools to add or remove slave nodes.

TBU in Zlín, Faculty of Applied Informatics 57

Avro – a framework for the efficient serialization (a kind of transformation) of data into a

compact binary format

Flume – a distributed service for collecting and aggregating data from almost any source

into a data store such as HDFS or HBase

HBase – a distributed columnar database that uses HDFS for its underlying storage. With

HBase, you can store data in extremely large tables with variable column structures

HCatalog – a service for providing a relational view of data stored in Hadoop, including a

standard approach for tabular data

Hive – a distributed data warehouse for data that is stored in HDFS; also provides a query

language that's based on SQL (HiveQL)

Hue – a Hadoop administration interface with handy GUI tools for browsing files, issuing

Hive and Pig queries, and developing Oozie workflows

Mahout – a library of machine learning statistical algorithms such a core algorithms for

clustering, classification, and batch-based collaborative filtering that were implemented in

MapReduce and can run natively on Hadoop

Oozie – a workflow management tool that can handle the scheduling and chaining together

of Hadoop applications

Pig – a platform for the analysis of very large data sets that runs on HDFS and with an

infrastructure layer consisting of a compiler that produces sequences of MapReduce

programs and a language layer consisting of the query language named Pig Latin

Spark – a fast engine for processing large-scale data. It supports Java, Scala, and Python

applications. Because it provides primitives for in-memory cluster computing, it is

particularly suited to machine-learning algorithms. It promises performance up to 10 to 100

times faster than MapReduce.

Sqoop – a tool for efficiently moving large amounts of data between relational databases

and HDFS or Hive

ZooKeeper – a simple interface to the centralized coordination of services (such as naming,

configuration, and synchronization) used by distributed applications

TBU in Zlín, Faculty of Applied Informatics 58

To name all components or projects related to Hadoop or Hadoop Ecosystem would be

tough work. Only Apache itself currently list 50 projects in Big Data category and next 24

projects in Database category [92]. Each month new projects are emerging. Therefore, only

some of the most important will be presented.

3.1 Apache Hadoop

The Apache Hadoop software library is a framework that allows for the distributed

processing of large data sets across clusters of computers using simple programming models.

It is designed to scale up from single servers to thousands of machines, each offering local

computation and storage. Rather than rely on hardware to deliver high-availability, the

library itself is designed to detect and handle failures at the application layer, so delivering

a highly-available service on top of a cluster of computers, each of which may be prone to

failures [90].

Hadoop is a data storage and processing platform, based upon a central concept of “Data

Locality” which refers to the processing of data at its side, means bringing the computation

to the data, rather than the typical pattern of requesting data from its location and sending

them to a remote processing. Once the data reach the volume of “Big Data” it’s more

efficient to “send” processing to data not vice versa.

Hadoop enables large data sets to be processed locally on the nodes of a cluster using a

shared nothing approach, where each node can independently process a much smaller subset

of the entire data set without needing to communicate with one another.

Hadoop is schemaless with respect to its write operations (known as a schema-on-read).

This means that it can store and process a different type of data, from unstructured text

documents, to semi-structured JSON/XML documents, to well-structured data known from

RDBMS. On the contrary, schema-on-write systems, are system, where data are typically

strongly typed and a schema is predefined.

Hadoop is designed to apply principle of divide and conquer a large problem into a set of

smaller problems and applying the concepts of data locality and shared nothing as previously

introduced.

TBU in Zlín, Faculty of Applied Informatics 59

3.1.1 Overview of History and Release Versioning

The very beginning of Hadoop was introduced at the beginning of this chapter. To remind,

in 2002/2003 Doug Cutting and Mike Cafarella (known as co-founders of Hadoop) were

working in company Yahoo! On web search project called Nutch. In between, in 2003,

Google released a whitepaper called “The Google File System.” [88] Subsequently, in 2004,

Google released another whitepaper called “MapReduce: Simplified Data Processing on

Large Clusters.” [89] Cutting inspired by these paper incorporated these ideas into his Nutch

project, and later in January 2006 moved the Nutch project under the Apache Foundation.

The initial code that was factored out of Nutch consisted of about 5,000 lines of code for

HDFS and about 6,000 lines of code for MapReduce. In the following Table 13 all significant

Hadoop events are collected.

Table 13 – Timeline of Hadoop History [93]

Year Month Event
2003 October Google File System paper released

2004 December MapReduce: Simplified Data Processing on Large Clusters

2006 January Hadoop subproject created with mailing lists, jira, and wiki

2006 January Hadoop is born from Nutch 197

2006 February NDFS+ MapReduce moved out of Apache Nutch to create Hadoop

2006 February Owen O'Malley's first patch goes into Hadoop

2006 February Hadoop is named after Cutting's son's yellow plush toy

2006 April Hadoop 0.1.0 released

2006 April Hadoop sorts 1.8 TB on 188 nodes in 47.9 hours

2006 May Yahoo deploys 300 machine Hadoop cluster

2006 October Yahoo Hadoop cluster reaches 600 machines

2007 April Yahoo runs two clusters of 1,000 machines

2007 June Only three companies on "Powered by Hadoop Page"

2007 October First release of Hadoop that includes HBase

2007 October Yahoo Labs creates Pig, and donates it to the ASF

2008 January YARN JIRA opened

2008 January 20 companies on "Powered by Hadoop Page"

2008 February Yahoo moves its web index onto Hadoop

2008 February Yahoo! production search index generated by a 10,000-core Hadoop cluster

2008 March First Hadoop Summit

2008 April Hadoop world record fastest system to sort a terabyte of data.

2008 May Hadoop wins TeraByte Sort (World Record sortbenchmark.org)

2008 July Hadoop wins Terabyte Sort Benchmark

2008 October Loading 10 TB/day in Yahoo clusters

2008 October Cloudera, Hadoop distributor is founded

2008 November Google MapReduce implementation sorted one terabyte in 68 seconds

2009 March Yahoo runs 17 clusters with 24,000 machines

2009 April Hadoop sorts a petabyte

2009 May Yahoo! used Hadoop to sort one terabyte in 62 seconds

TBU in Zlín, Faculty of Applied Informatics 60

Year Month Event
2009 June Second Hadoop Summit

2009 July Hadoop Core is renamed Hadoop Common

2009 July MapR, Hadoop distributor founded

2009 July HDFS now a separate subproject

2009 July MapReduce now a separate subproject

2010 January Kerberos support added to Hadoop

2010 May Apache HBase Graduates

2010 June Third Hadoop Summit

2010 June Yahoo 4,000 nodes/70 petabytes

2010 June Facebook 2,300 clusters/40 petabytes

2010 September Apache Hive Graduates

2010 September Apache Pig Graduates

2011 January Apache Zookeeper Graduates

2011 January Facebook, LinkedIn, eBay and IBM collectively contribute 200,000 lines of

code 2011 March Apache Hadoop takes top prize at Media Guardian Innovation Awards

2011 June Rob Beardon and Eric Badleschieler spin Hortonworks out of Yahoo.

2011 June Yahoo has 42K Hadoop nodes and hundreds of petabytes of storage

2011 June Third Annual Hadoop Summit (1,700 attendees)

2011 October Debate over which company had contributed more to Hadoop.

2012 January Hadoop community moves to separate from MapReduce and replace with

YARN 2012 June San Jose Hadoop Summit (2,100 attendees)

2012 November Apache Hadoop 1.0 Available

2013 March Hadoop Summit – Amsterdam (500 attendees)

2013 March YARN deployed in production at Yahoo

2013 June San Jose Hadoop Summit (2,700 attendees)

2013 October Apache Hadoop 2.2 Available

2014 February Apache Hadoop 2.3 Available

2014 February Apache Spark top Level Apache Project

2014 April Hadoop summit Amsterdam (750 attendees)

2014 June Apache Hadoop 2.4 Available

2014 June San Jose Hadoop Summit (3,200 attendees)

2014 August Apache Hadoop 2.5 Available

2014 November Apache Hadoop 2.6 Available

2015 April Hadoop Summit Europe

2015 June Apache Hadoop 2.7 Available

2017 March Apache Hadoop 2.8 Available

2017 November Apache Hadoop 2.9 Available

2017 December Apache Hadoop 3.0 Available

2018 April Apache Hadoop 3.1 Available

2018 September 15 Apache Hadoop 2.8.5 Available

2018 November 19 Apache Hadoop 2.9.2 Available

2019 January 16 Apache Hadoop 3.2 Available

2019 February 6 Apache Hadoop 3.1.2 Available

During last almost two decades Hadoop made a great journey as you can see on its

timeline in Table 13. If you focus on last five rows of previous table, there could be seen

TBU in Zlín, Faculty of Applied Informatics 61

“deflection” of rule. It’s necessary to mention how Hadoop is releasing its versions. Hadoop

Community is actively maintaining two stable release lines in each major release line.

Apache Hadoop uses a version format of <major>.<minor>.<maintenance>, where each

version component is a numeric value. Versions can also have additional suffixes like ”-

alpha1” or ”-beta2”, which denote the API compatibility guarantees and quality of the

release. Major versions are used to introduce substantial, potentially incompatible, changes.

Examples of this include the replacement of MapReduce 1 with YARN & MapReduce 2 in

Hadoop 2, and the required Java runtime version from JDK7 to JDK8 in Hadoop 3. Minor

versions are used to introduce new compatible features within a major release line.

Maintenance releases include bug fixes or low-risk supportability changes. Hadoop’s

versioning scheme has evolved over the years, but from 2.7/2.8 was re-introduced parallel

active release lines to Hadoop. With major release 3, four active release lines are maintained

[94].

3.1.2 Distribution

Although Hadoop is an open source project there are many commercial vendors who supply

commercial distributions, support, management utilities and more. Figure 22 depicts rough

estimate of market share. Generally all vendors can be divided into two parts defined by how

much the Hadoop is core business for them. First groups of providers could be referred as

“pure play” Hadoop vendors. Their business model is base pure on Hadoop. In 2008, the

first commercial vendor, Cloudera, was formed by engineers from Google, Yahoo!, and

Facebook. Later in 2009, MapR was founded as a company delivering a “Hadoop-derived”

software solution implementing a custom adaptation of the Hadoop filesystem (called

MapRFS) with Hadoop API compatibility. In 2011, Hortonworks was spun off from Yahoo!

as a Hadoop vendor providing a distribution called HDP (Hortonworks Data Platform). Last,

fresh news from fall of 2018 happened in this field, when Cloudera and Hortonworks

announced the join of both companies and continue under the Cloudera name. Another group

of Hadoop vendors are mostly big IT companies like Amazon, IBM, Microsoft and others

who offer Hadoop distribution mostly as part of their cloud solutions.

TBU in Zlín, Faculty of Applied Informatics 62

Figure 22 – Hadoop Vendors [95]

3.1.3 Core Components

Hadoop has two core components: Hadoop Distributed File System (HDFS) and YARN

(which stands for Yet Another Resource Negotiator). HDFS is Hadoop’s storage subsystem,

whereas YARN can be thought of as Hadoop’s process scheduling subsystem (see Figure

23). Next key component is Hadoop Common, the common utilities that support the other

Hadoop modules. Historically, from version 1.0 the next component is Hadoop MapReduce,

currently in version 2. However, there are new distributed computation models trying to

improve MapReduce such Tez [96], that’s why the MapReduce is not considered as key part

of Hadoop anymore. Lastly, next two project Hadoop Ozone (an object store for Hadoop)

and Hadoop Submarine (a machine learning engine for Hadoop) was taken under umbrella

of Hadoop project, but again it is not what makes Hadoop “The Hadoop”.

TBU in Zlín, Faculty of Applied Informatics 63

Each component (HDFS and YARN) is independent of one another and can operate

independently in its own cluster, but when they are co-located with one another, the

combination of both systems is considered to be a Hadoop cluster.

Figure 23 – Key Component of Hadoop

Hadoop Common

Hadoop Common (previously known as Hadoop Core) is one of key modules of Hadoop and

refers to the collection of common utilities and libraries that support other Hadoop modules.

It is an essential part or module of the Apache Hadoop Framework, along with the Hadoop

Distributed File System (HDFS), Hadoop YARN and Hadoop MapReduce. The Hadoop

Common package is considered as the base/core of the framework as it provides essential

services and basic processes such as abstraction of the underlying operating system and its

file system. Hadoop Common also contains the necessary Java Archive (JAR) files and

scripts required to start Hadoop. The Hadoop Common package also provides source code

and documentation [97].

3.1.4 Deploying Hadoop

Generally, on premise Hadoop deployment can be done in three modes:

 Standalone mode on Single Node Cluster

 Pseudo distributed mode on Single Node Cluster

 Distributed mode on Multi Node Cluster

In this chapter, due to the limited processing power, the Pseudo distributed mode will be

presented.

TBU in Zlín, Faculty of Applied Informatics 64

The Hadoop project, although cross-platform in principle, was originally targeted at

Linux. However, now is also available on Windows platform, Hadoop will be presented on

Linux with latest available versions in time of writing this thesis (April 2019) as other

product from Hadoop Ecosystem has known issues with non-Linux operating system. These

versions of installed software are used:

 Ubuntu Server – 18.04.2 LTS Bionic

 Java 8 – JDK 1.8.212

 Apache Hadoop – 3.1.2

Conventions

These styles of code snippets are used in following paragraphs:

linux commands and parameters or configuration snippets

roman@hadoop-00:~$ command and parameters
with console output snippets

public class JavaOrPythonOrScalaCode {
 public static void main(String[] args) throws Exception {

Apache Hadoop Installation Steps

Installation of Hadoop system consists of several steps. Here is a quick summary, and further

each step is explained with commands/configuration and typical outputs of console.

1) Java Installation

2) SSH Configuration

3) Hadoop Installation

4) Setup Hadoop Configuration Files

5) Format Namenode

6) Start Hadoop Cluster

7) Test Hadoop Cluster

Now it’s time to start with first prerequisite, and it is Java installation.

TBU in Zlín, Faculty of Applied Informatics 65

3.1.4.1 Java Installation

It’s expected that clean installation of Ubuntu Server has been performed. Java is the primary

requirement for running Hadoop on any system, so first is necessary to install Java on host

server.

1) Install Java using apt command:

sudo apt install openjdk-8-jdk

roman@hadoop-00:~$ sudo apt install openjdk-8-jdk
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will be installed:
 adwaita-icon-theme at-spi2-core ca-certificates-java ...
...
ovide /usr/bin/jconsole (jconsole) in auto mode
Processing triggers for libc-bin (2.27-3ubuntu1) ...
Processing triggers for ureadahead (0.100.0-21) ...
Processing triggers for systemd (237-3ubuntu10.21) ...
Processing triggers for libgdk-pixbuf2.0-0:amd64 (2.36.11-2) ...
roman@hadoop-00:~$

2) After installation, to verify the java has been successfully configured, run the following

commands:

update-alternatives --display java
update-alternatives --display javac

roman@hadoop-00:~$ update-alternatives --display java
java - auto mode
 link best version is /usr/lib/jvm/java-8-openjdk-amd64/jre/bin/java
 link currently points to /usr/lib/jvm/java-8-openjdk-amd64/jre/bin/java
 link java is /usr/bin/java
 slave java.1.gz is /usr/share/man/man1/java.1.gz
/usr/lib/jvm/java-8-openjdk-amd64/jre/bin/java - priority 1081
 slave java.1.gz: /usr/lib/jvm/java-8-openjdk-amd64/jre/man/man1/java.1.gz
roman@hadoop-00:~$ update-alternatives --display javac
javac - auto mode
 link best version is /usr/lib/jvm/java-8-openjdk-amd64/bin/javac
 link currently points to /usr/lib/jvm/java-8-openjdk-amd64/bin/javac
 link javac is /usr/bin/javac
 slave javac.1.gz is /usr/share/man/man1/javac.1.gz
/usr/lib/jvm/java-8-openjdk-amd64/bin/javac - priority 1081
 slave javac.1.gz: /usr/lib/jvm/java-8-openjdk-amd64/man/man1/javac.1.gz
roman@hadoop-00:~$

TBU in Zlín, Faculty of Applied Informatics 66

3.1.4.2 SSH Configuration

SSH (Secure SHELL) is an open source and most trusted network protocol that is used to

login into remote servers for execution of commands and programs. It is also used to transfer

files from one computer to another computer over the network using secure copy (SCP)

Protocol. SSH is required in Hadoop to manage its nodes, i.e. remote machines and local

machine, if you want to use Hadoop on it. Using Password-less login with SSH keys will

increase the trust between two Linux servers for easy file synchronization or transfer.

1) Installation

If SSH-Server and SSH-Client wasn’t installed in time of operating system installation, it’s

necessary to install now:

sudo apt-get install openssh-server openssh-client

2) Generate Key Pairs

Next step is to generate Public and Private Key Pairs with the following command.

ssh-keygen -t rsa -P '' -f ~/.ssh/id_rsa

roman@hadoop-00:~$ ssh-keygen -t rsa -P '' -f ~/.ssh/id_rsa
Generating public/private rsa key pair.
Created directory '/home/roman/.ssh'.
Your identification has been saved in /home/roman/.ssh/id_rsa.
Your public key has been saved in /home/roman/.ssh/id_rsa.pub.
The key fingerprint is:
SHA256:ejJz4npkYQBtMm4BekNIzzdf25MUd4AclCF9o54mKEA roman@hadoop-00
The key's randomart image is:
+---[RSA 2048]----+
|o+oo .+==o.. |
|o.*E+ .=oo. |
|..+B + . .o . |
| .oo. = . +.. |
| . .. oS..+. |
| .oo . +. |
| oB o o |
| ..B |
| .o. |
+----[SHA256]-----+
roman@hadoop-00:~$

3) Configure passwordless ssh

cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

roman@hadoop-00:~$ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

TBU in Zlín, Faculty of Applied Informatics 67

4) Change the permission of file that contains the key

chmod 0600 ~/.ssh/authorized_keys

roman@hadoop-00:~$ chmod 0600 ~/.ssh/authorized_keys

5) Verification of SSH

Final step is to verify key based login. Below command should not ask for the password but

the first time it will prompt for adding RSA to the list of known hosts.

ssh localhost

roman@hadoop-00:~$ ssh localhost
The authenticity of host 'localhost (::1)' can't be established.
ECDSA key fingerprint is SHA256:XHFMf57ZqtXaEyPc5YOFnJKiuFVENxZwo0y46kDXkpE.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'localhost' (ECDSA) to the list of known hosts.
Welcome to Ubuntu 18.04.2 LTS (GNU/Linux 4.15.0-47-generic x86_64)

 System load: 0.0 Processes: 91
 Usage of /: 44.3% of 9.78GB Users logged in: 1
 Memory usage: 10% IP address for enp0s3: 10.0.2.15
 Swap usage: 0%

0 packages can be updated.
0 updates are security updates.

roman@hadoop-00:~$ exit
logout
Connection to localhost closed.
roman@hadoop-00:~$ ssh localhost
Welcome to Ubuntu 18.04.2 LTS (GNU/Linux 4.15.0-47-generic x86_64)

 System load: 0.02 Processes: 91
 Usage of /: 44.3% of 9.78GB Users logged in: 1
 Memory usage: 10% IP address for enp0s3: 10.0.2.15
 Swap usage: 0%

0 packages can be updated.
0 updates are security updates.

roman@hadoop-00:~$

3.1.4.3 Hadoop Installation

However Hadoop can run under root or other user with some root privileges, it’s strictly

recommended to create special user just for Hadoop.

sudo groupadd hadoopgrp
sudo adduser -ingroup hadoopgrp hadoop

TBU in Zlín, Faculty of Applied Informatics 68

In next step, download installation file (under hadoop user):

wget http://hadoop.bistaff.eu/hadoop-3.1.2.tar.gz

hadoop@hadoop-00:~$ wget http://hadoop.bistaff.eu/hadoop-3.1.2.tar.gz
--2019-04-23 18:30:43-- http://hadoop.bistaff.eu/hadoop-3.1.2.tar.gz
Resolving hadoop.bistaff.eu (hadoop.bistaff.eu)... 217.11.249.141,
2001:1528:240::1f
Connecting to hadoop.bistaff.eu (hadoop.bistaff.eu)|217.11.249.141|:80...
connected.
HTTP request sent, awaiting response... 200 OK
Length: 332433589 (317M) [application/x-gzip]
Saving to: ‘hadoop-3.1.2.tar.gz’

hadoop-3.1.2.tar.gz 100%[===================>] 317.03M 40.9MB/s in 7.8s

2019-04-23 18:30:51 (40.7 MB/s) - ‘hadoop-3.1.2.tar.gz’ saved
[332433589/332433589]

hadoop@hadoop-00:~$

Extract the installation file.

tar -xzvf hadoop-3.1.2.tar.gz

Setting up the environment variables. Add these configuration lines into .bashrc.

export HADOOP_HOME=/home/hadoop/hadoop-3.1.2
export HADOOP_INSTALL=$HADOOP_HOME
export HADOOP_MAPRED_HOME=$HADOOP_HOME
export HADOOP_COMMON_HOME=$HADOOP_HOME
export HADOOP_HDFS_HOME=$HADOOP_HOME
export YARN_HOME=$HADOOP_HOME
export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
export PATH=$PATH:$HADOOP_HOME/sbin:$HADOOP_HOME/bin
export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib/native"

And source the .bashrc in current login session for immediate applying changes previously

done.

source ~/.bashrc

Edit the $HADOOP_HOME/etc/hadoop/hadoop-env.sh file inside the Hadoop installation

directory

export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64
export HADOOP_CONF_DIR=${HADOOP_CONF_DIR:-"/home/hadoop/hadoop-
3.1.2/etc/hadoop"}

TBU in Zlín, Faculty of Applied Informatics 69

3.1.4.4 Setup Hadoop Configuration Files

Hadoop has many of configuration files, which need to configure as per requirements of

your Hadoop infrastructure. Start with the configuration with basic Hadoop single node

cluster setup.

core-site.xml

Edit $HADOOP_HOME/etc/hadoop/core-site.xml

<configuration>
 <property>
 <name>fs.defaultFS</name>
 <value>hdfs://localhost:9000</value>
 </property>
 <property>
 <name>hadoop.tmp.dir</name>
 <value>/home/hadoop/hadooptmpdata</value>
 </property>
</configuration>

In addition, create the directory under hadoop home folder.

mkdir hadooptmpdata

hdfs-site.xml

Edit $HADOOP_HOME/etc/hadoop/hdfs-site.xml

<configuration>
 <property>
 <name>dfs.replication</name>
 <value>1</value>
 <name>dfs.name.dir</name>
 <value>file:///home/hadoop/hdfs/namenode</value>
 <name>dfs.data.dir</name>
 <value>file:///home/hadoop/hdfs/datanode</value>
 </property>
</configuration>

In addition, create the directory under hadoop home folder.

mkdir -p hdfs/namenode
mkdir -p hdfs/datanode

TBU in Zlín, Faculty of Applied Informatics 70

mapred-site.xml

Edit $HADOOP_HOME/etc/hadoop/mapred-site.xml

<configuration>
 <property>
 <name>mapreduce.framework.name</name>
 <value>yarn</value>
 </property>

 <!-- add after pi test -->
 <property>
 <name>yarn.app.mapreduce.am.env</name>
 <value>HADOOP_MAPRED_HOME=${HADOOP_HOME}</value>
 </property>
 <property>
 <name>mapreduce.map.env</name>
 <value>HADOOP_MAPRED_HOME=${HADOOP_HOME}</value>
 </property>
 <property>
 <name>mapreduce.reduce.env</name>
 <value>HADOOP_MAPRED_HOME=${HADOOP_HOME}</value>
 </property>
</configuration>

yarn-site.xml

Edit $HADOOP_HOME/etc/hadoop/yarn-site.xml

<configuration>
 <property>
 <name>yarn.nodemanager.aux-services</name>
 <value>mapreduce_shuffle</value>
 </property>
 <property>
 <name>yarn.nodemanager.vmem-check-enabled</name>
 <value>false</value>
 </property>
</configuration>

3.1.4.5 Format Namenode

Namenode is the node in the Hadoop Distributed File System which keeps track of all the

data stored in the Datanode. Namenode has metadata related to the data stored on the

Datanodes and has information related to the location of the data stored. So, when you run

the hadoop namenode –format command, all these information is deleted from the namenode

which means that the system does not know where the data are stored hence losing all data

stored in the Hadoop File System.

TBU in Zlín, Faculty of Applied Informatics 71

The purpose of formatting the HDFS file system is to create the necessary directory and

file structure for further storing data used by MapReduce, especially metadata, temporary

data, source data, and result data. The formatting of the HDFS file system itself does not

disturb the operating system's file system, because it is built on top of it - it is just a logical

file system at the application level, not at the operating system or hardware level.

Format the namenode before using it for the first time!

hdfs namenode -format

hadoop@hadoop-00:~/hadoop-3.1.2$ hdfs namenode -format
WARNING: /home/hadoop/hadoop-3.1.2/logs does not exist. Creating.
2019-04-23 19:29:06,500 INFO namenode.NameNode: STARTUP_MSG:
/**
STARTUP_MSG: Starting NameNode
STARTUP_MSG: host = hadoop-00/10.0.2.15
STARTUP_MSG: args = [-format]
STARTUP_MSG: version = 3.1.2
STARTUP_MSG: classpath = /home/hadoop/hadoop-
3.1.2/etc/hadoop:/home/hadoop/hadoop-3.1.2...
STARTUP_MSG: build = https://github.com/apache/hadoop.git -r
1019dde65bcf12e05ef48ac71e...
STARTUP_MSG: java = 1.8.0_191
**/
2019-04-23 19:29:06,521 INFO namenode.NameNode: registered UNIX signal
handlers for [TERM, HUP, INT]
2019-04-23 19:29:06,733 INFO namenode.NameNode: createNameNode [-format]
Formatting using clusterid: CID-0040c95e-4e8b-4570-9cd5-b455f2c5c5bd
2019-04-23 19:29:07,776 INFO namenode.FSEditLog: Edit logging is async:true
2019-04-23 19:29:07,817 INFO namenode.FSNamesystem: KeyProvider: null
2019-04-23 19:29:07,819 INFO namenode.FSNamesystem: fsLock is fair: true
2019-04-23 19:29:07,821 INFO namenode.FSNamesystem: Detailed lock hold time
metrics enabled: false
2019-04-23 19:29:07,828 INFO namenode.FSNamesystem: fsOwner =
hadoop (auth:SIMPLE)
2019-04-23 19:29:07,829 INFO namenode.FSNamesystem: supergroup =
supergroup
2019-04-23 19:29:07,829 INFO namenode.FSNamesystem: isPermissionEnabled = true
...
2019-04-23 19:29:07,982 INFO blockmanagement.BlockManagerSafeMode:
dfs.namenode.safemode.threshold-pct = 0.9990000128746033
2019-04-23 19:29:07,982 INFO blockmanagement.BlockManagerSafeMode:
dfs.namenode.safemode.min.datanodes = 0
2019-04-23 19:29:07,982 INFO blockmanagement.BlockManagerSafeMode:
dfs.namenode.safemode.extension = 30000
2019-04-23 19:29:07,983 INFO blockmanagement.BlockManager: defaultReplication
= 3
2019-04-23 19:29:07,983 INFO blockmanagement.BlockManager: maxReplication
= 512
2019-04-23 19:29:07,984 INFO blockmanagement.BlockManager: minReplication
= 1
2019-04-23 19:29:07,984 INFO blockmanagement.BlockManager:
maxReplicationStreams = 2
2019-04-23 19:29:07,984 INFO blockmanagement.BlockManager:
redundancyRecheckInterval = 3000ms

TBU in Zlín, Faculty of Applied Informatics 72

2019-04-23 19:29:07,985 INFO blockmanagement.BlockManager: encryptDataTransfer
= false
2019-04-23 19:29:07,985 INFO blockmanagement.BlockManager: maxNumBlocksToLog
= 1000
...
2019-04-23 19:29:08,401 INFO namenode.NameNode: SHUTDOWN_MSG:
/**
SHUTDOWN_MSG: Shutting down NameNode at hadoop-00/10.0.2.15
**/
hadoop@hadoop-00:~/hadoop-3.1.2$

3.1.4.6 Start Hadoop Cluster

Once the Namenode has been formatted then start the HDFS using the start-dfs.sh script.

start-dfs.sh

In case of error “Permission denied (publickey, password).” regenerate ssh keys for

password-less authentication.

ssh-keygen -t rsa -P '' -f ~/.ssh/id_rsa
cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

Otherwise you should get output similar to this one:

hadoop@hadoop-00:~/hadoop-3.1.2$ start-dfs.sh
Starting namenodes on [localhost]
Starting datanodes
Starting secondary namenodes [hadoop-00]
hadoop@hadoop-00:~/hadoop-3.1.2$

You can check successful start of HDFS with jps command and output should contains

NameNode, DataNode and SecondaryNameNode.

jps

hadoop@hadoop-00:~$ jps
2807 Jps
2258 NameNode
2426 DataNode
2683 SecondaryNameNode
hadoop@hadoop-00:~$

Similarly start YARN.

start-yarn.sh

TBU in Zlín, Faculty of Applied Informatics 73

hadoop@hadoop-00:~/hadoop-3.1.2$ start-yarn.sh
Starting resourcemanager
Starting nodemanagers
hadoop@hadoop-00:~/hadoop-3.1.2$

Output of check if YARN was successfully started should contains: NodeManager and

ResourceManager.

3.1.4.7 Test Hadoop Cluster

Now it’s possible to test first MapReduce job and confirm that Hadoop is working properly.

Run this command included in with the Hadoop release.

bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.2.jar
pi 8 10000

hadoop@hadoop-00:~/hadoop-3.1.2$ bin/hadoop jar share/hadoop/mapreduce/hadoop-
mapreduce-examples-3.1.2.jar pi 24 1000
Number of Maps = 24
Samples per Map = 1000
Wrote input for Map #0
Wrote input for Map #1
Wrote input for Map #2
...[skipped some lines]...
Wrote input for Map #22
Wrote input for Map #23
Starting Job
2019-04-24 16:23:03,541 INFO client.RMProxy: Connecting to ResourceManager at
/0.0.0.0:8032
2019-04-24 16:23:04,013 INFO mapreduce.JobResourceUploader: Disabling Erasure
Coding for path: /tmp/hadoop-
yarn/staging/hadoop/.staging/job_1556122862873_0002
2019-04-24 16:23:04,289 INFO input.FileInputFormat: Total input files to
process : 24
2019-04-24 16:23:04,437 INFO mapreduce.JobSubmitter: number of splits:24
2019-04-24 16:23:04,794 INFO mapreduce.JobSubmitter: Submitting tokens for
job: job_1556122862873_0002
2019-04-24 16:23:04,796 INFO mapreduce.JobSubmitter: Executing with tokens: []
2019-04-24 16:23:05,191 INFO conf.Configuration: resource-types.xml not found
2019-04-24 16:23:05,193 INFO resource.ResourceUtils: Unable to find 'resource-
types.xml'.
2019-04-24 16:23:05,300 INFO impl.YarnClientImpl: Submitted application
application_1556122862873_0002
2019-04-24 16:23:05,382 INFO mapreduce.Job: The url to track the job:
http://hadoop-00:8088/proxy/application_1556122862873_0002/
2019-04-24 16:23:05,385 INFO mapreduce.Job: Running job:
job_1556122862873_0002
2019-04-24 16:23:16,776 INFO mapreduce.Job: Job job_1556122862873_0002 running
in uber mode : false
2019-04-24 16:23:16,789 INFO mapreduce.Job: map 0% reduce 0%
2019-04-24 16:23:51,182 INFO mapreduce.Job: map 4% reduce 0%
2019-04-24 16:23:52,270 INFO mapreduce.Job: map 25% reduce 0%

TBU in Zlín, Faculty of Applied Informatics 74

2019-04-24 16:24:25,508 INFO mapreduce.Job: map 46% reduce 0%
2019-04-24 16:24:34,562 INFO mapreduce.Job: map 46% reduce 15%
2019-04-24 16:24:53,705 INFO mapreduce.Job: map 63% reduce 15%
2019-04-24 16:24:54,713 INFO mapreduce.Job: map 67% reduce 15%
2019-04-24 16:24:59,738 INFO mapreduce.Job: map 67% reduce 22%
2019-04-24 16:25:22,879 INFO mapreduce.Job: map 88% reduce 22%
2019-04-24 16:25:23,893 INFO mapreduce.Job: map 88% reduce 29%
2019-04-24 16:25:39,986 INFO mapreduce.Job: map 100% reduce 29%
2019-04-24 16:25:40,990 INFO mapreduce.Job: map 100% reduce 100%
2019-04-24 16:25:42,030 INFO mapreduce.Job: Job job_1556122862873_0002
completed successfully
2019-04-24 16:25:42,154 INFO mapreduce.Job: Counters: 53
 File System Counters
 FILE: Number of bytes read=534
 FILE: Number of bytes written=5410465
 FILE: Number of read operations=0
 FILE: Number of large read operations=0
 FILE: Number of write operations=0
 HDFS: Number of bytes read=6374
 HDFS: Number of bytes written=215
 HDFS: Number of read operations=101
 HDFS: Number of large read operations=0
 HDFS: Number of write operations=3
 Job Counters
 Launched map tasks=24
 Launched reduce tasks=1
 Data-local map tasks=24
 Total time spent by all maps in occupied slots (ms)=673270
 Total time spent by all reduces in occupied slots (ms)=106628
 Total time spent by all map tasks (ms)=673270
 Total time spent by all reduce tasks (ms)=106628
 Total vcore-milliseconds taken by all map tasks=673270
 Total vcore-milliseconds taken by all reduce tasks=106628
 Total megabyte-milliseconds taken by all map tasks=689428480
 Total megabyte-milliseconds taken by all reduce
tasks=109187072
 Map-Reduce Framework
 Map input records=24
 Map output records=48
 Map output bytes=432
 Map output materialized bytes=672
 Input split bytes=3542
 Combine input records=0
 Combine output records=0
 Reduce input groups=2
 Reduce shuffle bytes=672
 Reduce input records=48
 Reduce output records=0
 Spilled Records=96
 Shuffled Maps =24
 Failed Shuffles=0
 Merged Map outputs=24
 GC time elapsed (ms)=10494
 CPU time spent (ms)=15940
 Physical memory (bytes) snapshot=5531590656
 Virtual memory (bytes) snapshot=64717635584
 Total committed heap usage (bytes)=4091183104
 Peak Map Physical memory (bytes)=227823616
 Peak Map Virtual memory (bytes)=2588368896

TBU in Zlín, Faculty of Applied Informatics 75

 Peak Reduce Physical memory (bytes)=120942592
 Peak Reduce Virtual memory (bytes)=2596782080
 Shuffle Errors
 BAD_ID=0
 CONNECTION=0
 IO_ERROR=0
 WRONG_LENGTH=0
 WRONG_MAP=0
 WRONG_REDUCE=0
 File Input Format Counters
 Bytes Read=2832
 File Output Format Counters
 Bytes Written=97
Job Finished in 158.78 seconds
Estimated value of Pi is 3.14216666666666666667
hadoop@hadoop-00:~/hadoop-3.1.2$

The YARN Resource Manager (RM) web interface will display all running jobs on

current Hadoop Cluster. All MapReduce jobs can be checked via browser at address

http://hadoop-00:8088 (see Figure 24).

Figure 24 – Hadoop Cluster Management Console

Another great source of information about Namenodes/Datanodes can be found in Web

UI for Namenode at port 9870 (see Figure 25).

http://hadoop-00:8088/

TBU in Zlín, Faculty of Applied Informatics 76

Figure 25 – Datanodes UI

3.1.5 HDFS

The Hadoop Distributed Filesystem (HDFS) is Hadoop’s storage platform. Although

Hadoop can interact with many different filesystems (Amazon S3, Azure Blob Storage,

Azure Data Lake Storage, OpenStack Swift), HDFS is Hadoop’s primary input data source

and target for data processing operations. Hadoop was originally developed as a platform to

TBU in Zlín, Faculty of Applied Informatics 77

support the requirements of search engine providers such as Yahoo!. HDFS was inspired by

the GoogleFS.

HDFS is a virtual filesystem, meaning that a client can see it as if it is one system, but the

underlying data are located in multiple different locations. HDFS is deployed on top of native

filesystems of each particular operating system. HDFS is immutable, it means the inability

to update data after it is committed to the filesystem. HDFS is often also referred to as a

WORM (write once, read many) filesystem. Given that this filesystem is designed to handle

large amounts of data, emphasis has been placed on their fast availability of data for reading

than as an interactive data store for users. HDFS does not support POSIX. HDFS puts

emphasis on fast file reading and does not allow for frequent modification. Every

modification of a file requires re-replication of its copies and thus the load on the network,

which is a costly process. However, the latest versions support appending content at the end

of a file and overwriting file with a null.

HDFS has been designed to effectively store large amounts of data - gigabytes to

terabytes. In theory, it supports storing dozens of millions of files in one HDFS instance. But

this is related to the “problem of small files”. A small file is one which is significantly smaller

than the HDFS block size (default 64MB). If you’re storing small files, then you probably

have lots of them (otherwise you wouldn’t turn to Hadoop), and the problem is that HDFS

can’t handle lots of files. Every file, directory and block in HDFS is represented as an object

in the namenode’s memory, each of which occupies 150 bytes, as a rule of thumb. So 10

million files, each using a block, would use about 3 gigabytes of memory. Scaling up much

beyond this level is a problem with current hardware. Certainly a billion files is not feasible.

Furthermore, HDFS is not geared up to efficiently accessing small files: it is primarily

designed for streaming access of large files. Reading through small files normally causes

lots of seeks and lots of hopping from datanode to datanode to retrieve each small file, all of

which is an inefficient data access pattern [98].

Files in HDFS consist of blocks. HDFS splits huge files into small chunks known as data

blocks. Default size of HDFS blocks is 128MB, although this can be configured as needed.

When the file is loaded into the system, is split into these blocks. All blocks of the file are

the same size except the last block, which can be either the same size or smaller (for graphical

representation how data are stored into blocks, please see Figure 26).

TBU in Zlín, Faculty of Applied Informatics 78

Figure 26 – Data distribution

in HDFS Blocks

If a cluster contains more than one node, blocks are distributed among slave nodes in the

cluster in time of loading data into HDFS as shows Figure 27.

Figure 27 – Data distribution in HDFS across Slave Nodes

3.1.5.1 HDFS Architecture

HDFS is architecturally composed of two demons as is shown in Figure 28. Typically, one

master (Namenode) and a few slaves (Datanodes). It is therefore a master / slave architecture.

Namenode - the master of the cluster manages, among other things, file metadata (their

location, replication factor) and controls access rights to them. Datanodes - slave servers

contain data stored in HDFS itself. From a technical point of view, each file is divided into

one or more blocks (one 128MB by default) and these blocks are stored on the Datanodes.

Namenode performs file operations such as opening, closing, renaming files and folders, and

specifying where and on which Datanodes the blocks will be stored. Datanodes are

TBU in Zlín, Faculty of Applied Informatics 79

responsible for executing Namenode’s requests (from which are requested by the client),

such as read and write. Datanodes are also responsible for block creation, deletion, and

replication operations.

Figure 28 – HDFS Architecture

3.1.5.2 Replication

Each file that is uploaded to HDFS is replicated immediately after uploading with the set

replication factor. This variable can be set for the whole cluster in dfs.replication

parameter, which is by default 3 (see Figure 29). After uploading the file is divided into

blocks according to the parameter dfs.blocksize, which is 128 MB by default. With this

replication factor, the file blocks will be replicated to the three Datanodes. Namenode takes

care of where the replica will be stored. It keeps track of the number of available and

functional Datanodes using a periodic (dfs.heartbeat.interval) signal sending, called

“Heart Beat”. It also receives data from Datanodes on files stored on them, called “Block

Report”. If the Block Report shows that some files do not meet the replication factor, then

they are “under replicated” files over which replication can be enforced manually.

TBU in Zlín, Faculty of Applied Informatics 80

Figure 29 – HDFS Replication

3.1.5.3 Data Read and Write Operations in HDFS

As already mentioned earlier, HDFS is the storage layer of Hadoop. HDFS works in master-

slave fashion, Namenode is the master daemon which runs on the master node, and Datanode

is the slave daemon which runs on the slave node.

Write Pipeline Workflow

To write a file in HDFS, a client needs to interact with master i.e. namenode (master).

Namenode provides the address of the datanodes (slaves) on which client will start writing

the data. Client directly writes data on the datanodes, so datanode will create data write

pipeline. The first datanode will copy the block to another datanode, which intern copy it to

the third datanode. Once it creates the replicas of blocks, it sends back the acknowledgment.

As shown in the Figure 30 the data write operation in HDFS is distributed, client copies

the data on datanodes, the steps by step explanation of data write operation is explained in

next paragraph.

Step 1: The client creates the file by calling create() method on DistributedFileSystem.

Step 2: DistributedFileSystem makes an RPC call to the namenode to create a new file in

the filesystem’s namespace, with no blocks associated with it. The namenode performs

various checks to make sure the file doesn’t already exist and that the client has the right

permissions to create the file. If these checks pass, the namenode makes a record of the new

TBU in Zlín, Faculty of Applied Informatics 81

file; otherwise, file creation fails and the client is thrown an IOException.

TheDistributedFileSystem returns an FSDataOutputStream for the client to start writing data

to.

Figure 30 – Write Pipeline Workflow [99]

Step 3: As the client writes data, DFSOutputStream splits it into packets, which it writes to

an internal queue, called the data queue. The data queue is consumed by the DataStreamer,

which is responsible for asking the namenode to allocate new blocks by picking a list of

suitable datanodes to store the replicas. The list of datanodes forms a pipeline, and here we’ll

assume the replication level is three, so there are three nodes in the pipeline.

TheDataStreamer streams the packets to the first datanode in the pipeline, which stores the

packet and forwards it to the second datanode in the pipeline.

Step 4: Similarly, the second datanode stores the packet and forwards it to the third (and

last) datanode in the pipeline.

Step 5: DFSOutputStream also maintains an internal queue of packets that are waiting to be

acknowledged by datanodes, called the ack queue. A packet is removed from the ack queue

only when it has been acknowledged by all the datanodes in the pipeline.

Step 6: When the client has finished writing data, it calls close() on the stream.

Step 7: This action flushes all the remaining packets to the datanode pipeline and waits for

acknowledgments before contacting the namenode to signal that the file is complete The

TBU in Zlín, Faculty of Applied Informatics 82

namenode already knows which blocks the file is made up of, so it only has to wait for blocks

to be minimally replicated before returning successfully [99].

Data write operation is considered successful if one replica is successfully written. It is

governed by the property dfs.namenode.replication.min in hdfs-default.xml file. If there is

any failure of datanode while writing a replica, the data written is not considered

unsuccessful, but under-replicated which while balancing the cluster creates those missing

replicas. Ack packet is independent of the status of data written to datanodes. Even if the

data packet is not written the acknowledgement packet is delivered [100].

Generally, it’s possible write data into HDFS from within JAVA code directly, sample

code below [101] demonstrate this approach.

FileSystem fileSystem = FileSystem.get(conf);

// Check if the file already exists
Path path = new Path("/path/to/file.ext");
if (fileSystem.exists(path)) {
 System.out.println("File " + dest + " already exists");
 return;
}

// Create a new file and write data to it.
FSDataOutputStream out = fileSystem.create(path);
InputStream in = new BufferedInputStream(new FileInputStream(new
File(source)));
byte[] b = new byte[1024];
int numBytes = 0;
while ((numBytes = in.read(b)) > 0) {
 out.write(b, 0, numBytes);
}

// Close all the file descripters
in.close();
out.close();
fileSystem.close();

3.1.5.4 HDFS Command Line

There is also another approach how to “push” data to HDFS and it’s using command line.

Before the command line examples will be explained, it’s necessary to mention, that there’re

3 more or less same command with tiny differences.

hadoop fs <args> // this uses FsShell
hadoop dfs <args> // this uses the now deprecated HDFS-specific DFSShell
hdfs dfs <args> // replacement for hadoop dfs and recommended for HDFS

TBU in Zlín, Faculty of Applied Informatics 83

The hadoop fs relates to a generic file system which can point to any file systems like

Local FS, S3 FS, HDFS etc. But hadoop dfs is very specific only to HDFS and was

deprecated, now it’s recommended to use hdfs dfs command instead.

It also beneficial to introduce most used commands used for filesystem operation.

Nobody can’t be surprised, that are very similar to linux equivalent.

1. Create a directory in HDFS at given path

 hadoop fs -mkdir <paths>
hadoop fs -mkdir /user/hadoop/wordcount

2. List the contents of a directory

 hadoop fs -ls <args>
hadoop fs -ls /user/hadoop

3. Upload and download a file in/from HDFS

Copy file from local file system to the Hadoop filesystem,

 hadoop fs -put <local_src_path> <hdfs_dest_path>
hadoop fs -put /home/hadoop/file.txt /user/hadoop/wordcount/

or vice versa.

 hadoop fs -get <hdfs_src_path> <local_dest_path>
hadoop fs -get /user/hadoop/wordcount/file.txt /home/hadoop

4. See content of a file

 hadoop fs -cat <filename>
hadoop fs -cat /user/hadoop/wordcount/file.txt

5. Copy a file from source to destination inside HDFS

 hadoop fs -cp <source> <dest>
hadoop fs -cp /user/hadoop/wordcount/file.txt /user/hadoop/dir2

6. Copy a file from/to local file system to HDFS

TBU in Zlín, Faculty of Applied Informatics 84

 hadoop fs -copyFromLocal <local_src_path> <hdfs_dest_path>
hadoop fs -copyFromLocal /home/hadoop/file.txt /user/hadoop

 hadoop fs -copyToLocal <hdfs_src_path> <local_dest_path>
hadoop fs -copytoLocal /user/hadoop/wordcount/file.txt /home/hadoop

7. Move file from source to destination

hadoop fs -mv <src> <dest>
hadoop fs -mv /user/hadoop/wordcount/file.txt /user/hadoop/dir2

8. Remove a file or directory in HDFS

 hadoop fs -rm <arg>
hadoop fs -rm /user/hadoop/wordcount/file.txt

9. Display last few lines of a file

 hadoop fs -tail <path[filename]>
hadoop fs -tail /user/hadoop/wordcount/file.txt

10. Display the aggregate length of a file

 hadoop fs -du <path>
hadoop fs -du /user/hadoop/wordcount/file.txt
> size disk_space_consumed_with_all_replicas full_path_name

3.1.6 YARN

Apache YARN (Yet Another Resource Negotiator) is a component of Hadoop (from version

2.0) responsible for managing and allocating cluster resources. The over architecture of

YARN and how is working is depicted in Figure 31.

Resource Manager

Resource Manager is the daemon responsible for global monitoring of resources (CPU,

memory, network, disk) of the entire cluster and their allocation to applications. It includes

an optional component called a scheduler that, if configured, provides resource allocation

TBU in Zlín, Faculty of Applied Informatics 85

based on the rules defined by the administrator. Only one Resource Manager is active at a

time and usually runs on Namenode.

Node Manager

Node Manager is a process running on each node in the cluster. He is responsible for

monitoring his local resources. If this process is not running, it is not possible to run

applications and calculations on the node (while Resource manager does not see the node’s

resources where Nod Manager is off). Its task is to allocate containers to applications

(however, the application master does not have information about the application

requirements, which is provided by the Application Master). Node Manager monitors the

load on the containers (subsets of the application) - their CPU, memory, disks, etc., and

reports the resource back to the Resource Manager. As a result, Resource Manager has the

current state of resources available to other applications.

Figure 31 – YARN - How it works [102]

Application Master

Application Master is a process that is start when a client (user) sends an application for

processing. Each application has its own Application Master - the first process (running in

the first container) that is executed when the application is submitted for processing.

TBU in Zlín, Faculty of Applied Informatics 86

Application Master monitors the running of the application and gives feedback to the

Resource Manager.

Capacity Scheduler

Fair Scheduler and Capacity Scheduler have been added to Hadoop since version 2.0.

Capacity Scheduler ensures that a defined user group has a guaranteed cluster capacity. Fair

Scheduler, if active, ensures that a group of users uses their capacity (containers) equally.

For added flexibility, the Preemption feature was later added to release containers used by

the running application if resources available to a group of users are less than the minimum

guaranteed defined in Capacity Scheduler - the running application must release containers

to use another application.

Container

Container is a YARN computing unit. Container is the place where individual application

calculations (mappers) take place. Container has allocated a certain amount of CPU cores

and RAM memory. The minimum and maximum container sizes can be limited in the

YARN.xml. Several containers can run on one Datanode, the container cannot be moved to

the next node. The Daemon responsible for allocating containers to the application is Node

Manager.

3.1.7 MapReduce

MapReduce is a framework that allows large volumes of data to be processed in parallel on

commodity hardware. This is a library written in Java. The idea behind the model is to divide

a complex task or problem into smaller tasks. Reducing the complexity of processing smaller

jobs is also less time consuming. In case of parallel data processing is used to complete such

a task, the user initiating the task achieves much better speed of processing of the task.

Parallelism has the great advantage of saving the time needed to complete a given task, but

there are also issues to consider when designing a parallel data processing task. For example,

the need to divide a complex task into several relatively equally large simpler tasks.

However, such division may not always be unambiguous. And then further, the combination

of results from smaller tasks may require additional tasks due to complexity, specifically

dedicated to solving this problem and ultimately limiting the processing capacity of an

TBU in Zlín, Faculty of Applied Informatics 87

individual server. The MapReduce programming model is designed so that the above

problems are taken into account when processing tasks.

MapReduce algorithm combines two phases: Map and Reduce. In the Map part, the input

data are divided into several parts (given by the number of mappers or files), where the

calculation is performed over each of them. It can run on any cluster node. The Map phase

transforms the data into a key-value and applies the logic written by the programmer (e.g.

the sum of the same words). Then the Reduce phase is started, the input parameters are the

pairs returned by the Map phase from each Datanodes. Reduce phase aggregates mapper

results - merges all values with the same key and returns the result to the client.

Figure 32 – Detail of MapReduce process [103]

However the MapReduce model is for simplicity divided into two basic phases, in reality

consist of more phases. To support this statement please check or go directly online for hi-

res picture.

Pros and Cons

The biggest advantage of MapReduce tasks is their scalability due to the parallel

processing, where the job is divided among multiple nodes and each node works with a part

of the job simultaneously. Once the task is written to run over few Datanodes, it can just

equally run on thousands of Datanodes. Exactly this advantage has attracted a large number

of developers, that there are no necessity to change code in case of significant increase the

amount of nodes in the cluster. Second biggest advantage is Data Locality – when the data

don’t have to be transfer to processing unit, but the processing happened at data site.

https://i0.wp.com/0x0fff.com/wp-content/uploads/2014/12/MapReduce-v3.png

TBU in Zlín, Faculty of Applied Informatics 88

On the other hand, the main disadvantage of MapReduce framework is that intermediate

results from Map phase must still be stored in HDFS, which has a significant negative impact

on the processing speed of MapReduce tasks. This is the biggest difference in the Spark

framework, as will be mentioned below.

3.1.7.1 Examples of MapReduce usage

To illustrate how whole process of MapReduce works, example with file of animals will be

used. Suppose, it’s given Input file with words: “Deer Bear Dog Cat Dog Cat Deer Cat Bear”.

First, the input file is divided into three splits as shown in the Figure 33. This will

distribute the work among all the map nodes, where splits tokenize the words in each of the

mapper and give a hardcoded value “1” to each of the words (tokens). A list of key-value

pairs is created where the key is individual word and the value is hardcoded (1). So, for the

first line (Deer Bear Dog) we have 3 key-value pairs – Deer, 1; Bear, 1; Dog, 1. The mapping

process remains the same on all the nodes.

Figure 33 – Word Count Example of MapReduce

After mapping phase, sorting and shuffling happens so that all the tuples with the same

key are sent to the corresponding reducer. So, after the sorting and shuffling phase, each

reducer will have a unique key and a list of values corresponding to that very key. For

example: <Bear, (1,1); Cat, (1,1,1); ...>. Now, each reducer counts the values which are

present in that list of values. As shown in the Figure 33, reducer gets a list of values which

is (1,1,1) for the key Cat. Then, it counts the number of ‘ones’ in the very list and gives the

final output as <Cat, 3>.

Finally, all the output key/value pairs are then collected and written in the output file

[104].

TBU in Zlín, Faculty of Applied Informatics 89

Let’s look closer on java implementation. In the first example, the most basic form will

be shown. Afterward, the more advanced and professional piece of code will demonstrate

the whole process of MapReduce application, together with comments placed right in the

code to make the all code smooth to read and easy to understand. Generally, both examples

(alike all implementations of MapReduce job) consist of main class WordCount with main

method where all configuration of job is done. Next two important classes are WordMapper

and WordReducer where the core of job is implemented. Now, please see below piece of

code for full understanding of the process.

Example I – MapReduce WordCount – Basic Implementation

import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCount {
 public static void main(String[] args) throws Exception {

 // Get the default configuration object and create the MapReduce job
 Configuration conf = new Configuration();
 Job job = Job.getInstance(conf, "MapReduce WordCount");
 job.setJarByClass(WordCount.class);

 // tell Hadoop the mapper and the reducer to use
 job.setMapperClass(WordMapper.class);
 job.setCombinerClass(WordReducer.class);
 job.setReducerClass(WordReducer.class);

 // set output types for Key-Value
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);

 // set IO path
 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 // submit the job and wait for it to complete!
 System.exit(job.waitForCompletion(true) ? 0 : 1);
 }

 public static class WordMapper extends Mapper<Object, Text, Text,
IntWritable> {
 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();

TBU in Zlín, Faculty of Applied Informatics 90

 public void map(Object key, Text value, Context context) throws
 IOException, InterruptedException {
 // tokenize line
 StringTokenizer itr = new StringTokenizer(value.toString());
 // make KV for each word
 while (itr.hasMoreTokens()) {
 word.set(itr.nextToken());
 context.write(word, one);
 }
 }
 }

 public static class WordReducer extends Reducer<Text, IntWritable, Text,
 IntWritable> {

 private IntWritable result = new IntWritable();

 public void reduce(Text key, Iterable<IntWritable> values, Context
context) throws IOException, InterruptedException {
 // total (sum) all values
 int total = 0;
 for (IntWritable val : values) {
 total += val.get();
 }
 result.set(total);
 // send it on to the reducer
 context.write(key, result);
 }
 }
}

Now, you have to create .jar file and run in on hadoop cluster

bin/hadoop jar $HADOOP_HOME/app/wordcount-I.jar WordCount
/user/hadoop/wordcount/hamlet.txt /user/hadoop/wordcount/hamlet-I.out

Details of job execution and output will be shown in next example.

Example II – MapReduce WordCount – Advanced Implementation

The second example is much more sophisticated, and all necessary comments are also

included right in the code.

Class WordCount
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.IntWritable;

TBU in Zlín, Faculty of Applied Informatics 91

public class WordCount {

 public static int main(String[] args) throws Exception {

 // if we got the wrong number of args, then exit
 if (args.length != 4 || !args[0].equals("-r")) {
 System.out.println("usage: WordCount -r <#reducers> <input> <output>");
 return -1;
 }

 // Get the default configuration object
 Configuration conf = new Configuration();

 // now create the MapReduce job
 Job job = Job.getInstance(conf, "MapReduce WordCount");

 // this tells Hadoop to ship around the jar file containing
 // "WordCount.class" to all of the different nodes so that they
 // can run the job
 job.setJarByClass(WordCount.class);

 // we'll output text/int pairs (since we have words as keys and
 // counts as values)
 job.setMapOutputKeyClass(Text.class);
 job.setMapOutputValueClass(IntWritable.class);

 // again we'll output text/int pairs (since we have words as keys and
 // counts as values)
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);

 // tell Hadoop the mapper and the reducer to use
 job.setMapperClass(WordCountMapper.class);
 job.setCombinerClass(WordCountReducer.class);
 job.setReducerClass(WordCountReducer.class);

 // we'll be reading in a text file, so we can use Hadoop's built-in
 // TextInputFormat
 job.setInputFormatClass(TextInputFormat.class);

 // we can use Hadoop's built-in TextOutputFormat for writing out
 // the output text file
 job.setOutputFormatClass(TextOutputFormat.class);

 // set the input and output paths
 TextInputFormat.setInputPaths(job, args[2]);
 TextOutputFormat.setOutputPath(job, new Path(args[3]));

 // set the number of reduce paths
 try {
 job.setNumReduceTasks(Integer.parseInt(args[1]));
 } catch (Exception e) {
 System.out.println("usage: WordCount -r <#reducers> <input> <output>");
 return -1;
 }

 // force the mappers to handle 50 kilobytes of input data each
 TextInputFormat.setMinInputSplitSize(job, 50 * 1024);
 TextInputFormat.setMaxInputSplitSize(job, 50 * 1024);

TBU in Zlín, Faculty of Applied Informatics 92

 // submit the job and wait for it to complete
 int exitCode = job.waitForCompletion(true) ? 0 : 1;
 return exitCode;

 }

}

Class WordCountMapper
import java.io.IOException;
import java.util.regex.Pattern;
import java.util.regex.Matcher;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class WordCountMapper extends Mapper<LongWritable, Text, Text,
IntWritable> {

 // create these for making below code clean
 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();

 // create a Pattern object to parse each line
 private final Pattern wordPattern = Pattern.compile("[a-zA-Z][a-zA-Z0-
9]+");

 public void map(LongWritable key, Text value, Context context) throws
 IOException, InterruptedException {

 // get a String version of the line
 String line = value.toString();

 // and a Matcher to parse it
 Matcher myMatcher = wordPattern.matcher(line);

 // while there are more tokens in the line
 while (myMatcher.find()) {

 // get the next pattern, and convert it to lower case
 String returnVal = myMatcher.group();
 returnVal = new String(returnVal.toLowerCase());
 word.set(returnVal);

 // send it on to the reducer
 context.write(word, one);
 }
 }
}

Class WordCountReducer
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;

TBU in Zlín, Faculty of Applied Informatics 93

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class WordCountReducer extends Reducer<Text, IntWritable, Text,
IntWritable> {

 public void reduce(Text key, Iterable<IntWritable> values, Context context)
 throws IOException, InterruptedException {

 // loop through all of the counts that we got, adding them up
 int total = 0;
 for (IntWritable val : values) {
 total += val.get();
 }

 // and then send the counts to the reducer
 context.write(key, new IntWritable(total));
 }
}

Here, you can specify -r parameter with number of final reducers. In below outputs we’ll go

with just 1, otherwise the result would be flushed into “r” output files.

usage: WordCount -r <num reducers> <input> <output>

bin/hadoop jar $HADOOP_HOME/app/wordcount-II.jar WordCount -r 1
/user/hadoop/wordcount/hamlet.txt /user/hadoop/wordcount/hamlet-II.out

and you should expect output similar to this one

hadoop@hadoop-00:~/hadoop-3.1.2$ bin/hadoop jar $HADOOP_HOME/app/wordcount-II.jar WordCount -r 1
/user/hadoop/wordcount/hamlet.txt /user/hadoop/wordcount/hamlet-II.out
2019-05-02 11:06:07,518 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
2019-05-02 11:06:08,173 WARN mapreduce.JobResourceUploader: Hadoop command-line option parsing not
performed. Implement the Tool interface and execute your application with ToolRunner to remedy
this.
2019-05-02 11:06:08,207 INFO mapreduce.JobResourceUploader: Disabling Erasure Coding for path:
/tmp/hadoop-yarn/staging/hadoop/.staging/job_1556628279120_0012
2019-05-02 11:06:08,619 INFO input.FileInputFormat: Total input files to process : 1
2019-05-02 11:06:08,780 INFO mapreduce.JobSubmitter: number of splits:1
2019-05-02 11:06:09,139 INFO mapreduce.JobSubmitter: Submitting tokens for job:
job_1556628279120_0012
2019-05-02 11:06:09,141 INFO mapreduce.JobSubmitter: Executing with tokens: []
2019-05-02 11:06:09,508 INFO conf.Configuration: resource-types.xml not found
2019-05-02 11:06:09,511 INFO resource.ResourceUtils: Unable to find 'resource-types.xml'.
2019-05-02 11:06:09,627 INFO impl.YarnClientImpl: Submitted application
application_1556628279120_0012
2019-05-02 11:06:09,696 INFO mapreduce.Job: The url to track the job: http://hadoop-
00:8088/proxy/application_1556628279120_0012/
2019-05-02 11:06:09,697 INFO mapreduce.Job: Running job: job_1556628279120_0012
2019-05-02 11:06:21,896 INFO mapreduce.Job: Job job_1556628279120_0012 running in uber mode :
false
2019-05-02 11:06:21,903 INFO mapreduce.Job: map 0% reduce 0%
2019-05-02 11:06:29,060 INFO mapreduce.Job: map 100% reduce 0%
2019-05-02 11:06:37,195 INFO mapreduce.Job: map 100% reduce 100%
2019-05-02 11:06:37,231 INFO mapreduce.Job: Job job_1556628279120_0012 completed successfully
2019-05-02 11:06:37,387 INFO mapreduce.Job: Counters: 53
 File System Counters
 FILE: Number of bytes read=60913
 FILE: Number of bytes written=555349
 FILE: Number of read operations=0

TBU in Zlín, Faculty of Applied Informatics 94

 FILE: Number of large read operations=0
 FILE: Number of write operations=0
 HDFS: Number of bytes read=191853
 HDFS: Number of bytes written=42992
 HDFS: Number of read operations=8
 HDFS: Number of large read operations=0
 HDFS: Number of write operations=2
 Job Counters
 Launched map tasks=1
 Launched reduce tasks=1
 Data-local map tasks=1
 Total time spent by all maps in occupied slots (ms)=5395
 Total time spent by all reduces in occupied slots (ms)=5177
 Total time spent by all map tasks (ms)=5395
 Total time spent by all reduce tasks (ms)=5177
 Total vcore-milliseconds taken by all map tasks=5395
 Total vcore-milliseconds taken by all reduce tasks=5177
 Total megabyte-milliseconds taken by all map tasks=5524480
 Total megabyte-milliseconds taken by all reduce tasks=5301248
 Map-Reduce Framework
 Map input records=4463
 Map output records=30847
 Map output bytes=282339
 Map output materialized bytes=60913
 Input split bytes=119
 Combine input records=30847
 Combine output records=4593
 Reduce input groups=4593
 Reduce shuffle bytes=60913
 Reduce input records=4593
 Reduce output records=4593
 Spilled Records=9186
 Shuffled Maps =1
 Failed Shuffles=0
 Merged Map outputs=1
 GC time elapsed (ms)=164
 CPU time spent (ms)=1940
 Physical memory (bytes) snapshot=355356672
 Virtual memory (bytes) snapshot=5187506176
 Total committed heap usage (bytes)=230821888
 Peak Map Physical memory (bytes)=229580800
 Peak Map Virtual memory (bytes)=2590453760
 Peak Reduce Physical memory (bytes)=125775872
 Peak Reduce Virtual memory (bytes)=2597052416
 Shuffle Errors
 BAD_ID=0
 CONNECTION=0
 IO_ERROR=0
 WRONG_LENGTH=0
 WRONG_MAP=0
 WRONG_REDUCE=0
 File Input Format Counters
 Bytes Read=191734
 File Output Format Counters
 Bytes Written=42992
hadoop@hadoop-00:~/hadoop-3.1.2$

In the target directory, you can find min two files, where first one notes the result of job,

and next file(-s) depend(s) on number of reducers. In case of more reduce jobs, the final

result will be split into the same number of output files.

hadoop@hadoop-00:~/hadoop-3.1.2$ hadoop fs -ls ./wordcount/hamlet-II.out
Found 2 items
-rw-r--r-- 3 hadoop supergroup 0 2019-05-02 11:06 wordcount/hamlet-II.out/_SUCCESS
-rw-r--r-- 3 hadoop supergroup 42992 2019-05-02 11:06 wordcount/hamlet-II.out/part-r-00000
hadoop@hadoop-00:~/hadoop-3.1.2$

Just use cat, head, tail or simply combination of commands to see result of our job.

TBU in Zlín, Faculty of Applied Informatics 95

hadoop@hadoop-00:~/hadoop-3.1.2$ hadoop fs -cat ./wordcount/hamlet-II.out/part-r-00000|tail -n 10
yorick 2
you 558
young 18
younger 1
your 242
yours 6
yourself 15
yourselves 1
youth 16
zone 1
hadoop@hadoop-00:~/hadoop-3.1.2$

3.1.8 Summary

In this chapter the key components of the Hadoop framework has been discussed. The

Hadoop core consists of HDFS, a distributed file system where data are stored. Data are

stored in blocks. Each block is replicated according to the replication factor to other nodes

of cluster. The blocks are divided into more racks, so they are not all in one rack if possible.

Block metadata are stored by Namenode. MapReduce framework is a distributed computing

model. The calculation takes place on multiple nodes in parallel. It has two phases. Map

phase, where the data are tokenized and sorted in the key-value tuples and Reduce phase,

where the Map phase results are aggregated. YARN is the COO (Chief Operations Officer)

of the cluster. It takes care of resource monitoring, allocation and prioritization and also logs

the entire process. It consists of a Resource Manager that monitors cluster resource usage.

Node Manager takes care of monitoring server's local resources and allocating containers to

applications. Application Master monitors the running of the application and gives feedback

on the Resource Manager about used containers. Resource allocation can be planned by

Capacity Scheduler, where you can configure queues and users who are entitled to them.

In the following sections will be introduced components or projects that are available in

the Hadoop Ecosystem and make it easier for users to work with Hadoop. Will be described

in more detail project like Spark and Sqoop, and other components that allow abstracting

from Java application programming for the MapReduce model like Hive, where we use

knowledge of SQL or Pig Latin in case of Pig.

3.2 General Data Processing

3.2.1 Apache Spark

The main drawback of the MapReduce model is that intermediate program results are written

to disk, which is a major problem especially for quick response or iterative applications, as

TBU in Zlín, Faculty of Applied Informatics 96

this approach makes them considerably slower and becomes a bottleneck for the entire

system. Response to the shortcomings of the Hadoop MapReduce is Apache Spark. Spark is

a unified analytics engine for large-scale data processing, but unlike Hadoop’s MapReduce,

it can minimize disk access by storing intermediate results in memory, so it is also suitable

for interactive, exploratory analysis and iterative programs that accelerate against

MapReduce up to one or two orders of magnitude.

In current version 2.4.2 (released on Apr 23 2019) Spark provides interfaces (API) for

Java, Scala, Python, R and SQL. On May 8, 2019 the new version 2.4.3 has been released,

unfortunately after deadline of this work. Here is a short summary of releases only for last 4

months:

Spark 2.4.3 released May 8, 2019

Spark 2.4.2 released April 23, 2019

Spark 2.4.1 released March 31, 2019

Spark 2.3.3 released February 15, 2019

Spark 2.2.3 released January 11, 2019

All these only demonstrate how fast R&D in this area especially with Apache Spark project

is.

3.2.1.1 Spark Introduction

Apache Spark doesn’t provide any storage (like HDFS) or any Resource Management

capabilities. It is just a unified framework for processing large amount of data near to real

time. In Figure 34, Apache Spark framework is organized in three major layers (listed from

bottom to top.

1) Resource Manager Layer - As Apache Hadoop, Apache Spark doesn’t comes up with

Resource Management module like YARN. It manage resource in standalone mode in single

node cluster setup. But for distributed cluster mode it can be integrated with resource

management modules like YARN, Mesos or Kubernetess and can interact with many

different data sources like HDFS, Alluxio, Cassandra, HBase, Hive and hundreds of other

data sources [105].

TBU in Zlín, Faculty of Applied Informatics 97

2) Spark Core Layer - Spark Core is the base engine for large-scale parallel and distributed

data processing. Further, additional libraries which are built on the top of the core allows

diverse workloads for streaming, SQL, and machine learning. It is responsible for memory

management and fault recovery, scheduling, distributing and monitoring jobs on a cluster &

interacting with storage systems.

Figure 34 – Apache Spark Architecture

3) Spark Ecosystem Layer – consists of four key stack of libraries

 Spark SQL - module which integrates relational processing with Spark’s functional

programming API. It supports querying data either via SQL or via the HiveQL

 Spark Streaming - component which is used to process real-time streaming data

 GraphX - is a library for manipulating graphs and performing graph-parallel

computations

 MLlib - used to perform common machine learning capabilities in Apache Spark

MLlib provides multiple types of machine learning algorithms, including

classification, regression, clustering, and collaborative filtering or supporting

functionality such as model evaluation and data import. [106]

4) Last, but not considered as core layer, is an API for five languages like Java, Scala,

Python, R and SQL.

TBU in Zlín, Faculty of Applied Informatics 98

Cluster Management Overview

Spark applications are run as independent sets of processes on a cluster, all coordinated by

a central coordinator. This central coordinator can connect with three different cluster

managers, Spark’s Standalone, Apache Mesos, and Hadoop YARN (Yet Another Resource

Negotiator).

When running an application in distributed mode on a cluster, Spark uses a master/slave

architecture and the central coordinator, also called the driver program, is the main process

in your application, running the code that creates a SparkContext object. This driver process

is responsible for converting a user application into smaller execution units called tasks.

These tasks are then executed by executors which are worker processes that run the

individual tasks.

In a cluster, there is a master and any number of workers. The driver program, which can

run in an independent process, or in a worker of the cluster, requests executors from the

cluster manager. It then schedules the tasks composing the application on the executors

obtained from the cluster manager. The cluster manager is responsible for the scheduling

and allocation of resources across the host machines forming the cluster [107].

Resilient Distributed Dataset (RDD)

A Resilient Distributed Dataset (RDD) in Spark is simply an immutable distributed

collection of records that is spread over one or more partitions that can be distributed and

computed across different nodes of cluster. RDDs can contain any type of Python, Java, or

Scala objects or user-defined classes. Users create RDDs in two ways: by loading an external

data set, or by distributing a collection of objects in their driver program. RDDs are the

building blocks of any Spark application and stand for:

 Resilient - fault tolerant and is capable of rebuilding data on failure

 Distributed - distributed data among the multiple nodes in a cluster

 Dataset - collection of partitioned data with values

It is a layer of abstracted data over the distributed collection. It is immutable (an object

whose state cannot be modified after it is created) in nature and follows lazy transformations

(the data inside RDD is not available or transformed until an action is). Indeed,

transformations do not generate final values, they can be seen as instructions on how to

manipulate with a data set, which Spark writes in a graph (Directed Acyclic Graph - DAG)

TBU in Zlín, Faculty of Applied Informatics 99

while it passes the code. When an action is called on the RDD, Spark looks at that graph and

then performs transformations that lead to materializing the data collection. By retaining the

transformations, Spark can appropriately optimize data access that is actually accessed when

it is needed. Last important feature – cacheable – means that you can hold all the data in a

persistent "storage" like memory (default and the most preferred) or disk (the least preferred

due to access speed)

RDDs offer two types of operations:

 transformations - construct a new RDD from a previous one; e.g. one common

transformation is filtering data that matches a predicate; other operations could be:

map, flatMap)

 actions - compute a result based on an RDD, and either return it to the driver

program or save it to an external storage system (examples of operations: collect,

count, first, saveAsTextFile)

Figure 35 – RDD Operations

In below code snippet are presented some examples of transformations and action. For

graphical representation please see Figure 35.

val txtFile = "hdfs://hadoop-01:9000/user/hadoop/wordcount/hamlet.txt"

val lineRDD = sc.textFile(txtFile)
//Transformation 1 -> DAG created
//{DAG: 1) Start -> [sc.textFile(txtFile)]}

val wordRDD = lineRDD.flatMap(_.split(" "))
//Transformation 2 -> wordRDD DAG updated
//{DAG: 1) Start -> [sc.textFile(logFile)]
// 2) -> [lineRDD.flatMap(_.split(" "))]}

val filteredWordRDD = wordRDD.filter(_.equalsIgnoreCase("and"))
//Transformation 3 -> filteredWordRDD DAG updated

TBU in Zlín, Faculty of Applied Informatics 100

//{DAG: 1) Start -> [sc.textFile(logFile)]
// 2) -> [lineRDD.flatMap(_.split(" "))]
// 3) -> [wordRDD.filter(_.equalsIgnoreCase("and"))]}

filteredWordRDD.collect
//Action: collect
//Execute DAG & collect result to driver node

SparkSQL Highlighted

Spark SQL is a Spark module for structured (or semi-structured) data processing. Unlike the

basic Spark RDD API, the interfaces provided by Spark SQL provide Spark with more

information about the structure of both the data and the computation being performed.

Internally, Spark SQL uses this extra information to perform extra optimizations. There are

several ways to interact with Spark SQL including SQL and the Dataset API. When

computing a result the same execution engine is used, independent of which API/language

you are using to express the computation. This unification means that developers can easily

switch back and forth between different APIs based on which provides the most natural way

to express a given transformation. [108]

Datasets and DataFrames

A Dataset is a distributed collection of data. Dataset is a new interface added in Spark 1.6

that provides the benefits of RDDs (strong typing, ability to use powerful lambda functions)

with the benefits of Spark SQL’s optimized execution engine. A Dataset can be constructed

from JVM objects and then manipulated using functional transformations (map, flatMap,

filter, etc.). The Dataset API is available in Scala and Java [108].

A DataFrame is a Dataset organized into named columns. It is conceptually equivalent to a

table in a relational database or a data frame in R/Python, but with richer optimizations under

the hood. DataFrames can be constructed from a wide array of sources such as: structured

data files, tables in Hive, external databases, or existing RDDs. The DataFrame API is

available in Scala, Java, Python, and R. In Scala and Java, a DataFrame is represented by a

Dataset of Rows. In the Scala API, DataFrame is simply a type alias of Dataset[Row]. While,

in Java API, users need to use Dataset<Row> to represent a DataFrame [108].

TBU in Zlín, Faculty of Applied Informatics 101

3.2.1.2 Deploying Spark

Installation of Spark system consists of several steps. Here is a quick summary, and further

each step is explained with commands/configuration and typical outputs of console. For

installation will be used already installed server from Hadoop installation.

Apache Spark Installation Steps Overview

 Step 1: Ensure if Java is installed

 Step 2: Ensure if Scala is installed

 Step 3: Ensure if Git is installed

 Step 4: Download Spark

 Step 5: Install Spark

 Step 6: Verifying Spark installation

Step 1: Ensure if Java is installed

Before installing Spark, Java is a must have for your system. Following command will verify

the version of Java.

java -version

If Java is already installed on your system, you will see similar output to the following one,

if not, please install Java (follow instruction in section 3.1.4.1 - Java Installation).

roman@hadoop-00:~$ java -version
openjdk version "1.8.0_191"
OpenJDK Runtime Environment (build 1.8.0_191-8u191-b12-2ubuntu0.18.04.1-b12)
OpenJDK 64-Bit Server VM (build 25.191-b12, mixed mode)
roman@hadoop-00:~$

Step 2: Ensure if Scala is installed

Installing Scala language is mandatory as well as Java before installing Spark as it is

important for implementation. Scala language is used to implement Spark. Installation of

Scala can be done with this command.

TBU in Zlín, Faculty of Applied Informatics 102

sudo apt-get install scala

roman@hadoop-00:~$ sudo apt-get install scala
[sudo] password for roman:
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will be installed:
...
update-alternatives: using /usr/share/scala-2.11/bin/scala to provide
/usr/bin/scala (scala) in auto mode
roman@hadoop-00:~$

So verify the Scala installation by using following command and write demo Hello World

piece of code.

scala

scala> println("Hello World!")

roman@hadoop-00:~$ scala
Welcome to Scala 2.11.12 (OpenJDK 64-Bit Server VM, Java 1.8.0_191).
Type in expressions for evaluation. Or try :help.

scala> Hello World

scala>

As you could notice, you can’t see what you’re exactly writing in the Scala shell REPL. This

is known bud in Ubuntu 18.04. The workaround is to uninstall Scala with apt-get and install

again with dpkg. Please follow instructions below.

sudo apt-get remove scala-library scala
sudo wget www.scala-lang.org/files/archive/scala-2.12.8.deb
sudo dpkg -i scala-2.12.8.deb

roman@hadoop-00:~$ sudo apt-get remove scala-library scala
... some output
roman@hadoop-00:~$ sudo wget www.scala-lang.org/files/archive/scala-2.12.8.deb
... some output
roman@hadoop-00:~$ sudo dpkg -i scala-2.12.8.deb
Selecting previously unselected package scala.
(Reading database ... 89038 files and directories currently installed.)
Preparing to unpack scala-2.12.8.deb ...
Unpacking scala (2.12.8-400) ...
Setting up scala (2.12.8-400) ...
Creating system group: scala
Creating system user: scala in scala with scala daemon-user and shell
/bin/false
Processing triggers for man-db (2.8.3-2ubuntu0.1) ...
roman@hadoop-00:~$ scala
Welcome to Scala 2.12.8 (OpenJDK 64-Bit Server VM, Java 1.8.0_191).

TBU in Zlín, Faculty of Applied Informatics 103

Type in expressions for evaluation. Or try :help.

scala> println("Hello World!")
Hello World!

scala> :q
roman@hadoop-00:~$

Step 3: Ensure if Git is installed

For installation of Spark it’s requested Git installation, it can be done with this command. In

our system, the Git is already installed, so the output will be skipped.

sudo apt-get install git

Step 4: Download Spark

Next sub-step is download installation package for Spark from spark.apache.org site.

wget https://archive.apache.org/dist/spark/spark-2.4.2/spark-2.4.2-bin-
hadoop2.7.tgz

Step 5: Install Spark

Once the download is done, extract it.

tar xvf spark-2.4.2-bin-hadoop2.7.tgz

Step 6: Verifying Spark installation

Change the directory and run the Spark.

cd spark-2.4.2-bin-hadoop2.7/bin/
./spark-shell

hadoop@hadoop-00:~/spark-2.4.2-bin-hadoop2.7/bin$./spark-shell
19/05/02 17:25:40 WARN NativeCodeLoader: Unable to load native-hadoop library
for your platform... using builtin-java classes where applicable
Using Spark's default log4j profile: org/apache/spark/log4j-
defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use
setLogLevel(newLevel).
Spark context Web UI available at http://hadoop-00:4040
Spark context available as 'sc' (master = local[*], app id = local-
1556817957360).
Spark session available as 'spark'.
Welcome to

TBU in Zlín, Faculty of Applied Informatics 104

 ____ __
 / __/__ ___ _____/ /__
 _\ \/ _ \/ _ `/ __/ '_/
 /___/ .__/_,_/_/ /_/_\ version 2.4.2
 /_/

Using Scala version 2.12.8 (OpenJDK 64-Bit Server VM, Java 1.8.0_191)
Type in expressions to have them evaluated.
Type :help for more information.

scala>

and final test the Spark by using this command.

println("Spark shell is running")

Welcome to
 ____ __
 / __/__ ___ _____/ /__
 _\ \/ _ \/ _ `/ __/ '_/
 /___/ .__/_,_/_/ /_/_\ version 2.4.2
 /_/

Using Scala version 2.12.8 (OpenJDK 64-Bit Server VM, Java 1.8.0_191)
Type in expressions to have them evaluated.
Type :help for more information.

scala> println("Spark shell is running")
Spark shell is running

scala>

You can also check status of Spark resp. its jobs at Spark UI in web browser on port 4040

as shown in Figure 36.

TBU in Zlín, Faculty of Applied Informatics 105

Figure 36 – Spark UI on port 4040

3.2.1.3 Examples of Spark usage

Example 1 - Count of 𝝅

The easiest way how to run simple job on Spark is to calculate Pi. It doesn’t need any

interaction with filesystem or other components. In scala-shell run this short piece of code.

TBU in Zlín, Faculty of Applied Informatics 106

val NUM_SAMPLES = 100000000

val count = sc.parallelize(1 to NUM_SAMPLES).filter { _ =>

 val x = math.random

 val y = math.random

 x*x + y*y < 1

}.count()

println(s"Pi is roughly ${4.0 * count / NUM_SAMPLES}")

scala> val NUM_SAMPLES = 100000000
NUM_SAMPLES: Int = 100000000

scala> val count = sc.parallelize(1 to NUM_SAMPLES).filter { _ =>
 | val x = math.random
 | val y = math.random
 | x*x + y*y < 1
 | }.count()
count: Long = 78539494

scala> println(s"Pi is roughly ${4.0 * count / NUM_SAMPLES}")
Pi is roughly 3.14157976

In between you can also check the active run of job in Spark Shell UI as shown in Figure 37.

Figure 37 – Spark Shell Active Job

Example 2 – Word count

In this example will be used the same data set as has been used in Hadoop MapReduce

WordCount example. Also Spark will use Hadoop’s HDFS to access the source data.

TBU in Zlín, Faculty of Applied Informatics 107

val textFile =

sc.textFile("hdfs://localhost:9000/user/hadoop/wordcount/hamlet.txt")

val words = textFile.flatMap(line => line.split(" "))

val wordsOne = words.map(word => (word, 1))

val wordsReduced = wordsOne.reduceByKey(_ + _)

val wordsSortedByValue = wordsReduced.sortBy(_._2)

wordsSortedByValue.saveAsTextFile("hdfs://localhost:9000/user/hadoop/wordcoun

t/hamlet.spark.out")

Output should be very similar to this one.

scala> val textFile =
sc.textFile("hdfs://localhost:9000/user/hadoop/wordcount/hamlet.txt")
textFile: org.apache.spark.rdd.RDD[String] =
hdfs://localhost:9000/user/hadoop/wordcount/hamlet.txt MapPartitionsRDD[38] at
textFile at <console>:24

scala> val words = textFile.flatMap(line => line.split(" "))
words: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[39] at flatMap at
<console>:25

scala> val wordsOne = words.map(word => (word, 1))
wordsOne: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[40] at
map at <console>:25

scala> val wordsReduced = wordsOne.reduceByKey(_ + _)
wordsReduced: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[41] at
reduceByKey at <console>:25

scala> val wordsSortedByValue = wordsReduced.sortBy(_._2)
wordsSortedByValue: org.apache.spark.rdd.RDD[(String, Int)] =
MapPartitionsRDD[44] at sortBy at <console>:25

scala>
wordsSortedByValue.saveAsTextFile("hdfs://localhost:9000/user/hadoop/wordcount
/hamlet.spark.out")

scala>

And finally we can check the result via hadoop fs commands. As below output shows,

there’s again similar structure of output directory, you can see one file {_SUCCESS} noted the

status of job and several output result files (depending of number of reducers) {part-00000}.

hadoop@hadoop-00:~$ hadoop fs -ls ./wordcount/hamlet.spark.out
Found 2 items
-rw-r--r-- 3 hadoop supergroup 0 2019-05-03 09:22
wordcount/hamlet.spark.out/_SUCCESS
-rw-r--r-- 3 hadoop supergroup 89933 2019-05-03 09:22
wordcount/hamlet.spark.out/part-00000
hadoop@hadoop-00:~$

The result of job can be similarly seen using hadoop fs -cat command.

TBU in Zlín, Faculty of Applied Informatics 108

hadoop@hadoop-00:~$ hadoop fs -cat ./wordcount/hamlet.spark.out/part-00000
...
(a,453)
(I,523)
(to,608)
(of,625)
(and,680)
(the,929)
hadoop@hadoop-00:~$

As a last part of this example, the action on DAG is presented, without the need to output

result to filesystem, so you can run another operation on top of it.

scala> val wordsSortedByValue = wordsReduced.sortBy(- _._2)
wordsSortedByValue: org.apache.spark.rdd.RDD[(String, Int)] = MapParti-
tionsRDD[48] at sortBy at <console>:25

scala> wordsSortedByValue.collect
res22: Array[(String, Int)] = Array((the,929), (and,680), (of,625), (to,608),
(I,523), (a,453), ...

Example 3 - Spark SQL

As you could notice, when the Spark’s scala-shell is started, two object are created for you.

Spark context available as 'sc' (master = local[*], app id = local-155688729).
Spark session available as 'spark'.
Welcome to
 ____ __
 / __/__ ___ _____/ /__
 _\ \/ _ \/ _ `/ __/ '_/
 /___/ .__/_,_/_/ /_/_\ version 2.4.2
 /_/

The first one is context and the second one is session. SparkSession class (‘spark’ alias in

console output above) is the entry point into all functionality in Spark. It can be created with

code, but here, scala-shell have created it for you. All future lines of code wouldn’t run

without it. In next few snippets of code will be presented SQL access to data in Spark. With

a SparkSession, applications can create DataFrames from an existing RDD, from a Hive

table, or from Spark data sources. In out example, a DataFrame based on the content of a

JSON file is created.

scala> val df = spark.read.json("examples/src/main/resources/people.json")
scala> df.show()

TBU in Zlín, Faculty of Applied Informatics 109

+----+-------+
| age| name|
+----+-------+
null	Michael
30	Andy
19	Justin
+----+-------+

As mentions earlier DataFrame provides a domain-specific language for structured and semi-

structured data manipulation in Scala, Java, Python and R; i.e. data sets that you can specify

a schema for. DataFrame is a tabular functional data abstraction or in other words just

Dataset[Row] (data set of rows) in Scala and Java API.

In the following code snipped will be introduced some of structure query capabilities.

scala> df.printSchema()
root
 |-- age: long (nullable = true)
 |-- name: string (nullable = true)
scala> df.select("name").show()
+-------+
| name|
+-------+
|Michael|
| Andy|
| Justin|
+-------+
scala> df.filter($"age" > 21).show()
+---+----+
|age|name|
+---+----+
| 30|Andy|
+---+----+
scala> df.groupBy("age").count().show()
+----+-----+
| age|count|
+----+-----+
19	1
null	1
30	1
+----+-----+

The sql function on a SparkSession enables applications to run SQL queries

programmatically and returns the result as a DataFrame.

// Register the DataFrame as a SQL temporary view
scala> df.createOrReplaceTempView("people")

scala> val sqlDF = spark.sql("SELECT * FROM people WHERE age > 20")
scala> sqlDF.show()

TBU in Zlín, Faculty of Applied Informatics 110

+---+----+
|age|name|
+---+----+
| 30|Andy|
+---+----+
scala> val sqlDF = spark.sql("SELECT AVG(age) FROM people")
scala> sqlDF.show()
+--------+
|avg(age)|
+--------+
| 24.5|
+--------+

Temporary views in Spark SQL are session-scoped and will disappear if the session that

creates it terminates. To have a temporary view that is shared among all sessions and keep

alive until the Spark application terminates, you can create a global temporary view [105].

// Register the DataFrame as a global temporary view
scala> df.createGlobalTempView("people")

// Global temporary view is tied to a system preserved database `global_temp`
scala> spark.sql("SELECT * FROM global_temp.people").show()
+----+-------+
| age| name|
+----+-------+
null	Michael
30	Andy
19	Justin
+----+-------+	
// Global temporary view is cross-session	
spark.newSession().sql("SELECT * FROM global_temp.people").show()	
+----+-------+	
age	name
+----+-------+	
null	Michael
30	Andy
19	Justin
+----+-------+

3.2.1.4 Summary

In this chapter the Apache Spark project, part of a Hadoop Ecosystem has been introduced.

The Spark project is a unified analytics engine for large-scale data processing. Terms like

RDD, DataFrames, Dataset and Transformation vs Action has been also discussed. Then the

step-by-step of Spark deployment and configuration has been presented. In last section has

been demonstrated how DAG is working and Spark’s SQL access to data.

TBU in Zlín, Faculty of Applied Informatics 111

3.3 Data Analytics

Several tools are available to analyze data on the Hadoop platform. We introduce the two

most used. They are Pig and Hive.

3.3.1 Apache Pig

3.3.1.1 Pig Introduction

Project called Pig started as a new research project Yahoo! in 2006. The goal of new project

was to provide an alternative language interface to programming MapReduce using Java.

Pig is considered a MapReduce abstraction as it detached the user from the underlying

MapReduce code, enabling the developer to code in an interpreted data flow language, which

is then converted to a series of map and reduce operations.

The scripting language used by Pig is called Pig Latin. The workflow of Pig Latin script

processing looks like this or for graphical representation please see Figure 38:

1) an interpreter running on a client machine takes the Pig Latin instructions

2) turns these into a series of MapReduce jobs

3) submits these jobs to the cluster (or on single server)

4) monitors their progress

5) returns results to the console or saving results to files in HDFS

Figure 38 – Pig Latin Workflow

Among the advantages of Pig against MapReduce belong:

- developers don’t need to know Java programming language

TBU in Zlín, Faculty of Applied Informatics 112

- Pig code does not need to be compiled and packaged, Java MapReduce must

- user with Pig don’t have to describe objects, easier to data discovery

Pig Execution Modes

Pig has several modes it can be run in (execute Pig Latin statements and Pig commands).

Pig can be run using [pig] command or [java -cp pig.jar]:

Local Mode [pig -x local] - Access to a single machine is needed; all files are installed and

run using local host and file system

Tez Local Mode [pig -x tez_local] - It is similar to local mode, except internally Pig will

invoke tez runtime engine. It’s experimental mode as some errors issues interacting with

bigger data.

Spark Local Mode [pig -x spark_local] - It is similar to local mode, except internally Pig

will invoke spark runtime engine. It’s experimental mode as some errors issues interacting

with bigger data.

Mapreduce Mode [pig OR pig -x mapreduce] - Access to a Hadoop cluster and HDFS

installation is expected for this mode. Mapreduce mode is the default mode.

Tez Mode [pig -x tez] - Access to a Hadoop cluster and HDFS installation is expected.

Spark Mode [pig -x spark] - To run Pig in Spark mode, you need access to a Spark, Yarn

or Mesos cluster and HDFS installation.

The Pig Shell

Interactive mode – To run Pig in interactive mode using the Grunt shell just use the [pig]

command (as shown below) and then you can continue with Pig Latin statements or other

Pig commands.

hadoop@hadoop-00:~$ pig
grunt>

Batch Mode – You can run Pig also in batch mode using Pig scripts and the [pig script.pig]

command.

Pig Latin

TBU in Zlín, Faculty of Applied Informatics 113

Pig Latin programs are a sequence of statements that follow the pattern described here.

 • LOAD statement to read data from the file system into a named data set

 ♻ Series of "transformation" statements to process the data into a new data set

 • DUMP statement to view results or STORE statement to save the results

Pig Data Structures

The data sets used by Pig are called relations or bags (from relational database point of view

you can imagine as tables). Relations contain records called tuples (rows). Tuples contain

fields (columns), and fields can contain other data structures (bags, tuples or atomic data

called atoms). To understand differences please see Table 14 – Pig Data Structures.

Table 14 – Pig Data Structures

Type Description Example

relations / bags collection of tuples {(‘Marian’,31),(‘Erika’,28)}

tuple set of fields (‘Marian’,31)

field a piece of data ‘Marian’

map set of key value pairs [name#Marian]

3.3.1.2 Deploying Pig

Step 1: Download latest Pig release

wget https://www-us.apache.org/dist/pig/pig-0.17.0/pig-0.17.0.tar.gz

hadoop@hadoop-00:~$ wget https://www-us.apache.org/dist/pig/pig-0.17.0/pig-
0.17.0.tar.gz
--2019-05-03 16:09:12-- https://www-us.apache.org/dist/pig/pig-0.17.0/pig-
0.17.0.tar.gz
Resolving www-us.apache.org (www-us.apache.org)... 40.79.78.1
Connecting to www-us.apache.org (www-us.apache.org)|40.79.78.1|:443...
connected.
HTTP request sent, awaiting response... 200 OK
Length: 230606579 (220M) [application/x-gzip]
Saving to: ‘pig-0.17.0.tar.gz’

pig-0.17.0.tar.gz 100%[===================>] 219.92M 2.34MB/s in 95s

2019-05-03 16:10:48 (2.31 MB/s) - ‘pig-0.17.0.tar.gz’ saved
[230606579/230606579]

hadoop@hadoop-00:~$

TBU in Zlín, Faculty of Applied Informatics 114

Step 2: Unpack the Pig release

tar -xvf pig-0.17.0.tar.gz

Step 3: Verify Pig installation

export PIG_HOME=/home/hadoop/pig-0.17.0
export PATH=$PATH:$PIG_HOME/bin

hadoop@hadoop-00:~$ pig --version
Apache Pig version 0.17.0 (r1797386)
compiled Jun 02 2017, 15:41:58
hadoop@hadoop-00:~$

3.3.1.3 Examples of Pig usage

First, we have to prepare some data, which will be used in our examples.

wget http://hadoop.bistaff.eu/data/employees.csv
hadoop fs -mkdir emp
hadoop fs -put employees.csv emp

As mentioned earlier, typical Pig script consists of 3 stages (LOAD data, transformations,

and DUMP/STORE data). All three stages now will be presented.

1) Loading Data into Pig

Loading data into a bag is the first step for any Pig program. To do this we can use three

functions:

 PigStorage [PigStorage([delimit])] Loads and stores data as structured text files

 TextLoader [TextLoader()] Loads unstructured data in UTF-8 format

 JsonLoader [JsonLoader([schema])] Loads JSON data

grunt> emp = LOAD 'emp/employees.csv' USING PigStorage(',') AS (emp_id:int,
fname:chararray, lname:chararray, hire_date:chararray, salary:int);

It’s good practice to immediately check:

- the structure of bag

grunt> DESCRIBE emp;

grunt> DESCRIBE emp;
emp: {emp_id: int,fname: chararray,lname: chararray,hire_date:
chararray,salary: int}
grunt>

http://hadoop.bistaff.eu/data/employees.csv

TBU in Zlín, Faculty of Applied Informatics 115

- sample of data (command ILLUSTRATE physically touch the HDFS data)

grunt> ILLUSTRATE emp;

grunt> ILLUSTRATE emp;
...
--
| emp | emp_id:int | fname:chararray | lname:chararray | hire_date:chararray | salary:int |
--
| | 131 | James | Marlow | 16/02/05 | 2500 |
--

grunt>

or you can also use some of linux commands:

grunt> cat emp;

grunt> cat emp;
...
204,Hermann,Baer,07/06/02,10000
205,Shelley,Higgins,07/06/02,12008
206,William,Gietz,07/06/02,8300
grunt>

2) Transformations - Filtering, Projecting, and Sorting Data

In this phase, you can define several transformations. Remember, there’s no action on

particular command taken as all are done in last (third) phase, where the MapReduce job is

submit, thus there’s no valuable output to console.

First transformation is basic projection and datatype transforming. Projecting or

transforming fields within tuples in bags in Pig is accomplished using the FOREACH

statement.

grunt> emp_date = FOREACH emp GENERATE emp_id, UPPER(lname),
ToDate(hire_date, 'dd/MM/yy') AS hire_date, salary;

As you can see two built-in functions has been used (UPPER, ToDate). There many other

built-in function available in Pig:

- Evaluation Functions AVG, COUNT, MAX, MIN, SIZE, SUM, TOKENIZE

- Math Functions ABS, CEIL, EXP, FLOOR, LOG, RANDOM, ROUND

- String Functions (STARTS|ENDS)WITH, LOWER/UPPER, (L|R|)TRIM, REGEX_EXTRACT

- Datetime Functions CurrentTime, DaysBetween, Get(Day|Hour|Minute), ToDate

We will again check result by issuing ILLUSTRATE command.

grunt> ILLUSTRATE emp_date;

grunt> ILLUSTRATE emp_date;
--
| emp | emp_id:int | fname:chararray | lname:chararray | hire_date:chararray | salary:int |
--

TBU in Zlín, Faculty of Applied Informatics 116

| | 129 | Laura | Bissot | 20/08/05 | 3300 |
--
--
| emp_date| emp_id:int | org.apache.pig.builtin.upper_lname_11:chararray | hire_date:datetime | salary:int
|
--
| | 129 | BISSOT | 2005-08-20T00:00:00.000Z | 3300
--

grunt>

We can continue with another transformation like filtering with command FILTER:

grunt> emp_filtered = FILTER emp_date BY salary < 5000;

And last command in our example of transformations is final ordering with command

ORDER:

grunt> emp_ordered = ORDER emp_filtered BY hire_date DESC;

3) Job submitting

And finally, we can run it. The whole workflow from Figure 38 will be performed and result

(in this case) will be displayed in grunt console’s output.

DUMP emp_ordered;

grunt> DUMP emp_ordered;
(128,MARKLE,2008-03-08T00:00:00.000Z,2200)
(136,PHILTANKER,2008-02-06T00:00:00.000Z,2200)
..
(137,LADWIG,2003-07-14T00:00:00.000Z,3600)
(115,KHOO,2003-05-18T00:00:00.000Z,3100)
grunt>

In last part of this example the output to HDFS instead of to console, will be presented.

a) Save the commands from previous part into file in Linux OS using e.g. touch and nano

programs. Only last line (DUMP ...) replace with STORE emp_ordered INTO

'emp_ordered';.

touch $PIG_HOME/scripts/employees.pig
joe $PIG_HOME/scripts/employees.pig // insert script here + save

emp = LOAD 'emp/employees.csv' USING PigStorage(',') AS (emp_id:int, fname:chararray, lname:chararray,

hire_date:chararray, salary:int);

emp_date = FOREACH emp GENERATE emp_id, UPPER(lname), ToDate(hire_date, 'dd/MM/yy') AS hire_date, salary;

emp_filtered = FILTER emp_date BY salary < 5000;

emp_ordered = ORDER emp_filtered BY hire_date DESC;

STORE emp_ordered INTO 'emp_ordered';

pig $PIG_HOME/scripts/employees.pig // run the pig script

grunt hadoop@hadoop-00:~$ pig $PIG_HOME/scripts/employees.pig
HadoopVersion PigVersion UserId StartedAt FinishedAt Features
3.1.2 0.17.0 hadoop 2019-05-04 11:15:21 2019-05-04 11:16:53 ORDER_BY,FILTER

TBU in Zlín, Faculty of Applied Informatics 117

Success!

Job Stats (time in seconds):
JobId Maps Reduces MaxMapTime MinMapTime AvgMapTime MedianMapTime
MaxReduceTime MinReduceTime AvgReduceTime MedianReducetime Alias Feature Outputs
job_1556868916740_0020 1 0 5 5 5 5 0 0 0 0
emp,emp_date,emp_filtered MAP_ONLY
job_1556868916740_0021 1 1 5 5 5 5 5 5 5 5
emp_ordered SAMPLER
job_1556868916740_0022 1 1 5 5 5 5 5 5 5 5
emp_ordered ORDER_BY hdfs://localhost:9000/user/hadoop/emp_ordered,

Input(s):
Successfully read 107 records (3912 bytes) from:
"hdfs://localhost:9000/user/hadoop/emp/employees.csv"

Output(s):
Successfully stored 49 records (2013 bytes) in: "hdfs://localhost:9000/user/hadoop/emp_ordered"

Counters:
Total records written : 49
Total bytes written : 2013
Spillable Memory Manager spill count : 0
Total bags proactively spilled: 0
Total records proactively spilled: 0

Job DAG:
job_1556868916740_0020 -> job_1556868916740_0021,
job_1556868916740_0021 -> job_1556868916740_0022,
job_1556868916740_

...
hadoop@hadoop-00:~$

The result can be again checked as we’re used using hadoop fs -cat command.

hadoop fs -cat emp_ordered/part-r-00000 | tail -n 10

hadoop@hadoop-00:~$ hadoop fs -ls emp_ordered
Found 2 items
-rw-r--r-- 3 hadoop supergroup 0 2019-05-04 11:16 emp_ordered/_SUCCESS
-rw-r--r-- 3 hadoop supergroup 2013 2019-05-04 11:16 emp_ordered/part-r-00000

hadoop@hadoop-00:~$ hadoop fs -cat emp_ordered/part-r-00000 | tail -n 10
185 BULL 2005-02-20T00:00:00.000Z 4100
131 MARLOW 2005-02-16T00:00:00.000Z 2500
142 DAVIES 2005-01-29T00:00:00.000Z 3100
133 MALLIN 2004-06-14T00:00:00.000Z 3300
192 BELL 2004-02-04T00:00:00.000Z 4000
184 SARCHAND 2004-01-27T00:00:00.000Z 4200
141 RAJS 2003-10-17T00:00:00.000Z 3500
200 WHALEN 2003-09-17T00:00:00.000Z 4400
137 LADWIG 2003-07-14T00:00:00.000Z 3600
115 KHOO 2003-05-18T00:00:00.000Z 3100
hadoop@hadoop-00:~$

Word Count Example

grunt>
lines = LOAD '/user/hadoop/wordcount/hamlet.txt' AS (line:chararray);
words = FOREACH lines GENERATE FLATTEN(TOKENIZE(line)) AS word;
grouped = GROUP words BY word;
wordcount = FOREACH grouped GENERATE group AS word, COUNT(words) AS word_cnt;

TBU in Zlín, Faculty of Applied Informatics 118

ordered = ORDER wordcount BY word_cnt ASC, word DESC;
DUMP ordered;
...
(my,444)
(a,453)
(I,537)
(to,610)
(of,626)
(and,686)
(the,929)
grunt>

3.3.1.4 Summary

In this chapter the Apache Pig project, part of a Hadoop Ecosystem has been introduced. The

Pig project is designed to abstract Java’s MapReduce tasks to more familiar near SQL-like

programming interface. How Pig works internally has been also mentioned. Then the step-

by-step of Pig deployment and configuration has been presented. In last section has been

demonstrated how to create and use Pig Latin scripts to access Hadoop’s data.

3.3.2 Apache Hive

3.3.2.1 Hive Introduction

Hive is perhaps the most commonly used tool in the Hadoop ecosystem (followed closely

by Spark and HBase). Similar to the Apache Pig project, introduced in previous chapter,

which started at Yahoo!, the Apache Hive project started at Facebook in 2010 to provide a

high-level interface to Hadoop MapReduce. Similar to Pig, the motivation for Hive was that

Facebook realized that only few analysts were able to write MapReduce jobs in Java in

contrast to general knowledge of SQL among them. Furthermore, SQL is the common

language for business intelligence, visualization tools, and reporting tools, which commonly

use ODBC/JDBC as a standard interface. Instead of creating a new language, as was done

with PigLatin, the Hive project set out to put a SQL-like abstraction on top of MapReduce.

The Hive project introduced a new language called HiveQL (or Hive Query Language),

which implements a subset of SQL-92.

Workflow of processing HiveQL is very similar to Pig Latin workflow. Figure 39

provides a high-level depiction of how Hive processes data on HDFS. Workflow of HiveQL

processing consist of following stages:

TBU in Zlín, Faculty of Applied Informatics 119

- executing query from the user interface

- parsed by the Hive client

- mapped to a sequence of Java MapReduce operations

- which are then submitted as jobs on the Hadoop cluster

- the progress would be monitored

- the results are returned

- to the client or

- written back to the desired location in HDFS.

Figure 39 – HiveQL Workflow Process

3.3.2.2 Deploying Hive

In this section we will install and configure Hive within out pseudo-distributed Hadoop

cluster using the default embedded Derby database which serve as Hive metadata storage.

Step 1: Prerequisites

Check if Java and Hadoop pseudo-distributed cluster is installed and well configured. If not,

follow instructions from above chapters.

Step 2: Download Hive installation file

TBU in Zlín, Faculty of Applied Informatics 120

Depending on your release of Hadoop choose correct version of Hive. Apache Hive 3.1.1

release works with Hadoop 3.x.y.

wget https://www-us.apache.org/dist/hive/hive-3.1.1/apache-hive-3.1.1-
bin.tar.gz

hadoop@hadoop-00:~$ wget https://www-us.apache.org/dist/hive/hive-
3.1.1/apache-hive-3.1.1-bin.tar.gz
--2019-05-04 15:08:30-- https://www-us.apache.org/dist/hive/hive-
3.1.1/apache-hive-3.1.1-bin.tar.gz
Resolving www-us.apache.org (www-us.apache.org)... 40.79.78.1
Connecting to www-us.apache.org (www-us.apache.org)|40.79.78.1|:443...
connected.
HTTP request sent, awaiting response... 200 OK
Length: 280944629 (268M) [application/x-gzip]
Saving to: ‘apache-hive-3.1.1-bin.tar.gz’

apache-hive-3.1.1-bin.tar.gz
100%[===
==>] 267.93M 2.38MB/s
in 1m 54s

2019-05-04 15:10:25 (2.36 MB/s) - ‘apache-hive-3.1.1-bin.tar.gz’ saved
[280944629/280944629]

hadoop@hadoop-00:~$

Step 3: Unzip the installation file

tar -xzvf apache-hive-3.1.1-bin.tar.gz

hadoop@hadoop-00:~$ tar -xzvf apache-hive-3.1.1-bin.tar.gz

Step 4: Create HIVE_HOME and set PATH

export HIVE_HOME=$HOME/apache-hive-3.1.1-bin
export PATH=$HIVE_HOME/bin:$PATH

Step 5: Make directories in HDFS for use by Hive, including the Hive warehouse

directory

// directory tmp could already exists from hadoop installation, so just skip
hadoop fs -mkdir /tmp
hadoop fs -chmod g+w /tmp

hadoop fs -mkdir -p /user/hive/warehouse
hadoop fs -chmod g+w /user/hive/warehouse

Step 6: Create the metastore database

TBU in Zlín, Faculty of Applied Informatics 121

This will create metastore_db directory that contains Hive metadata. Hive Metastore is a

database (by default MySQL, but we use Derby database as a part of distribution) where

data about individual tables are stored (data storage location, table name, DDL definition,

owner, scheme). Thanks to Metastore, the tables have a given structure and can be treated

as relational tables. Objects stored in Metastore include:

- Database - namespace to which the table belongs

- Table - metadata about tables: table columns, name, owner, data location...

- Partition - information about partition name, storage location, columns.

cd $HIVE_HOME
schematool -initSchema -dbType derby

hadoop@hadoop-00:~$ cd $HIVE_HOME
hadoop@hadoop-00:~/apache-hive-3.1.1-bin$ schematool -initSchema -dbType derby
Metastore connection URL:
jdbc:derby:;databaseName=metastore_db;create=true
Metastore Connection Driver : org.apache.derby.jdbc.EmbeddedDriver
Metastore connection User: APP
Starting metastore schema initialization to 3.1.0
Initialization script hive-schema-3.1.0.derby.sql
...
Initialization script completed
schemaTool completed
hadoop@hadoop-00:~/apache-hive-3.1.1-bin$

If you get error like below, it means, you already have run hive, so it’s recommended to

delete incomplete metastore with mv command and run schematool command once again.

hadoop@hadoop-00:~/apache-hive-3.1.1-bin$ schematool -initSchema -dbType derby
...
Starting metastore schema initialization to 3.1.0
Initialization script hive-schema-3.1.0.derby.sql

Error: FUNCTION 'NUCLEUS_ASCII' already exists. (state=X0Y68,code=30000)
org.apache.hadoop.hive.metastore.HiveMetaException: Schema initialization
FAILED! Metastore state would be inconsistent !!
Underlying cause: java.io.IOException : Schema script failed, errorcode 2
Use --verbose for detailed stacktrace.
*** schemaTool failed ***
hadoop@hadoop-00:~/apache-hive-3.1.1-bin$

mv metastore_db metastore_db.tmp

Step 7: Check the metastore database

hive> SHOW databases;

TBU in Zlín, Faculty of Applied Informatics 122

hadoop@hadoop-00:~$ hive
Hive Session ID = e8ba2856-e204-45a7-a5f0-9023c3827cc5
hive> SHOW databases;
OK
default
Time taken: 1.104 seconds, Fetched: 1 row(s)
hive>

Possible errors you could experienced

After creating hive-site.xml you could get WstxParsingException: Illegal character

entity: expansion character (code 0x8) – solution is described in this link.

Another one could be java.net.URISyntaxException when starting HIVE and solution is

described here.

3.3.2.3 Examples of Hive usage

In this example we will create two tables, ingest them with data and test some SQL

commands.

Step 1: Open a Hive CLI

hive

hadoop@hadoop-00:~$ hive
Hive Session ID = e8ba2856-e204-45a7-a5f0-9023c3827cc5
hive>

Step 2: Create a new database called bikeshare

hive> CREATE DATABASE bikeshare;

hive> CREATE DATABASE bikeshare;
OK
Time taken: 0.303 seconds
hive> show databases;
OK
bikeshare
default
Time taken: 0.076 seconds, Fetched: 2 row(s)
hive>

Step 3: List the Hive databases available on your system

hive> SHOW databases;

hive> SHOW databases;

https://stackoverflow.com/questions/52783323/hive-throws-wstxparsingexception-illegal-character-entity-expansion-character
https://stackoverflow.com/questions/27099898/java-net-urisyntaxexception-when-starting-hive

TBU in Zlín, Faculty of Applied Informatics 123

OK
bikeshare
default
Time taken: 0.076 seconds, Fetched: 2 row(s)
hive>

Step 4: Change your database context to the bikeshare database

hive> USE bikeshare;

hive> USE bikeshare;
OK
Time taken: 0.078 seconds
hive>

Step 5: Prepare data in HDFS

Download data to local filesystem.

wget https://s3.amazonaws.com/sty-hadoop/bike-share/stations/stations.csv
wget https://s3.amazonaws.com/sty-hadoop/bike-share/trips/trips.csv

Make directories in HDFS and upload both data sets.

hadoop fs -mkdir -p bikeshare/stations
hadoop fs -chmod 777 bikeshare/stations
hadoop fs -put stations.csv bikeshare/stations
hadoop fs -mkdir -p bikeshare/trips
hadoop fs -chmod 777 bikeshare/trips
hadoop fs -put trips.csv bikeshare/trips

Step 5: Create database tables

hive> CREATE EXTERNAL TABLE stations
 (
 station_id INT,
 name STRING,
 lat DOUBLE,
 long DOUBLE,
 dockcount INT,
 landmark STRING,
 installation STRING
)
 ROW FORMAT DELIMITED
 FIELDS TERMINATED BY ','
 STORED AS TEXTFILE
 LOCATION 'bikeshare/stations';

hive> CREATE EXTERNAL TABLE stations
 > (
 > station_id INT,
 > name STRING,

https://s3.amazonaws.com/sty-hadoop/bike-share/stations/stations.csv

TBU in Zlín, Faculty of Applied Informatics 124

 > lat DOUBLE,
 > long DOUBLE,
 > dockcount INT,
 > landmark STRING,
 > installation STRING
 >)
 > ROW FORMAT DELIMITED
 > FIELDS TERMINATED BY ','
 > STORED AS TEXTFILE
 > LOCATION 'hdfs:///bikeshare/stations';
OK
Time taken: 1.011 seconds
hive>

Similarly create also second table.

hive> CREATE EXTERNAL TABLE trips
 (
 trip_id INT,
 duration INT,
 start_date STRING,
 start_station STRING,
 start_terminal INT,
 end_date STRING,
 end_station STRING,
 end_terminal INT,
 bike_num INT,
 subscription_type STRING,
 zip_code STRING
)
 ROW FORMAT DELIMITED
 FIELDS TERMINATED BY ','
 STORED AS TEXTFILE
 LOCATION 'hdfs:///user/hadoop/bikeshare/trips';

hive> CREATE EXTERNAL TABLE trips
 > (
 > trip_id INT,
 > duration INT,
 > start_date STRING,
 > start_station STRING,
 > start_terminal INT,
 > end_date STRING,
 > end_station STRING,
 > end_terminal INT,
 > bike_num INT,
 > subscription_type STRING,
 > zip_code STRING
 >)
 > ROW FORMAT DELIMITED
 > FIELDS TERMINATED BY ','
 > STORED AS TEXTFILE
 > LOCATION 'hdfs:///bikeshare/trips';
OK
Time taken: 0.2 seconds
hive>

TBU in Zlín, Faculty of Applied Informatics 125

As you might have noticed, two different location descriptions were used, at first table

the relative path LOCATION 'bikeshare/stations' has been used and at second table full

path with filesystem definition LOCATION 'hdfs:///user/hadoop/bikeshare/trips' has

been used, both are valid and correct.

Step 6: List all tables in your database and look at their structure

hive> SHOW tables;

hive> SHOW tables;
OK
stations
trips
Time taken: 0.183 seconds, Fetched: 2 row(s)
hive>

hive> DESCRIBE stations;

hive> DESCRIBE stations;
OK
station_id int
name string
lat double
long double
dockcount int
landmark string
installation string
Time taken: 0.537 seconds, Fetched: 7 row(s)
hive>

hive> DESCRIBE FORMATTED stations;

hive> DESCRIBE FORMATTED stations;
OK
col_name data_type comment
station_id int
name string
lat double
long double
dockcount int
landmark string
installation string

Detailed Table Information
Database: bikeshare
OwnerType: USER
Owner: hadoop
CreateTime: Sat May 04 16:32:17 UTC 2019
LastAccessTime: UNKNOWN
Retention: 0
Location: hdfs://localhost:9000/bikeshare/stations
Table Type: EXTERNAL_TABLE

TBU in Zlín, Faculty of Applied Informatics 126

Table Parameters:
 EXTERNAL TRUE
 bucketing_version 2
 numFiles 1
 totalSize 5214
 transient_lastDdlTime 1556987537

Storage Information
SerDe Library: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
InputFormat: org.apache.hadoop.mapred.TextInputFormat
OutputFormat:
org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
Compressed: No
Num Buckets: -1
Bucket Columns: []
Sort Columns: []
Storage Desc Params:
 field.delim ,
 serialization.format ,
Time taken: 0.667 seconds, Fetched: 36 row(s)
hive>

Step 7: Test first SQLs

Let’s start with simple SQL and count number of records in table.

hive> SELECT COUNT(1) FROM stations;

hive> SELECT COUNT(1) FROM stations;
Query ID = hadoop_20190505094534_e18ce1ae-9c48-4475-890f-46b581a95e65
Total jobs = 1
...
MapReduce Jobs Launched:
Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 4.43 sec HDFS Read: 18517
HDFS Write: 102 SUCCESS
Total MapReduce CPU Time Spent: 4 seconds 430 msec
OK
˅˅˅ RESULT of SQL ˅˅˅
70
^^^ RESULT of SQL ^^^
Time taken: 34.008 seconds, Fetched: 1 row(s)
hive>

In next example we continue with some projection, selection, and grouping.

hive> SELECT start_terminal
 ,start_station
 ,COUNT(1) AS count
 FROM trips
 GROUP BY start_terminal, start_station
 ORDER BY count
 DESC LIMIT 10;

hive> SELECT start_terminal
 > ,start_station

TBU in Zlín, Faculty of Applied Informatics 127

 > ,COUNT(1) AS count
 > FROM trips
 > GROUP BY start_terminal, start_station
 > ORDER BY count
 > DESC LIMIT 10;
Query ID = hadoop_20190505095144_9222fea6-54e8-45ac-9669-e4f42445f20b
Total jobs = 2
...
MapReduce Jobs Launched:
Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 5.66 sec HDFS Read:
43027008 HDFS Write: 3200 SUCCESS
Stage-Stage-2: Map: 1 Reduce: 1 Cumulative CPU: 4.03 sec HDFS Read: 11192
HDFS Write: 567 SUCCESS
Total MapReduce CPU Time Spent: 9 seconds 690 msec
OK
˅˅˅ RESULT of SQL ˅˅˅
70 San Francisco Caltrain (Townsend at 4th) 26304
69 San Francisco Caltrain 2 (330 Townsend) 21758
50 Harry Bridges Plaza (Ferry Building) 17255
55 Temporary Transbay Terminal (Howard at Beale) 14436
60 Embarcadero at Sansome 14158
61 2nd at Townsend 14026
65 Townsend at 7th 13752
74 Steuart at Market 13687
67 Market at 10th 11885
77 Market at Sansome 11431
Time taken: 77.526 seconds, Fetched: 10 row(s)
hive>

And finally we try JOIN operation on both tables.

hive> SELECT t.trip_id
 ,t.duration
 ,t.start_date
 ,s.name
 FROM stations s
 JOIN trips t ON s.station_id = t.start_terminal;
 LIMIT 10;

hive> SELECT t.trip_id
 > ,t.duration
 > ,t.start_date
 > ,s.name
 > FROM stations s
 > JOIN trips t ON s.station_id = t.start_terminal
 > LIMIT 10;
Query ID = hadoop_20190505101406_5ec44fc8-bfc1-465e-8785-f25aad228d42
Total jobs = 1
Execution completed successfully
MapredLocal task succeeded
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_1556868916740_0047, Tracking URL = http://hadoop-
00:8088/proxy/application_1556868916740_0047/
Kill Command = /home/hadoop/hadoop-3.1.2/bin/mapred job -kill
job_1556868916740_0047
Hadoop job information for Stage-3: number of mappers: 1; number of reducers:
0

TBU in Zlín, Faculty of Applied Informatics 128

2019-05-05 10:14:38,903 Stage-3 map = 0%, reduce = 0%
2019-05-05 10:14:49,526 Stage-3 map = 100%, reduce = 0%, Cumulative CPU 3.2
sec
MapReduce Total cumulative CPU time: 3 seconds 200 msec
Ended Job = job_1556868916740_0047
MapReduce Jobs Launched:
Stage-Stage-3: Map: 1 Cumulative CPU: 3.2 sec HDFS Read: 883065 HDFS
Write: 723 SUCCESS
Total MapReduce CPU Time Spent: 3 seconds 200 msec
OK
˅˅˅ RESULT of SQL ˅˅˅
913460 765 8/31/2015 23:26 Harry Bridges Plaza (Ferry Building)
913459 1036 8/31/2015 23:11 San Antonio Shopping Center
913455 307 8/31/2015 23:13 Post at Kearney
913454 409 8/31/2015 23:10 San Jose City Hall
913453 789 8/31/2015 23:09 Embarcadero at Folsom
913452 293 8/31/2015 23:07 Yerba Buena Center of the Arts (3rd @ Howard)
913451 896 8/31/2015 23:07 Embarcadero at Folsom
913450 255 8/31/2015 22:16 Embarcadero at Sansome
913449 126 8/31/2015 22:12 Beale at Market
913448 932 8/31/2015 21:57 Post at Kearney
^^^ RESULT of SQL ^^^
Time taken: 44.634 seconds, Fetched: 10 row(s)
hive>

Data Output with Hive

Most of the time, it’s requested to persist the result of SQL to a local or distributed

filesystem - specifically HDFS. Hive supports several methods to accomplish this,

including the following:

• INSERT OVERWRITE – export the query results to another Hive table and overwrite the

existing contents

• INSERT INTO TABLE – export the query results to another Hive table and appends the

output to the existing contents

• INSERT OVERWRITE DIRECTORY – export the results to a directory in HDFS (file / Hive

table)

• INSERT OVERWRITE LOCAL DIRECTORY – export the results to a local directory, not to

HDFS

3.3.2.4 Summary

In this chapter the Apache Hive project, part of a Hadoop Ecosystem has been introduced.

The Hive project is designed to enable fast and simple access to data in HDFS using a

TBU in Zlín, Faculty of Applied Informatics 129

familiar SQL-like programming interface. How Hive works internally, including what is the

purpose of metastore, that stores object definitions for Hive tables has been also mentioned.

Then the step-by-step of Hive deployment and configuration has been presented. In last

section has been demonstrated how to create and access Hive tables using both Hive DDL

(Data Definition Language) and DML (Data Manipulation Language) statements.

3.4 Data Ingestion

Apache Hadoop with its storage system HDFS is just pure storage, as well as RDBMS are

storage for their data. If we want to work with data in Hadoop, it’s necessary to create them

or import them from external system. In chapter HDFS Command Line has been introduced

how it is possible to import data into HDFS from local filesystem using command line hadoop

fs -put. In this chapter will be presented how to import/export data between relational

databases and HDFS with Apache Sqoop.

3.4.1 Apache Sqoop

3.4.1.1 Sqoop Introduction

Apache Sqoop is a data ingestion tool designed for efficiently transferring bulk data between

structured data-stores such as relational databases and Apache Hadoop (as shown in Figure

40), Apache Hive and Apache HBase. Sqoop support the transfer between RDBMS and

Hadoop bi-directional, to Hive and HBase supports only unidirectional transfers.

Figure 40 – Apache Sqoop Import/Export

TBU in Zlín, Faculty of Applied Informatics 130

Sqoop Import

Sqoop can be used for importing data from a relational database into HDFS. The input to the

import process is a database table. Sqoop reads the table row-by-row and store it into HDFS.

The output of this import process is a set of files containing a copy of the imported table.

The import process is performed in parallel. For this reason, the output will be in multiple

files.

Sqoop Export

Sqoop can be used for exporting data from a HDFS into relational database. Sqoop reads the

set of delimited text files from HDFS in parallel, parses them into records, and inserts them

as new rows in a target database table.

3.4.1.2 Deploying Sqoop

In this section we will install and configure Hive within out pseudo-distributed Hadoop

cluster using the default embedded Derby database which serve as Hive metadata storage.

Step 1: Prerequisites

Check if Java and Hadoop pseudo-distributed cluster is installed and well configured. If

not, follow instructions from above chapters.

Step 2: Download Sqoop installation file

wget https://www-us.apache.org/dist/sqoop/1.4.7/sqoop-1.4.7.bin__hadoop-
2.6.0.tar.gz

Step 3: Unzip Sqoop installation file

tar -xvf sqoop-1.4.7.bin__hadoop-2.6.0.tar.gz

Step 4: Create SQOOP_HOME and set PATH

export SQOOP_HOME=$HOME/sqoop-1.4.7.bin__hadoop-2.6.0
export PATH=$SQOOP_HOME/bin:$PATH

Step 5: Configure Sqoop

TBU in Zlín, Faculty of Applied Informatics 131

If HADOOP_COMMON_HOME and HADOOP_MAPRED_HOME wasn’t set with Hadoop installation, make

following changes:

cd $SQOOP_HOME/conf
mv sqoop-env-template.sh sqoop-env.sh

Open sqoop-env.sh and edit the following lines:

export HADOOP_COMMON_HOME=$HADOOP_HOME
export HADOOP_MAPRED_HOME=$HADOOP_HOME

Step 6: Download and Configure mysql-connector-java

wget http://ftp.ntu.edu.tw/MySQL/Downloads/Connector-J/mysql-connector-
java_8.0.16-1ubuntu18.04_all.deb
sudo apt install ./mysql-connector-java_8.0.16-1ubuntu18.04_all.deb
mv mysql-connector-java-8.0.16.jar $SQOOP_HOME/lib

Step 7: Verifying Sqoop

sqoop-version

hadoop@hadoop-00:~$ sqoop-version
...
2019-05-05 15:42:11,602 INFO sqoop.Sqoop: Running Sqoop version: 1.4.7
Sqoop 1.4.7
git commit id 2328971411f57f0cb683dfb79d19d4d19d185dd8
Compiled by maugli on Thu Dec 21 15:59:58 STD 2017
hadoop@hadoop-00:~$

3.4.1.3 Examples of Sqoop usage

In the following example will be described the process of importing table from MySQL

relational database to HDFS. Is it expected, that MySQL database is already installed,

configured and populated with some data.

Step 1: Check MySQL source data

To start interactive shell for MySQL database, run command mysql.

mysql

hadoop@hadoop-00:~$ mysql
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 33

TBU in Zlín, Faculty of Applied Informatics 132

Server version: 5.7.26-0ubuntu0.18.04.1 (Ubuntu)

Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql>

Query the list of local databases and use one.

SHOW databases;

mysql> SHOW databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
| sys |
| test |
+--------------------+
5 rows in set (0.00 sec)

mysql> USE test
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed
mysql>

And finally check the data.

select * from my_emp limit 5;

mysql> select * from my_emp limit 5;
+--------+-----------+---------+---------------------+--------+
| emp_id | fname | lname | hire_date | salary |
+--------+-----------+---------+---------------------+--------+
100	Steven	King	2003-06-17 00:00:00	24000
101	Neena	Kochhar	2005-09-21 00:00:00	17000
102	Lex	De Haan	2001-01-13 00:00:00	17000
103	Alexander	Hunold	2006-01-03 00:00:00	9000
104	Bruce	Ernst	2007-05-21 00:00:00	6000
+--------+-----------+---------+---------------------+--------+
5 rows in set (0.00 sec)

mysql>

Step 1: Check MySQL source data

TBU in Zlín, Faculty of Applied Informatics 133

To start interactive shell for MySQL database, run command mysql.

mysql

hadoop@hadoop-00:~$ mysql
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 33
Server version: 5.7.26-0ubuntu0.18.04.1 (Ubuntu)

Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql>

Step 2: Import data via Sqoop from MySQL to HDFS

To start interactive shell for MySQL database, run command mysql.

sqoop import --connect "jdbc:mysql://localhost/test" --username root --
table my_emp --target-dir mysql/my_emp

hadoop@hadoop-00:~$ sqoop import --connect "jdbc:mysql://localhost/test" --
username root --table my_emp --target-dir mysql/my_emp
...
2019-05-05 15:06:36,967 INFO db.DBInputFormat: Using read commited transaction
isolation
2019-05-05 15:06:36,968 INFO db.DataDrivenDBInputFormat: BoundingValsQuery:
SELECT MIN(`emp_id`), MAX(`emp_id`) FROM `my_emp`
2019-05-05 15:06:36,974 INFO db.IntegerSplitter: Split size: 26; Num splits: 4
from: 100 to: 206
...
2019-05-05 15:06:49,110 INFO mapreduce.Job: Job job_1556868916740_0052 running
in uber mode : false
2019-05-05 15:06:49,114 INFO mapreduce.Job: map 0% reduce 0%
2019-05-05 15:07:12,409 INFO mapreduce.Job: map 25% reduce 0%
2019-05-05 15:07:15,430 INFO mapreduce.Job: map 50% reduce 0%
2019-05-05 15:07:16,438 INFO mapreduce.Job: map 75% reduce 0%
2019-05-05 15:07:17,463 INFO mapreduce.Job: map 100% reduce 0%
2019-05-05 15:07:17,503 INFO mapreduce.Job: Job job_1556868916740_0052
completed successfully
2019-05-05 15:07:17,638 INFO mapreduce.Job: Counters: 33
 File System Counters
 FILE: Number of bytes read=0
 FILE: Number of bytes written=900776
 FILE: Number of read operations=0
 FILE: Number of large read operations=0
 FILE: Number of write operations=0
 HDFS: Number of bytes read=441
 HDFS: Number of bytes written=4818
 HDFS: Number of read operations=24
 HDFS: Number of large read operations=0
 HDFS: Number of write operations=8

TBU in Zlín, Faculty of Applied Informatics 134

 Job Counters
 Killed map tasks=1
 Launched map tasks=4
 Other local map tasks=4
 Total time spent by all maps in occupied slots (ms)=88670
 Total time spent by all reduces in occupied slots (ms)=0
 Total time spent by all map tasks (ms)=88670
 Total vcore-milliseconds taken by all map tasks=88670
 Total megabyte-milliseconds taken by all map tasks=90798080
...
 File Output Format Counters
 Bytes Written=4818
2019-05-05 15:07:17,652 INFO mapreduce.ImportJobBase: Transferred 4.7051 KB in
43.5016 seconds (110.7545 bytes/sec)
2019-05-05 15:07:17,661 INFO mapreduce.ImportJobBase: Retrieved 107 records.
hadoop@hadoop-00:~$

From the output, you can read, that first Sqoop query for min and max values of primary key

and split read data to 4 part, so 4 jobs were running and import data into 4 equally parts in

HDFS.

Step 3: Check data in HDFS

At the end, we can check data right in the HDFS with well-known command.

hadoop fs -ls mysql/my_emp
hadoop fs -cat mysql/my_emp/part-m-00000
hadoop fs -cat mysql/my_emp/part-m-00001
hadoop fs -cat mysql/my_emp/part-m-00002
hadoop fs -cat mysql/my_emp/part-m-00003

hadoop@hadoop-00:~$ hadoop fs -ls mysql/my_emp
Found 5 items
-rw-r--r-- 3 hadoop supergroup 0 2019-05-05 15:07 mysql/my_emp/_SUCCESS
-rw-r--r-- 3 hadoop supergroup 1216 2019-05-05 15:07 mysql/my_emp/part-m-00000
-rw-r--r-- 3 hadoop supergroup 1211 2019-05-05 15:07 mysql/my_emp/part-m-00001
-rw-r--r-- 3 hadoop supergroup 1172 2019-05-05 15:07 mysql/my_emp/part-m-00002
-rw-r--r-- 3 hadoop supergroup 1219 2019-05-05 15:07 mysql/my_emp/part-m-00003
hadoop@hadoop-00:~$ hadoop fs -cat mysql/my_emp/part-m-00000
100,Steven,King,2003-06-17 00:00:00.0,24000
101,Neena,Kochhar,2005-09-21 00:00:00.0,17000
...
125,Julia,Nayer,2005-07-16 00:00:00.0,3200
126,Irene,Mikkilineni,2006-09-28 00:00:00.0,2700
hadoop@hadoop-00:~$ hadoop fs -cat mysql/my_emp/part-m-00001
127,James,Landry,2007-01-14 00:00:00.0,2400
128,Steven,Markle,2008-03-08 00:00:00.0,2200
...
152,Peter,Hall,2005-08-20 00:00:00.0,9000
153,Christopher,Olsen,2006-03-30 00:00:00.0,8000
hadoop@hadoop-00:~$ hadoop fs -cat mysql/my_emp/part-m-00002
154,Nanette,Cambrault,2006-12-09 00:00:00.0,7500
155,Oliver,Tuvault,2007-11-23 00:00:00.0,7000

TBU in Zlín, Faculty of Applied Informatics 135

...
178,Kimberely,Grant,2007-05-24 00:00:00.0,7000
179,Charles,Johnson,2008-01-04 00:00:00.0,6200
hadoop@hadoop-00:~$ hadoop fs -cat mysql/my_emp/part-m-00003
180,Winston,Taylor,2006-01-24 00:00:00.0,3200
181,Jean,Fleaur,2006-02-23 00:00:00.0,3100
...
205,Shelley,Higgins,2002-06-07 00:00:00.0,12008
206,William,Gietz,2002-06-07 00:00:00.0,8300
hadoop@hadoop-00:~$

There is also possibility to see HDFS data with one command.

hadoop fs -cat mysql/my_emp/part-m-*

hadoop@hadoop-00:~$ hadoop fs -cat mysql/my_emp/part-m-00000
100,Steven,King,2003-06-17 00:00:00.0,24000
101,Neena,Kochhar,2005-09-21 00:00:00.0,17000
...My very sincere thanks go to my thesis supervisor doc. Ing. Roman Šenkeřík,
...Ph.D. for his valuable notes and suggestions and letting me doing my work.
...I must also express my very profound gratitude to my mother who has been
...supporting me throughout the whole life.
...Last but definitely not least I also owe a gratitude to my girlfriend and
...hopefully soon fiance for providing me with unfailing support and
...encouragement throughout my years of study.
...#stegano #marryme
205,Shelley,Higgins,2002-06-07 00:00:00.0,12008
206,William,Gietz,2002-06-07 00:00:00.0,8300
hadoop@hadoop-00:~$

3.4.1.4 Summary

In this chapter the Apache Sqoop project, part of a Hadoop Ecosystem has been introduced.

The Sqoop project is designed to transfer data between relational databases and HDFS in

both direction. Step-by-step of Sqoop deployment and configuration has been presented. In

the last section has been demonstrated how to make an import of relation table from MySQL

database to HDFS.

TBU in Zlín, Faculty of Applied Informatics 136

CONCLUSION

Human differs from all other species on this planet, there’s no doubt about it. The start of

using sounds and voices led to better communication. Sharing knowledge and experience

with descendants and next generations brought our genus to the necessity of recording

information in a persistent form. First writing systems appeared 6000 BC and this is

generally considered as milestone when human accelerate the speed of evolution. Ability to

easy communicate, record and share thoughts and information started new epoch of human

– The age of information. Another big milestone of recording and sharing information came

in 1450 AC with Gutenberg’s printing press. It took next 500 years for another invention in

human information processing – the first computers. And only next 50 years brought us to

the Age of Internet. Each of these four milestones exponentially increased the amount of

information processed.

This thesis deals with phenomenon of Big Data and is divided into 3 big chapters. In the

first chapter branded “Big Data” I started with explanation of human information processing

from the very beginning and went through the whole millennia until these days. In very next

subchapter I explained the difference or the hierarchy of Data-Information-Knowledge-

Wisdom, so every reader of this work has basic understanding why do we process the data.

The business and technical requests in the age of internet brought IT experts to challenge of

processing of unbelievable volume, velocity and variety of data. Old relational database

systems were not able to address these requests.

All these bring us to the second chapter branded NoSQL. Exactly, NoSQL databases was

the right answer to this challenge. In the beginning of this chapter I presented these

technologies from various viewpoints. Explanation of distribution and consistency of data

leads to presenting CAP theorem. I continued with general classification of database systems

from different perspectives and finished with a high-level taxonomy of the NoSQL

datastores based on the data model which can classify them into five major categories: key-

value stores, document stores, wide-column (column-oriented) stores, graph databases and

multi-model databases. In the rest of this chapter I took a closer look on each of these types

of NoSQL databases.

In the third chapter (practical part) branded Apache Hadoop Ecosystem I started with

presenting Apache Hadoop project itself - the system for distributed storage and processing

of enormous amount of data. Distributed filesystem and Resource manager are described

TBU in Zlín, Faculty of Applied Informatics 137

from big picture perspective into details. The processing model (MapReduce) continues with

first set of examples and use cases. In the rest of practical part, I continued with presentation

of projects (technologies) from Hadoop Ecosystem, like Apache Spark – for general data

processing, Apache Pig and Apache Hive – for data access and analytics and finishing with

Apache Sqoop – technology for data ingestion. Integral part of every single technology in

this chapter is detail step-by-step guide how to install and configure particular technology.

For each chosen technology I provided a set of functional examples and use cases with

explanation how each of them work and fit together. Short summaries are attached at the end

for each particular technology.

Although one might think that it is a young technology or area of technologies, definitely

the biggest challenge for me was the form of picking up the most important and present it in

compressed way for different level of knowledge of readers. The biggest value of this work

I see in collecting, summarization and presentation of phenomenon of Big Data and NoSQL

technologies in one comprehensive paper. The practical part I built as stack of technologies,

so the step-by-step instructions guide reader with installation and configuration and follow

with explanation of typical example scenarios. It should be noted that only really core and

most used technologies were presented in this work as the whole ecosystem consists of

dozens of projects.

At one place the reader gets all necessary and comprehensive introduction into the field

of Big Data and NoSQL. Although the work is meant to be read from top down, different

level of readers are free to jump right into the chapter or technology of their interests.

Continuation of this thesis could be in horizontal direction and studying the other projects

from Hadoop Ecosystem or in vertical direction, where honored reader can dig deeper in

particular technology. Author’s intention is to focus on Data Science and Machine Learning

during his further self-education.

If I dare to subjectively evaluate the results of the work, I accomplished all submission

points of the thesis and I truly believe, that also all goals I have defined in the beginning of

this work have been met.

TBU in Zlín, Faculty of Applied Informatics 138

BIBLIOGRAPHY

[1] DAY, Lance and Ian MCNEIL. Biographical Dictionary of the History of

Technology. Florence: Taylor and Francis, 2005. ISBN 978-0-203-02829-2.

[2] FITCH, Tecumseh W. The evolution of speech: a comparative review. Trends in

Cognitive Sciences. Trends in Cognitive Sciences. 2000, Vol. 4, No. 7. DOI:

10.1016/S1364-6613(00)01494-7.

[3] POWELL, Barry B. Writing : Theory and History of the Technology of Civilization.

New York: John Wiley & Sons, 2012. ISBN 978-1-118-25532-2.

[4] MAYER-SCHÖNBERGER, Viktor and Kenneth CUKIER. Big Data: A Revolution

That Will Transform How We Live, Work, and Think. Boston : Mariner Books, 2014. ISBN

978-0-544-22775-0.

[5] From Data to Wisdom: The Path of the Most Successful Investors. Value Walk.

[Online] Apr 26, 2017. [Cited: May 1, 2019]. Available from:

https://www.valuewalk.com/2017/04/data-wisdom-path-successful-investors/

[6] VISHWAKARMA, Ashish. Difference between Structured, Semi-structured and

Unstructured data. geeksforgeeks.org. [Online] [Cited: May 1, 2019]. Available from:

https://www.geeksforgeeks.org/difference-between-structured-semi-structured-and-

unstructured-data

[7] KALYVAS, James R. and Michael R. OVERLY. Big Data: A Business and Legal

Guide. Boca Raton, Florida: CRC Press, 2015. ISBN 978-1-4665-9237-7.

[8] What is the DIKW Pyramid? Ontotext. [Online] [Cited: May 1, 2019]. Available

from: https://www.ontotext.com/knowledgehub/fundamentals/dikw-pyramid/

[9] SCOTT, Jim. How to Evolve from RDBMS to NoSQL + SQL. MapR. [Online] Feb

11, 2016. [Cited: May 1, 2019]. Available from: https://mapr.com/blog/how-evolve-rdbms-

nosql-sql/

[10] CHANG, Fay, Jeffrey DEAN, Sanjay GHEMAWAT. Bigtable: A Distributed

Storage System for Structured Data. Google AI. [Online] 2006. [Cited: May 1, 2019].

Available from: https://ai.google/research/pubs/pub27898

[11] DECANDIA, Giuseppe, Deniz HASTORUN and Madan JAMPANI. Dynamo:

Amazon's Highly Available Key-Value Store. All Things Distributed. [Online] 2007.

TBU in Zlín, Faculty of Applied Informatics 139

[Cited: May 1, 2019]. Available from: http://www.allthingsdistributed.com/files/amazon-

dynamo-sosp2007.pdf

[12] NoSQL - A Relational Database Management System. [Online] [Cited: May 1,

2019]. Available from: http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/nosql

[13] SADALAGE, Pramod and Martin FOWLER. NoSQL Distilled : A Brief Guide to the

Emerging World of Polyglot Persistence. Upper Saddle River: Addison-Wesley, 2012.

ISBN 978-0-321-82662-6.

[14] YUHANNA, Noel, Gene LEGANZA and Christian AUSTIN. The Forrester

Wave™: Big Data NoSQL. MapR. [Online] Aug 17, 2016. [Cited: May 1, 2019].

Available from: http://go.mapr.com/rs/846-BMC-777/images/forrester-nosql-wave-2016-

define-your-nosql-strategy.pdf

[15] How Much Data Is Generated Per Minute. Digital Information World. [Online] 2018.

[Cited: May 1, 2019]. Available from:

https://www.digitalinformationworld.com/2018/06/infographics-data-never-sleeps-6.html

[16] Big Data: el uso de los datos para saber todo. Deusto. [Online] Oct 18, 2018. [Cited:

May 1, 2019]. Available from: https://blogs.deusto.es/master-informatica/wp-

content/uploads/2018/10/need.jpeg

[17] History of Stored Data. Gavroshe USA. [Online] [Cited: May 1, 2019]. Available

from: https://gavroshe.com/history-of-stored-data/

[18] REINSEL, David, John GANTZ and John RYDNING. Data Age 2025. The

Digitization of the World. [Online] November 2018. [Cited: May 1, 2019]. Available from:

https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-

whitepaper.pdf

[19] KLEIN, Andy. Hard Drive Cost Per Gigabyte. backblaze.com. [Online] Jul 17, 2017.

[Cited: May 1, 2019]. Available from: https://www.backblaze.com/blog/hard-drive-cost-

per-gigabyte/

[20] KOMOROWSKI, Matt. A history of storage cost. MKomo. [Online] Mar 9, 2014.

[Cited: May 1, 2019]. Available from: http://www.mkomo.com/cost-per-gigabyte-update.

[21] LANEY, Doug. 3D Data Management: Controlling Data Volume, Velocity, and

Variety. www.gartner.com. [Online] Feb 6, 2001. [Cited: May 1, 2019]. Available from:

TBU in Zlín, Faculty of Applied Informatics 140

https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-

Controlling-Data-Volume-Velocity-and-Variety.pdf

[22] Big Data: Definitions and Concepts. Big Data : Concepts, Challenges and Solutions.

[Online] [Cited: May 1, 2019]. Available from: http://bigdata-tech.blogspot.com/p/big-

data-definitions-and-concepts.html

[23] The Four V's of Big Data. IBM Big Data & Analytics Hub. [Online] [Cited: May 1,

2019]. Available from: https://www.ibmbigdatahub.com/sites/default/files/styles/xlarge-

scaled/public/infographic_image/4-Vs-of-big-data.jpg

[24] What is Big Data? BigData.black. [Online] May 21, 2016. [Cited: May 1, 2019].

Available from: http://bigdata.black/featured/what-is-big-data/

[25] Big Data Technology with 8 V´s. M Brain. [Online] [Cited: May 1, 2019]. Available

from: http://m-brain.com

[26] Big Data Visualization. Datamation. [Online] Jul 7, 2017. [Cited: May 1, 2019].

Available from: https://www.datamation.com/big-data/big-data-visualization.html

[27] WANG, R. Monday's Musings: Beyond The Three V's of Big Data - Viscosity and

Virality. Forbes. [Online] Feb 27, 2012. [Cited: May 1, 2019]. Available from:

https://www.forbes.com/sites/raywang/2012/02/27/mondays-musings-beyond-the-three-vs-

of-big-data-viscosity-and-virality

[28] PANIMALAR, Arockia, Varnekha SHREEE and Veneshia KATHERINE. The 17

V’s Of Big Data. International Research Journal of Engineering and Technology. Sep,

2017, Vol. 7, e-ISSN: 2395-0056.

[29] KDnuggets. [Online] [Cited: May 1, 2019]. Available from:

https://www.kdnuggets.com/wp-content/uploads/42-vs-2.jpg

[30] Gartner's 2014 Hype Cycle for Emerging Technologies Maps the Journey to Digital

Business. Gartner. [Online] Aug 11, 2014. [Cited: May 1, 2019]. Available from:

https://www.gartner.com/technology/pressRoom.do?id=2819918

[31] DHAR, Vasant. Data science and prediction. Communications of the ACM.

December 2013, Vol. Issue 12, Volume 56.

[32] LEEK, Jeff. The key word in "Data Science" is not Data, it is Science. Simply

Statistics. [Online] Dec 12, 2013. [Cited: May 1, 2019]. Available from:

TBU in Zlín, Faculty of Applied Informatics 141

https://simplystatistics.org/2013/12/12/the-key-word-in-data-science-is-not-data-it-is-

science/

[33] LESKOVEC, Jure, Anand RAJARAMAN and Jeffrey David ULLMAN. Mining of

Massive Datasets: Second Edition. Cambridge : Cambridge University Press, 2014. ISBN

978-1-107-07723-2.

[34] DAVENPORT Thomas H., D. J. PATIL. Data Scientist: The Sexiest Job of the 21st

Century. Harward Business Review. [Online] Oct 2012. [Cited: May 1, 2019]. Available

from: https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century.

[35] Data Science. Wikipedia. [Online] [Cited: May 1, 2019]. Available from:

https://en.wikipedia.org/wiki/Data_science

[36] What is the difference between data science, data analysis, data mining, machine

learning, AI, and big data? Quora. [Online] Nov 17, 2017. [Cited: May 1, 2019]. Available

from: https://www.quora.com/What-is-the-difference-between-data-science-data-analysis-

data-mining-machine-learning-AI-and-big-data

[37] ANDERSON, Hugo. What Data Scientists Really Do, According to 35 Data

Scientists. Harward Business Review. [Online] Aug 15, 2018. [Cited: May 1, 2019].

Available from: https://hbr.org/2018/08/what-data-scientists-really-do-according-to-35-

data-scientists

[38] Big Data, Data Analytics, Data Analysis, Data Mining, Data Science & Machine

Learning. Web Scraping. [Online] Jun 15, 2016. [Cited: May 1, 2019]. Available from:

http://scraping.pro/data-analytics-data-analysis-data-mining-data-science-machine-

learning-big-data/

[39] Data Science. Le Big Data. [Online] [Cited: May 1, 2019]. Available from:

https://lebigdata.com/en/data-science/.

[40] TIERNAY, Brendan. Data Science Is Multidisciplinary. Oralytics. [Online] Jun 13,

2012. [Cited: May 1, 2019]. Available from: https://www.oralytics.com/2012/06/data-

science-is-multidisciplinary.html

[41] Big Data Use Cases. Big Data Analytics News. [Online] [Cited: May 1, 2019].

Available from: https://bigdataanalyticsnews.com/big-data-use-cases/

TBU in Zlín, Faculty of Applied Informatics 142

[42] What’s driving the connected car. McKinsey & Company. [Online] Sep 2014. [Cited:

May 1, 2019]. Available from: https://www.mckinsey.com/industries/automotive-and-

assembly/our-insights/whats-driving-the-connected-car

[43] Just one autonomous car will use 4,000 GB of data/day. NetworkWorld from IDG.

[Online] Dec 7, 2016. [Cited: May 1, 2019]. Available from:

https://www.networkworld.com/article/3147892/one-autonomous-car-will-use-4000-gb-of-

dataday.html

[44] STOJASPAL, Jan. Telematics and the value of Big Data, part I. TU-Automotive.

[Online] Sep 26, 2013. [Cited: May 1, 2019]. Available from: https://www.tu-

auto.com/telematics-and-the-value-of-big-data-part-i/

[45] STOJASPAL, Jan. Telematics and the value of Big Data, part II. TU-Automotive.

[Online] Oct 3, 2013. [Cited: May 1, 2019]. Available from: https://www.tu-

auto.com/telematics-and-the-value-of-big-data-part-ii/

[46] GILBERT, Seth and Nancy LYNCH. Brewer's Conjecture and the Feasibility of

Consistent Available Partition-Tolerant Web Services. ACM SIGACT News. 2002, 33.

10.1145/564585.564601.

[47] HOLUBOVÁ, Irena, Jiří KOSEK, Karel MINAŘÍK and David NOVÁK. Big Data a

NoSQL databáze. Prague: Grada, 2015. ISBN 978-80-247-5466-6.

[48] KLEPPMAN, Martin. Please stop calling databases CP or AP. Martin Kleppmann.

[Online] May 11, 2015. [Cited: May 1, 2019]. Available from:

http://martin.kleppmann.com/2015/05/11/please-stop-calling-databases-cp-or-ap.html

[49] MEHRA, Akhil. Understanding the CAP Theorem. DZone. [Online] Apr 30, 2019.

[Cited: May 1, 2019]. Available from: https://dzone.com/articles/understanding-the-cap-

theorem

[50] HURST, Nathan. Visual Guide to NoSQL Systems. Nathan Hurst’s Blog. [Online]

[Cited: May 1, 2019]. Available from: http://blog.nahurst.com/visual-guide-to-nosql-

systems

[51] DB-Engines Ranking. DB-Engines. [Online] Apr 2019. [Cited: May 1, 2019].

Available from: https://db-engines.com/en/ranking

[52] Redis. [Online] [Cited: May 1, 2019]. Available from: http://redis.io

TBU in Zlín, Faculty of Applied Informatics 143

[53] DynamoDB. [Online] [Cited: May 1, 2019]. Available from:

https://aws.amazon.com/dynamodb/

[54] Memcached. [Online] [Cited: May 1, 2019]. Available from:

http://www.memcached.org/

[55] CosmosDB. [Online] [Cited: May 1, 2019]. Available from:

https://azure.microsoft.com/en-us/services/cosmos-db/

[56] Hazelcast. [Online] [Cited: May 1, 2019]. Available from: https://hazelcast.com/

[57] Ehcache. [Online] [Cited: May 1, 2019]. Available from: http://www.ehcache.org/

[58] Aeurospike. [Online] [Cited: May 1, 2019]. Available from:

https://www.aerospike.com/

[59] OrientDB. [Online] [Cited: May 1, 2019]. Available from: https://orientdb.com/

[60] Riak KV. [Online] [Cited: May 1, 2019]. Available from:

https://riak.com/products/riak-kv/

[61] Apache Ignite. [Online] [Cited: May 1, 2019]. Available from:

https://ignite.apache.org/

[62] MongoDB. [Online] [Cited: May 1, 2019]. Available from:

https://www.mongodb.com/

[63] Couchbase. [Online] [Cited: May 1, 2019]. Available from:

https://www.couchbase.com/

[64] CouchDB. [Online] [Cited: May 1, 2019]. Available from:

http://couchdb.apache.org/

[65] MarkLogic. [Online] [Cited: May 1, 2019]. Available from:

https://www.marklogic.com/

[66] Firebase. [Online] [Cited: May 1, 2019]. Available from:

https://firebase.google.com/products/realtime-database/

[67] RavenDB. [Online] [Cited: May 1, 2019]. Available from: https://ravendb.net/

[68] Google Cloud. Cloud Datastore. [Online] [Cited: May 1, 2019]. Available from:

https://cloud.google.com/datastore/

TBU in Zlín, Faculty of Applied Informatics 144

[69] Apache Cassandra. [Online] [Cited: May 1, 2019]. Available from:

http://cassandra.apache.org/

[70] Apache HBase. [Online] [Cited: May 1, 2019]. Available from:

http://hbase.apache.org/

[71] Datastax. [Online] [Cited: May 1, 2019]. Available from:

https://www.datastax.com/products/datastax-enterprise

[72] Microsoft Azure Table Storage. [Online] [Cited: May 1, 2019]. Available from:

https://azure.microsoft.com/en-us/services/storage/tables/

[73] Apache Accumulo. [Online] [Cited: May 1, 2019]. Available from:

https://accumulo.apache.org/

[74] Google Cloud. Cloud Bigtable. [Online] [Cited: May 1, 2019]. Available from:

https://cloud.google.com/bigtable/

[75] ScyllaDB. [Online] [Cited: May 1, 2019]. Available from: https://www.scylladb.com/

[76] MapR DB. [Online] [Cited: May 1, 2019]. Available from:

https://mapr.com/products/mapr-db/

[77] Alibaba Cloud Table. [Online] [Cited: May 1, 2019]. Available from:

https://www.alibabacloud.com/product/table-store

[78] Neo4J. [Online] [Cited: May 1, 2019]. Available from: https://neo4j.com/

[79] ArangoDB. [Online] [Cited: May 1, 2019]. Available from:

https://www.arangodb.com/

[80] OpenLink Virtuoso. [Online] [Cited: May 1, 2019]. Available from:

https://virtuoso.openlinksw.com/

[81] Amazon Neptun. [Online] [Cited: May 1, 2019.] Available from:

https://aws.amazon.com/neptune/.

[82] JanusGraph. [Online] [Cited: May 1, 2019.] Available from: https://janusgraph.org/

[83] Apache Giraph. [Online] [Cited: May 1, 2019]. Available from:

http://giraph.apache.org/

[84] Dgraph. [Online] [Cited: May 1, 2019]. Available from: https://dgraph.io/

TBU in Zlín, Faculty of Applied Informatics 145

[85] GraphDB. [Online] [Cited: May 1, 2019]. Available from:

http://graphdb.ontotext.com/

[86] Multi-model database. Wikipedia. [Online] [Cited: May 1, 2019]. Available from:

https://en.wikipedia.org/wiki/Multi-model_database

[87] Hadoop Ecosystem and Their Components. Data-Flair. [Online] [Cited: May 1,

2019]. Available from: https://data-flair.training

[88] GHEMAWAT, Sanjay, Howard GOBIOFF and Shun-Tak LEUNG. The Google File

System. Google Research. [Online] [Cited: May 1, 2019]. Available from:

https://research.google.com/archive/gfs-sosp2003.pdf

[89] DEAN, Jeffrey and Sanjay GHEMAVAT. MapReduce: Simplified Data Processing

on Large Clusters. Google Research. [Online] [Cited: May 1, 2019]. Available from:

https://research.google.com/archive/mapreduce-osdi04.pdf

[90] Apache Hadoop. [Online] [Cited: May 1, 2019]. Available from:

https://hadoop.apache.org/

[91] AVEN, Jeffrey. Sams teach yourself hadoop in 24 hours. Old Tappan, NJ: Pearson

Education, 2017. ISBN 978-0-672-33852-6.

[92] Apache Projects. [Online] [Cited: May 1, 2019]. Available from:

https://projects.apache.org/projects.html?category

[93] Apache Hadoop. Wikipedia. [Online] [Cited: May 1, 2019]. Available from:

https://en.wikipedia.org/wiki/Apache_Hadoop

[94] Apache Hadoop Release Versioning. Apache Hadoop. [Online] [Cited: May 1,

2019]. Available from: https://hadoop.apache.org/versioning.html

[95] MONE, Gregory. Beyond Hadoop. Communications of the ACM. 2013, Vol. Vol. 56,

No. 1.

[96] Apache Tez. [Online] [Cited: May 1, 2019]. Available from: https://tez.apache.org/

[97] Hadoop Common. Techopedia. [Online] [Cited: May 1, 2019]. Available from:

https://www.techopedia.com/definition/30427/hadoop-common

[98] The Small Files Problem. Cloudera. [Online] Feb 2, 2009. [Cited: May 1, 2019].

Available from: https://blog.cloudera.com/blog/2009/02/the-small-files-problem/

TBU in Zlín, Faculty of Applied Informatics 146

[99] Data Write Operation in HDFS. Core Java Guru. [Online] [Cited: May 1, 2019].

Available from: http://www.corejavaguru.com/bigdata/hadoop/hdfs-file-write

[100] Hadoop Data Write Operation Acknowledgement. Stack Overflow. [Online] [Cited:

May 1, 2019]. Available from: https://stackoverflow.com/questions/32038000/hadoop-2-0-

data-write-operation-acknowledgement

[101] Hadoop HDFS Data Read and Write Operations. Data Flair Training. [Online] Nov

14, 2018. [Cited: May 1, 2019]. Available from: https://data-flair.training/blogs/hadoop-

hdfs-data-read-and-write-operations/

[102] Apache Hadoop YARN – Concepts and Applications. Hortonworks. [Online] [Cited:

May 1, 2019]. Available from: https://hortonworks.com/blog/apache-hadoop-yarn-

concepts-and-applications/

[103] Hadoop MapReduce Comprehensive Description. Distributed Systems Architecture.

[Online] [Cited: May 1, 2019]. Available from: https://0x0fff.com/hadoop-mapreduce-

comprehensive-description/

[104] BAKSHI, Ashish. MapReduce Tutorial – Fundamentals of MapReduce with

MapReduce Example. Edureka. [Online] Dec 25, 2018. [Cited: May 1, 2019]. Available

from: https://www.edureka.co/blog/mapreduce-tutorial/

[105] Apache Spark. [Online] [Cited: May 1, 2019]. Avalaible from:

https://spark.apache.org/

[106] KARAU, Holden, Andy KONWINSKI, Patrick WENDELL and Matei ZAHARIA.

Learning Spark. Sebastopol: O’Reilly, 2015. ISBN 978-1-449-35862-4.

[107] LYNN, Dan. Apache Spark Cluster Managers: YARN, Mesos, or Standalone?

AgilData. [Online] Mar 15, 2016. [Cited: May 1, 2019]. Available from:

http://www.agildata.com/apache-spark-cluster-managers-yarn-mesos-or-standalone/

[108] Spark SQL, DataFrames and Datasets Guide. Apache Spark. [Online] [Cited: May 1,

2019]. Available from: https://spark.apache.org/docs/latest/sql-programming-guide.html

TBU in Zlín, Faculty of Applied Informatics 147

LIST OF ABBREVIATIONS

ACID Atomicity, Consistency, Isolation, Durability

BASE Basic Availability, Soft state, Eventual consistency

BSON Binary JSON

CAP Consistency, Availability, Partition tolerance

CRUD Create, Read, Update, Delete

DBMS Database Management System

HDFS Hadoop Distributed File System

HQL Hive SQL

IoT Internet of Things

JSON JavaScript Object Notation

NoSQL Not Only SQL

OLAP Online Analytical Processing

OLTP Online Transaction Processing

RDBMS Relational Database Management System

SQL Structure Query Language

SSH Secure Shell

XML eXtensible Markup Language

YARN Yet Another Resource Negotiator

TBU in Zlín, Faculty of Applied Informatics 148

LIST OF FIGURES

Figure 1 – The structure of the Bachelor’s thesis ... 10

Figure 2 – Knowledge Pyramid .. 14

Figure 3 – How much data is generated every minute ... 21

Figure 4 – What happens online in 60 seconds .. 21

Figure 5 – Data Volume (1800s – 2010) .. 22

Figure 6 – Data Volume (2010 – 2025) .. 22

Figure 7 – History of storage cost per gigabyte (1980-2014) 24

Figure 8 – The 3 V’s of Big Data ... 24

Figure 9 – The 4 V’s of Big Data ... 26

Figure 10 – The 5 V’s of Big Data ... 26

Figure 11 – The 8 V’s of Big Data ... 27

Figure 12 – First occurrence of V's by year .. 29

Figure 13 – Hype Cycle for Emerging Technologies, 2014 30

Figure 14 – Relations of Data Science with surrounding area 31

Figure 15 – The Fields of Data Science .. 32

Figure 16 – Data Science .. 33

Figure 17 – Data Science Is Multidisciplinary ... 34

Figure 18 – The coming flood of data in autonomous vehicles.................................. 37

Figure 19 – A Venn diagram summarizing the CAP theorem 42

Figure 20 – Example of NoSQL databases by two of CAP .. 46

Figure 21 – Apache Hadoop Ecosystem ... 55

Figure 22 – Hadoop Vendors .. 62

Figure 23 – Key Component of Hadoop ... 63

Figure 24 – Hadoop Cluster Management Console .. 75

Figure 25 – Datanodes UI ... 76

Figure 26 – Data distribution in HDFS Blocks ... 78

Figure 27 – Data distribution in HDFS across Slave Nodes 78

Figure 28 – HDFS Architecture .. 79

Figure 29 – HDFS Replication ... 80

Figure 30 – Write Pipeline Workflow .. 81

Figure 31 – YARN - How it works ... 85

Figure 32 – Detail of MapReduce process .. 87

TBU in Zlín, Faculty of Applied Informatics 149

Figure 33 – Word Count Example of MapReduce ... 88

Figure 34 – Apache Spark Architecture ... 97

Figure 35 – RDD Operations .. 99

Figure 36 – Spark UI on port 4040 ... 105

Figure 37 – Spark Shell Active Job .. 106

Figure 38 – Pig Latin Workflow ... 111

Figure 39 – HiveQL Workflow Process ... 119

Figure 40 – Apache Sqoop Import/Export .. 129

TBU in Zlín, Faculty of Applied Informatics 150

LIST OF TABLES

Table 1 – Data by their structure .. 15

Table 2 – Data by their origin ... 16

Table 3 – Example of data volume ... 20

Table 4 – The V's of Big Data .. 28

Table 5 – Examples of CP .. 47

Table 6 – Examples of AP .. 47

Table 7 – DB-Engines Ranking of Key-value stores .. 48

Table 8 – DB-Engines Ranking of Document stores .. 49

Table 9 – DB-Engines Ranking of Wide column stores ... 51

Table 10 – DB-Engines Ranking of Graph databases .. 52

Table 11 – Multi-model databases .. 53

Table 12 – Key Components of Hadoop Ecosystem .. 56

Table 13 – Timeline of Hadoop History ... 59

Table 14 – Pig Data Structures ... 113

TBU in Zlín, Faculty of Applied Informatics 151

LIST OF SOFTWARE

Software Version Released on

OS Ubuntu Server 18.04.2 LTS Bionic Feb 14, 2019

Java 8 JDK 1.8.212 Apr 16, 2019

Apache Hadoop 3.1.2 Feb 6, 2019

Apache Spark 2.4.2 Apr 23, 2019

Apache Pig 0.17.0 Jun 19, 2017

Apache Hive 3.1.1 Nov 1, 2018

Apache Sqoop 1.4.7 Jan 24, 2018

MySQL 5.7.26 Apr 25, 2019

	Contents
	Introduction 9
	Structure of Thesis 10
	Aim of Thesis 11

	I Theory 12
	1 Big Data 13
	1.1 History of data processing 13
	1.2 Knowledge Pyramid 14
	1.3 From relational databases to NoSQL 16
	1.4 Motivations to use NoSQL databases 18
	1.5 Definition of Big Data 19
	1.6 How big is Big Data 20
	1.7 The V’s of Big Data 24
	1.8 Data Science vs. Big Data vs. Data Analytics 30
	1.9 Application of Big Data 35

	2 NoSql 39
	2.1 Introduction 39
	2.2 Distribution 39
	2.3 Consistency 40
	2.4 CAP Theorem 41
	2.5 Classification of Database Management Systems 44
	2.6 Key Value Databases 48
	2.7 Document Databases 49
	2.8 Column Base Databases 50
	2.9 Graph Databases 51
	2.10 Multi-model Databases 52

	II Analysis 54
	3 Apache Hadoop Ecosystem 55
	3.1 Apache Hadoop 58
	3.2 General Data Processing 95
	3.3 Data Analytics 111
	3.4 Data Ingestion 129

	Conclusion 136
	Bibliography 138
	List of Abbreviations 147
	List of Figures 148
	List of Tables 150
	List of Software 151
	Introduction
	Structure of Thesis
	Aim of Thesis

	1 Big Data
	1.1 History of data processing
	1.2 Knowledge Pyramid
	1.3 From relational databases to NoSQL
	1.4 Motivations to use NoSQL databases
	1.5 Definition of Big Data
	1.6 How big is Big Data
	1.7 The V’s of Big Data
	1.8 Data Science vs. Big Data vs. Data Analytics
	1.9 Application of Big Data

	2 NoSql
	2.1 Introduction
	2.2 Distribution
	2.3 Consistency
	2.4 CAP Theorem
	2.5 Classification of Database Management Systems
	2.6 Key Value Databases
	2.7 Document Databases
	2.8 Column Base Databases
	2.9 Graph Databases
	2.10 Multi-model Databases

	3 Apache Hadoop Ecosystem
	3.1 Apache Hadoop
	3.1.1 Overview of History and Release Versioning
	3.1.2 Distribution
	3.1.3 Core Components
	3.1.4 Deploying Hadoop
	3.1.4.1 Java Installation
	3.1.4.2 SSH Configuration
	3.1.4.3 Hadoop Installation
	3.1.4.4 Setup Hadoop Configuration Files
	3.1.4.5 Format Namenode
	3.1.4.6 Start Hadoop Cluster
	3.1.4.7 Test Hadoop Cluster

	3.1.5 HDFS
	3.1.5.1 HDFS Architecture
	3.1.5.2 Replication
	3.1.5.3 Data Read and Write Operations in HDFS
	3.1.5.4 HDFS Command Line

	3.1.6 YARN
	3.1.7 MapReduce
	3.1.7.1 Examples of MapReduce usage

	3.1.8 Summary

	3.2 General Data Processing
	3.2.1 Apache Spark
	3.2.1.1 Spark Introduction
	3.2.1.2 Deploying Spark
	3.2.1.3 Examples of Spark usage
	3.2.1.4 Summary

	3.3 Data Analytics
	3.3.1 Apache Pig
	3.3.1.1 Pig Introduction
	3.3.1.2 Deploying Pig
	3.3.1.3 Examples of Pig usage
	3.3.1.4 Summary

	3.3.2 Apache Hive
	3.3.2.1 Hive Introduction
	3.3.2.2 Deploying Hive
	3.3.2.3 Examples of Hive usage
	3.3.2.4 Summary

	3.4 Data Ingestion
	3.4.1 Apache Sqoop
	3.4.1.1 Sqoop Introduction
	3.4.1.2 Deploying Sqoop
	3.4.1.3 Examples of Sqoop usage
	3.4.1.4 Summary

	Conclusion
	Bibliography
	List of Abbreviations
	List of Figures
	List of Tables
	List of Software

