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ABSTRAKT 

Cílem této bakalářské práce je představení technologií Big Data a jejich možné využití v 

praxi. Hlavním cílem této práce v teoretické části je poskytnout přehled v oblasti Big Data a 

NoSQL databází pro všechny začátečníky. V praktické části je detailně představen Apache 

Hadoop a projekty s ním svázané. Součástí práce jsou postupy, jak dané technologie 

nainstalovat včetně příkladů a scénářů použití. 

 

Klíčová slova: Big Data, NoSQL, CAP teorém, Apache Hadoop, HDFS, YARN, 

MapReduce, Apache Hadoop Ecosystem, Spark, Pig, Hive, Sqoop 

 

 

 

 

 

 

 

 

 

 

 

 

 

ABSTRACT 

This bachelor‘s thesis presents Big Data technologies and their possible real-world use cases 

and applications. The main goal of this thesis is to provide the first introduction to Big Data 

and NoSQL databases for newcomers. In practical part, Apache Hadoop and its surrounding 

projects are presented in detail. Integral part of this thesis is light cookbook how to install 

particular technologies itself with functional demo examples of possible use cases and 

scenarios. 

 

Keywords: Big Data, NoSQL, CAP Theorem, Apache Hadoop, HDFS, YARN, MapReduce, 

Apache Hadoop Ecosystem, Spark, Pig, Hive, Sqoop 
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Study the past if you would define the future. 

Confucius 

 

 

Scientia potentia est, sapientiae privilegium. 

[Knowledge is power, wisdom privilege.] 

Sir Francis Bacon/Roman Hanzlík 

 

 

Where is the wisdom we have lost in knowledge? 

Where is the knowledge we have lost in information? 

Thomas Stearns Eliot  
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INTRODUCTION 

Look around, and tell me what do you see? One could say “Cities, fields, mountains ... “, 

other one “Twittering of the birds, the noise of the rivers, a hastiness of people ...” and I? I 

see the data all around. Data in form of temperature, wind, humidity when I wake up and 

open the window. I see the stock market price in the morning news, when I switch the TV 

on. I see the traffic data during my commute to the office. I see the data behind the attendance 

system, once I check in. I see the data in surveillance cameras. I see the data in Twitter and 

Facebook, every time I connect. I see … I see the data everywhere. Working with data for 

almost 25 years I just DO see them. 

When I was a kid, I remember myself doing tables of ski races results and collecting them, 

in that time just collecting. When I became older, I did tables of soccer matches scores of 

most of the national leagues and try to predict next matches results. And when I left the high 

school and went to business I surrounded myself with data or better said, data just surrounded 

me. It started as a hobby and turned into passion, passion for data. Even now, when I look at 

you, I see data, I can utilize. Data are like time, they’re with us from the very beginning. 

Data flow with time like inseparable twins, they’re getting older, one faster than the other. 

One piece of data is old and useless the very next second, the other one could be valuable 

for a long time even forever. 

There were 4 milestones in the era of human which dramatically change the amount of 

data recording. First - c. 6000 BC start of using language and writing, second - Gutenberg’s 

printing press in mid of 15th century, third - 40s of 20th century invention of computers; and 

finally, fourth – Internet and surrounding technologies. At each of these evolution steps, the 

amount of data increased dramatically. The first record of data being reliably stored in a 

mechanized medium was using paper tape in 1846 by Alexander Bain – the inventor of the 

electric printing telegraph [1]. Since then, with every single year the technology innovations 

continue to accelerate the data in diverse characteristics. Not only volume, but also velocity 

and variety of data increased in last couple of years exponentially, traditional approaches are 

not able to fulfil expectation of businesses or governments, everything is getting bigger and 

faster, so the new technologies must come on board.  We are going to discuss the volume of 

the data from historical perspective deeply in further chapter.  
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Structure of Thesis 

The structure and outline of this thesis contains two parts. In the first part, the theoretical 

aspects of Big Data technologies and NoSQL databases are presented with their possible 

real-world use cases and applications. In the second, practical part, the Apache Hadoop 

Ecosystem is presented and explained in detail, with practical installation and configuration 

cookbook and demo examples how to use them. 

 

Figure 1 – The structure of the Bachelor’s thesis  
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Theoretical part initially gives an overview of the data history, information processing 

and presents factors which led to need for this new approach, continues with the definition 

of Big Data and the V’s of Big Data. Next, in the second section of theoretical part, NoSQL 

are presented together with CAP theorem, and the most popular and used NoSQL databases 

from each type such as Key-value stores, Wide-column stores, Document databases, and 

Graph databases are listed. 

The practical part starts with description of the big picture of Apache Hadoop Ecosystem, 

continues with detail presentation of Apache Hadoop itself. Main principles of Hadoop are 

described, such as a distributed storage (HDFS), a resource management (YARN) and a data 

processing (MapReduce). Step-by-step installation and configuration instructions are also 

provided as well as for other chosen technologies from surrounding ecosystem. For each 

particular technology exists a set of demo examples with the functional lines of codes to 

demonstrate usage of technology. 

Finally, in the end, the conclusion of the thesis summarizes this work. Bibliography, list 

of figures and tables and list of used software and their versions are integral part of this work. 

Aim of Thesis 

The primary aim of this thesis is to extend my current knowledge of area around 

Datawarehouse, Business Intelligence and Datamining to new emerging technologies of Big 

Data so I could in my consulting practice provide broader knowledge and deeper expertise 

to my customers. 

The next one, equally important goal of this thesis is to provide the first introduction to 

Big Data and NoSQL databases to all students at Tomas Bata University in the new course 

started 2019/2020 named “Advanced Database Systems” with light cookbook how to install 

particular technologies itself with examples of possible use cases and scenarios. 

Last but definitely not least goal is to build the technology background, so I can continue 

on top of it in Master and/or Doctoral study in the area of Data Science. 
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I.  THEORY 
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1 BIG DATA 

1.1 History of data processing 

From the very beginning (2.8 mil years ago) the Homo {„human being“} genus differs from 

all other species around. Homo evolved through Homo habilis (2.3 – 1.4 mil years ago), 

Homo erectus (1.8 mil – 30,000 years ago), Homo neanderthalensis (400,000 – 40,000 years 

ago) into a current version of us: Homo sapiens specifically Homo sapiens sapiens {„wise 

man“} (280,000 years ago until now). What differs this genus from others? Most of the 

species transfer their knowledge through learning descendant from their parents. Human is 

the one who transfers his knowledge via teaching and is a part of the other species who also 

teach their descendant differ with precision of the transfer. The next thing, and definitely the 

one what gives to human biggest advantage was a gradual ability to speak. It’s estimated that 

around 100,000 years ago Homo started using language - first basic interjection of pain or 

happiness, later nouns of things in surrounding nature and last with verb of daily activities. 

This research [2] indicates that some Homo species had the ability to produce speech sounds 

that overlap with the range of speech sounds of modern humans, and that species such as 

Neanderthals possessed genes that play a role in language of humans. Next big milestone - 

human started to record its information in form of pictures. The oldest pictures in caves are 

dated about 30,000 years ago. Next logical step (for us in these days, not in that time) was 

evolution of pictures into symbols what can be called first writing system used mostly for 

recording and later also for communication. Writing preceded first with pictogram and 

ideograms. The best-known examples are Jiahu symbols carved on tortoise shells in Jiahu 

(6600 BC), Vinča symbols sometimes called Danube script (Tărtăria tablets, c. 5300 BC). 

The invention of the first writing systems is roughly dated as of the late 4th millennium BC. 

The Sumerian cuneiform script and the Egyptian hieroglyphs are generally considered the 

earliest writing systems (c. 3400 to 3200 BC). It is generally agreed that Sumerian writing 

was an independent invention; however, it is debated whether Egyptian writing was 

developed completely independently of Sumerian or was a case of cultural diffusion. The 

similar debate exists for Chinese script developed around (1200 BC). So-called modern 

language appeared in the archaeological record only recently, with the advent of 

lexicographic writing around 5,400 years ago [3]. 

The oldest record of counting is dated from around 5000 BC, when Sumerian merchants 

used small clay beads to denote goods for trade. Counting on a larger scale, was the privilege 
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of the state, when governments for millennia have tried to keep track of their people by 

collecting information. The ancient Egyptians conducted census, as did also the Chinese. 

They’re mentioned in the Old Testament, and the New Testament tells us that a census 

imposed by Caesar Augustus — “that all the world should be taxed” (Luke 2:1) — took 

Joseph and Mary to Bethlehem, where Jesus was born [4]. 

With both these abilities (speaking and writing same language) started the Age of Data. 

Ability to express own ideas led cultures to collect information and share knowledge and 

wisdom to next generations. 

 

1.2 Knowledge Pyramid 

To understand Big Data, it’s necessary to start with defining some terms like data, 

information, and knowledge, describe their context and continuity.  

DIKW Pyramid, Knowledge Pyramid, Wisdom Hierarchy, Information Hierarchy are 

some of the names referring to the popular representation of the relationships between data, 

information, knowledge and wisdom. Each step up the pyramid graphically represented in 

Figure 2 answers the questions about the initial data and adds value to it. The more questions 

we answer, the higher we move up the pyramid. In other words, the more we enrich our data 

with meaning and context, the more knowledge and insights we get out of it. At the top of 

the pyramid, we have turned the knowledge and insights into a learning experience that 

guides our actions.  

 

Figure 2 – Knowledge Pyramid [5]  
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Data – a collection of facts in a raw or unorganized form. In informatics, text, number, 

picture, sound, or everything we can process automatically with machines are understood as 

data. However, mostly without any context, data can mean little. 

Data could be divided into different groups by several conditions like their structure, 

origin or what they are intended for. In the Table 1 is shown how data are classified by their 

structure. 

Table 1 – Data by their structure 

Group Description Example 

Structured data in predefined structure Relational data 

Semi-structured not predefined structure, can be process them easily XML 

Unstructured data with undefined internal structure PDF 

 

Structured data – are data whose elements are addressable for effective analysis or further 

processing. The data are organized into a formatted repository (typically a database). It 

concern all data which can be stored in relational database in the form of table with rows and 

columns. They have relational key and can be easily mapped into pre-designed fields. Today, 

these kind of data are most processed and easily managed information. Structured data 

represent only 5 to 10% of all informatics data. Examples of these kind of data could be: 

Meta-data (Time and date of creation, File size, Author etc.), Library Catalogues (date, 

author, place, subject etc.), Census records (birth, income, employment, place etc.), 

Economic data (rates, GDP, VAT etc.). 

Semi-structured data – are data which do not reside in a relational database but that have 

some organizational properties that make it easier to analyze. With some process, you can 

store them in the relational database, on the other hand it could be very hard for some semi-

structured data. Semi-structured data also represent only 5 to 10% of all informatics data. 

Examples of these data could be e.g. personal data stored in XML or JSON files. 

Unstructured data – are data that are not organized in a pre-defined manner or does not have 

a pre-defined data model, thus they are not a good fit for a mainstream relational database. 

This is one of the reason, why there are alternative platforms for unstructured data. These 

data increasingly prevail in IT systems and are used by organizations in a variety of business 

intelligence and analytics applications. Today, more than 80-95% of all data that exist 

globally are estimated to be unstructured data. Examples of these data could be e.g. user-

generated content from social media (e.g., Facebook, Twitter, Instagram, and Tumblr), 
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images, videos, surveillance data, sensor data, call center information, geolocation data, 

weather data, economic data, government data and reports, research, Internet search trends, 

and web log files [6] [7]. 

Another possibility how could be data distinguish is by their origin, so they’re divided 

into External/Internal, Primary/Secondary as listed in the Table 2. 

Table 2 – Data by their origin 

Group Description Example 

External Data from public sector, or external companies Government data 

Internal Data originated internally Orders, transactions 

Primary Data originated in the system Customers in CRM 

Secondary Data taken from other systems ERP sales reports 

 

Information – is the next building block of the DIKW Pyramid. These are data that have 

been “cleaned” of errors and further processed in a way that makes it easier to measure, 

visualize and analyze for a specific purpose. Depending on this purpose, data processing can 

involve different operations such as combining different sets of data (aggregation), ensuring 

that the collected data are relevant and accurate (validation), etc. By asking relevant 

questions about ‘who’, ‘what’, ‘when’, ‘where’ etc., can be derived valuable information 

from the data that could be more valuable for us [8]. 

 

Knowledge – when is placed the question of ‘how’, this is what makes the leap from 

information to knowledge. “How” are the pieces of information connected to other pieces to 

add more meaning and value to us is the ‘Knowledge’. 

 

Wisdom – is knowledge applied in action. We can also say that, if data and information are 

like a look back to the past, knowledge and wisdom are associated with what we do now and 

what we want to achieve in the future [8]. 

 

1.3 From relational databases to NoSQL 

To explain motivation for emergence of NoSQL databases, it’s necessary to go back and 

look at the traditional approach of building applications with the current mainstream usage 
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of the persistent storage. For the past 30 years, applications have been backed using an 

RDBMS (Relational Database Management System) with a predefined schema that forces 

data to conform to a schema on-write. Many people still think that they must use an RDBMS 

for applications, even though records in their data sets have no relation to one another. 

Additionally, those databases are optimized for transactional use, and data must be exported 

for analytics purposes. NoSQL technologies have turned that model on their side to deliver 

groundbreaking performance improvements [9]. 

The key impulse for emergence wider using alternative DBMS (Database Management 

System) is dynamic growth of development of global business opportunities and business 

models based on providing services and selling goods to millions of customers all around 

the world. In the last few years the source of data become data captured from devices like 

IoT (Internet of Things). With increasing data volumes and numbers of users, it is becoming 

more difficult and costly to respond to this situation by scaling vertically, by investing in 

more and more capacity of database servers. Therefore, there is a need to address this 

problem by scaling horizontally, by running hundreds to thousands of commodity servers, 

which at the same time must ensure the continued availability of services with adequate data 

consistency, consistent with the specific strategy, objectives, content and business processes 

of the enterprise. Google and Amazon were among the first companies to meet these limits 

due to their activities. Both companies have created their own scalable database systems 

based on searching data by keys. Bigtable (Google) [10] and Dynamo (Amazon) [11], 

respectively database systems described in these papers, are considered the key impulses 

that inspired and influenced the emergence and further development of NoSQL DBMS. 

Google's Bigtable database system is a scalable distributed structured data repository run on 

several thousand commodity servers. Google uses Bigtable for a variety of applications (such 

as web page indexing, Google Earth) with varying data storage requirements. Stored data 

range from individual URLs of web content to satellite imagery of Earth. 

The second of the above-mentioned companies, which came up with their own persistent 

data storage solution, based on principles different from relational DBMS and allowing 

horizontal scalability, was Amazon. In the second half of the first decade of this century, 

Amazon was in a position to run one of the largest e-commerce platforms with ten thousands 

of servers in several data centers around the world. Such infrastructure was necessarily 

associated with server downtime or, in more severe cases, whole data centers downtime. 

Even in the event of disruptions to individual servers or part of the infrastructure, it was 
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necessary to ensure the availability of services, as even the slightest outage could mean 

serious financial implications and permanently shake customers' trust. For example, it was 

necessary to ensure that customers still see items placed in the shopping cart in the event of 

any downtime. Amazon addressed these requirements by creating the Dynamo database 

system, which ensures continued availability of core services. The system worked on the 

key-value principle, extensively uses versioning of the objects. Unlike Bigtable, which 

allows applications to query multiple-attribute data, Dynamo was designed for applications 

that need simple data access based on a single key and with primary focus on a high degree 

of availability, where interruption of connection with a part of the network infrastructure or 

server failure does not reject UPDATE operations [11]. 

Soon other non-relational database systems began to emerge, generally named "NoSQL 

database". Many of them were inspired by the above mentioned Bigtable and Dynamo 

projects. For example, one of the systems is Cassandra, database developed by Facebook. 

NoSQL is not associated with any fixed definition, but the history of its origin can be 

mapped, and its current understanding is defined quite precisely. For the first time, the notion 

of NoSQL was used in the late 1990s, paradoxically as the name of a relational database for 

the UNIX operating system, which dates back to 1998 [12]. However, this act has nothing 

to do with NoSQL databases in the current concept. The new meaning of NoSQL is attributed 

to the software developer Johan Oskarsson, who held a meeting in 2009 to explore the latest 

trends in new non-relational database technologies inspired by the already mentioned 

Bigtable and Dynamo. Oskarsson tried to find a concise and easy-to-remember name for the 

upcoming event. From the suggestions sent through the #cassandra IRC channel, he chose 

the name "NoSQL", which quickly took over, not just as the name of the meeting, but even 

unintentionally as an aggregate term referring to a whole set of database systems. The vast 

majority of the professional public agree that the first two letters of the "NoSQL" acronym 

do not mean "no SQL" but a "not only SQL" definition. While there is no official definition 

of this term, it can be said that it is a group of databases with certain common attributes: a 

non-relational model, very suitable for open-source clustering, without a fixed data schema 

[13]. 

1.4 Motivations to use NoSQL databases 

NoSQL’s shared nothing architecture (distributed computing architecture in which each 

node is independent and self-sufficient (none of the nodes share memory or disk storage), 
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and there is no single point of contention across the system) makes it easy to support scale-

out architecture, whether on-premises or in the cloud, to deliver high linear scalability. 

NoSQL is suitable for a variety of scale-out applications including social network, customer 

analytical workloads, real-time reporting, embedded database applications, mobile 

applications, the internet of things (IoT), and gaming applications. 

NoSQL supports flexible data models to accommodate any type of data. Unlike relational 

databases, NoSQL can accommodate structured, semi-structured, and unstructured data to 

support new types of business applications. NoSQL offers more flexible approach in which 

the application, rather than the datastore, defines the schema and access paths. NoSQL 

supports a wide range of new data types, including textual types such as JSON as well as 

many other unstructured and semi-structured data types. 

NoSQL delivers an extreme read and write capabilities for demanding customer apps. 

Applications that demand extensive data reads and writes, often experience excessive 

latency input/output (I/O) bottlenecks, especially when the app has high volumes of both. 

NoSQL database management systems are very efficient in reading very large amounts of 

data. 

NoSQL simplifies data management for any type of application. Not only deploying 

traditional databases takes time and effort – managing them requires specialized database 

administrators (DBAs) and designing data structures can also take months. NoSQL 

accelerates deployment through automation and simplification processes, provisioning 

capabilities, and flexible data structures. When using NoSQL, application developers have 

complete control over data storage and access and don’t need a DBA to support the NoSQL 

data store. 

NoSQL lowers data management cost. Many NoSQL solutions are open source, and 

others sell for much less than a full version of a commercial relational DBMS. Compared 

with conventional DBMSs, enterprises report that NoSQL products saved them more than 

50% of the cost [14]. 

1.5 Definition of Big Data 

Back in 2013 Dan Ariely’s likened Big Data to “Big data is like teenage sex: everyone talks 

about it, nobody really knows how to do it, everyone thinks everyone else is doing it, so 

everyone claims they are doing it.” From that time many people tried to define or box this 
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new phrase, but the market is so fast and changing that we can’t still express exact definition. 

I see Big Data as area within Information Technology industry which took place to analyze, 

systematically extract information from, or otherwise deal with data sets that are too large 

or too complex to be dealt with by traditional data processing application software within 

the meaning of volume or/and time. In the early 2010s there was also a big discussion 

regarding if Big Data is next big trend, if companies should take care of it. Now almost 10 

years later I would modify Dan Ariely’s quote from 2013 to something like “Big Data is like 

university student sex: Everybody talks about it, most of them claims they are doing it 

regularly, only some of them really know how to do it. No one says he never heard about it. 

Almost everybody looking for other who has know-how and real experience with it.” 

1.6 How big is Big Data 

To have a rough estimate how big are Big Data, first look into the Table 3 for some examples 

of data volume related to metric prefixes. 

Table 3 – Example of data volume 

Unit Value Example 

kilo 103 1 000 a paragraph of a text document 

mega 106 1 000 000 a small novel 

giga 109 1 000 000 000 Beethoven’s 5th Symphony 

tera 1012 1 000 000 000 000 all the X-rays in a large hospital 

peta 1015 1 000 000 000 000 000 half of all US academic research libraries 

exa 1018 1 000 000 000 000 000 000 20% of the words ever spoken by human 

zetta 1021 1 000 000 000 000 000 000 000 grains of sand on all the world’s beaches 

 

Most of us can probably imagine size of mega or giga, maybe some of us even worked 

with data of terabytes in volume, but petabytes is for most people like 4th dimension in 

Euclidean geometry. To have a better idea, it’s necessary to look at the volume of data from 

different perspective or to cut one of the dimensions – time – to smaller scale. As you can 

see in Figure 3Figure 3 – How much data is generated every minute  and Figure 4Figure 4 – 

What happens online in 60 seconds  the amount of data generated every minute is enormous. 
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Figure 3 – How much data is generated every minute [15] 

 

 

Figure 4 – What happens online in 60 seconds [15] 
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The Figure 5 depicts the relative increase of data stored over time, together with the 

diversity and number of users creating and using data, and the variety of use cases for data. 

Complexity and cost are two other important factors that continue to increase. Therefore the 

disciplines of Big Data are taking the key role in the 21st century. 

 

Figure 5 – Data Volume (1800s – 2010) [17] 

 

To have an idea about the volume increase in long-term time horizon, see Figure 6, where 

you can see data volume in last 10 years with prediction for next 6. Any further prediction 

especially in IT sector would be just divination from a crystal ball. 

 

 

Figure 6 – Data Volume (2010 – 2025) [18] 
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Definitely we can agree that imagine the volume of data in peta or zetta bytes is like imagine 

how far nearest Black hole is. To help you with this, following example of the amount of 

data generated worldwide this year should definitely help you.  

 

Source data: 

 40 zettabytes of data generated this year = 40,000,000,000,000,000,000,000 bytes 

 stack of 100 of 3.5” floppy disks measures 13 inches (33 cm) ⇒ 0.33 cm / 1 floppy disk 

 capacity of one 3.5” floppy disk is 1.44 MB = 1,474,560 bytes 

 

Calculation: 

 # floppy disks to store all data generated this year 

40,000,000,000,000,000,000,000 bytes of data / 1,474,560 capacity of 3.55” floppy disk = 

27,126,736,111,111,111 

 stack height of all floppy disks with data 

27,126,736,111,111,111 floppy disks * 0.33 cm = 8,951,822,916,666,666 cm = 

89,518,229,166 km 

 # of stacks between Earth and Sun 

89,518,229,166 km / 14,960,000 km (distance between Earth and Sun) = 600 

 

To sum it up, all data generated this year worldwide could be stored in 600 stacks (towers) 

of 3.5” floppy disk from Earth to Sun. 

 

To complete the question „How big are Big Data“, it’s necessary to mention the key factor 

for storing the data and it’s the cost of storage. Figure 7 shows cost of 1 gigabyte of storage 

from 1980 till 2014. For the past 35+ years or so, hard drives prices have dropped, from 

around $500,000 per gigabyte in 1981 to less than $0.03 per gigabyte today. In the last 5 

years (2014-2019) the price dropdown is slowing and stabilized between $0.04 - $0.03 [19]. 
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Figure 7 – History of storage cost per gigabyte (1980-2014) [20]  

 

1.7 The V’s of Big Data 

In the context of large amounts of data, it is often referred to as so-called 3 V’s, which are 

generally recognized as characteristics of Big Data (for graphical representation of these 

characteristics please see Figure 8). These distinctive 3 V’s were defined in 2001 by Dough 

Laney, analyst in Gartner [21]. 

 

Figure 8 – The 3 V’s of Big Data [22] 
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Volume - Data Size 

The first "V" is the volume, i.e. the size of the data being processed. With the ever-increasing 

amount of data generated by modern technologies, the question of how to process these data 

so that the analysis of these data results in the most inaccurate results in the shortest possible 

time arose. Such data volume cannot be processed by traditional database tools. What size 

of data already means "Big" is not said anywhere, but this boundary is constantly shifting as 

technology evolves. 

 

Velocity - Data Rate 

The second "V" is the speed at which the data are produced. As data size increases, the speed 

of data that an organization produces, processes, or just receives increases. The ability to 

quickly receive and respond to data can be a significant competitive advantage or even a 

necessity. However, in order for an organization to respond quickly to data, fast data 

processing is necessary. For traditional database tools, it is very difficult to process 

unstructured data or structured data of large volumes, the cost of such processing and storage 

would be unbearable. In contrast, Big Data technologies allow this storage and processing 

and are designed for it. 

 

Variety - Data Diversity 

The third "V" represents the diversity of data. Data rarely come from a single source and are 

often not in a unified format. This diversity of data is a major difference from traditional 

data storage methods, where fixed-structure data are used - structured data. Structured data 

are described by their metadata, and analysis can be easily performed by using traditional 

database systems. Opposite examples are unstructured data that are neither described nor 

organized, so it is not easy to process. This type of data occurs, for example, in emails, 

documents, or social networks. However, in the case of Big Data, it is also possible to 

analyze such data from different sources and with different structures, which can be a great 

benefit to organizations. 

 

To these basic 3 V’s characteristics of Big Data some authors added later another V’s so- 

called 4 V’s / 5 V’s as is visualized in Figure 9 and Figure 10. 
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Figure 9 – The 4 V’s of Big Data [23] 

 

Veracity – Data Credibility 

Credibility is highlighted for possible poor data quality at source. This non-quality and 

unreliability of the data is then transferred to the analysis, which can result in distorted or 

non-full results. 

 

 

Figure 10 – The 5 V’s of Big Data [24] 
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Value – Data Usefulness 

The term value is often understood as the most important one, because the result of the 

analysis should bring added value and be useful for making the business more effective. 

 

Very soon there was race who will discover next V’s so the competition continued with 

other V’s, such as 8 V’s (see Figure 11). 

 

Figure 11 – The 8 V’s of Big Data [25] 

 

Visualization – Big Data visualization involves the presentation of data of almost any type 

in a graphical format that makes it easy to understand and interpret. But it goes far beyond 

typical corporate graphs, histograms and pie charts to more complex representations like 

heat maps and fever charts, enabling decision makers to explore data sets to identify 

correlations or unexpected patterns [26]. 

 

Viscosity – Viscosity measures the resistance to flow in the volume of data.  This resistance 

can come from different data sources, friction from integration flow rates, and processing 
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required to turn the data into insight.  Technologies to deal with viscosity include improved 

streaming, agile integration bus, and complex event processing [27]. 

 

Virality – Virality describes how quickly information gets dispersed across people to people 

(P2P) networks. Virality measures how quickly data are spread and shared to each unique 

node.  Time is a determinant factor along with rate of spread [27]. 

 

Table 4 – The V's of Big Data [28] 

# Characteristics Elucidation Description 

1 Volume Size of Data Quantity of collected and stored data 

2 Velocity Speed of Data The transfer rate of data between source 

and destination 

3 Variety Type of Data Different type of data like pictures, 

videos and audio arrives at the receiving 

end 

4 Veracity Data Quality Accurate analysis of captured data is 

virtually worthless if it’s not accurate 

5 Value Importance of Data It represents the business value to be 

derived from Big Data 

6 Visualization Data Act/ Data 

Process 

It is a process of representing abstract 

7 Viscosity Lag of Event It is a time difference the event occurred 

and the event being described 

8 Virality Spreading Speed It is defined as the rate at which the data 

are broadcast /spread by a user and 

received by different users for their use 

9 Variability Data Differentiation Data arrives constantly from different 

sources and how efficiently it 

differentiates between noisy data or 

important data 

10 Validity Data Authenticity Correctness or accuracy of data used to 

extract result in the form of information 

11 Vulnerability Data Security Big Data brings new security concerns. 

12 Volatility Duration of 

Usefulness 

Big Data volatility means the stored data 

and how long is useful to the user 

13 Venue Different Platform Various types of data arrived from 

different sources via different platforms 

like personnel system and private & 

public cloud 

14 Vocabulary Data Terminology Data terminology likes data model and 

data structures 
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# Characteristics Elucidation Description 

15 Vagueness Indistinctness of 

existence 

 

Vagueness concern the reality in 

information that suggested little or no 

thought about what each might convey 

16 Verbosity Data Redundancy The redundancy of the information 

available at different sources 

17 Voluntariness Data Voluntariness The will full availability of Big Data to 

be used according to the context 

18 Versatility Data Flexibility The ability of Big Data to be flexible 

enough to be used differently for 

different context 

19 Complexity Correlation of Data Data comes from different sources and it 

is necessary to figure out the changes 

whether small or large in data with 

respect to the previously arrived data so 

that information can get quickly 

 

Table 4 shows many other examples of creativity of some authors in V’s race. To close 

this race of defining more and more V’s, look at the Figure 12, where the first appearances 

of these V’s are symbolized. 

 

 

Figure 12 – First occurrence of V's by year [29] 

 



TBU in Zlín, Faculty of Applied Informatics  30 

1.8 Data Science vs. Big Data vs. Data Analytics 

For companies, data are becoming more and more available, primarily due to the cost of 

acquisition, processing and storage. The problem is not how to obtain the data, but how to 

benefit of them. Every company has now huge amount of data and it brings new challenges 

how to utilize them, how to find real value inside. That’s what will split them between 

successful and losers. 

It was interesting to watch Gartner’s Hype Cycle for Emerging Technologies for several 

last years. Big Data appeared in viewfinder of Gartner around 2010-11, in 2012-2013 

reached top of hype cycle and in 2015 surprisingly disappeared with explanation, that Big 

Data is so pervasive that it can’t really be considered an emerging technology any longer. 

But what appeared in Gartner’s Hype Cycle in 2014? The answer could be found in Figure 

13. It is a Data Science – the new area worth to follow. 

 

 

Figure 13 – Hype Cycle for Emerging Technologies, 2014 [30] 

 

As it became common, there is always no proper definition, as everybody can see it from 

different perspective, everybody add something own. There are hundreds of definitions what 
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Data Science is or could be. Definitely the best definition could be found on Wiki page where 

the term Data Science is best described. 

 

Data science is a multi-disciplinary field that uses scientific methods, processes, algorithms 

and systems to extract knowledge and insights from structured and unstructured data [31]. 

But the key word in data science is not “data”, it is “science”. Data science is only useful 

when the data are used to answer a question [32]. Data science is the same concept as Data 

mining and Big Data: "use the most powerful hardware, the most powerful programming 

systems, and the most efficient algorithms to solve problems" [33]. 

In 2012, when Harvard Business Review called it "The Sexiest Job of the 21st Century", 

[34] the term "data science" became a buzzword. It is now often used interchangeably with 

earlier concepts like business analytics, business intelligence, predictive modeling, 

and statistics. In many cases, earlier approaches and solutions are now simply rebranded as 

"data science" to be more attractive [35]. 

 

Figure 14 – Relations of Data Science with surrounding area [36] 

 

It’s very hard to explain the differences between Data Mining, Data Analytics, Data 

Analysis, Data Science and Big Data itself and how all fit together. Data Science helps in 

discovering useful information from Big Data for efficient data analysis with the help of 

https://en.wikipedia.org/wiki/Multi-disciplinary
https://en.wikipedia.org/wiki/Knowledge
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/Big_data
https://en.wikipedia.org/wiki/Harvard_Business_Review
https://en.wikipedia.org/wiki/Buzzword
https://en.wikipedia.org/wiki/Business_analytics
https://en.wikipedia.org/wiki/Business_intelligence
https://en.wikipedia.org/wiki/Predictive_modelling
https://en.wikipedia.org/wiki/Statistics
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Artificial Intelligence and Machine Learning/Data Mining algorithms. Jonathan Nolis breaks 

data science down into three components: 

(1) business intelligence, which is essentially about “taking data that the company has and 

getting it in front of the right people” in the form of dashboards and reports 

(2) decision science, which is about “taking data and using it to help a company make a 

decision” 

(3) machine learning, which is about “how can we take data science models and put them 

continuously into production.” Although many working data scientists are currently 

generalists and do all three, we are seeing distinct career paths emerging, as in the case of 

machine learning engineers [37]. 

 

 

Figure 15 – The Fields of Data Science [38] 

 

One or more pictures (Figure 14, Figure 15 and Figure 16) could say more than 100 words 

how all fit and relate together. 
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Data mining is analyzing data for the purpose of discovering unforeseen patterns or 

properties. It makes messy unstructured data into useful info. It is the computational process 

of discovering patterns in large data sets (involving Big Data abstraction) involving methods 

at the intersection of artificial intelligence, machine learning, and database systems. Data 

mining closely relates to data analysis. One can say that Data mining is data analytics 

operating on big data sets, because no small data sets would issue meaningful analytics 

insights. Data mining, shortly speaking, is the process of transforming data into useful 

information. Data mining is more rooted on the database (static, already stored data) point 

of view, whereas machine learning has been originated from a desire to make an Artificial 

Intelligence (AI). Algorithms used in Data mining: Apriori (finding associations), DBSCAN 

(finding clusters) and Decision trees. 

 

Figure 16 – Data Science [39] 

 

Data Analysis is a heuristic activity, where scanning through all the data the analyst gains 

some insight (makes useful information). Data Analysis leverages statistical methods to 

analyze aggregated or non-aggregated data. 

 

Data Analytics is about applying a mechanical or algorithmic process to find insights. For 

example, running through various data sets with a purpose of finding meaningful 
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correlation between them. This takes the use of statistics and data science tools. Analytics 

are the result of analysis and the form of presentation of the analysis results; might simply 

prediction interest. 

 

Machine Learning finds patterns in (big) data that useful for researchers and are not visible 

from human point of view. Machine Learning is not a static, hard-coded model but a self-

learning, self-adjusting model (machine learns and changes itself). Machine Learning or 

Artificial Intelligence compared to Data Mining is more on incorporating acquired 

knowledge into the framework for further (i.e. future) use in analysis. 

 

 

Figure 17 – Data Science Is Multidisciplinary [40] 

 

Data Science is a science field that includes methods and processes for operating over data. 

It’s a cluster of mathematics, statistics, programming, and ingenious ways of capturing data 

that may not be being captured right now. Data Science includes Machine Learning and other 

methods like problem formulation, exploratory data analysis, data model compiling, data 

visualization, data extraction, etc. [38]. 
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As you can see, there are many views from different perspective on Data Science, Data 

Analytics, Data Analysis, Data Mining, Machine Learning, Big Data and other popular term 

used in the industry these days. It would be beneficial to finish this subchapter with last 

picture (see Figure 17) of which all areas Data Science touch. There are so many discipline 

involve, that we have to wait few years to let it settled down. 

 

1.9 Application of Big Data 

Listing all areas where Big Data are used today would be a superhuman task. In the last 10 

years, this phenomenon has come to all areas of human activity. In the following paragraph 

are presented some of the application of Big Data technology by the industry [41]. 

Retail/Consumer 

 Merchandizing and market basket analysis 

 Campaign management and customer loyalty programs 

 Supply-chain management and analytics 

 Event- and behavior-based targeting 

 Market and consumer segmentations 

Finances & Frauds Services 

 Compliance and regulatory reporting 

 Risk analysis and management 

 Fraud detection and security analytics 

 Credit risk, scoring and analysis 

 High speed arbitrage trading 

 Trade surveillance 

 Abnormal trading pattern analysis 

Web and Digital media 

 Large-scale clickstream analytics 

 Ad targeting, analysis, forecasting and optimization 

 Abuse and click-fraud prevention 

 Social graph analysis and profile segmentation 

 Campaign management and loyalty programs 

Health & Life Sciences 

 Clinical trials data analysis 

 Disease pattern analysis 
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 Campaign and sales program optimization 

 Patient care quality and program analysis 

 Medical device and pharmacy supply-chain management 

 Drug discovery and development analysis 

Telecommunications 

 Revenue assurance and price optimization 

 Customer churn prevention 

 Campaign management and customer loyalty 

 Call detail record (CDR) analysis 

 Network performance and optimization 

 Mobile user location analysis 

Ecommerce & customer service 

 Cross-channel analytics 

 Event analytics 

 Recommendation engines using predictive analytics 

 Right offer at the right time 

 Next best offer or next best action 

 

To at least partially present Big Data in detail, use case from the automotive industry was 

chosen and are presented in following paragraphs. 

 

Automotive Industry Use Case of Big Data 

The average vehicle on today's roads generates huge amounts of data. Vehicle sensors 

monitor everything from tire pressure, engine speed to oil temperature and vehicle speed or 

position. Thus, vehicles can produce anywhere from 5 to 250 GB of data per hour. The study 

from 2014 by McKinsey states that the average connected car generates 25 GB of data per 

hour [42]. Patrick Nelson from IDG, says a self-driving car can generate up to 4 TB of data 

per day (details are depicted in Figure 18) [43]. Autonomous vehicles, such as Google, 

generate about 1 GB of data every second. The vast majority of this data are used in real 

time to check and report on vehicle functions and has no real long-term value. Taking 

thousands of messages from the sensor saying "Normal tire pressure" does not bring any 

further benefit, so car makers do not bother to store this data in the car or on servers. 

However, some data are valuable. And if such information can be gathered from a substantial 
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portion of the billions of cars in operation today, we do not need more than basic knowledge 

of arithmetic to understand why Big Data is attracting so much attention in the automotive 

sector. 

There is a great interest in collecting large data not only by OEMs (Original Equipment 

Manufacturer), but also by companies that have nothing to do with OEM production or 

delivery. These are companies that offer solutions to the surrounding ecosystem. Big Data 

opens up many other possibilities. Another example how to use large amounts of data is to 

understand how customers actually use their products. In most cars, some features are 

unnoticed while others are highly valued. With large amounts of data, the OEM has the 

opportunity to learn a lot more about how customers use the vehicle and what their 

preferences are. By analyzing data, the data collected can be used to plan and develop other 

features. 

 

 

Figure 18 – The coming flood of data in autonomous vehicles [43] 

 

It is useful for the automaker to monitor the habits of a particular customer group, the 

number of their short trips on a single day or long rides on weekends, or the frequency of 

rides in difficult winter conditions. In addition, manufacturers can begin to focus on 

additional value-added services that can target specific demographic groups within their 

customer base. 

Interesting customers can be insurance companies that want to collect a particular subset 

of car data - such as speed, driving time, braking and cornering - to find out how drivers 
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actually drive, rather than base their risk calculation on much less reliable sources like their 

age or credit status. Insurance companies are already on the market with replacement 

solutions that enable this data collection. An example of this is the AXA Drive application, 

which is able to record driver’s driving style with GPS and gyro sensors. Patiently collects 

data, records abrupt starts, passages of dangerous places, taking into account day, night, 

meteorological conditions and other details. After driving, it offers tips for improvement and 

greater safety, but how the data are utilize internally, there’s no evidence. But we can be 

sure, they can score individual drivers and offer them better insurance rate. More and more 

vehicle manufacturers are also offering insurance services through their partners, so there 

are more data seekers who can provide them with sufficient details to calculate the risk. 

Another example of how to profit from Big Data is that manufacturers can sell their data 

to third parties. For example, USPS has priced for its large data and allows organizations to 

access the National Address Change Database for $ 175,000 a year. Cisco has recently 

calculated that the financial benefits of large data for vehicle manufacturers will be close to 

$300 per vehicle per year. Most of this amount comes from lower warranty service costs and 

improved concept design. In the same analysis, it was concluded that large data would help 

drivers save $500 a year thanks to better navigation and smarter driving. 

To collect data for car manufacturers, it is now necessary to wait for the driver to arrive 

with their cars at a service whose technicians have access to the data through the on-board 

diagnostic system. But not all drivers have their cars settled regularly, for example, 15,000 

km, which means that data analysis from all the vehicles in operation is not going on in a 

continuous and proactive way, and achieving this is still a challenge. With the arrival of cars 

connected to the Internet respectively, using 5G mobile networks, car makers can have full 

access to data from the car anywhere, anytime, making the analysis of this data easier and 

more viable. But as long as these still connected cars do not make up the majority of the cars 

they operate, the big data will be rather small data [44] [45]. 



TBU in Zlín, Faculty of Applied Informatics  39 

2 NOSQL 

2.1 Introduction 

The main characteristics of NoSQL DBMS are flexible scalability, lower cost, flexible data 

structure and availability. The capacity of the cluster is much easier to expand with 

horizontal scaling (involves running multiple servers (nodes) within a cluster). In contrast 

vertical scaling, data migration or at least shutdown of the system is necessary in case of 

capacity increase. NoSQL databases are designed to allow new nodes to be easily added or 

removed as needed without shutdown. High availability can be assured by other nodes taking 

on the role of individual nodes in the event of failure or maintenance. A significant cost 

factor is the fact that commodity hardware can be used as clustered servers, which is 

significantly less expensive than large database servers. Vast majority of NoSQL databases 

are available as open source products with the option to purchase support as commercial 

services provided by third parties. Almost all NoSQL databases offer the ability to represent 

data without a fixed data schema. As mentioned above, the main reason for interest in 

NoSQL databases is the ability to run databases in clusters. Whether the database system 

will perform optimally, for example, with a large number of write operations or whether it 

will guarantee availability in the event of disruption between servers, depends on the 

distribution model be chose.  

2.2 Distribution 

NoSQL databases, also known as distributed databases, are based on the principle of data 

distribution, as the name implies. However, this does not mean that data distribution is 

necessary when using the NoSQL database. If the size of the data allows it, only a minimum 

to no data distribution can occur, what limit or eliminate the risks associated with the 

distribution. The basic model is running a database system on a single server. Even in this 

case, it may be worthwhile to use a NoSQL DBMS, if appropriate from the perspective of 

the data structure that the application is working with. The following data distribution 

techniques are used for ideal data processing. 

First distribution model is called sharding, i.e. placing different parts of data on different 

nodes. This approach is useful when different users access different parts of the data. Many 

NoSQL DBMS supports auto-sharding, where the database system itself allocates data to 
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individual nodes. Sharding is a convenient way to simultaneously increase both read and 

write performance. 

Another distribution model is master-slave replication. The data are replicated to several 

nodes, one of which is designated as a primary node (called master) and is generally 

responsible for executing data update operations. The replication mechanism then 

synchronizes the secondary nodes (called slaves) with the current data on the primary node. 

Master-slave replication is useful when a large number of read operations are performed on 

the data. Conversely, the Peer-to-Peer replication distribution model can help when data are 

written frequently. There is no primary node, all nodes have the same weight and perform 

read and write operations. Replication is performed between nodes. The downside of this 

model is the risk of data violation. This occurs when several write operations attempt to 

modify the same entry on different nodes. This problem can be solved by mutual 

coordination between nodes, but this is associated with higher network traffic intensity. In 

this case, it is not necessary to wait for the response of all nodes, but to ensure a high degree 

of consistency, their absolute majority is sufficient. The number of nodes to receive 

confirmation is called a quorum. The second possible solution is to allow the emergence of 

such conflicts of enrollment operations and to subsequently address them within the 

application in accordance with its business logic.  

2.3 Consistency  

Efficient and correct data processing requires consistency. Therefore, traditional, relational 

databases require that the data contained therein meet certain restrictive conditions, so-called 

integrity constraints. These database systems work with so-called transactions that are 

logically related operations that convert data from one consistent state to another. At the end 

of the transaction, all integrity restrictions must be met. For this reason, the following 

features are required for transactions that are referred to as ACID transaction. An important 

feature of NoSQL databases is the absence of a classic transaction approach and a different 

view of data consistency. While traditional RDBMS is based on the principle of ACID 

transactions (Atomicity, Consistency, Isolation, Durability), the principle of NoSQL 

databases is BASE (Basic Availability, Soft state, Eventual consistency). 

Atomicity - the database transaction is as an operation further indivisible (atomic). It is 

performed either as a whole or not at all (and the database system gives the user a note, e.g. 

by an error message). 
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Consistency - no integrity constraints are violated after the transaction. Database status after 

transaction completion is always consistent, i.e. valid according to all defined rules and 

restrictions. There is never a situation where the database is in an inconsistent state. 

Isolation - operations inside a transaction are hidden from external operations. Returning a 

transaction (ROLLBACK operation) does not affect another transaction, and if so, it must 

be returned. This behavior may result in a cascading rollback. 

Durability - changes made as a result of successful transactions are actually stored in the 

database and can no longer be lost. 

 

The term "Basic Availability" means if single node fails, part of the data won't be 

available, while the remaining parts of the system remain functional. "Soft state" refers to 

the fact that data may be overwritten by a newer version, which is closely related to the third 

attribute of the BASE principle - "Eventual consistency". This term means that the database 

may, under certain circumstances, be in an inconsistent state. Typically, this is where copies 

of the same data are located on several nodes within a cluster. If a user or application updates 

data on one of the servers, other copies of the data are inconsistent for a certain (usually 

short) period until the NoSQL database replication mechanism updates all copies of the data. 

Unlike ACID, BASE is not so strict and permits temporary data inconsistency to increase 

availability and performance. For BASE access, the database is also available in case of 

partial failures between nodes, or at least parts of it (e.g. in case of node failure). This results 

in temporary data inconsistency. This also occurs with delays in synchronizing changes 

between individual parts. However, if the connection is restored and the database is unloaded 

for some time, a consistent state is restored. Since it does not block writing (as opposed to 

ACID transactions), it is more responsive, even at the cost of temporary inaccuracies in 

stored data. 

2.4 CAP Theorem  

CAP theorem also known as Brewer theorem was introduced by Eric Brewer in 2000 at ACM 

Symposium on Principles of Distributed Computing and expresses a triple constraints related 

to distributed database systems. It states that a distributed database system, running on a 

cluster, can only provide two of the following three properties: 
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Consistency – a read from any node results in the same data across multiple nodes. A 

guarantee that every node in a distributed cluster returns the same, most recent data. 

Consistency refers to every client having the same view of the data. There are various types 

of consistency models. Consistency in CAP (used to prove the theorem) refers to 

linearizability or sequential consistency, a very strong form of consistency. 

Availability – a read/write request will always be acknowledged in the form of a success or 

a failure. Every non-failing node returns a response for all read and write requests in a 

reasonable amount of time. The key word here is “every”. To be available, every node on 

(either side of a network partition) must be able to respond in a reasonable amount of time. 

Partition tolerance – the database system can tolerate communication outages that split the 

cluster into multiple silos and can still service read/write requests. The system continues to 

function and upholds its consistency guarantees in spite of network partitions. Distributed 

systems guaranteeing partition tolerance can gracefully recover from partitions once the 

partition heals. 

 

Figure 19 – A Venn diagram summarizing the CAP theorem 

 

In 2002, Seth Gilbert and Nancy Lynch of MIT published a formal proof of Brewer's 

conjecture [46]. The theorem states that networked shared-data systems can only 
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guarantee/strongly support two of the three properties. The CAP theorem categorizes 

systems into three categories: 

 

CP (Consistent and Partition Tolerant) - At first glance, the CP category is confusing, i.e., a 

system that is consistent and partition tolerant but never available. CP is referring to a 

category of systems where availability is sacrificed only in the case of a network partition. 

 

CA (Consistent and Available) - CA systems are consistent and available systems in the 

absence of any network partition. Often a single node's DB servers are categorized as CA 

systems. Single node DB servers do not need to deal with partition tolerance and are thus 

considered CA systems. The only hole in this theory is that single node DB systems are not 

a network of shared data systems and thus do not fall under the preview of CAP. 

 

AP (Available and Partition Tolerant) - These are systems that are available and partition 

tolerant but cannot guarantee consistency. 

 

Figure 19 – A Venn diagram summarizing the CAP theorem shows the overlapping areas 

between Consistency, Availability and Partition tolerance. 

 

However, the CAP theorem cannot be taken literally, and its critics point out a few points 

for discussion. Above all, it is the fact that the originally used definitions are not entirely 

accurate and the particular theorem, which has been proven later, has other restrictive 

conditions. Furthermore, some properties are questionable. E.g. while the lack of consistency 

is assumed throughout the system's work, the lack of availability is only in the case of 

network disconnection, that is, sometimes only. Thus, these two conditions do not have 

symmetrical properties. Or if we understand the theorem literally, then it says that providing 

a combination of consistency conditions and resistance to network disintegration means that 

the system is not available at all after disconnection. This is, of course, a very bad feature 

[47] [48] [49]. 

 



TBU in Zlín, Faculty of Applied Informatics  44 

2.5 Classification of Database Management Systems 

Before the basic types or classification of NoSQL databases will be presented, it is necessary 

to step back and look at database classification from higher perspective and present top most 

DBMS classification from different edges. There are several criteria based on which DBMS 

are classified. 

 

Based on the data model 

Relational database - definitely most popular data model used worldwide. It is based on the 

SQL and ACID transaction paradigm (Atomicity, Consistency, Isolation, Durability). A 

relational database is a set of formally described tables from which data can be accessed or 

reassembled in many different ways without having to reorganize the database tables. The 

tables or the files with the data are called as relations that help in designating the row or 

record, and columns are referred to attributes or fields. Examples: Oracle, MySQL. 

Microsoft SQL Server. 

Object oriented database - object oriented database management systems (often referred to 

as object databases) were developed in the 1980s motivated by the common use of object-

oriented programming languages. The goal was to be able to simply store the objects in a 

database in a way that corresponds to their representation in a programming language, 

without the need of conversion or decomposition. Examples: InterSystems Caché, Versant 

Object Database, Db4o. 

Hierarchical database - in which the data are organized into a tree-like structure. The data 

are stored as records which are connected to one another through links. A record is a 

collection of fields, with each field containing only one value. The type of a record defines 

which fields the record contains. Examples: IMS (IBM), Windows registry (Microsoft). 

Network database – is a database model similar to a hierarchical database model that has 

been almost exclusively used by the database model for a long time. In addition to the 

hierarchical database model, it provides more to more relationships, so one entity could have 

more parents. However, this data concept was overcome in 1970 by the relational database 

concept. In addition, it also allows recursion, i.e. the entity can be the parent of its parent. 

The disadvantage of using a network database is its inflexibility and the resulting difficult 

change in its structure. Examples: RDM Server, Integrated Data Store (IDS). 
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Based on the number of users 

Single user - supports only one user at one point of time. It is mostly used with the personal 

computer on which the data resides accessible to a single person.  

Multiple users - supports two or more simultaneous users concurrently. Data can be both 

integrated and shared, a database should be integrated when the same information is not need 

be recorded in two places. 

 

Based on the distribution 

Centralized database system - keeps the data in one single database at one single location. 

In a centralized database system, a single machine called a database server hosts the DBMS 

and the database.  

Distributed database system – here, data and the DBMS software are distributed over several 

sites but connected to the single computer. Main difference between centralized and 

distributed database systems is, the data resides in several locations or on multiple servers at 

the same location. 

Parallel network database system - the advantage of improving processing input and output 

speeds is in use of multiple processors such as cluster server that host the DBMS. Majorly 

used in the applications that have query to larger database. It holds the multiple central 

processing units and data storage disks in parallel. 

Client-server database system - has two logical components namely client and server. Clients 

are generally the personal computers or workstations whereas servers are the large 

workstations, mini range computers or a main frame computer system. 

 

Based on other criteria 

There are many more classifications of DBMS such  

 Based on cost (Low cost, Medium cost, High cost DBMS) 

 Based on access (Sequential access, Direct access, Inverted file structure) 

 Based on usage (OLTP – Online Transaction Processing, OLAP – Online Analytical 

Processing, Big data and analytics DBMS, XML, Multimedia, GIS, Sensor, Mobile, 

Open Source .. and many others) 
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NoSQL Databases Classification 

Regarding the NoSQL databases, the classification would be possible depending on which 

two properties of the CAP theorem the particular database system primarily focuses on. For 

most NoSQL databases, there is a possibility of one of two solutions, either the database 

system favors properties CP, or prefers the properties AP. For better visualization how 

different type of NoSQL databases fit to AC, AP or CP group, please see Figure 20. 

 

 

Figure 20 – Example of NoSQL databases by two of CAP [50] 

 

According to the CAP Theorem, you can only pick two. 

 Consistency means that each client always has the same view of the data. 

 Availability means that all clients can always read and write. 

 Partition tolerance means that the system works well across physical network 

partitions. 
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CP (Consistent, Partition-Tolerant) - systems have trouble with availability while keeping 

data consistent across partitioned nodes. Examples of some of the databases belonging into 

CP systems are listed in the Table 5. 

Table 5 – Examples of CP 

Database Name Database Type 

Bigtable column-oriented/tabular 

Hypertable column-oriented/tabular 

HBase column-oriented/tabular 

MongoDB document-oriented 

Terrastore document-oriented 

Redis key-value 

Scalaris key-value 

MemcacheDB key-value 

Berkeley DB key-value 

 

AP (Available, Partition-Tolerant) - Systems achieve "eventual consistency" through 

replication and verification. Examples of some of the databases belonging into CP systems 

are listed in the Table 6. 

Table 6 – Examples of AP 

Database Name Database Type 

Dynamo key-value 

Voldemort key-value 

Tokyo Cabinet key-value 

KAI key-value 

Cassandra column-oriented/tabular 

CouchDB document-oriented 

SimpleDB document-oriented 

Riak document-oriented 

 

The next classification could be based on the method of querying. However, most NoSQL 

databases offer several ways how to query their data. 

A high-level taxonomy of the NoSQL datastores based on the data model can classify 

them into five major categories: key-value stores, document stores, wide-column (column-

oriented) stores, graph databases and multi-model databases. This classification is rather 

common and we describe each of them in more detail in following subchapters.  
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2.6 Key Value Databases  

Key value databases (stores) are the simplest form of NoSQL databases and are essentially 

hash tables. From the perspective of the application's interaction with the database system, 

Key-Value database solutions are characterized by a very straightforward way of storing and 

reading data. The client application can read the value based on a particular key, save a value 

under the key, or delete the key along with the value from the database. 

Unlike relational databases, key-value databases do not contain tables or any equivalent. 

Some database systems of this type support the creation of multiple namespaces within a 

single database. An important feature of NoSQL key-value databases, which comes from 

their very nature, is the fact that, unlike relational databases and other types of NoSQL 

databases, it is not possible to search for data according to their value. Data are always 

accessed via a key. 

The advantage of these databases is the high speed and the fact that they can be easily 

distributed. The negative of key-value database systems is that they cannot be searched for 

by stored values. 

Key-value databases are very simple, mean by their structure or operations on data. For 

all systems of this type, only three basic operations are common, which are - to insert a value 

for a given key (PUT), obtain a value for a given key (GET), and the last is to delete a key-

value pair (DELETE). Some systems of this type also allow for more complex operations, 

but this foundation is common to all and sufficient to handle data in many applications. 

Table 7 – DB-Engines Ranking of Key-value stores [51] 

Rank DBMS Database Model 

 

Score Link 

1. Redis Key-value, Multi-model 146.38 [52] 

2. Amazon DynamoDB Multi-model 56.01 [53] 

3. Memcached Key-value 28.73 [54] 

4. CosmosDB Multi-model 26.28 [55] 

5. Hazelcast Key-value 8.35 [56] 

6. Ehcache Key-value 6.49 [57] 

7. Aerospike Key-value 6.21 [58] 

8. OrientDB Multi-model 6.19 [59] 

9. Riak KV Key-value 5.70 [60] 

10. Ignite Multi-model 5.09 [61] 
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To choose the best or most used database in each category is un-human task, each of 

particular database has its pros/cons and for individual project or usage it’s necessary to 

weight them. For our purpose will be used the most recognized and reputed list of ranked 

database by their popularity from site db-engines.com (see Table 7). 

 

2.7 Document Databases  

Document databases are more complex structures than key-value databases. Databases of 

this type are suitable for storing and managing documents. The document in this case 

represent a data structure with a self-descriptive character of the data. This means that in 

addition to the data itself, the documents also contain metadata that describes the meaning 

of the data. Unlike simple key-value storage, document databases allow content-based 

searches. 

Individual documents stored in this type of database are usually encoded in XML or JSON 

formats, or binary form of JSON called BSON (Binary JSON). JSON (JavaScript Object 

Notation) is a text format for data exchange. It represents four simple data types (string, 

number, logical value, and null) and two structured types, which are object and array. 

Structured data types can include any other arbitrary type, whether simple or structured. As 

a result, JSON is a very flexible data format where almost any data can be written. 

Table 8 – DB-Engines Ranking of Document stores [51] 

Rank DBMS Database Model 

 

Score Link 

1. MongoDB Document 401.98 [62] 

2. DynamoDB Multi-model 56.01 [53] 

3. Couchbase Document 36.28 [63] 

4. Cosmos DB Multi-model 26.28 [55] 

5. CouchDB Document 20.44 [64] 

6. MarkLogic Multi-model 14.47 [65] 

7. Firebase Realtime Database Document 11.00 [66] 

8. OrientDB Multi-model 6.19 [59] 

9. RavenDB Document 4.66 [67] 

10. Google Cloud Datastore Document 4.43 [68] 

 

The key feature of document databases is the creation and use of search indexes. For 

example, MongoDB automatically creates indexes at the _id level within all collections. It 
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also allows you to create a search index on any other value, including nested values. It is 

generally recommended that each attribute that is expected to be searched for in the future 

is assigned a custom index. If the index does not exist for the selection criteria in a given 

collection, the database does a full table scan as well as in relational databases. This is 

obviously undesirable in terms of time and unnecessary extraction of the I/O operations. In 

the following Table 8 are again listed most used and popular Document Stores. 

 

2.8 Column Base Databases  

Column-oriented (column based, columnar, wide column) databases are probably the most 

complex type of NoSQL databases in terms of basic structural elements. Some of the terms 

known from relational databases, such as column and row, are commonly used for this type 

of database, but their meaning is not identical and the differences with RDBMS are explained 

below. The basic element for storing data in column-oriented databases is a column. The 

column consists of a column name and a value. Some column-based database systems, along 

with a column and value, also maintain a timestamp. The row then consists of a set of specific 

columns. Each row of one column family can contain different columns. Similar to document 

databases, column-oriented databases do not require a predefined fixed schema, and columns 

can be arbitrarily added at runtime. Thus, although the data model structure may not be pre-

designed in complete and definite form, and any columns can be added at any time while the 

application is running, the significant limitation is that the future performance and 

performance of the database depend on the high-quality and sophisticated design of the data 

model. Column-oriented databases are designed to support rows with a large number of 

columns and database systems supporting several million columns are no exception. 

Although column-oriented NoSQL databases may seem at first glance very similar to 

relational databases, they differ significantly in the data models and implementation method 

used. The most important difference is that column-oriented databases do not support JOIN 

operations. This is why data are stored in denormalized form in column-oriented databases. 

For data manipulation, they use SQL-like database-based database systems that support 

basic statements such as SELECT, INSERT, UPDATE, and DELETE, but do not contain, 

for example, any similar JOIN statement. As column-oriented databases do not use JOIN 

operations, thus have very good scalability across distributed systems and enable efficient 
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data replication. In the following Table 9 you can find most used and popular Wide Column 

Stores. 

Table 9 – DB-Engines Ranking of Wide column stores [51] 

Rank DBMS Database Model 

 

Score Link 

1. Cassandra Wide column 123.61 [69] 

2. HBase Wide column 58.66 [70] 

3. Cosmos DB Multi-model 26.28 [55] 

4. Datastax Enterprise Wide column, Multi m. 9.17 [71] 

5. Microsoft Azure Table Storage Wide column 4.50 [72] 

6. Accumulo Wide column 4.12 [73] 

7. Google Cloud Bigtable Wide column 1.81 [74] 

8. ScyllaDB Wide column 1.62 [75] 

9. MapR-DB Multi-model 0.75 [76] 

10. Alibaba Cloud Table Wide column 0.21 [77] 

 

2.9 Graph Databases 

Another type of NoSQL database, graph databases are the last of 4 basic types of NoSQL 

databases. They can be considered as a special type of NoSQL databases, suitable only for 

data with a large number of mutual links. Graph databases allow you to store entities together 

with relationships between these entities. Entities form graph nodes and have properties. 

Relationships between entities are represented by oriented edges. Relationships between 

entities can also be modeled in relational databases; a typical example could be employee-

boss relationship. The difference, however, is that if a representation of another similar 

relationship is added to the relational database, it is generally necessary to make significant 

changes to the data model. Graph databases are, unlike RDBMS, suitable for implementation 

requiring multi-level graph browsing, not just searching for links between two adjacent 

entities. Graph databases allow you to model relationships not only between domain entities, 

but also relationships that allow, for example, to sort entities into certain categories or link 

lists sorted by attributes. The number of links an entity can have is not limited in principle. 

The search for entities, i.e. graph nodes, is done by specifying the edge orientation, the 

property that the edge represents and the node from which the search should start. It is also 

possible, for example, to query the shortest path between two nodes. 

Unlike other NoSQL databases, it is very difficult to perform data scaling in graph 

databases, i.e. to disperse data representing a single graph into multiple servers. This is due 
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to the close connection of the nodes within the graph. However, data replication can be 

performed without problems, allowing better data reading performance. However, deploying 

write operations to a database located on multiple servers can be difficult. In the Table 10 

are again listed most used and popular Graph databases. 

Table 10 – DB-Engines Ranking of Graph databases [51] 

Rank DBMS Database Model 

 

Score Link 

1. Neo4J Graph 49.49 [78] 

2. Cosmos DB Multi-model 26.28 [55] 

3. OrientDB Multi-model 6.19 [59] 

4. ArangoDB Multi-model 4.29 [79] 

5. Virtuoso Multi-model 3.31 [80] 

6. Amazon Neptun Graph 1.39 [81] 

7. JanusGraph Graph 1.38 [82] 

8. Giraph Graph 1.20 [83] 

9. Dgraph Graph 1.08 [84] 

10. GraphDB Multi-model 0.97 [85] 

 

2.10 Multi-model Databases 

In recent years, an enormous amount of new NoSQL databases appeared on the market to 

address the Variety of Big Data. Most of them has been organized around a single data model 

that determines how data can be organized, stored, and manipulated. In the coming years, as 

companies began using these databases, they also began to realize that they had a different 

databases specialized for different model of data or project supported by developers with 

unique knowledge. Thus, there was a pressure on the developers of these new databases to 

embed support in their already established databases for a different type of data. So, the so-

called multi-model NoSQL databases began to appear on the market, combining the support 

of two or more types. Multi-model databases are designed to support multiple data models 

against a single, integrated backend. In these days, most of the most used NoSQL databases 

incorporated support for other data model, so it’s hard to present any list with ranked by 

popularity. Anyway, to mention some of them, among multi-model databases are generally 

considered these from the Table 11 (in alphabetic order) [86]. 
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Table 11 – Multi-model databases [86] 

Database Name Database Type 

ArangoDB document (JSON), graph, key-value 

Cosmos DB document (JSON), key-value, SQL 

Couchbase document (JSON), key-value, N1QL 

Datastax key-value, tabular, graph 

EnterpriseDB document (XML and JSON), key-value 

MarkLogic document (XML and JSON), graph triplestore, binary, SQL 

Oracle 

Database 

relational, document, graph triplestore, property graph, key-value, 

objects OrientDB document (JSON), graph, key-value, reactive, SQL 

Redis key-value, document (JSON), property graph, streaming, time-series 

SAP HANA relational, document (JSON), graph, streaming 
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II.  ANALYSIS 
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3 APACHE HADOOP ECOSYSTEM 

In practical part of this work, most popular and used technology of Big Data – Apache 

Hadoop will be presented. First, core components of Hadoop itself like HDFS and YARN 

will be introduced along with step-by-step installation and configuration instructions. 

Presentation of technology will continue with MapReduce principles and practical examples 

how to use it. In the second half of practical part, most of the significant surrounding projects 

attached to Apache Hadoop will be shortly presented, again with installation and 

configuration instructions and several examples how to use them. 

 

 

Figure 21 – Apache Hadoop Ecosystem [87] 

 

Going back to the very beginning of “Big Data”, among the triggers of all of this are 

generally considered the search engine providers in the early 2000s, especially Google and 

Yahoo (AltaVista). The search engine providers were the first group of users faced with 

Internet scale problems, mainly how to process and store indexes of all of the documents in 

the Internet universe. Yahoo and Google independently started working on projects to meet 

this challenge. In 2003, Google released a whitepaper called “The Google File System.” [88] 

Subsequently, in 2004, Google released another whitepaper called “MapReduce: Simplified 

Data Processing on Large Clusters.” [89]. At the same time at Yahoo, Doug Cutting was 

working on a web indexing project called Nutch (an open source web search engine, and a 
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part of the Lucene project). Google’s whitepapers inspired Doug Cutting to take the work he 

had done to date on the Nutch project and incorporate the storage and processing principles 

outlined in these whitepapers. By the middle of 2005 Nutch was using both MapReduce and 

HDFS and the resultant product is what is known today as Hadoop. Hadoop was born in 

2006 as an open source project under the Apache Software Foundation under Lucene project 

[90]. By the beginning of 2008, Hadoop was a top-level project at Apache and was being 

used by many companies. From that time many other open project originally or later 

supported by Apache, has hooked up Hadoop and made it a center of what is now so-called 

Hadoop Ecosystem [91]. 

Before the most important part of Hadoop Ecosystem will be explained, it’s necessary to 

understand how each part fits together. As Figure 21 shows, there are many projects or 

components associated with core Hadoop. 

Short list of key components of Hadoop Ecosystem is also presented in the Table 12 

together with their corresponding area. 

Table 12 – Key Components of Hadoop Ecosystem 

Area Project 

Distributed Storage Hadoop HDFS 

 
Resource Management Hadoop YARN 

Processing Framework Hadoop MapReduce v2, Tez, Hoys 

Data Collection/Movement Sqoop, Flume 

Management & Coordination Ambari, Zookeper, Hue 

Workflow Engine, Scheduling Oozie 

Data Serialization Avro,  

Table and Schema Management HCatalog 

Columnar Store HBase 

Scripting Pig 

SQL Query, DWH Hive 

Machine Learning Mahout, Spark MLlib, Hadoop Submarine 

Analytics, Analysis, Processing Engine Spark, Drill, Impala 

Streaming & Messaging Kafka, Storm 

Searching & Indexing SOLR, Lucene 

 

Ambari – an integrated set of Hadoop administration tools for installing, monitoring, and 

maintaining a Hadoop cluster. Also included are tools to add or remove slave nodes. 
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Avro – a framework for the efficient serialization (a kind of transformation) of data into a 

compact binary format 

Flume – a distributed service for collecting and aggregating data from almost any source 

into a data store such as HDFS or HBase 

HBase – a distributed columnar database that uses HDFS for its underlying storage. With 

HBase, you can store data in extremely large tables with variable column structures 

HCatalog – a service for providing a relational view of data stored in Hadoop, including a 

standard approach for tabular data 

Hive – a distributed data warehouse for data that is stored in HDFS; also provides a query 

language that's based on SQL (HiveQL) 

Hue – a Hadoop administration interface with handy GUI tools for browsing files, issuing 

Hive and Pig queries, and developing Oozie workflows 

Mahout – a library of machine learning statistical algorithms such a core algorithms for 

clustering, classification, and batch-based collaborative filtering that were implemented in 

MapReduce and can run natively on Hadoop 

Oozie – a workflow management tool that can handle the scheduling and chaining together 

of Hadoop applications 

Pig – a platform for the analysis of very large data sets that runs on HDFS and with an 

infrastructure layer consisting of a compiler that produces sequences of MapReduce 

programs and a language layer consisting of the query language named Pig Latin 

Spark – a fast engine for processing large-scale data. It supports Java, Scala, and Python 

applications. Because it provides primitives for in-memory cluster computing, it is 

particularly suited to machine-learning algorithms. It promises performance up to 10 to 100 

times faster than MapReduce. 

Sqoop – a tool for efficiently moving large amounts of data between relational databases 

and HDFS or Hive 

ZooKeeper – a simple interface to the centralized coordination of services (such as naming, 

configuration, and synchronization) used by distributed applications 
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To name all components or projects related to Hadoop or Hadoop Ecosystem would be 

tough work. Only Apache itself currently list 50 projects in Big Data category and next 24 

projects in Database category [92]. Each month new projects are emerging. Therefore, only 

some of the most important will be presented. 

 

3.1 Apache Hadoop 

The Apache Hadoop software library is a framework that allows for the distributed 

processing of large data sets across clusters of computers using simple programming models. 

It is designed to scale up from single servers to thousands of machines, each offering local 

computation and storage. Rather than rely on hardware to deliver high-availability, the 

library itself is designed to detect and handle failures at the application layer, so delivering 

a highly-available service on top of a cluster of computers, each of which may be prone to 

failures [90]. 

Hadoop is a data storage and processing platform, based upon a central concept of “Data 

Locality” which refers to the processing of data at its side, means bringing the computation 

to the data, rather than the typical pattern of requesting data from its location and sending 

them to a remote processing. Once the data reach the volume of “Big Data” it’s more 

efficient to “send” processing to data not vice versa.  

Hadoop enables large data sets to be processed locally on the nodes of a cluster using a 

shared nothing approach, where each node can independently process a much smaller subset 

of the entire data set without needing to communicate with one another. 

Hadoop is schemaless with respect to its write operations (known as a schema-on-read). 

This means that it can store and process a different type of data, from unstructured text 

documents, to semi-structured JSON/XML documents, to well-structured data known from 

RDBMS. On the contrary, schema-on-write systems, are system, where data are typically 

strongly typed and a schema is predefined. 

Hadoop is designed to apply principle of divide and conquer a large problem into a set of 

smaller problems and applying the concepts of data locality and shared nothing as previously 

introduced. 
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3.1.1 Overview of History and Release Versioning 

The very beginning of Hadoop was introduced at the beginning of this chapter. To remind, 

in 2002/2003 Doug Cutting and Mike Cafarella (known as co-founders of Hadoop) were 

working in company Yahoo! On web search project called Nutch. In between, in 2003, 

Google released a whitepaper called “The Google File System.” [88] Subsequently, in 2004, 

Google released another whitepaper called “MapReduce: Simplified Data Processing on 

Large Clusters.” [89] Cutting inspired by these paper incorporated these ideas into his Nutch 

project, and later in January 2006 moved the Nutch project under the Apache Foundation. 

The initial code that was factored out of Nutch consisted of about 5,000 lines of code for 

HDFS and about 6,000 lines of code for MapReduce. In the following Table 13 all significant 

Hadoop events are collected. 

Table 13 – Timeline of Hadoop History [93] 

Year Month Event 
2003 October Google File System paper released 

2004 December MapReduce: Simplified Data Processing on Large Clusters 

2006 January Hadoop subproject created with mailing lists, jira, and wiki 

2006 January Hadoop is born from Nutch 197 

2006 February NDFS+ MapReduce moved out of Apache Nutch to create Hadoop 

2006 February Owen O'Malley's first patch goes into Hadoop 

2006 February Hadoop is named after Cutting's son's yellow plush toy 

2006 April Hadoop 0.1.0 released 

2006 April Hadoop sorts 1.8 TB on 188 nodes in 47.9 hours 

2006 May Yahoo deploys 300 machine Hadoop cluster 

2006 October Yahoo Hadoop cluster reaches 600 machines 

2007 April Yahoo runs two clusters of 1,000 machines 

2007 June Only three companies on "Powered by Hadoop Page" 

2007 October First release of Hadoop that includes HBase 

2007 October Yahoo Labs creates Pig, and donates it to the ASF 

2008 January YARN JIRA opened 

2008 January 20 companies on "Powered by Hadoop Page" 

2008 February Yahoo moves its web index onto Hadoop 

2008 February Yahoo! production search index generated by a 10,000-core Hadoop cluster 

2008 March First Hadoop Summit 

2008 April Hadoop world record fastest system to sort a terabyte of data. 

2008 May Hadoop wins TeraByte Sort (World Record sortbenchmark.org) 

2008 July Hadoop wins Terabyte Sort Benchmark 

2008 October Loading 10 TB/day in Yahoo clusters 

2008 October Cloudera, Hadoop distributor is founded 

2008 November Google MapReduce implementation sorted one terabyte in 68 seconds 

2009 March Yahoo runs 17 clusters with 24,000 machines 

2009 April Hadoop sorts a petabyte 

2009 May Yahoo! used Hadoop to sort one terabyte in 62 seconds 
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Year Month Event 
2009 June Second Hadoop Summit 

2009 July Hadoop Core is renamed Hadoop Common 

2009 July MapR, Hadoop distributor founded 

2009 July HDFS now a separate subproject 

2009 July MapReduce now a separate subproject 

2010 January Kerberos support added to Hadoop 

2010 May Apache HBase Graduates 

2010 June Third Hadoop Summit 

2010 June Yahoo 4,000 nodes/70 petabytes 

2010 June Facebook 2,300 clusters/40 petabytes 

2010 September Apache Hive Graduates 

2010 September Apache Pig Graduates 

2011 January Apache Zookeeper Graduates 

2011 January Facebook, LinkedIn, eBay and IBM collectively contribute 200,000 lines of 

code 2011 March Apache Hadoop takes top prize at Media Guardian Innovation Awards 

2011 June Rob Beardon and Eric Badleschieler spin Hortonworks out of Yahoo. 

2011 June Yahoo has 42K Hadoop nodes and hundreds of petabytes of storage 

2011 June Third Annual Hadoop Summit (1,700 attendees) 

2011 October Debate over which company had contributed more to Hadoop. 

2012 January Hadoop community moves to separate from MapReduce and replace with 

YARN 2012 June San Jose Hadoop Summit (2,100 attendees) 

2012 November Apache Hadoop 1.0 Available 

2013 March Hadoop Summit – Amsterdam (500 attendees) 

2013 March YARN deployed in production at Yahoo 

2013 June San Jose Hadoop Summit (2,700 attendees) 

2013 October Apache Hadoop 2.2 Available 

2014 February Apache Hadoop 2.3 Available 

2014 February Apache Spark top Level Apache Project 

2014 April Hadoop summit Amsterdam (750 attendees) 

2014 June Apache Hadoop 2.4 Available 

2014 June San Jose Hadoop Summit (3,200 attendees) 

2014 August Apache Hadoop 2.5 Available 

2014 November Apache Hadoop 2.6 Available 

2015 April Hadoop Summit Europe 

2015 June Apache Hadoop 2.7 Available 

2017 March Apache Hadoop 2.8 Available 

2017 November Apache Hadoop 2.9 Available 

2017 December Apache Hadoop 3.0 Available 

2018 April Apache Hadoop 3.1 Available 

2018 September 15 Apache Hadoop 2.8.5 Available 

2018 November 19 Apache Hadoop 2.9.2 Available 

2019 January 16 Apache Hadoop 3.2 Available 

2019 February 6 Apache Hadoop 3.1.2 Available 

 

During last almost two decades Hadoop made a great journey as you can see on its 

timeline in Table 13. If you focus on last five rows of previous table, there could be seen 
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“deflection” of rule. It’s necessary to mention how Hadoop is releasing its versions. Hadoop 

Community is actively maintaining two stable release lines in each major release line. 

Apache Hadoop uses a version format of <major>.<minor>.<maintenance>, where each 

version component is a numeric value. Versions can also have additional suffixes like ”-

alpha1” or ”-beta2”, which denote the API compatibility guarantees and quality of the 

release. Major versions are used to introduce substantial, potentially incompatible, changes. 

Examples of this include the replacement of MapReduce 1 with YARN & MapReduce 2 in 

Hadoop 2, and the required Java runtime version from JDK7 to JDK8 in Hadoop 3. Minor 

versions are used to introduce new compatible features within a major release line. 

Maintenance releases include bug fixes or low-risk supportability changes. Hadoop’s 

versioning scheme has evolved over the years, but from 2.7/2.8 was re-introduced parallel 

active release lines to Hadoop. With major release 3, four active release lines are maintained 

[94]. 

3.1.2 Distribution 

Although Hadoop is an open source project there are many commercial vendors who supply 

commercial distributions, support, management utilities and more. Figure 22 depicts rough 

estimate of market share. Generally all vendors can be divided into two parts defined by how 

much the Hadoop is core business for them. First groups of providers could be referred as 

“pure play” Hadoop vendors. Their business model is base pure on Hadoop. In 2008, the 

first commercial vendor, Cloudera, was formed by engineers from Google, Yahoo!, and 

Facebook. Later in 2009, MapR was founded as a company delivering a “Hadoop-derived” 

software solution implementing a custom adaptation of the Hadoop filesystem (called 

MapRFS) with Hadoop API compatibility. In 2011, Hortonworks was spun off from Yahoo! 

as a Hadoop vendor providing a distribution called HDP (Hortonworks Data Platform). Last, 

fresh news from fall of 2018 happened in this field, when Cloudera and Hortonworks 

announced the join of both companies and continue under the Cloudera name. Another group 

of Hadoop vendors are mostly big IT companies like Amazon, IBM, Microsoft and others 

who offer Hadoop distribution mostly as part of their cloud solutions. 
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Figure 22 – Hadoop Vendors [95] 

 

3.1.3 Core Components 

Hadoop has two core components: Hadoop Distributed File System (HDFS) and YARN 

(which stands for Yet Another Resource Negotiator). HDFS is Hadoop’s storage subsystem, 

whereas YARN can be thought of as Hadoop’s process scheduling subsystem (see Figure 

23). Next key component is Hadoop Common, the common utilities that support the other 

Hadoop modules. Historically, from version 1.0 the next component is Hadoop MapReduce, 

currently in version 2. However, there are new distributed computation models trying to 

improve MapReduce such Tez [96], that’s why the MapReduce is not considered as key part 

of Hadoop anymore. Lastly, next two project Hadoop Ozone (an object store for Hadoop) 

and Hadoop Submarine (a machine learning engine for Hadoop) was taken under umbrella 

of Hadoop project, but again it is not what makes Hadoop “The Hadoop”. 
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Each component (HDFS and YARN) is independent of one another and can operate 

independently in its own cluster, but when they are co-located with one another, the 

combination of both systems is considered to be a Hadoop cluster. 

 

 

Figure 23 – Key Component of Hadoop 

 

Hadoop Common 

Hadoop Common (previously known as Hadoop Core) is one of key modules of Hadoop and 

refers to the collection of common utilities and libraries that support other Hadoop modules. 

It is an essential part or module of the Apache Hadoop Framework, along with the Hadoop 

Distributed File System (HDFS), Hadoop YARN and Hadoop MapReduce. The Hadoop 

Common package is considered as the base/core of the framework as it provides essential 

services and basic processes such as abstraction of the underlying operating system and its 

file system. Hadoop Common also contains the necessary Java Archive (JAR) files and 

scripts required to start Hadoop. The Hadoop Common package also provides source code 

and documentation [97]. 

3.1.4 Deploying Hadoop 

Generally, on premise Hadoop deployment can be done in three modes: 

 Standalone mode on Single Node Cluster 

 Pseudo distributed mode on Single Node Cluster 

 Distributed mode on Multi Node Cluster 

In this chapter, due to the limited processing power, the Pseudo distributed mode will be 

presented. 
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The Hadoop project, although cross-platform in principle, was originally targeted at 

Linux. However, now is also available on Windows platform, Hadoop will be presented on 

Linux with latest available versions in time of writing this thesis (April 2019) as other 

product from Hadoop Ecosystem has known issues with non-Linux operating system. These 

versions of installed software are used: 

 Ubuntu Server – 18.04.2 LTS Bionic 

 Java 8 – JDK 1.8.212 

 Apache Hadoop – 3.1.2 

 

Conventions 

These styles of code snippets are used in following paragraphs: 

# linux commands and parameters or configuration snippets 

 

roman@hadoop-00:~$ command and parameters  
with console output snippets 

 
public class JavaOrPythonOrScalaCode { 
  public static void main(String[] args) throws Exception { 

 

Apache Hadoop Installation Steps 

Installation of Hadoop system consists of several steps. Here is a quick summary, and further 

each step is explained with commands/configuration and typical outputs of console. 

1) Java Installation 

2) SSH Configuration 

3) Hadoop Installation 

4) Setup Hadoop Configuration Files 

5) Format Namenode 

6) Start Hadoop Cluster 

7) Test Hadoop Cluster 

 

Now it’s time to start with first prerequisite, and it is Java installation. 
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3.1.4.1 Java Installation 

It’s expected that clean installation of Ubuntu Server has been performed. Java is the primary 

requirement for running Hadoop on any system, so first is necessary to install Java on host 

server. 

1) Install Java using apt command: 

# sudo apt install openjdk-8-jdk 

 

roman@hadoop-00:~$ sudo apt install openjdk-8-jdk 
Reading package lists... Done 
Building dependency tree 
Reading state information... Done 
The following additional packages will be installed: 
  adwaita-icon-theme at-spi2-core ca-certificates-java ... 
... 
ovide /usr/bin/jconsole (jconsole) in auto mode 
Processing triggers for libc-bin (2.27-3ubuntu1) ... 
Processing triggers for ureadahead (0.100.0-21) ... 
Processing triggers for systemd (237-3ubuntu10.21) ... 
Processing triggers for libgdk-pixbuf2.0-0:amd64 (2.36.11-2) ... 
roman@hadoop-00:~$ 

 

2) After installation, to verify the java has been successfully configured, run the following 

commands: 

# update-alternatives --display java 
# update-alternatives --display javac 

 

roman@hadoop-00:~$ update-alternatives --display java 
java - auto mode 
  link best version is /usr/lib/jvm/java-8-openjdk-amd64/jre/bin/java 
  link currently points to /usr/lib/jvm/java-8-openjdk-amd64/jre/bin/java 
  link java is /usr/bin/java 
  slave java.1.gz is /usr/share/man/man1/java.1.gz 
/usr/lib/jvm/java-8-openjdk-amd64/jre/bin/java - priority 1081 
  slave java.1.gz: /usr/lib/jvm/java-8-openjdk-amd64/jre/man/man1/java.1.gz 
roman@hadoop-00:~$ update-alternatives --display javac 
javac - auto mode 
  link best version is /usr/lib/jvm/java-8-openjdk-amd64/bin/javac 
  link currently points to /usr/lib/jvm/java-8-openjdk-amd64/bin/javac 
  link javac is /usr/bin/javac 
  slave javac.1.gz is /usr/share/man/man1/javac.1.gz 
/usr/lib/jvm/java-8-openjdk-amd64/bin/javac - priority 1081 
  slave javac.1.gz: /usr/lib/jvm/java-8-openjdk-amd64/man/man1/javac.1.gz 
roman@hadoop-00:~$ 
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3.1.4.2 SSH Configuration 

SSH (Secure SHELL) is an open source and most trusted network protocol that is used to 

login into remote servers for execution of commands and programs. It is also used to transfer 

files from one computer to another computer over the network using secure copy (SCP) 

Protocol. SSH is required in Hadoop to manage its nodes, i.e. remote machines and local 

machine, if you want to use Hadoop on it. Using Password-less login with SSH keys will 

increase the trust between two Linux servers for easy file synchronization or transfer. 

 

1) Installation 

If SSH-Server and SSH-Client wasn’t installed in time of operating system installation, it’s 

necessary to install now: 

# sudo apt-get install openssh-server openssh-client 

 

2) Generate Key Pairs 

Next step is to generate Public and Private Key Pairs with the following command. 

# ssh-keygen -t rsa -P '' -f ~/.ssh/id_rsa 

 

roman@hadoop-00:~$ ssh-keygen -t rsa -P '' -f ~/.ssh/id_rsa 
Generating public/private rsa key pair. 
Created directory '/home/roman/.ssh'. 
Your identification has been saved in /home/roman/.ssh/id_rsa. 
Your public key has been saved in /home/roman/.ssh/id_rsa.pub. 
The key fingerprint is: 
SHA256:ejJz4npkYQBtMm4BekNIzzdf25MUd4AclCF9o54mKEA roman@hadoop-00 
The key's randomart image is: 
+---[RSA 2048]----+ 
|o+oo     .+==o.. | 
|o.*E+     .=oo.  | 
|..+B +   . .o .  | 
| .oo. = . +..    | 
| .  .. oS..+.    | 
|     .oo . +.    | 
|     oB o o      | 
|     ..B         | 
|    .o.          | 
+----[SHA256]-----+ 
roman@hadoop-00:~$ 

 

3) Configure passwordless ssh 

# cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys 

 

roman@hadoop-00:~$ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys 
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4) Change the permission of file that contains the key 

# chmod 0600 ~/.ssh/authorized_keys 

 

roman@hadoop-00:~$ chmod 0600 ~/.ssh/authorized_keys 

 

5) Verification of SSH 

Final step is to verify key based login. Below command should not ask for the password but 

the first time it will prompt for adding RSA to the list of known hosts. 

# ssh localhost 

 

roman@hadoop-00:~$ ssh localhost 
The authenticity of host 'localhost (::1)' can't be established. 
ECDSA key fingerprint is SHA256:XHFMf57ZqtXaEyPc5YOFnJKiuFVENxZwo0y46kDXkpE. 
Are you sure you want to continue connecting (yes/no)? yes 
Warning: Permanently added 'localhost' (ECDSA) to the list of known hosts. 
Welcome to Ubuntu 18.04.2 LTS (GNU/Linux 4.15.0-47-generic x86_64) 
 
  System load:  0.0               Processes:             91 
  Usage of /:   44.3% of 9.78GB   Users logged in:       1 
  Memory usage: 10%               IP address for enp0s3: 10.0.2.15 
  Swap usage:   0% 
 
0 packages can be updated. 
0 updates are security updates. 
 
roman@hadoop-00:~$ exit 
logout 
Connection to localhost closed. 
roman@hadoop-00:~$ ssh localhost 
Welcome to Ubuntu 18.04.2 LTS (GNU/Linux 4.15.0-47-generic x86_64) 
 
  System load:  0.02              Processes:             91 
  Usage of /:   44.3% of 9.78GB   Users logged in:       1 
  Memory usage: 10%               IP address for enp0s3: 10.0.2.15 
  Swap usage:   0% 
 
0 packages can be updated. 
0 updates are security updates. 
 
roman@hadoop-00:~$ 

 

3.1.4.3 Hadoop Installation 

However Hadoop can run under root or other user with some root privileges, it’s strictly 

recommended to create special user just for Hadoop. 

# sudo groupadd hadoopgrp 
# sudo adduser -ingroup hadoopgrp hadoop 
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In next step, download installation file (under hadoop user): 

#  wget http://hadoop.bistaff.eu/hadoop-3.1.2.tar.gz 

 

hadoop@hadoop-00:~$ wget http://hadoop.bistaff.eu/hadoop-3.1.2.tar.gz 
--2019-04-23 18:30:43--  http://hadoop.bistaff.eu/hadoop-3.1.2.tar.gz 
Resolving hadoop.bistaff.eu (hadoop.bistaff.eu)... 217.11.249.141, 
2001:1528:240::1f 
Connecting to hadoop.bistaff.eu (hadoop.bistaff.eu)|217.11.249.141|:80... 
connected. 
HTTP request sent, awaiting response... 200 OK 
Length: 332433589 (317M) [application/x-gzip] 
Saving to: ‘hadoop-3.1.2.tar.gz’ 
 
hadoop-3.1.2.tar.gz 100%[===================>] 317.03M  40.9MB/s    in 7.8s 
 
2019-04-23 18:30:51 (40.7 MB/s) - ‘hadoop-3.1.2.tar.gz’ saved 
[332433589/332433589] 
 
hadoop@hadoop-00:~$ 

 

Extract the installation file. 

#  tar -xzvf hadoop-3.1.2.tar.gz 

 

Setting up the environment variables. Add these configuration lines into .bashrc. 

export HADOOP_HOME=/home/hadoop/hadoop-3.1.2 
export HADOOP_INSTALL=$HADOOP_HOME 
export HADOOP_MAPRED_HOME=$HADOOP_HOME 
export HADOOP_COMMON_HOME=$HADOOP_HOME 
export HADOOP_HDFS_HOME=$HADOOP_HOME 
export YARN_HOME=$HADOOP_HOME 
export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native 
export PATH=$PATH:$HADOOP_HOME/sbin:$HADOOP_HOME/bin 
export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib/native" 

 

And source the .bashrc in current login session for immediate applying changes previously 

done. 

#  source ~/.bashrc 

 

Edit the $HADOOP_HOME/etc/hadoop/hadoop-env.sh file inside the Hadoop installation 

directory 

export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64 
export HADOOP_CONF_DIR=${HADOOP_CONF_DIR:-"/home/hadoop/hadoop-
3.1.2/etc/hadoop"} 
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3.1.4.4 Setup Hadoop Configuration Files 

Hadoop has many of configuration files, which need to configure as per requirements of 

your Hadoop infrastructure. Start with the configuration with basic Hadoop single node 

cluster setup. 

core-site.xml 

Edit $HADOOP_HOME/etc/hadoop/core-site.xml 

<configuration> 
  <property> 
    <name>fs.defaultFS</name> 
    <value>hdfs://localhost:9000</value> 
  </property> 
  <property> 
    <name>hadoop.tmp.dir</name> 
    <value>/home/hadoop/hadooptmpdata</value> 
  </property> 
</configuration> 

 

In addition, create the directory under hadoop home folder. 

# mkdir hadooptmpdata 

 

hdfs-site.xml 

Edit $HADOOP_HOME/etc/hadoop/hdfs-site.xml 

<configuration> 
  <property> 
    <name>dfs.replication</name> 
    <value>1</value> 
    <name>dfs.name.dir</name> 
    <value>file:///home/hadoop/hdfs/namenode</value> 
    <name>dfs.data.dir</name> 
    <value>file:///home/hadoop/hdfs/datanode</value> 
  </property> 
</configuration> 

 

In addition, create the directory under hadoop home folder. 

# mkdir -p hdfs/namenode 
# mkdir -p hdfs/datanode 
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mapred-site.xml 

Edit $HADOOP_HOME/etc/hadoop/mapred-site.xml 

<configuration> 
  <property> 
    <name>mapreduce.framework.name</name> 
    <value>yarn</value> 
  </property> 
 
  <!-- add after pi test --> 
  <property> 
    <name>yarn.app.mapreduce.am.env</name> 
    <value>HADOOP_MAPRED_HOME=${HADOOP_HOME}</value> 
  </property> 
  <property> 
    <name>mapreduce.map.env</name> 
    <value>HADOOP_MAPRED_HOME=${HADOOP_HOME}</value> 
  </property> 
  <property> 
    <name>mapreduce.reduce.env</name> 
    <value>HADOOP_MAPRED_HOME=${HADOOP_HOME}</value> 
  </property> 
</configuration> 

 

yarn-site.xml 

Edit $HADOOP_HOME/etc/hadoop/yarn-site.xml 

<configuration> 
  <property> 
    <name>yarn.nodemanager.aux-services</name> 
    <value>mapreduce_shuffle</value> 
  </property> 
  <property> 
    <name>yarn.nodemanager.vmem-check-enabled</name> 
    <value>false</value> 
  </property> 
</configuration> 

 

3.1.4.5 Format Namenode 

Namenode is the node in the Hadoop Distributed File System which keeps track of all the 

data stored in the Datanode. Namenode has metadata related to the data stored on the 

Datanodes and has information related to the location of the data stored. So, when you run 

the hadoop namenode –format command, all these information is deleted from the namenode 

which means that the system does not know where the data are stored hence losing all data 

stored in the Hadoop File System.  
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The purpose of formatting the HDFS file system is to create the necessary directory and 

file structure for further storing data used by MapReduce, especially metadata, temporary 

data, source data, and result data. The formatting of the HDFS file system itself does not 

disturb the operating system's file system, because it is built on top of it - it is just a logical 

file system at the application level, not at the operating system or hardware level. 

Format the namenode before using it for the first time! 

# hdfs namenode -format 

 

hadoop@hadoop-00:~/hadoop-3.1.2$ hdfs namenode -format 
WARNING: /home/hadoop/hadoop-3.1.2/logs does not exist. Creating. 
2019-04-23 19:29:06,500 INFO namenode.NameNode: STARTUP_MSG: 
/************************************************************ 
STARTUP_MSG: Starting NameNode 
STARTUP_MSG:   host = hadoop-00/10.0.2.15 
STARTUP_MSG:   args = [-format] 
STARTUP_MSG:   version = 3.1.2 
STARTUP_MSG:   classpath = /home/hadoop/hadoop-
3.1.2/etc/hadoop:/home/hadoop/hadoop-3.1.2... 
STARTUP_MSG:   build = https://github.com/apache/hadoop.git -r 
1019dde65bcf12e05ef48ac71e... 
STARTUP_MSG:   java = 1.8.0_191 
************************************************************/ 
2019-04-23 19:29:06,521 INFO namenode.NameNode: registered UNIX signal 
handlers for [TERM, HUP, INT] 
2019-04-23 19:29:06,733 INFO namenode.NameNode: createNameNode [-format] 
Formatting using clusterid: CID-0040c95e-4e8b-4570-9cd5-b455f2c5c5bd 
2019-04-23 19:29:07,776 INFO namenode.FSEditLog: Edit logging is async:true 
2019-04-23 19:29:07,817 INFO namenode.FSNamesystem: KeyProvider: null 
2019-04-23 19:29:07,819 INFO namenode.FSNamesystem: fsLock is fair: true 
2019-04-23 19:29:07,821 INFO namenode.FSNamesystem: Detailed lock hold time 
metrics enabled: false 
2019-04-23 19:29:07,828 INFO namenode.FSNamesystem: fsOwner             = 
hadoop (auth:SIMPLE) 
2019-04-23 19:29:07,829 INFO namenode.FSNamesystem: supergroup          = 
supergroup 
2019-04-23 19:29:07,829 INFO namenode.FSNamesystem: isPermissionEnabled = true 
... 
2019-04-23 19:29:07,982 INFO blockmanagement.BlockManagerSafeMode: 
dfs.namenode.safemode.threshold-pct = 0.9990000128746033 
2019-04-23 19:29:07,982 INFO blockmanagement.BlockManagerSafeMode: 
dfs.namenode.safemode.min.datanodes = 0 
2019-04-23 19:29:07,982 INFO blockmanagement.BlockManagerSafeMode: 
dfs.namenode.safemode.extension = 30000 
2019-04-23 19:29:07,983 INFO blockmanagement.BlockManager: defaultReplication         
= 3 
2019-04-23 19:29:07,983 INFO blockmanagement.BlockManager: maxReplication             
= 512 
2019-04-23 19:29:07,984 INFO blockmanagement.BlockManager: minReplication             
= 1 
2019-04-23 19:29:07,984 INFO blockmanagement.BlockManager: 
maxReplicationStreams      = 2 
2019-04-23 19:29:07,984 INFO blockmanagement.BlockManager: 
redundancyRecheckInterval  = 3000ms 
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2019-04-23 19:29:07,985 INFO blockmanagement.BlockManager: encryptDataTransfer        
= false 
2019-04-23 19:29:07,985 INFO blockmanagement.BlockManager: maxNumBlocksToLog          
= 1000 
... 
2019-04-23 19:29:08,401 INFO namenode.NameNode: SHUTDOWN_MSG: 
/************************************************************ 
SHUTDOWN_MSG: Shutting down NameNode at hadoop-00/10.0.2.15 
************************************************************/ 
hadoop@hadoop-00:~/hadoop-3.1.2$ 

 

3.1.4.6 Start Hadoop Cluster 

Once the Namenode has been formatted then start the HDFS using the start-dfs.sh script. 

# start-dfs.sh 

 

In case of error “Permission denied (publickey, password).” regenerate ssh keys for 

password-less authentication. 

# ssh-keygen -t rsa -P '' -f ~/.ssh/id_rsa 
# cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys 

 

Otherwise you should get output similar to this one: 

hadoop@hadoop-00:~/hadoop-3.1.2$ start-dfs.sh 
Starting namenodes on [localhost] 
Starting datanodes 
Starting secondary namenodes [hadoop-00] 
hadoop@hadoop-00:~/hadoop-3.1.2$ 

 

You can check successful start of HDFS with jps command and output should contains 

NameNode, DataNode and SecondaryNameNode. 

# jps 

 

hadoop@hadoop-00:~$ jps 
2807 Jps 
2258 NameNode 
2426 DataNode 
2683 SecondaryNameNode 
hadoop@hadoop-00:~$ 

 

Similarly start YARN. 

# start-yarn.sh 
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hadoop@hadoop-00:~/hadoop-3.1.2$ start-yarn.sh 
Starting resourcemanager 
Starting nodemanagers 
hadoop@hadoop-00:~/hadoop-3.1.2$ 

 

Output of check if YARN was successfully started should contains: NodeManager and 

ResourceManager. 

3.1.4.7 Test Hadoop Cluster 

Now it’s possible to test first MapReduce job and confirm that Hadoop is working properly. 

Run this command included in with the Hadoop release. 

#  bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.2.jar 
pi 8 10000 

 

hadoop@hadoop-00:~/hadoop-3.1.2$ bin/hadoop jar share/hadoop/mapreduce/hadoop-
mapreduce-examples-3.1.2.jar pi 24 1000 
Number of Maps  = 24 
Samples per Map = 1000 
Wrote input for Map #0 
Wrote input for Map #1 
Wrote input for Map #2 
...[skipped some lines]... 
Wrote input for Map #22 
Wrote input for Map #23 
Starting Job 
2019-04-24 16:23:03,541 INFO client.RMProxy: Connecting to ResourceManager at 
/0.0.0.0:8032 
2019-04-24 16:23:04,013 INFO mapreduce.JobResourceUploader: Disabling Erasure 
Coding for path: /tmp/hadoop-
yarn/staging/hadoop/.staging/job_1556122862873_0002 
2019-04-24 16:23:04,289 INFO input.FileInputFormat: Total input files to 
process : 24 
2019-04-24 16:23:04,437 INFO mapreduce.JobSubmitter: number of splits:24 
2019-04-24 16:23:04,794 INFO mapreduce.JobSubmitter: Submitting tokens for 
job: job_1556122862873_0002 
2019-04-24 16:23:04,796 INFO mapreduce.JobSubmitter: Executing with tokens: [] 
2019-04-24 16:23:05,191 INFO conf.Configuration: resource-types.xml not found 
2019-04-24 16:23:05,193 INFO resource.ResourceUtils: Unable to find 'resource-
types.xml'. 
2019-04-24 16:23:05,300 INFO impl.YarnClientImpl: Submitted application 
application_1556122862873_0002 
2019-04-24 16:23:05,382 INFO mapreduce.Job: The url to track the job: 
http://hadoop-00:8088/proxy/application_1556122862873_0002/ 
2019-04-24 16:23:05,385 INFO mapreduce.Job: Running job: 
job_1556122862873_0002 
2019-04-24 16:23:16,776 INFO mapreduce.Job: Job job_1556122862873_0002 running 
in uber mode : false 
2019-04-24 16:23:16,789 INFO mapreduce.Job:  map 0% reduce 0% 
2019-04-24 16:23:51,182 INFO mapreduce.Job:  map 4% reduce 0% 
2019-04-24 16:23:52,270 INFO mapreduce.Job:  map 25% reduce 0% 
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2019-04-24 16:24:25,508 INFO mapreduce.Job:  map 46% reduce 0% 
2019-04-24 16:24:34,562 INFO mapreduce.Job:  map 46% reduce 15% 
2019-04-24 16:24:53,705 INFO mapreduce.Job:  map 63% reduce 15% 
2019-04-24 16:24:54,713 INFO mapreduce.Job:  map 67% reduce 15% 
2019-04-24 16:24:59,738 INFO mapreduce.Job:  map 67% reduce 22% 
2019-04-24 16:25:22,879 INFO mapreduce.Job:  map 88% reduce 22% 
2019-04-24 16:25:23,893 INFO mapreduce.Job:  map 88% reduce 29% 
2019-04-24 16:25:39,986 INFO mapreduce.Job:  map 100% reduce 29% 
2019-04-24 16:25:40,990 INFO mapreduce.Job:  map 100% reduce 100% 
2019-04-24 16:25:42,030 INFO mapreduce.Job: Job job_1556122862873_0002 
completed successfully 
2019-04-24 16:25:42,154 INFO mapreduce.Job: Counters: 53 
        File System Counters 
                FILE: Number of bytes read=534 
                FILE: Number of bytes written=5410465 
                FILE: Number of read operations=0 
                FILE: Number of large read operations=0 
                FILE: Number of write operations=0 
                HDFS: Number of bytes read=6374 
                HDFS: Number of bytes written=215 
                HDFS: Number of read operations=101 
                HDFS: Number of large read operations=0 
                HDFS: Number of write operations=3 
        Job Counters 
                Launched map tasks=24 
                Launched reduce tasks=1 
                Data-local map tasks=24 
                Total time spent by all maps in occupied slots (ms)=673270 
                Total time spent by all reduces in occupied slots (ms)=106628 
                Total time spent by all map tasks (ms)=673270 
                Total time spent by all reduce tasks (ms)=106628 
                Total vcore-milliseconds taken by all map tasks=673270 
                Total vcore-milliseconds taken by all reduce tasks=106628 
                Total megabyte-milliseconds taken by all map tasks=689428480 
                Total megabyte-milliseconds taken by all reduce 
tasks=109187072 
        Map-Reduce Framework 
                Map input records=24 
                Map output records=48 
                Map output bytes=432 
                Map output materialized bytes=672 
                Input split bytes=3542 
                Combine input records=0 
                Combine output records=0 
                Reduce input groups=2 
                Reduce shuffle bytes=672 
                Reduce input records=48 
                Reduce output records=0 
                Spilled Records=96 
                Shuffled Maps =24 
                Failed Shuffles=0 
                Merged Map outputs=24 
                GC time elapsed (ms)=10494 
                CPU time spent (ms)=15940 
                Physical memory (bytes) snapshot=5531590656 
                Virtual memory (bytes) snapshot=64717635584 
                Total committed heap usage (bytes)=4091183104 
                Peak Map Physical memory (bytes)=227823616 
                Peak Map Virtual memory (bytes)=2588368896 
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                Peak Reduce Physical memory (bytes)=120942592 
                Peak Reduce Virtual memory (bytes)=2596782080 
        Shuffle Errors 
                BAD_ID=0 
                CONNECTION=0 
                IO_ERROR=0 
                WRONG_LENGTH=0 
                WRONG_MAP=0 
                WRONG_REDUCE=0 
        File Input Format Counters 
                Bytes Read=2832 
        File Output Format Counters 
                Bytes Written=97 
Job Finished in 158.78 seconds 
Estimated value of Pi is 3.14216666666666666667 
hadoop@hadoop-00:~/hadoop-3.1.2$ 

 

The YARN Resource Manager (RM) web interface will display all running jobs on 

current Hadoop Cluster. All MapReduce jobs can be checked via browser at address 

http://hadoop-00:8088 (see Figure 24). 

 

Figure 24 – Hadoop Cluster Management Console 

 

Another great source of information about Namenodes/Datanodes can be found in Web 

UI for Namenode at port 9870 (see Figure 25). 

 

http://hadoop-00:8088/
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Figure 25 – Datanodes UI 

 

3.1.5 HDFS 

The Hadoop Distributed Filesystem (HDFS) is Hadoop’s storage platform. Although 

Hadoop can interact with many different filesystems (Amazon S3, Azure Blob Storage, 

Azure Data Lake Storage, OpenStack Swift), HDFS is Hadoop’s primary input data source 

and target for data processing operations. Hadoop was originally developed as a platform to 



TBU in Zlín, Faculty of Applied Informatics  77 

support the requirements of search engine providers such as Yahoo!. HDFS was inspired by 

the GoogleFS. 

HDFS is a virtual filesystem, meaning that a client can see it as if it is one system, but the 

underlying data are located in multiple different locations. HDFS is deployed on top of native 

filesystems of each particular operating system. HDFS is immutable, it means the inability 

to update data after it is committed to the filesystem. HDFS is often also referred to as a 

WORM (write once, read many) filesystem. Given that this filesystem is designed to handle 

large amounts of data, emphasis has been placed on their fast availability of data for reading 

than as an interactive data store for users. HDFS does not support POSIX. HDFS puts 

emphasis on fast file reading and does not allow for frequent modification. Every 

modification of a file requires re-replication of its copies and thus the load on the network, 

which is a costly process. However, the latest versions support appending content at the end 

of a file and overwriting file with a null. 

HDFS has been designed to effectively store large amounts of data - gigabytes to 

terabytes. In theory, it supports storing dozens of millions of files in one HDFS instance. But 

this is related to the “problem of small files”. A small file is one which is significantly smaller 

than the HDFS block size (default 64MB). If you’re storing small files, then you probably 

have lots of them (otherwise you wouldn’t turn to Hadoop), and the problem is that HDFS 

can’t handle lots of files. Every file, directory and block in HDFS is represented as an object 

in the namenode’s memory, each of which occupies 150 bytes, as a rule of thumb. So 10 

million files, each using a block, would use about 3 gigabytes of memory. Scaling up much 

beyond this level is a problem with current hardware. Certainly a billion files is not feasible. 

Furthermore, HDFS is not geared up to efficiently accessing small files: it is primarily 

designed for streaming access of large files. Reading through small files normally causes 

lots of seeks and lots of hopping from datanode to datanode to retrieve each small file, all of 

which is an inefficient data access pattern [98]. 

Files in HDFS consist of blocks. HDFS splits huge files into small chunks known as data 

blocks. Default size of HDFS blocks is 128MB, although this can be configured as needed. 

When the file is loaded into the system, is split into these blocks. All blocks of the file are 

the same size except the last block, which can be either the same size or smaller (for graphical 

representation how data are stored into blocks, please see Figure 26). 
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Figure 26 – Data distribution 

in HDFS Blocks 

 

If a cluster contains more than one node, blocks are distributed among slave nodes in the 

cluster in time of loading data into HDFS as shows Figure 27. 

 

 

Figure 27 – Data distribution in HDFS across Slave Nodes 

 

3.1.5.1 HDFS Architecture 

HDFS is architecturally composed of two demons as is shown in Figure 28. Typically, one 

master (Namenode) and a few slaves (Datanodes). It is therefore a master / slave architecture. 

Namenode - the master of the cluster manages, among other things, file metadata (their 

location, replication factor) and controls access rights to them. Datanodes - slave servers 

contain data stored in HDFS itself. From a technical point of view, each file is divided into 

one or more blocks (one 128MB by default) and these blocks are stored on the Datanodes. 

Namenode performs file operations such as opening, closing, renaming files and folders, and 

specifying where and on which Datanodes the blocks will be stored. Datanodes are 
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responsible for executing Namenode’s requests (from which are requested by the client), 

such as read and write. Datanodes are also responsible for block creation, deletion, and 

replication operations. 

 

 

Figure 28 – HDFS Architecture 

 

3.1.5.2 Replication 

Each file that is uploaded to HDFS is replicated immediately after uploading with the set 

replication factor. This variable can be set for the whole cluster in dfs.replication 

parameter, which is by default 3 (see Figure 29). After uploading the file is divided into 

blocks according to the parameter dfs.blocksize, which is 128 MB by default. With this 

replication factor, the file blocks will be replicated to the three Datanodes. Namenode takes 

care of where the replica will be stored. It keeps track of the number of available and 

functional Datanodes using a periodic (dfs.heartbeat.interval) signal sending, called 

“Heart Beat”. It also receives data from Datanodes on files stored on them, called “Block 

Report”. If the Block Report shows that some files do not meet the replication factor, then 

they are “under replicated” files over which replication can be enforced manually. 
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Figure 29 – HDFS Replication 

 

3.1.5.3 Data Read and Write Operations in HDFS 

As already mentioned earlier, HDFS is the storage layer of Hadoop. HDFS works in master-

slave fashion, Namenode is the master daemon which runs on the master node, and Datanode 

is the slave daemon which runs on the slave node. 

 

Write Pipeline Workflow 

To write a file in HDFS, a client needs to interact with master i.e. namenode (master). 

Namenode provides the address of the datanodes (slaves) on which client will start writing 

the data. Client directly writes data on the datanodes, so datanode will create data write 

pipeline. The first datanode will copy the block to another datanode, which intern copy it to 

the third datanode. Once it creates the replicas of blocks, it sends back the acknowledgment. 

As shown in the Figure 30 the data write operation in HDFS is distributed, client copies 

the data on datanodes, the steps by step explanation of data write operation is explained in 

next paragraph. 

Step 1: The client creates the file by calling create() method on DistributedFileSystem. 

Step 2: DistributedFileSystem makes an RPC call to the namenode to create a new file in 

the filesystem’s namespace, with no blocks associated with it. The namenode performs 

various checks to make sure the file doesn’t already exist and that the client has the right 

permissions to create the file. If these checks pass, the namenode makes a record of the new 
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file; otherwise, file creation fails and the client is thrown an IOException. 

TheDistributedFileSystem returns an FSDataOutputStream for the client to start writing data 

to. 

 

Figure 30 – Write Pipeline Workflow [99] 

 

Step 3: As the client writes data, DFSOutputStream splits it into packets, which it writes to 

an internal queue, called the data queue. The data queue is consumed by the DataStreamer, 

which is responsible for asking the namenode to allocate new blocks by picking a list of 

suitable datanodes to store the replicas. The list of datanodes forms a pipeline, and here we’ll 

assume the replication level is three, so there are three nodes in the pipeline. 

TheDataStreamer streams the packets to the first datanode in the pipeline, which stores the 

packet and forwards it to the second datanode in the pipeline. 

Step 4: Similarly, the second datanode stores the packet and forwards it to the third (and 

last) datanode in the pipeline. 

Step 5: DFSOutputStream also maintains an internal queue of packets that are waiting to be 

acknowledged by datanodes, called the ack queue. A packet is removed from the ack queue 

only when it has been acknowledged by all the datanodes in the pipeline. 

Step 6: When the client has finished writing data, it calls close() on the stream. 

Step 7: This action flushes all the remaining packets to the datanode pipeline and waits for 

acknowledgments before contacting the namenode to signal that the file is complete The 
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namenode already knows which blocks the file is made up of, so it only has to wait for blocks 

to be minimally replicated before returning successfully [99]. 

Data write operation is considered successful if one replica is successfully written. It is 

governed by the property dfs.namenode.replication.min in hdfs-default.xml file. If there is 

any failure of datanode while writing a replica, the data written is not considered 

unsuccessful, but under-replicated which while balancing the cluster creates those missing 

replicas. Ack packet is independent of the status of data written to datanodes. Even if the 

data packet is not written the acknowledgement packet is delivered [100]. 

Generally, it’s possible write data into HDFS from within JAVA code directly, sample 

code below [101] demonstrate this approach. 

FileSystem fileSystem = FileSystem.get(conf); 
 
// Check if the file already exists 
Path path = new Path("/path/to/file.ext"); 
if (fileSystem.exists(path)) { 
  System.out.println("File " + dest + " already exists"); 
  return; 
} 
 
// Create a new file and write data to it. 
FSDataOutputStream out = fileSystem.create(path); 
InputStream in = new BufferedInputStream(new FileInputStream(new 
File(source))); 
byte[] b = new byte[1024]; 
int numBytes = 0; 
while ((numBytes = in.read(b)) > 0) { 
  out.write(b, 0, numBytes); 
} 
 
// Close all the file descripters 
in.close(); 
out.close(); 
fileSystem.close(); 

 

3.1.5.4 HDFS Command Line 

There is also another approach how to “push” data to HDFS and it’s using command line. 

Before the command line examples will be explained, it’s necessary to mention, that there’re 

3 more or less same command with tiny differences. 

#  hadoop fs <args>   // this uses FsShell 
#  hadoop dfs <args>  // this uses the now deprecated HDFS-specific DFSShell 
#  hdfs dfs <args>    // replacement for hadoop dfs and recommended for HDFS 
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The hadoop fs relates to a generic file system which can point to any file systems like 

Local FS, S3 FS, HDFS etc. But hadoop dfs is very specific only to HDFS and was 

deprecated, now it’s recommended to use hdfs dfs command instead. 

 

It also beneficial to introduce most used commands used for filesystem operation. 

Nobody can’t be surprised, that are very similar to linux equivalent. 

 

1. Create a directory in HDFS at given path 

   hadoop fs -mkdir <paths> 
#  hadoop fs -mkdir /user/hadoop/wordcount 

 

2. List the contents of a directory 

   hadoop fs -ls <args> 
#  hadoop fs -ls /user/hadoop 

 

3. Upload and download a file in/from HDFS 

Copy file from local file system to the Hadoop filesystem, 

   hadoop fs -put <local_src_path> <hdfs_dest_path> 
#  hadoop fs -put /home/hadoop/file.txt /user/hadoop/wordcount/ 

 

or vice versa. 

   hadoop fs -get <hdfs_src_path> <local_dest_path> 
#  hadoop fs -get /user/hadoop/wordcount/file.txt /home/hadoop 

 

4. See content of a file 

   hadoop fs -cat <filename> 
#  hadoop fs -cat /user/hadoop/wordcount/file.txt 

 

5. Copy a file from source to destination inside HDFS 

   hadoop fs -cp <source> <dest> 
#  hadoop fs -cp /user/hadoop/wordcount/file.txt /user/hadoop/dir2 

 

6. Copy a file from/to local file system to HDFS 
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   hadoop fs -copyFromLocal <local_src_path> <hdfs_dest_path> 
#  hadoop fs -copyFromLocal /home/hadoop/file.txt /user/hadoop 

 

   hadoop fs -copyToLocal <hdfs_src_path> <local_dest_path> 
#  hadoop fs -copytoLocal /user/hadoop/wordcount/file.txt /home/hadoop 

 

7. Move file from source to destination 

#  hadoop fs -mv <src> <dest> 
#  hadoop fs -mv /user/hadoop/wordcount/file.txt /user/hadoop/dir2 

 

8. Remove a file or directory in HDFS 

   hadoop fs -rm <arg> 
#  hadoop fs -rm /user/hadoop/wordcount/file.txt 

 

9. Display last few lines of a file 

   hadoop fs -tail <path[filename]> 
#  hadoop fs -tail /user/hadoop/wordcount/file.txt 

 

10. Display the aggregate length of a file 

   hadoop fs -du <path> 
#  hadoop fs -du /user/hadoop/wordcount/file.txt 
>  size disk_space_consumed_with_all_replicas full_path_name 

 

3.1.6 YARN 

Apache YARN (Yet Another Resource Negotiator) is a component of Hadoop (from version 

2.0) responsible for managing and allocating cluster resources. The over architecture of 

YARN and how is working is depicted in Figure 31. 

 

Resource Manager 

Resource Manager is the daemon responsible for global monitoring of resources (CPU, 

memory, network, disk) of the entire cluster and their allocation to applications. It includes 

an optional component called a scheduler that, if configured, provides resource allocation 
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based on the rules defined by the administrator. Only one Resource Manager is active at a 

time and usually runs on Namenode. 

Node Manager 

Node Manager is a process running on each node in the cluster. He is responsible for 

monitoring his local resources. If this process is not running, it is not possible to run 

applications and calculations on the node (while Resource manager does not see the node’s 

resources where Nod Manager is off). Its task is to allocate containers to applications 

(however, the application master does not have information about the application 

requirements, which is provided by the Application Master). Node Manager monitors the 

load on the containers (subsets of the application) - their CPU, memory, disks, etc., and 

reports the resource back to the Resource Manager. As a result, Resource Manager has the 

current state of resources available to other applications. 

 

Figure 31 – YARN - How it works [102] 

 

Application Master 

Application Master is a process that is start when a client (user) sends an application for 

processing. Each application has its own Application Master - the first process (running in 

the first container) that is executed when the application is submitted for processing. 
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Application Master monitors the running of the application and gives feedback to the 

Resource Manager. 

Capacity Scheduler 

Fair Scheduler and Capacity Scheduler have been added to Hadoop since version 2.0. 

Capacity Scheduler ensures that a defined user group has a guaranteed cluster capacity. Fair 

Scheduler, if active, ensures that a group of users uses their capacity (containers) equally. 

For added flexibility, the Preemption feature was later added to release containers used by 

the running application if resources available to a group of users are less than the minimum 

guaranteed defined in Capacity Scheduler - the running application must release containers 

to use another application. 

Container 

Container is a YARN computing unit. Container is the place where individual application 

calculations (mappers) take place. Container has allocated a certain amount of CPU cores 

and RAM memory. The minimum and maximum container sizes can be limited in the 

YARN.xml. Several containers can run on one Datanode, the container cannot be moved to 

the next node. The Daemon responsible for allocating containers to the application is Node 

Manager. 

 

3.1.7 MapReduce 

MapReduce is a framework that allows large volumes of data to be processed in parallel on 

commodity hardware. This is a library written in Java. The idea behind the model is to divide 

a complex task or problem into smaller tasks. Reducing the complexity of processing smaller 

jobs is also less time consuming. In case of parallel data processing is used to complete such 

a task, the user initiating the task achieves much better speed of processing of the task. 

Parallelism has the great advantage of saving the time needed to complete a given task, but 

there are also issues to consider when designing a parallel data processing task. For example, 

the need to divide a complex task into several relatively equally large simpler tasks. 

However, such division may not always be unambiguous. And then further, the combination 

of results from smaller tasks may require additional tasks due to complexity, specifically 

dedicated to solving this problem and ultimately limiting the processing capacity of an 
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individual server. The MapReduce programming model is designed so that the above 

problems are taken into account when processing tasks. 

MapReduce algorithm combines two phases: Map and Reduce. In the Map part, the input 

data are divided into several parts (given by the number of mappers or files), where the 

calculation is performed over each of them. It can run on any cluster node. The Map phase 

transforms the data into a key-value and applies the logic written by the programmer (e.g. 

the sum of the same words). Then the Reduce phase is started, the input parameters are the 

pairs returned by the Map phase from each Datanodes. Reduce phase aggregates mapper 

results - merges all values with the same key and returns the result to the client. 

 

 

Figure 32 – Detail of MapReduce process [103] 

 

However the MapReduce model is for simplicity divided into two basic phases, in reality 

consist of more phases. To support this statement please check or go directly online for hi-

res picture. 

 

Pros and Cons 

The biggest advantage of MapReduce tasks is their scalability due to the parallel 

processing, where the job is divided among multiple nodes and each node works with a part 

of the job simultaneously. Once the task is written to run over few Datanodes, it can just 

equally run on thousands of Datanodes. Exactly this advantage has attracted a large number 

of developers, that there are no necessity to change code in case of significant increase the 

amount of nodes in the cluster. Second biggest advantage is Data Locality – when the data 

don’t have to be transfer to processing unit, but the processing happened at data site. 

https://i0.wp.com/0x0fff.com/wp-content/uploads/2014/12/MapReduce-v3.png
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On the other hand, the main disadvantage of MapReduce framework is that intermediate 

results from Map phase must still be stored in HDFS, which has a significant negative impact 

on the processing speed of MapReduce tasks. This is the biggest difference in the Spark 

framework, as will be mentioned below. 

 

3.1.7.1 Examples of MapReduce usage 

To illustrate how whole process of MapReduce works, example with file of animals will be 

used. Suppose, it’s given Input file with words: “Deer Bear Dog Cat Dog Cat Deer Cat Bear”.  

First, the input file is divided into three splits as shown in the Figure 33. This will 

distribute the work among all the map nodes, where splits tokenize the words in each of the 

mapper and give a hardcoded value “1” to each of the words (tokens). A list of key-value 

pairs is created where the key is individual word and the value is hardcoded (1). So, for the 

first line (Deer Bear Dog) we have 3 key-value pairs – Deer, 1; Bear, 1; Dog, 1. The mapping 

process remains the same on all the nodes. 

 

Figure 33 – Word Count Example of MapReduce 

 

After mapping phase, sorting and shuffling happens so that all the tuples with the same 

key are sent to the corresponding reducer. So, after the sorting and shuffling phase, each 

reducer will have a unique key and a list of values corresponding to that very key. For 

example: <Bear, (1,1); Cat, (1,1,1); ...>. Now, each reducer counts the values which are 

present in that list of values. As shown in the Figure 33, reducer gets a list of values which 

is (1,1,1) for the key Cat. Then, it counts the number of ‘ones’ in the very list and gives the 

final output as <Cat, 3>. 

Finally, all the output key/value pairs are then collected and written in the output file 

[104]. 
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Let’s look closer on java implementation. In the first example, the most basic form will 

be shown. Afterward, the more advanced and professional piece of code will demonstrate 

the whole process of MapReduce application, together with comments placed right in the 

code to make the all code smooth to read and easy to understand. Generally, both examples 

(alike all implementations of MapReduce job) consist of main class WordCount with main 

method where all configuration of job is done. Next two important classes are WordMapper 

and WordReducer where the core of job is implemented. Now, please see below piece of 

code for full understanding of the process. 

Example I – MapReduce WordCount – Basic Implementation 

import java.io.IOException; 
import java.util.StringTokenizer; 
import org.apache.hadoop.conf.Configuration; 
import org.apache.hadoop.fs.Path; 
import org.apache.hadoop.io.IntWritable; 
import org.apache.hadoop.io.Text; 
import org.apache.hadoop.mapreduce.Job; 
import org.apache.hadoop.mapreduce.Mapper; 
import org.apache.hadoop.mapreduce.Reducer; 
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; 
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 
 
public class WordCount { 
  public static void main(String[] args) throws Exception { 
     
    // Get the default configuration object and create the MapReduce job 
    Configuration conf = new Configuration(); 
    Job job = Job.getInstance(conf, "MapReduce WordCount"); 
    job.setJarByClass(WordCount.class); 
     
    // tell Hadoop the mapper and the reducer to use 
    job.setMapperClass(WordMapper.class); 
    job.setCombinerClass(WordReducer.class); 
    job.setReducerClass(WordReducer.class); 
     
    // set output types for Key-Value 
    job.setOutputKeyClass(Text.class); 
    job.setOutputValueClass(IntWritable.class); 
     
    // set IO path 
    FileInputFormat.addInputPath(job, new Path(args[0])); 
    FileOutputFormat.setOutputPath(job, new Path(args[1])); 
     
    // submit the job and wait for it to complete! 
    System.exit(job.waitForCompletion(true) ? 0 : 1); 
  } 
 
  public static class WordMapper extends Mapper<Object, Text, Text, 
IntWritable> { 
    private final static IntWritable one = new IntWritable(1); 
    private Text word = new Text(); 
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    public void map(Object key, Text value, Context context) throws  
      IOException, InterruptedException { 
      // tokenize line 
      StringTokenizer itr = new StringTokenizer(value.toString()); 
      // make KV for each word 
      while (itr.hasMoreTokens()) { 
        word.set(itr.nextToken()); 
        context.write(word, one); 
      } 
    } 
  } 
 
  public static class WordReducer extends Reducer<Text, IntWritable, Text,  
    IntWritable> { 
     
    private IntWritable result = new IntWritable(); 
 
    public void reduce(Text key, Iterable<IntWritable> values, Context 
context) throws IOException, InterruptedException { 
      // total (sum) all values 
      int total = 0; 
      for (IntWritable val : values) { 
        total += val.get(); 
      } 
      result.set(total); 
      // send it on to the reducer 
      context.write(key, result); 
    } 
  } 
} 

 

Now, you have to create .jar file and run in on hadoop cluster 

#   bin/hadoop jar $HADOOP_HOME/app/wordcount-I.jar WordCount 
/user/hadoop/wordcount/hamlet.txt /user/hadoop/wordcount/hamlet-I.out 

 

Details of job execution and output will be shown in next example. 

 

Example II – MapReduce WordCount – Advanced Implementation 

The second example is much more sophisticated, and all necessary comments are also 

included right in the code. 

Class WordCount 
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat; 
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; 
import org.apache.hadoop.mapreduce.Job; 
import org.apache.hadoop.conf.Configuration; 
import org.apache.hadoop.fs.Path; 
import org.apache.hadoop.io.Text; 
import org.apache.hadoop.io.IntWritable; 
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public class WordCount { 
 
  public static int main(String[] args) throws Exception { 
 
    // if we got the wrong number of args, then exit 
    if (args.length != 4 || !args[0].equals("-r")) { 
      System.out.println("usage: WordCount -r <#reducers> <input> <output>"); 
      return -1; 
    } 
 
    // Get the default configuration object 
    Configuration conf = new Configuration(); 
 
    // now create the MapReduce job 
    Job job = Job.getInstance(conf, "MapReduce WordCount"); 
 
    // this tells Hadoop to ship around the jar file containing  
    // "WordCount.class" to all of the different nodes so that they  
    // can run the job 
    job.setJarByClass(WordCount.class); 
 
    // we'll output text/int pairs (since we have words as keys and  
    // counts as values) 
    job.setMapOutputKeyClass(Text.class); 
    job.setMapOutputValueClass(IntWritable.class); 
 
    // again we'll output text/int pairs (since we have words as keys and  
    // counts as values) 
    job.setOutputKeyClass(Text.class); 
    job.setOutputValueClass(IntWritable.class); 
 
    // tell Hadoop the mapper and the reducer to use 
    job.setMapperClass(WordCountMapper.class); 
    job.setCombinerClass(WordCountReducer.class); 
    job.setReducerClass(WordCountReducer.class); 
 
    // we'll be reading in a text file, so we can use Hadoop's built-in  
    // TextInputFormat 
    job.setInputFormatClass(TextInputFormat.class); 
 
    // we can use Hadoop's built-in TextOutputFormat for writing out  
    // the output text file 
    job.setOutputFormatClass(TextOutputFormat.class); 
 
    // set the input and output paths 
    TextInputFormat.setInputPaths(job, args[2]); 
    TextOutputFormat.setOutputPath(job, new Path(args[3])); 
 
    // set the number of reduce paths 
    try { 
      job.setNumReduceTasks(Integer.parseInt(args[1])); 
    } catch (Exception e) { 
      System.out.println("usage: WordCount -r <#reducers> <input> <output>"); 
      return -1; 
    } 
 
    // force the mappers to handle 50 kilobytes of input data each 
    TextInputFormat.setMinInputSplitSize(job, 50 * 1024); 
    TextInputFormat.setMaxInputSplitSize(job, 50 * 1024); 



TBU in Zlín, Faculty of Applied Informatics  92 

 
    // submit the job and wait for it to complete 
    int exitCode = job.waitForCompletion(true) ? 0 : 1; 
    return exitCode; 
 
  } 
 
} 

 

Class WordCountMapper 
import java.io.IOException; 
import java.util.regex.Pattern; 
import java.util.regex.Matcher; 
 
import org.apache.hadoop.io.IntWritable; 
import org.apache.hadoop.io.LongWritable; 
import org.apache.hadoop.io.Text; 
import org.apache.hadoop.mapreduce.Mapper; 
 
public class WordCountMapper extends Mapper<LongWritable, Text, Text, 
IntWritable> { 
 
  // create these for making below code clean 
  private final static IntWritable one = new IntWritable(1); 
  private Text word = new Text(); 
 
  // create a Pattern object to parse each line 
  private final Pattern wordPattern = Pattern.compile("[a-zA-Z][a-zA-Z0-
9]+"); 
 
  public void map(LongWritable key, Text value, Context context) throws  
    IOException, InterruptedException { 
 
    // get a String version of the line 
    String line = value.toString(); 
 
    // and a Matcher to parse it 
    Matcher myMatcher = wordPattern.matcher(line); 
 
    // while there are more tokens in the line 
    while (myMatcher.find()) { 
 
      // get the next pattern, and convert it to lower case 
      String returnVal = myMatcher.group(); 
      returnVal = new String(returnVal.toLowerCase()); 
      word.set(returnVal); 
 
      // send it on to the reducer 
      context.write(word, one); 
    } 
  } 
} 

 

Class WordCountReducer 
import java.io.IOException; 
import org.apache.hadoop.io.IntWritable; 
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import org.apache.hadoop.io.Text; 
import org.apache.hadoop.mapreduce.Reducer; 
 
public class WordCountReducer extends Reducer<Text, IntWritable, Text, 
IntWritable> { 
 
  public void reduce(Text key, Iterable<IntWritable> values, Context context) 
      throws IOException, InterruptedException { 
 
    // loop through all of the counts that we got, adding them up 
    int total = 0; 
    for (IntWritable val : values) { 
      total += val.get(); 
    } 
 
    // and then send the counts to the reducer 
    context.write(key, new IntWritable(total)); 
  } 
} 

 

Here, you can specify -r parameter with number of final reducers. In below outputs we’ll go 

with just 1, otherwise the result would be flushed into “r” output files. 

usage: WordCount -r <num reducers> <input> <output> 
 
#   bin/hadoop jar $HADOOP_HOME/app/wordcount-II.jar WordCount -r 1 
/user/hadoop/wordcount/hamlet.txt /user/hadoop/wordcount/hamlet-II.out 

 

and you should expect output similar to this one 

hadoop@hadoop-00:~/hadoop-3.1.2$ bin/hadoop jar $HADOOP_HOME/app/wordcount-II.jar WordCount -r 1 
/user/hadoop/wordcount/hamlet.txt /user/hadoop/wordcount/hamlet-II.out 
2019-05-02 11:06:07,518 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032 
2019-05-02 11:06:08,173 WARN mapreduce.JobResourceUploader: Hadoop command-line option parsing not 
performed. Implement the Tool interface and execute your application with ToolRunner to remedy 
this. 
2019-05-02 11:06:08,207 INFO mapreduce.JobResourceUploader: Disabling Erasure Coding for path: 
/tmp/hadoop-yarn/staging/hadoop/.staging/job_1556628279120_0012 
2019-05-02 11:06:08,619 INFO input.FileInputFormat: Total input files to process : 1 
2019-05-02 11:06:08,780 INFO mapreduce.JobSubmitter: number of splits:1 
2019-05-02 11:06:09,139 INFO mapreduce.JobSubmitter: Submitting tokens for job: 
job_1556628279120_0012 
2019-05-02 11:06:09,141 INFO mapreduce.JobSubmitter: Executing with tokens: [] 
2019-05-02 11:06:09,508 INFO conf.Configuration: resource-types.xml not found 
2019-05-02 11:06:09,511 INFO resource.ResourceUtils: Unable to find 'resource-types.xml'. 
2019-05-02 11:06:09,627 INFO impl.YarnClientImpl: Submitted application 
application_1556628279120_0012 
2019-05-02 11:06:09,696 INFO mapreduce.Job: The url to track the job: http://hadoop-
00:8088/proxy/application_1556628279120_0012/ 
2019-05-02 11:06:09,697 INFO mapreduce.Job: Running job: job_1556628279120_0012 
2019-05-02 11:06:21,896 INFO mapreduce.Job: Job job_1556628279120_0012 running in uber mode : 
false 
2019-05-02 11:06:21,903 INFO mapreduce.Job:  map 0% reduce 0% 
2019-05-02 11:06:29,060 INFO mapreduce.Job:  map 100% reduce 0% 
2019-05-02 11:06:37,195 INFO mapreduce.Job:  map 100% reduce 100% 
2019-05-02 11:06:37,231 INFO mapreduce.Job: Job job_1556628279120_0012 completed successfully 
2019-05-02 11:06:37,387 INFO mapreduce.Job: Counters: 53 
        File System Counters 
                FILE: Number of bytes read=60913 
                FILE: Number of bytes written=555349 
                FILE: Number of read operations=0 
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                FILE: Number of large read operations=0 
                FILE: Number of write operations=0 
                HDFS: Number of bytes read=191853 
                HDFS: Number of bytes written=42992 
                HDFS: Number of read operations=8 
                HDFS: Number of large read operations=0 
                HDFS: Number of write operations=2 
        Job Counters 
                Launched map tasks=1 
                Launched reduce tasks=1 
                Data-local map tasks=1 
                Total time spent by all maps in occupied slots (ms)=5395 
                Total time spent by all reduces in occupied slots (ms)=5177 
                Total time spent by all map tasks (ms)=5395 
                Total time spent by all reduce tasks (ms)=5177 
                Total vcore-milliseconds taken by all map tasks=5395 
                Total vcore-milliseconds taken by all reduce tasks=5177 
                Total megabyte-milliseconds taken by all map tasks=5524480 
                Total megabyte-milliseconds taken by all reduce tasks=5301248 
        Map-Reduce Framework 
                Map input records=4463 
                Map output records=30847 
                Map output bytes=282339 
                Map output materialized bytes=60913 
                Input split bytes=119 
                Combine input records=30847 
                Combine output records=4593 
                Reduce input groups=4593 
                Reduce shuffle bytes=60913 
                Reduce input records=4593 
                Reduce output records=4593 
                Spilled Records=9186 
                Shuffled Maps =1 
                Failed Shuffles=0 
                Merged Map outputs=1 
                GC time elapsed (ms)=164 
                CPU time spent (ms)=1940 
                Physical memory (bytes) snapshot=355356672 
                Virtual memory (bytes) snapshot=5187506176 
                Total committed heap usage (bytes)=230821888 
                Peak Map Physical memory (bytes)=229580800 
                Peak Map Virtual memory (bytes)=2590453760 
                Peak Reduce Physical memory (bytes)=125775872 
                Peak Reduce Virtual memory (bytes)=2597052416 
        Shuffle Errors 
                BAD_ID=0 
                CONNECTION=0 
                IO_ERROR=0 
                WRONG_LENGTH=0 
                WRONG_MAP=0 
                WRONG_REDUCE=0 
        File Input Format Counters 
                Bytes Read=191734 
        File Output Format Counters 
                Bytes Written=42992 
hadoop@hadoop-00:~/hadoop-3.1.2$ 

 

In the target directory, you can find min two files, where first one notes the result of job, 

and next file(-s) depend(s) on number of reducers. In case of more reduce jobs, the final 

result will be split into the same number of output files. 

hadoop@hadoop-00:~/hadoop-3.1.2$ hadoop fs -ls ./wordcount/hamlet-II.out 
Found 2 items 
-rw-r--r--   3 hadoop supergroup          0 2019-05-02 11:06 wordcount/hamlet-II.out/_SUCCESS 
-rw-r--r--   3 hadoop supergroup      42992 2019-05-02 11:06 wordcount/hamlet-II.out/part-r-00000 
hadoop@hadoop-00:~/hadoop-3.1.2$ 

 

Just use cat, head, tail or simply combination of commands to see result of our job. 
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hadoop@hadoop-00:~/hadoop-3.1.2$ hadoop fs -cat ./wordcount/hamlet-II.out/part-r-00000|tail -n 10 
yorick  2 
you     558 
young   18 
younger 1 
your    242 
yours   6 
yourself        15 
yourselves      1 
youth   16 
zone    1 
hadoop@hadoop-00:~/hadoop-3.1.2$ 

 

3.1.8 Summary 

In this chapter the key components of the Hadoop framework has been discussed. The 

Hadoop core consists of HDFS, a distributed file system where data are stored. Data are 

stored in blocks. Each block is replicated according to the replication factor to other nodes 

of cluster. The blocks are divided into more racks, so they are not all in one rack if possible. 

Block metadata are stored by Namenode. MapReduce framework is a distributed computing 

model. The calculation takes place on multiple nodes in parallel. It has two phases. Map 

phase, where the data are tokenized and sorted in the key-value tuples and Reduce phase, 

where the Map phase results are aggregated. YARN is the COO (Chief Operations Officer) 

of the cluster. It takes care of resource monitoring, allocation and prioritization and also logs 

the entire process. It consists of a Resource Manager that monitors cluster resource usage. 

Node Manager takes care of monitoring server's local resources and allocating containers to 

applications. Application Master monitors the running of the application and gives feedback 

on the Resource Manager about used containers. Resource allocation can be planned by 

Capacity Scheduler, where you can configure queues and users who are entitled to them. 

In the following sections will be introduced components or projects that are available in 

the Hadoop Ecosystem and make it easier for users to work with Hadoop. Will be described 

in more detail project like Spark and Sqoop, and other components that allow abstracting 

from Java application programming for the MapReduce model like Hive, where we use 

knowledge of SQL or Pig Latin in case of Pig.  

3.2 General Data Processing 

3.2.1 Apache Spark 

The main drawback of the MapReduce model is that intermediate program results are written 

to disk, which is a major problem especially for quick response or iterative applications, as 
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this approach makes them considerably slower and becomes a bottleneck for the entire 

system. Response to the shortcomings of the Hadoop MapReduce is Apache Spark. Spark is 

a unified analytics engine for large-scale data processing, but unlike Hadoop’s MapReduce, 

it can minimize disk access by storing intermediate results in memory, so it is also suitable 

for interactive, exploratory analysis and iterative programs that accelerate against 

MapReduce up to one or two orders of magnitude. 

In current version 2.4.2 (released on Apr 23 2019) Spark provides interfaces (API) for 

Java, Scala, Python, R and SQL. On May 8, 2019 the new version 2.4.3 has been released, 

unfortunately after deadline of this work. Here is a short summary of releases only for last 4 

months: 

Spark 2.4.3 released May 8, 2019 

Spark 2.4.2 released April 23, 2019 

Spark 2.4.1 released March 31, 2019 

Spark 2.3.3 released February 15, 2019 

Spark 2.2.3 released January 11, 2019 

All these only demonstrate how fast R&D in this area especially with Apache Spark project 

is. 

3.2.1.1 Spark Introduction 

Apache Spark doesn’t provide any storage (like HDFS) or any Resource Management 

capabilities. It is just a unified framework for processing large amount of data near to real 

time. In Figure 34, Apache Spark framework is organized in three major layers (listed from 

bottom to top. 

 

1) Resource Manager Layer - As Apache Hadoop, Apache Spark doesn’t comes up with 

Resource Management module like YARN. It manage resource in standalone mode in single 

node cluster setup. But for distributed cluster mode it can be integrated with resource 

management modules like YARN, Mesos or Kubernetess and can interact with many 

different data sources like HDFS, Alluxio, Cassandra, HBase, Hive and hundreds of other 

data sources [105]. 
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2) Spark Core Layer - Spark Core is the base engine for large-scale parallel and distributed 

data processing. Further, additional libraries which are built on the top of the core allows 

diverse workloads for streaming, SQL, and machine learning. It is responsible for memory 

management and fault recovery, scheduling, distributing and monitoring jobs on a cluster & 

interacting with storage systems. 

 

Figure 34 – Apache Spark Architecture 

 

3) Spark Ecosystem Layer – consists of four key stack of libraries 

 Spark SQL - module which integrates relational processing with Spark’s functional 

programming API. It supports querying data either via SQL or via the HiveQL 

 Spark Streaming - component which is used to process real-time streaming data 

 GraphX - is a library for manipulating graphs and performing graph-parallel 

computations 

 MLlib - used to perform common machine learning capabilities in Apache Spark 

MLlib provides multiple types of machine learning algorithms, including 

classification, regression, clustering, and collaborative filtering or supporting 

functionality such as model evaluation and data import. [106] 

4) Last, but not considered as core layer, is an API for five languages like Java, Scala, 

Python, R and SQL. 



TBU in Zlín, Faculty of Applied Informatics  98 

Cluster Management Overview 

Spark applications are run as independent sets of processes on a cluster, all coordinated by 

a central coordinator. This central coordinator can connect with three different cluster 

managers, Spark’s Standalone, Apache Mesos, and Hadoop YARN (Yet Another Resource 

Negotiator). 

When running an application in distributed mode on a cluster, Spark uses a master/slave 

architecture and the central coordinator, also called the driver program, is the main process 

in your application, running the code that creates a SparkContext object. This driver process 

is responsible for converting a user application into smaller execution units called tasks. 

These tasks are then executed by executors which are worker processes that run the 

individual tasks. 

In a cluster, there is a master and any number of workers. The driver program, which can 

run in an independent process, or in a worker of the cluster, requests executors from the 

cluster manager. It then schedules the tasks composing the application on the executors 

obtained from the cluster manager. The cluster manager is responsible for the scheduling 

and allocation of resources across the host machines forming the cluster [107]. 

 

Resilient Distributed Dataset (RDD)  

A Resilient Distributed Dataset (RDD) in Spark is simply an immutable distributed 

collection of records that is spread over one or more partitions that can be distributed and 

computed across different nodes of cluster. RDDs can contain any type of Python, Java, or 

Scala objects or user-defined classes. Users create RDDs in two ways: by loading an external 

data set, or by distributing a collection of objects in their driver program. RDDs are the 

building blocks of any Spark application and stand for: 

 Resilient - fault tolerant and is capable of rebuilding data on failure 

 Distributed - distributed data among the multiple nodes in a cluster 

 Dataset - collection of partitioned data with values 

It is a layer of abstracted data over the distributed collection. It is immutable (an object 

whose state cannot be modified after it is created) in nature and follows lazy transformations 

(the data inside RDD is not available or transformed until an action is). Indeed, 

transformations do not generate final values, they can be seen as instructions on how to 

manipulate with a data set, which Spark writes in a graph (Directed Acyclic Graph - DAG) 



TBU in Zlín, Faculty of Applied Informatics  99 

while it passes the code. When an action is called on the RDD, Spark looks at that graph and 

then performs transformations that lead to materializing the data collection. By retaining the 

transformations, Spark can appropriately optimize data access that is actually accessed when 

it is needed. Last important feature – cacheable – means that you can hold all the data in a 

persistent "storage" like memory (default and the most preferred) or disk (the least preferred 

due to access speed) 

RDDs offer two types of operations: 

 transformations - construct a new RDD from a previous one; e.g. one common 

transformation is filtering data that matches a predicate; other operations could be: 

map, flatMap) 

 actions - compute a result based on an RDD, and either return it to the driver 

program or save it to an external storage system (examples of operations: collect, 

count, first, saveAsTextFile) 

 

Figure 35 – RDD Operations 

 

In below code snippet are presented some examples of transformations and action. For 

graphical representation please see Figure 35. 

val txtFile = "hdfs://hadoop-01:9000/user/hadoop/wordcount/hamlet.txt" 
 
val lineRDD = sc.textFile(txtFile) 
//Transformation 1 -> DAG created 
//{DAG: 1) Start -> [sc.textFile(txtFile)]} 
 
val wordRDD = lineRDD.flatMap(_.split(" ")) 
//Transformation 2 -> wordRDD DAG updated 
//{DAG: 1) Start -> [sc.textFile(logFile)] 
//      2)       -> [lineRDD.flatMap(_.split(" "))]} 
 
val filteredWordRDD = wordRDD.filter(_.equalsIgnoreCase("and")) 
//Transformation 3 -> filteredWordRDD DAG updated 
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//{DAG: 1) Start -> [sc.textFile(logFile)] 
//      2)       -> [lineRDD.flatMap(_.split(" "))] 
//      3)       -> [wordRDD.filter(_.equalsIgnoreCase("and"))]} 
 
filteredWordRDD.collect 
//Action: collect 
//Execute DAG & collect result to driver node 

 

SparkSQL Highlighted 

Spark SQL is a Spark module for structured (or semi-structured) data processing. Unlike the 

basic Spark RDD API, the interfaces provided by Spark SQL provide Spark with more 

information about the structure of both the data and the computation being performed. 

Internally, Spark SQL uses this extra information to perform extra optimizations. There are 

several ways to interact with Spark SQL including SQL and the Dataset API. When 

computing a result the same execution engine is used, independent of which API/language 

you are using to express the computation. This unification means that developers can easily 

switch back and forth between different APIs based on which provides the most natural way 

to express a given transformation. [108] 

Datasets and DataFrames 

A Dataset is a distributed collection of data. Dataset is a new interface added in Spark 1.6 

that provides the benefits of RDDs (strong typing, ability to use powerful lambda functions) 

with the benefits of Spark SQL’s optimized execution engine. A Dataset can be constructed 

from JVM objects and then manipulated using functional transformations (map, flatMap, 

filter, etc.). The Dataset API is available in Scala and Java [108]. 

A DataFrame is a Dataset organized into named columns. It is conceptually equivalent to a 

table in a relational database or a data frame in R/Python, but with richer optimizations under 

the hood. DataFrames can be constructed from a wide array of sources such as: structured 

data files, tables in Hive, external databases, or existing RDDs. The DataFrame API is 

available in Scala, Java, Python, and R. In Scala and Java, a DataFrame is represented by a 

Dataset of Rows. In the Scala API, DataFrame is simply a type alias of Dataset[Row]. While, 

in Java API, users need to use Dataset<Row> to represent a DataFrame [108]. 
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3.2.1.2 Deploying Spark 

Installation of Spark system consists of several steps. Here is a quick summary, and further 

each step is explained with commands/configuration and typical outputs of console. For 

installation will be used already installed server from Hadoop installation. 

 

Apache Spark Installation Steps Overview 

 Step 1: Ensure if Java is installed 

 Step 2: Ensure if Scala is installed 

 Step 3: Ensure if Git is installed 

 Step 4: Download Spark 

 Step 5: Install Spark 

 Step 6: Verifying Spark installation 

 

Step 1: Ensure if Java is installed 

Before installing Spark, Java is a must have for your system. Following command will verify 

the version of Java. 

# java -version 

 

If Java is already installed on your system, you will see similar output to the following one, 

if not, please install Java (follow instruction in section 3.1.4.1 - Java Installation). 

roman@hadoop-00:~$ java -version 
openjdk version "1.8.0_191" 
OpenJDK Runtime Environment (build 1.8.0_191-8u191-b12-2ubuntu0.18.04.1-b12) 
OpenJDK 64-Bit Server VM (build 25.191-b12, mixed mode) 
roman@hadoop-00:~$ 

 

Step 2: Ensure if Scala is installed 

Installing Scala language is mandatory as well as Java before installing Spark as it is 

important for implementation. Scala language is used to implement Spark. Installation of 

Scala can be done with this command. 
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# sudo apt-get install scala 

 

roman@hadoop-00:~$ sudo apt-get install scala 
[sudo] password for roman: 
Reading package lists... Done 
Building dependency tree 
Reading state information... Done 
The following additional packages will be installed: 
... 
update-alternatives: using /usr/share/scala-2.11/bin/scala to provide 
/usr/bin/scala (scala) in auto mode 
roman@hadoop-00:~$ 

 

So verify the Scala installation by using following command and write demo Hello World 

piece of code. 

# scala 

 

# scala> println("Hello World!") 

 

roman@hadoop-00:~$ scala 
Welcome to Scala 2.11.12 (OpenJDK 64-Bit Server VM, Java 1.8.0_191). 
Type in expressions for evaluation. Or try :help. 
 
scala> Hello World 
 
scala> 

 

As you could notice, you can’t see what you’re exactly writing in the Scala shell REPL. This 

is known bud in Ubuntu 18.04. The workaround is to uninstall Scala with apt-get and install 

again with dpkg. Please follow instructions below. 

# sudo apt-get remove scala-library scala 
# sudo wget www.scala-lang.org/files/archive/scala-2.12.8.deb 
# sudo dpkg -i scala-2.12.8.deb 

 

roman@hadoop-00:~$ sudo apt-get remove scala-library scala 
... some output 
roman@hadoop-00:~$ sudo wget www.scala-lang.org/files/archive/scala-2.12.8.deb 
... some output 
roman@hadoop-00:~$ sudo dpkg -i scala-2.12.8.deb 
Selecting previously unselected package scala. 
(Reading database ... 89038 files and directories currently installed.) 
Preparing to unpack scala-2.12.8.deb ... 
Unpacking scala (2.12.8-400) ... 
Setting up scala (2.12.8-400) ... 
Creating system group: scala 
Creating system user: scala in scala with scala daemon-user and shell 
/bin/false 
Processing triggers for man-db (2.8.3-2ubuntu0.1) ... 
roman@hadoop-00:~$ scala 
Welcome to Scala 2.12.8 (OpenJDK 64-Bit Server VM, Java 1.8.0_191). 
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Type in expressions for evaluation. Or try :help. 
 
scala> println("Hello World!") 
Hello World! 
 
scala> :q 
roman@hadoop-00:~$ 

 

Step 3: Ensure if Git is installed 

For installation of Spark it’s requested Git installation, it can be done with this command. In 

our system, the Git is already installed, so the output will be skipped. 

# sudo apt-get install git 

 

Step 4: Download Spark 

Next sub-step is download installation package for Spark from spark.apache.org site. 

# wget https://archive.apache.org/dist/spark/spark-2.4.2/spark-2.4.2-bin-
hadoop2.7.tgz 

 

Step 5: Install Spark 

Once the download is done, extract it. 

# tar xvf spark-2.4.2-bin-hadoop2.7.tgz 

 

Step 6: Verifying Spark installation 

Change the directory and run the Spark. 

# cd spark-2.4.2-bin-hadoop2.7/bin/ 
# ./spark-shell 

 

hadoop@hadoop-00:~/spark-2.4.2-bin-hadoop2.7/bin$ ./spark-shell 
19/05/02 17:25:40 WARN NativeCodeLoader: Unable to load native-hadoop library 
for your platform... using builtin-java classes where applicable 
Using Spark's default log4j profile: org/apache/spark/log4j-
defaults.properties 
Setting default log level to "WARN". 
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use 
setLogLevel(newLevel). 
Spark context Web UI available at http://hadoop-00:4040 
Spark context available as 'sc' (master = local[*], app id = local-
1556817957360). 
Spark session available as 'spark'. 
Welcome to 
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      ____              __ 
     / __/__  ___ _____/ /__ 
    _\ \/ _ \/ _ `/ __/  '_/ 
   /___/ .__/\_,_/_/ /_/\_\   version 2.4.2 
      /_/ 
 
Using Scala version 2.12.8 (OpenJDK 64-Bit Server VM, Java 1.8.0_191) 
Type in expressions to have them evaluated. 
Type :help for more information. 
 
scala> 

 

and final test the Spark by using this command. 

# println("Spark shell is running") 

 

Welcome to 
      ____              __ 
     / __/__  ___ _____/ /__ 
    _\ \/ _ \/ _ `/ __/  '_/ 
   /___/ .__/\_,_/_/ /_/\_\   version 2.4.2 
      /_/ 
 
Using Scala version 2.12.8 (OpenJDK 64-Bit Server VM, Java 1.8.0_191) 
Type in expressions to have them evaluated. 
Type :help for more information. 
 
scala> println("Spark shell is running") 
Spark shell is running 
 
scala> 

 

You can also check status of Spark resp. its jobs at Spark UI in web browser on port 4040 

as shown in Figure 36. 
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Figure 36 – Spark UI on port 4040 

 

3.2.1.3 Examples of Spark usage 

Example 1 - Count of 𝝅 

The easiest way how to run simple job on Spark is to calculate Pi. It doesn’t need any 

interaction with filesystem or other components. In scala-shell run this short piece of code. 
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val NUM_SAMPLES = 100000000 

val count = sc.parallelize(1 to NUM_SAMPLES).filter { _ => 

  val x = math.random 

  val y = math.random 

  x*x + y*y < 1 

}.count() 

println(s"Pi is roughly ${4.0 * count / NUM_SAMPLES}") 

 

scala> val NUM_SAMPLES = 100000000 
NUM_SAMPLES: Int = 100000000 
 
scala> val count = sc.parallelize(1 to NUM_SAMPLES).filter { _ => 
     |   val x = math.random 
     |   val y = math.random 
     |   x*x + y*y < 1 
     | }.count() 
count: Long = 78539494 
 
scala> println(s"Pi is roughly ${4.0 * count / NUM_SAMPLES}") 
Pi is roughly 3.14157976 

 

In between you can also check the active run of job in Spark Shell UI as shown in Figure 37. 

 

 

Figure 37 – Spark Shell Active Job 

 

Example 2 – Word count 

In this example will be used the same data set as has been used in Hadoop MapReduce 

WordCount example. Also Spark will use Hadoop’s HDFS to access the source data. 
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val textFile = 

sc.textFile("hdfs://localhost:9000/user/hadoop/wordcount/hamlet.txt") 

val words = textFile.flatMap(line => line.split(" ")) 

val wordsOne = words.map(word => (word, 1)) 

val wordsReduced = wordsOne.reduceByKey(_ + _) 

val wordsSortedByValue = wordsReduced.sortBy(_._2) 

wordsSortedByValue.saveAsTextFile("hdfs://localhost:9000/user/hadoop/wordcoun

t/hamlet.spark.out") 

 

Output should be very similar to this one. 

scala> val textFile = 
sc.textFile("hdfs://localhost:9000/user/hadoop/wordcount/hamlet.txt") 
textFile: org.apache.spark.rdd.RDD[String] = 
hdfs://localhost:9000/user/hadoop/wordcount/hamlet.txt MapPartitionsRDD[38] at 
textFile at <console>:24 
 
scala> val words = textFile.flatMap(line => line.split(" ")) 
words: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[39] at flatMap at 
<console>:25 
 
scala> val wordsOne = words.map(word => (word, 1)) 
wordsOne: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[40] at 
map at <console>:25 
 
scala> val wordsReduced = wordsOne.reduceByKey(_ + _) 
wordsReduced: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[41] at 
reduceByKey at <console>:25 
 
scala> val wordsSortedByValue = wordsReduced.sortBy(_._2) 
wordsSortedByValue: org.apache.spark.rdd.RDD[(String, Int)] = 
MapPartitionsRDD[44] at sortBy at <console>:25 
 
scala> 
wordsSortedByValue.saveAsTextFile("hdfs://localhost:9000/user/hadoop/wordcount
/hamlet.spark.out") 
 
scala> 

 

And finally we can check the result via hadoop fs commands. As below output shows, 

there’s again similar structure of output directory, you can see one file {_SUCCESS} noted the 

status of job and several output result files (depending of number of reducers) {part-00000}. 

hadoop@hadoop-00:~$ hadoop fs -ls ./wordcount/hamlet.spark.out 
Found 2 items 
-rw-r--r--   3 hadoop supergroup          0 2019-05-03 09:22 
wordcount/hamlet.spark.out/_SUCCESS 
-rw-r--r--   3 hadoop supergroup      89933 2019-05-03 09:22 
wordcount/hamlet.spark.out/part-00000 
hadoop@hadoop-00:~$ 

 

The result of job can be similarly seen using hadoop fs -cat command. 
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hadoop@hadoop-00:~$ hadoop fs -cat ./wordcount/hamlet.spark.out/part-00000 
... 
(a,453) 
(I,523) 
(to,608) 
(of,625) 
(and,680) 
(the,929) 
hadoop@hadoop-00:~$ 

 

As a last part of this example, the action on DAG is presented, without the need to output 

result to filesystem, so you can run another operation on top of it. 

scala> val wordsSortedByValue = wordsReduced.sortBy(- _._2) 
wordsSortedByValue: org.apache.spark.rdd.RDD[(String, Int)] = MapParti-
tionsRDD[48] at sortBy at <console>:25 
 
scala> wordsSortedByValue.collect 
res22: Array[(String, Int)] = Array((the,929), (and,680), (of,625), (to,608), 
(I,523), (a,453), ... 

 

Example 3 - Spark SQL 

As you could notice, when the Spark’s scala-shell is started, two object are created for you.  

Spark context available as 'sc' (master = local[*], app id = local-155688729). 
Spark session available as 'spark'. 
Welcome to 
      ____              __ 
     / __/__  ___ _____/ /__ 
    _\ \/ _ \/ _ `/ __/  '_/ 
   /___/ .__/\_,_/_/ /_/\_\   version 2.4.2 
      /_/ 

 

The first one is context and the second one is session. SparkSession class (‘spark’ alias in 

console output above) is the entry point into all functionality in Spark. It can be created with 

code, but here, scala-shell have created it for you. All future lines of code wouldn’t run 

without it. In next few snippets of code will be presented SQL access to data in Spark. With 

a SparkSession, applications can create DataFrames from an existing RDD, from a Hive 

table, or from Spark data sources. In out example, a DataFrame based on the content of a 

JSON file is created. 

scala> val df = spark.read.json("examples/src/main/resources/people.json") 
scala> df.show() 
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+----+-------+ 
| age|   name| 
+----+-------+ 
|null|Michael| 
|  30|   Andy| 
|  19| Justin| 
+----+-------+ 

 

As mentions earlier DataFrame provides a domain-specific language for structured and semi-

structured data manipulation in Scala, Java, Python and R; i.e. data sets that you can specify 

a schema for. DataFrame is a tabular functional data abstraction or in other words just 

Dataset[Row] (data set of rows) in Scala and Java API. 

 

In the following code snipped will be introduced some of structure query capabilities.  

scala> df.printSchema() 
root 
 |-- age: long (nullable = true) 
 |-- name: string (nullable = true) 
scala> df.select("name").show() 
+-------+ 
|   name| 
+-------+ 
|Michael| 
|   Andy| 
| Justin| 
+-------+ 
scala> df.filter($"age" > 21).show() 
+---+----+ 
|age|name| 
+---+----+ 
| 30|Andy| 
+---+----+ 
scala> df.groupBy("age").count().show() 
+----+-----+ 
| age|count| 
+----+-----+ 
|  19|    1| 
|null|    1| 
|  30|    1| 
+----+-----+ 

 

The sql function on a SparkSession enables applications to run SQL queries 

programmatically and returns the result as a DataFrame. 

// Register the DataFrame as a SQL temporary view 
scala> df.createOrReplaceTempView("people") 
 
scala> val sqlDF = spark.sql("SELECT * FROM people WHERE age > 20") 
scala> sqlDF.show() 
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+---+----+ 
|age|name| 
+---+----+ 
| 30|Andy| 
+---+----+ 
scala> val sqlDF = spark.sql("SELECT AVG(age) FROM people") 
scala> sqlDF.show() 
+--------+ 
|avg(age)| 
+--------+ 
|    24.5| 
+--------+ 

 

Temporary views in Spark SQL are session-scoped and will disappear if the session that 

creates it terminates. To have a temporary view that is shared among all sessions and keep 

alive until the Spark application terminates, you can create a global temporary view [105]. 

// Register the DataFrame as a global temporary view 
scala> df.createGlobalTempView("people") 
 
// Global temporary view is tied to a system preserved database `global_temp` 
scala> spark.sql("SELECT * FROM global_temp.people").show() 
+----+-------+ 
| age|   name| 
+----+-------+ 
|null|Michael| 
|  30|   Andy| 
|  19| Justin| 
+----+-------+ 
// Global temporary view is cross-session 
spark.newSession().sql("SELECT * FROM global_temp.people").show() 
+----+-------+ 
| age|   name| 
+----+-------+ 
|null|Michael| 
|  30|   Andy| 
|  19| Justin| 
+----+-------+ 

 

3.2.1.4 Summary 

In this chapter the Apache Spark project, part of a Hadoop Ecosystem has been introduced. 

The Spark project is a unified analytics engine for large-scale data processing. Terms like 

RDD, DataFrames, Dataset and Transformation vs Action has been also discussed. Then the 

step-by-step of Spark deployment and configuration has been presented. In last section has 

been demonstrated how DAG is working and Spark’s SQL access to data. 
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3.3 Data Analytics 

Several tools are available to analyze data on the Hadoop platform. We introduce the two 

most used. They are Pig and Hive. 

3.3.1 Apache Pig 

3.3.1.1 Pig Introduction 

Project called Pig started as a new research project Yahoo! in 2006. The goal of new project 

was to provide an alternative language interface to programming MapReduce using Java. 

Pig is considered a MapReduce abstraction as it detached the user from the underlying 

MapReduce code, enabling the developer to code in an interpreted data flow language, which 

is then converted to a series of map and reduce operations.  

The scripting language used by Pig is called Pig Latin. The workflow of Pig Latin script 

processing looks like this or for graphical representation please see Figure 38: 

1) an interpreter running on a client machine takes the Pig Latin instructions  

2) turns these into a series of MapReduce jobs 

3) submits these jobs to the cluster (or on single server) 

4) monitors their progress 

5) returns results to the console or saving results to files in HDFS 

 

Figure 38 – Pig Latin Workflow 

 

Among the advantages of Pig against MapReduce belong: 

- developers don’t need to know Java programming language 
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- Pig code does not need to be compiled and packaged, Java MapReduce must 

- user with Pig don’t have to describe objects, easier to data discovery 

Pig Execution Modes 

Pig has several modes it can be run in (execute Pig Latin statements and Pig commands). 

Pig can be run using [pig] command or [java -cp pig.jar]: 

Local Mode [pig -x local] - Access to a single machine is needed; all files are installed and 

run using local host and file system 

Tez Local Mode [pig -x tez_local] - It is similar to local mode, except internally Pig will 

invoke tez runtime engine. It’s experimental mode as some errors issues interacting with 

bigger data. 

Spark Local Mode [pig -x spark_local] - It is similar to local mode, except internally Pig 

will invoke spark runtime engine. It’s experimental mode as some errors issues interacting 

with bigger data. 

Mapreduce Mode [pig OR pig -x mapreduce] - Access to a Hadoop cluster and HDFS 

installation is expected for this mode. Mapreduce mode is the default mode. 

Tez Mode [pig -x tez] - Access to a Hadoop cluster and HDFS installation is expected. 

Spark Mode [pig -x spark] - To run Pig in Spark mode, you need access to a Spark, Yarn 

or Mesos cluster and HDFS installation. 

 

The Pig Shell 

Interactive mode – To run Pig in interactive mode using the Grunt shell just use the [pig] 

command (as shown below) and then you can continue with Pig Latin statements or other 

Pig commands. 

hadoop@hadoop-00:~$ pig 
grunt> 

 

Batch Mode – You can run Pig also in batch mode using Pig scripts and the [pig script.pig] 

command. 

 

Pig Latin 
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Pig Latin programs are a sequence of statements that follow the pattern described here. 

 • LOAD statement to read data from the file system into a named data set 

 ♻ Series of "transformation" statements to process the data into a new data set 

 • DUMP statement to view results or STORE statement to save the results 

 

Pig Data Structures 

The data sets used by Pig are called relations or bags (from relational database point of view 

you can imagine as tables). Relations contain records called tuples (rows). Tuples contain 

fields (columns), and fields can contain other data structures (bags, tuples or atomic data 

called atoms). To understand differences please see Table 14 – Pig Data Structures. 

Table 14 – Pig Data Structures 

Type Description Example 

relations / bags collection of tuples {(‘Marian’,31),(‘Erika’,28)} 

tuple set of fields (‘Marian’,31) 

field a piece of data ‘Marian’ 

map set of key value pairs [name#Marian] 

 

3.3.1.2 Deploying Pig 

Step 1: Download latest Pig release 

#  wget https://www-us.apache.org/dist/pig/pig-0.17.0/pig-0.17.0.tar.gz 

 

hadoop@hadoop-00:~$ wget https://www-us.apache.org/dist/pig/pig-0.17.0/pig-
0.17.0.tar.gz 
--2019-05-03 16:09:12--  https://www-us.apache.org/dist/pig/pig-0.17.0/pig-
0.17.0.tar.gz 
Resolving www-us.apache.org (www-us.apache.org)... 40.79.78.1 
Connecting to www-us.apache.org (www-us.apache.org)|40.79.78.1|:443... 
connected. 
HTTP request sent, awaiting response... 200 OK 
Length: 230606579 (220M) [application/x-gzip] 
Saving to: ‘pig-0.17.0.tar.gz’ 
 
pig-0.17.0.tar.gz   100%[===================>] 219.92M  2.34MB/s    in 95s 
 
2019-05-03 16:10:48 (2.31 MB/s) - ‘pig-0.17.0.tar.gz’ saved 
[230606579/230606579] 
 
hadoop@hadoop-00:~$ 
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Step 2: Unpack the Pig release 

#  tar -xvf pig-0.17.0.tar.gz 

 

Step 3: Verify Pig installation 

#  export PIG_HOME=/home/hadoop/pig-0.17.0 
#  export PATH=$PATH:$PIG_HOME/bin 

 

hadoop@hadoop-00:~$ pig --version 
Apache Pig version 0.17.0 (r1797386) 
compiled Jun 02 2017, 15:41:58 
hadoop@hadoop-00:~$ 

 

3.3.1.3 Examples of Pig usage 

First, we have to prepare some data, which will be used in our examples. 

#  wget http://hadoop.bistaff.eu/data/employees.csv 
#  hadoop fs -mkdir emp 
#  hadoop fs -put employees.csv emp 

 

As mentioned earlier, typical Pig script consists of 3 stages (LOAD data, transformations, 

and DUMP/STORE data). All three stages now will be presented. 

1) Loading Data into Pig 

Loading data into a bag is the first step for any Pig program. To do this we can use three 

functions: 

 PigStorage [PigStorage([delimit])] Loads and stores data as structured text files 

 TextLoader [TextLoader()] Loads unstructured data in UTF-8 format 

 JsonLoader [JsonLoader([schema])] Loads JSON data 

#  grunt> emp = LOAD 'emp/employees.csv' USING PigStorage(',') AS (emp_id:int, 
fname:chararray, lname:chararray, hire_date:chararray, salary:int); 

 

It’s good practice to immediately check: 

- the structure of bag 

#  grunt> DESCRIBE emp; 

grunt> DESCRIBE emp; 
emp: {emp_id: int,fname: chararray,lname: chararray,hire_date: 
chararray,salary: int} 
grunt> 

http://hadoop.bistaff.eu/data/employees.csv


TBU in Zlín, Faculty of Applied Informatics  115 

 

- sample of data (command ILLUSTRATE physically touch the HDFS data) 

#  grunt> ILLUSTRATE emp; 

grunt> ILLUSTRATE emp; 
... 
-------------------------------------------------------------------------------------------------------------- 
| emp     | emp_id:int    | fname:chararray    | lname:chararray    | hire_date:chararray    | salary:int    | 
-------------------------------------------------------------------------------------------------------------- 
|         | 131           | James              | Marlow             | 16/02/05               | 2500          | 
-------------------------------------------------------------------------------------------------------------- 

grunt> 

 

or you can also use some of linux commands: 

#  grunt> cat emp; 

grunt> cat emp; 
... 
204,Hermann,Baer,07/06/02,10000 
205,Shelley,Higgins,07/06/02,12008 
206,William,Gietz,07/06/02,8300 
grunt> 

 

2) Transformations - Filtering, Projecting, and Sorting Data 

 

In this phase, you can define several transformations. Remember, there’s no action on 

particular command taken as all are done in last (third) phase, where the MapReduce job is 

submit, thus there’s no valuable output to console. 

 

First transformation is basic projection and datatype transforming. Projecting or 

transforming fields within tuples in bags in Pig is accomplished using the FOREACH 

statement.  

#  grunt> emp_date = FOREACH emp GENERATE emp_id, UPPER(lname), 
ToDate(hire_date, 'dd/MM/yy') AS hire_date, salary; 

 

As you can see two built-in functions has been used (UPPER, ToDate). There many other 

built-in function available in Pig: 

- Evaluation Functions AVG, COUNT, MAX, MIN, SIZE, SUM, TOKENIZE 

- Math Functions ABS, CEIL, EXP, FLOOR, LOG, RANDOM, ROUND 

- String Functions (STARTS|ENDS)WITH, LOWER/UPPER, (L|R|)TRIM, REGEX_EXTRACT 

- Datetime Functions CurrentTime, DaysBetween, Get(Day|Hour|Minute), ToDate 

 

We will again check result by issuing ILLUSTRATE command. 

#  grunt> ILLUSTRATE emp_date; 

grunt> ILLUSTRATE emp_date; 
-------------------------------------------------------------------------------------------------------------- 
| emp     | emp_id:int    | fname:chararray    | lname:chararray    | hire_date:chararray    | salary:int    | 
-------------------------------------------------------------------------------------------------------------- 
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|         | 129           | Laura              | Bissot             | 20/08/05               | 3300          | 
-------------------------------------------------------------------------------------------------------------- 
---------------------------------------------------------------------------------------------------------------- 
| emp_date| emp_id:int | org.apache.pig.builtin.upper_lname_11:chararray | hire_date:datetime       | salary:int    
| 
---------------------------------------------------------------------------------------------------------------- 
|         | 129        | BISSOT                                          | 2005-08-20T00:00:00.000Z | 3300           
---------------------------------------------------------------------------------------------------------------- 

grunt> 

 

We can continue with another transformation like filtering with command FILTER: 

#  grunt> emp_filtered = FILTER emp_date BY salary < 5000; 

 

And last command in our example of transformations is final ordering with command 

ORDER: 

#  grunt> emp_ordered = ORDER emp_filtered BY hire_date DESC; 

 

3) Job submitting 

And finally, we can run it. The whole workflow from Figure 38 will be performed and result 

(in this case) will be displayed in grunt console’s output. 

#  DUMP emp_ordered; 

grunt> DUMP emp_ordered; 
(128,MARKLE,2008-03-08T00:00:00.000Z,2200) 
(136,PHILTANKER,2008-02-06T00:00:00.000Z,2200) 
.. 
(137,LADWIG,2003-07-14T00:00:00.000Z,3600) 
(115,KHOO,2003-05-18T00:00:00.000Z,3100) 
grunt> 

 

In last part of this example the output to HDFS instead of to console, will be presented. 

a) Save the commands from previous part into file in Linux OS using e.g. touch and nano 

programs. Only last line (DUMP ...) replace with STORE emp_ordered INTO 

'emp_ordered';. 

#  touch $PIG_HOME/scripts/employees.pig 
#  joe $PIG_HOME/scripts/employees.pig           // insert script here + save 

emp = LOAD 'emp/employees.csv' USING PigStorage(',') AS (emp_id:int, fname:chararray, lname:chararray, 

hire_date:chararray, salary:int); 

emp_date = FOREACH emp GENERATE emp_id, UPPER(lname), ToDate(hire_date, 'dd/MM/yy') AS hire_date, salary; 

emp_filtered = FILTER emp_date BY salary < 5000; 

emp_ordered = ORDER emp_filtered BY hire_date DESC; 

STORE emp_ordered INTO 'emp_ordered'; 

#  pig $PIG_HOME/scripts/employees.pig           // run the pig script 

grunt hadoop@hadoop-00:~$ pig $PIG_HOME/scripts/employees.pig 
HadoopVersion   PigVersion      UserId  StartedAt       FinishedAt      Features 
3.1.2   0.17.0  hadoop  2019-05-04 11:15:21     2019-05-04 11:16:53     ORDER_BY,FILTER 
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Success! 
 
Job Stats (time in seconds): 
JobId   Maps    Reduces MaxMapTime      MinMapTime      AvgMapTime      MedianMapTime   
MaxReduceTime   MinReduceTime   AvgReduceTime   MedianReducetime        Alias   Feature Outputs 
job_1556868916740_0020  1       0       5       5       5       5       0       0       0       0       
emp,emp_date,emp_filtered       MAP_ONLY 
job_1556868916740_0021  1       1       5       5       5       5       5       5       5       5       
emp_ordered     SAMPLER 
job_1556868916740_0022  1       1       5       5       5       5       5       5       5       5       
emp_ordered     ORDER_BY        hdfs://localhost:9000/user/hadoop/emp_ordered, 
 
Input(s): 
Successfully read 107 records (3912 bytes) from: 
"hdfs://localhost:9000/user/hadoop/emp/employees.csv" 
 
Output(s): 
Successfully stored 49 records (2013 bytes) in: "hdfs://localhost:9000/user/hadoop/emp_ordered" 
 
Counters: 
Total records written : 49 
Total bytes written : 2013 
Spillable Memory Manager spill count : 0 
Total bags proactively spilled: 0 
Total records proactively spilled: 0 
 
Job DAG: 
job_1556868916740_0020  ->      job_1556868916740_0021, 
job_1556868916740_0021  ->      job_1556868916740_0022, 
job_1556868916740_ 

... 
hadoop@hadoop-00:~$ 

 

The result can be again checked as we’re used using hadoop fs -cat command. 

#  hadoop fs -cat emp_ordered/part-r-00000 | tail -n 10 

hadoop@hadoop-00:~$ hadoop fs -ls emp_ordered 
Found 2 items 
-rw-r--r--  3 hadoop supergroup    0 2019-05-04 11:16 emp_ordered/_SUCCESS 
-rw-r--r--  3 hadoop supergroup 2013 2019-05-04 11:16 emp_ordered/part-r-00000 
 
hadoop@hadoop-00:~$ hadoop fs -cat emp_ordered/part-r-00000 | tail -n 10 
185     BULL     2005-02-20T00:00:00.000Z        4100 
131     MARLOW   2005-02-16T00:00:00.000Z        2500 
142     DAVIES   2005-01-29T00:00:00.000Z        3100 
133     MALLIN   2004-06-14T00:00:00.000Z        3300 
192     BELL     2004-02-04T00:00:00.000Z        4000 
184     SARCHAND 2004-01-27T00:00:00.000Z        4200 
141     RAJS     2003-10-17T00:00:00.000Z        3500 
200     WHALEN   2003-09-17T00:00:00.000Z        4400 
137     LADWIG   2003-07-14T00:00:00.000Z        3600 
115     KHOO     2003-05-18T00:00:00.000Z        3100 
hadoop@hadoop-00:~$ 

 

Word Count Example 

grunt> 
lines = LOAD '/user/hadoop/wordcount/hamlet.txt' AS (line:chararray); 
words = FOREACH lines GENERATE FLATTEN(TOKENIZE(line)) AS word; 
grouped = GROUP words BY word; 
wordcount = FOREACH grouped GENERATE group AS word, COUNT(words) AS word_cnt; 
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ordered = ORDER wordcount BY word_cnt ASC, word DESC; 
DUMP ordered; 
... 
(my,444) 
(a,453) 
(I,537) 
(to,610) 
(of,626) 
(and,686) 
(the,929) 
grunt> 

 

3.3.1.4 Summary 

In this chapter the Apache Pig project, part of a Hadoop Ecosystem has been introduced. The 

Pig project is designed to abstract Java’s MapReduce tasks to more familiar near SQL-like 

programming interface. How Pig works internally has been also mentioned. Then the step-

by-step of Pig deployment and configuration has been presented. In last section has been 

demonstrated how to create and use Pig Latin scripts to access Hadoop’s data. 

 

3.3.2 Apache Hive  

3.3.2.1 Hive Introduction 

Hive is perhaps the most commonly used tool in the Hadoop ecosystem (followed closely 

by Spark and HBase). Similar to the Apache Pig project, introduced in previous chapter, 

which started at Yahoo!, the Apache Hive project started at Facebook in 2010 to provide a 

high-level interface to Hadoop MapReduce. Similar to Pig, the motivation for Hive was that 

Facebook realized that only few analysts were able to write MapReduce jobs in Java in 

contrast to general knowledge of SQL among them. Furthermore, SQL is the common 

language for business intelligence, visualization tools, and reporting tools, which commonly 

use ODBC/JDBC as a standard interface. Instead of creating a new language, as was done 

with PigLatin, the Hive project set out to put a SQL-like abstraction on top of MapReduce. 

The Hive project introduced a new language called HiveQL (or Hive Query Language), 

which implements a subset of SQL-92. 

Workflow of processing HiveQL is very similar to Pig Latin workflow. Figure 39 

provides a high-level depiction of how Hive processes data on HDFS. Workflow of HiveQL 

processing consist of following stages:  
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- executing query from the user interface  

- parsed by the Hive client 

- mapped to a sequence of Java MapReduce operations 

- which are then submitted as jobs on the Hadoop cluster 

- the progress would be monitored  

- the results are returned 

-  to the client or 

-  written back to the desired location in HDFS.  

 

 

Figure 39 – HiveQL Workflow Process 

3.3.2.2 Deploying Hive 

In this section we will install and configure Hive within out pseudo-distributed Hadoop 

cluster using the default embedded Derby database which serve as Hive metadata storage. 

 

Step 1: Prerequisites 

Check if Java and Hadoop pseudo-distributed cluster is installed and well configured. If not, 

follow instructions from above chapters. 

Step 2: Download Hive installation file 
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Depending on your release of Hadoop choose correct version of Hive. Apache Hive 3.1.1 

release works with Hadoop 3.x.y. 

#  wget https://www-us.apache.org/dist/hive/hive-3.1.1/apache-hive-3.1.1-
bin.tar.gz 

 

hadoop@hadoop-00:~$ wget https://www-us.apache.org/dist/hive/hive-
3.1.1/apache-hive-3.1.1-bin.tar.gz 
--2019-05-04 15:08:30--  https://www-us.apache.org/dist/hive/hive-
3.1.1/apache-hive-3.1.1-bin.tar.gz 
Resolving www-us.apache.org (www-us.apache.org)... 40.79.78.1 
Connecting to www-us.apache.org (www-us.apache.org)|40.79.78.1|:443... 
connected. 
HTTP request sent, awaiting response... 200 OK 
Length: 280944629 (268M) [application/x-gzip] 
Saving to: ‘apache-hive-3.1.1-bin.tar.gz’ 
 
apache-hive-3.1.1-bin.tar.gz                              
100%[=========================================================================
==========================================================>] 267.93M  2.38MB/s    
in 1m 54s 
 
2019-05-04 15:10:25 (2.36 MB/s) - ‘apache-hive-3.1.1-bin.tar.gz’ saved 
[280944629/280944629] 
 
hadoop@hadoop-00:~$ 

 

Step 3: Unzip the installation file 

#  tar -xzvf apache-hive-3.1.1-bin.tar.gz 

hadoop@hadoop-00:~$ tar -xzvf apache-hive-3.1.1-bin.tar.gz 

 

Step 4: Create HIVE_HOME and set PATH 

#  export HIVE_HOME=$HOME/apache-hive-3.1.1-bin 
#  export PATH=$HIVE_HOME/bin:$PATH 

 

Step 5: Make directories in HDFS for use by Hive, including the Hive warehouse 

directory 

// directory tmp could already exists from hadoop installation, so just skip 
#  hadoop fs -mkdir /tmp 
#  hadoop fs -chmod g+w /tmp 
 
#  hadoop fs -mkdir -p /user/hive/warehouse 
#  hadoop fs -chmod g+w /user/hive/warehouse 

 

Step 6: Create the metastore database 
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This will create metastore_db directory that contains Hive metadata. Hive Metastore is a 

database (by default MySQL, but we use Derby database as a part of distribution) where 

data about individual tables are stored (data storage location, table name, DDL definition, 

owner, scheme). Thanks to Metastore, the tables have a given structure and can be treated 

as relational tables. Objects stored in Metastore include: 

- Database - namespace to which the table belongs 

- Table - metadata about tables: table columns, name, owner, data location... 

- Partition - information about partition name, storage location, columns. 

#  cd $HIVE_HOME 
#  schematool -initSchema -dbType derby 

hadoop@hadoop-00:~$ cd $HIVE_HOME 
hadoop@hadoop-00:~/apache-hive-3.1.1-bin$ schematool -initSchema -dbType derby 
Metastore connection URL:        
jdbc:derby:;databaseName=metastore_db;create=true 
Metastore Connection Driver :    org.apache.derby.jdbc.EmbeddedDriver 
Metastore connection User:       APP 
Starting metastore schema initialization to 3.1.0 
Initialization script hive-schema-3.1.0.derby.sql 
... 
Initialization script completed 
schemaTool completed 
hadoop@hadoop-00:~/apache-hive-3.1.1-bin$ 

 

If you get error like below, it means, you already have run hive, so it’s recommended to 

delete incomplete metastore with mv command and run schematool command once again. 

hadoop@hadoop-00:~/apache-hive-3.1.1-bin$ schematool -initSchema -dbType derby 
... 
Starting metastore schema initialization to 3.1.0 
Initialization script hive-schema-3.1.0.derby.sql 
 
 
Error: FUNCTION 'NUCLEUS_ASCII' already exists. (state=X0Y68,code=30000) 
org.apache.hadoop.hive.metastore.HiveMetaException: Schema initialization 
FAILED! Metastore state would be inconsistent !! 
Underlying cause: java.io.IOException : Schema script failed, errorcode 2 
Use --verbose for detailed stacktrace. 
*** schemaTool failed *** 
hadoop@hadoop-00:~/apache-hive-3.1.1-bin$ 

 

#   mv metastore_db metastore_db.tmp 

 

Step 7: Check the metastore database 

#  hive> SHOW databases; 
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hadoop@hadoop-00:~$ hive 
Hive Session ID = e8ba2856-e204-45a7-a5f0-9023c3827cc5 
hive> SHOW databases; 
OK 
default 
Time taken: 1.104 seconds, Fetched: 1 row(s) 
hive> 

 

Possible errors you could experienced 

After creating hive-site.xml you could get WstxParsingException: Illegal character 

entity: expansion character (code 0x8) – solution is described in this link. 

Another one could be java.net.URISyntaxException when starting HIVE and solution is 

described here. 

 

3.3.2.3 Examples of Hive usage 

In this example we will create two tables, ingest them with data and test some SQL 

commands. 

Step 1: Open a Hive CLI 

#  hive 

hadoop@hadoop-00:~$ hive 
Hive Session ID = e8ba2856-e204-45a7-a5f0-9023c3827cc5 
hive>  

 

Step 2: Create a new database called bikeshare 

#  hive> CREATE DATABASE bikeshare; 

hive> CREATE DATABASE bikeshare; 
OK 
Time taken: 0.303 seconds 
hive> show databases; 
OK 
bikeshare 
default 
Time taken: 0.076 seconds, Fetched: 2 row(s) 
hive> 

 

Step 3: List the Hive databases available on your system 

#  hive> SHOW databases; 

hive> SHOW databases; 

https://stackoverflow.com/questions/52783323/hive-throws-wstxparsingexception-illegal-character-entity-expansion-character
https://stackoverflow.com/questions/27099898/java-net-urisyntaxexception-when-starting-hive
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OK 
bikeshare 
default 
Time taken: 0.076 seconds, Fetched: 2 row(s) 
hive> 

 

Step 4: Change your database context to the bikeshare database 

#  hive> USE bikeshare; 

hive> USE bikeshare; 
OK 
Time taken: 0.078 seconds 
hive> 

 

Step 5: Prepare data in HDFS 

Download data to local filesystem. 

#  wget https://s3.amazonaws.com/sty-hadoop/bike-share/stations/stations.csv 
#  wget https://s3.amazonaws.com/sty-hadoop/bike-share/trips/trips.csv 

 

Make directories in HDFS and upload both data sets. 

#  hadoop fs -mkdir -p bikeshare/stations 
#  hadoop fs -chmod 777 bikeshare/stations 
#  hadoop fs -put stations.csv bikeshare/stations 
#  hadoop fs -mkdir -p bikeshare/trips 
#  hadoop fs -chmod 777 bikeshare/trips 
#  hadoop fs -put trips.csv bikeshare/trips 

 

Step 5: Create database tables 

#  hive> CREATE EXTERNAL TABLE stations 
           ( 
            station_id INT, 
            name STRING, 
            lat DOUBLE, 
            long DOUBLE, 
            dockcount INT, 
            landmark STRING, 
            installation STRING 
           ) 
         ROW FORMAT DELIMITED 
         FIELDS TERMINATED BY ',' 
         STORED AS TEXTFILE 
         LOCATION 'bikeshare/stations'; 

hive> CREATE EXTERNAL TABLE stations 
    >   ( 
    >    station_id INT, 
    >    name STRING, 

https://s3.amazonaws.com/sty-hadoop/bike-share/stations/stations.csv
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    >    lat DOUBLE, 
    >    long DOUBLE, 
    >    dockcount INT, 
    >    landmark STRING, 
    >    installation STRING 
    >   ) 
    > ROW FORMAT DELIMITED 
    > FIELDS TERMINATED BY ',' 
    > STORED AS TEXTFILE 
    > LOCATION 'hdfs:///bikeshare/stations'; 
OK 
Time taken: 1.011 seconds 
hive> 

 

Similarly create also second table. 

#  hive> CREATE EXTERNAL TABLE trips 
            ( 
             trip_id INT, 
             duration INT, 
             start_date STRING, 
             start_station STRING, 
             start_terminal INT, 
             end_date STRING, 
             end_station STRING, 
             end_terminal INT, 
             bike_num INT, 
             subscription_type STRING, 
             zip_code STRING 
            ) 
         ROW FORMAT DELIMITED 
         FIELDS TERMINATED BY ',' 
         STORED AS TEXTFILE 
         LOCATION 'hdfs:///user/hadoop/bikeshare/trips'; 

hive> CREATE EXTERNAL TABLE trips 
    >    ( 
    >     trip_id INT, 
    >     duration INT, 
    >     start_date STRING, 
    >     start_station STRING, 
    >     start_terminal INT, 
    >     end_date STRING, 
    >     end_station STRING, 
    >     end_terminal INT, 
    >     bike_num INT, 
    >     subscription_type STRING, 
    >     zip_code STRING 
    >    ) 
    > ROW FORMAT DELIMITED 
    > FIELDS TERMINATED BY ',' 
    > STORED AS TEXTFILE 
    > LOCATION 'hdfs:///bikeshare/trips'; 
OK 
Time taken: 0.2 seconds 
hive> 
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As you might have noticed, two different location descriptions were used, at first table 

the relative path LOCATION 'bikeshare/stations' has been used and at second table full 

path with filesystem definition LOCATION 'hdfs:///user/hadoop/bikeshare/trips' has 

been used, both are valid and correct. 

 

Step 6: List all tables in your database and look at their structure 

#  hive> SHOW tables; 

hive> SHOW tables; 
OK 
stations 
trips 
Time taken: 0.183 seconds, Fetched: 2 row(s) 
hive> 

 

#  hive> DESCRIBE stations; 

hive> DESCRIBE stations; 
OK 
station_id              int 
name                    string 
lat                     double 
long                    double 
dockcount               int 
landmark                string 
installation            string 
Time taken: 0.537 seconds, Fetched: 7 row(s) 
hive> 

 

#  hive> DESCRIBE FORMATTED stations; 

hive> DESCRIBE FORMATTED stations; 
OK 
# col_name              data_type               comment 
station_id              int 
name                    string 
lat                     double 
long                    double 
dockcount               int 
landmark                string 
installation            string 
 
# Detailed Table Information 
Database:               bikeshare 
OwnerType:              USER 
Owner:                  hadoop 
CreateTime:             Sat May 04 16:32:17 UTC 2019 
LastAccessTime:         UNKNOWN 
Retention:              0 
Location:               hdfs://localhost:9000/bikeshare/stations 
Table Type:             EXTERNAL_TABLE 
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Table Parameters: 
        EXTERNAL                TRUE 
        bucketing_version       2 
        numFiles                1 
        totalSize               5214 
        transient_lastDdlTime   1556987537 
 
# Storage Information 
SerDe Library:          org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe 
InputFormat:            org.apache.hadoop.mapred.TextInputFormat 
OutputFormat:           
org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat 
Compressed:             No 
Num Buckets:            -1 
Bucket Columns:         [] 
Sort Columns:           [] 
Storage Desc Params: 
        field.delim             , 
        serialization.format    , 
Time taken: 0.667 seconds, Fetched: 36 row(s) 
hive> 

 

Step 7: Test first SQLs 

Let’s start with simple SQL and count number of records in table. 

#  hive> SELECT COUNT(1) FROM stations; 

hive> SELECT COUNT(1) FROM stations; 
Query ID = hadoop_20190505094534_e18ce1ae-9c48-4475-890f-46b581a95e65 
Total jobs = 1 
... 
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1  Reduce: 1   Cumulative CPU: 4.43 sec   HDFS Read: 18517 
HDFS Write: 102 SUCCESS 
Total MapReduce CPU Time Spent: 4 seconds 430 msec 
OK 
˅˅˅ RESULT of SQL ˅˅˅ 
70 
^^^ RESULT of SQL ^^^ 
Time taken: 34.008 seconds, Fetched: 1 row(s) 
hive> 

 

In next example we continue with some projection, selection, and grouping. 

#  hive> SELECT start_terminal 
               ,start_station 
               ,COUNT(1) AS count 
           FROM trips 
          GROUP BY start_terminal, start_station 
          ORDER BY count 
           DESC LIMIT 10; 

hive> SELECT start_terminal 
    >       ,start_station 
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    >       ,COUNT(1) AS count 
    >   FROM trips 
    >  GROUP BY start_terminal, start_station 
    >  ORDER BY count 
    >   DESC LIMIT 10; 
Query ID = hadoop_20190505095144_9222fea6-54e8-45ac-9669-e4f42445f20b 
Total jobs = 2 
... 
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1  Reduce: 1   Cumulative CPU: 5.66 sec   HDFS Read: 
43027008 HDFS Write: 3200 SUCCESS 
Stage-Stage-2: Map: 1  Reduce: 1   Cumulative CPU: 4.03 sec   HDFS Read: 11192 
HDFS Write: 567 SUCCESS 
Total MapReduce CPU Time Spent: 9 seconds 690 msec 
OK 
˅˅˅ RESULT of SQL ˅˅˅ 
70      San Francisco Caltrain (Townsend at 4th)      26304 
69      San Francisco Caltrain 2 (330 Townsend)       21758 
50      Harry Bridges Plaza (Ferry Building)          17255 
55      Temporary Transbay Terminal (Howard at Beale) 14436 
60      Embarcadero at Sansome                        14158 
61      2nd at Townsend                               14026 
65      Townsend at 7th                               13752 
74      Steuart at Market                             13687 
67      Market at 10th                                11885 
77      Market at Sansome                             11431 
Time taken: 77.526 seconds, Fetched: 10 row(s) 
hive> 

 

And finally we try JOIN operation on both tables. 

#  hive> SELECT t.trip_id 
               ,t.duration 
               ,t.start_date 
               ,s.name 
           FROM stations s 
           JOIN trips t ON s.station_id = t.start_terminal; 
          LIMIT 10; 

hive> SELECT t.trip_id 
    >       ,t.duration 
    >       ,t.start_date 
    >       ,s.name 
    >   FROM stations s 
    >   JOIN trips t ON s.station_id = t.start_terminal 
    >  LIMIT 10; 
Query ID = hadoop_20190505101406_5ec44fc8-bfc1-465e-8785-f25aad228d42 
Total jobs = 1 
Execution completed successfully 
MapredLocal task succeeded 
Launching Job 1 out of 1 
Number of reduce tasks is set to 0 since there's no reduce operator 
Starting Job = job_1556868916740_0047, Tracking URL = http://hadoop-
00:8088/proxy/application_1556868916740_0047/ 
Kill Command = /home/hadoop/hadoop-3.1.2/bin/mapred job  -kill 
job_1556868916740_0047 
Hadoop job information for Stage-3: number of mappers: 1; number of reducers: 
0 
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2019-05-05 10:14:38,903 Stage-3 map = 0%,  reduce = 0% 
2019-05-05 10:14:49,526 Stage-3 map = 100%,  reduce = 0%, Cumulative CPU 3.2 
sec 
MapReduce Total cumulative CPU time: 3 seconds 200 msec 
Ended Job = job_1556868916740_0047 
MapReduce Jobs Launched: 
Stage-Stage-3: Map: 1   Cumulative CPU: 3.2 sec   HDFS Read: 883065 HDFS 
Write: 723 SUCCESS 
Total MapReduce CPU Time Spent: 3 seconds 200 msec 
OK 
˅˅˅ RESULT of SQL ˅˅˅ 
913460  765     8/31/2015 23:26 Harry Bridges Plaza (Ferry Building) 
913459  1036    8/31/2015 23:11 San Antonio Shopping Center 
913455  307     8/31/2015 23:13 Post at Kearney 
913454  409     8/31/2015 23:10 San Jose City Hall 
913453  789     8/31/2015 23:09 Embarcadero at Folsom 
913452  293     8/31/2015 23:07 Yerba Buena Center of the Arts (3rd @ Howard) 
913451  896     8/31/2015 23:07 Embarcadero at Folsom 
913450  255     8/31/2015 22:16 Embarcadero at Sansome 
913449  126     8/31/2015 22:12 Beale at Market 
913448  932     8/31/2015 21:57 Post at Kearney 
^^^ RESULT of SQL ^^^ 
Time taken: 44.634 seconds, Fetched: 10 row(s) 
hive> 

 

Data Output with Hive 

Most of the time, it’s requested to persist the result of SQL to a local or distributed 

filesystem - specifically HDFS. Hive supports several methods to accomplish this, 

including the following: 

• INSERT OVERWRITE – export the query results to another Hive table and overwrite the 

existing contents 

• INSERT INTO TABLE – export the query results to another Hive table and appends the 

output to the existing contents 

• INSERT OVERWRITE DIRECTORY – export the results to a directory in HDFS (file / Hive 

table) 

• INSERT OVERWRITE LOCAL DIRECTORY – export the results to a local directory, not to 

HDFS 

 

3.3.2.4 Summary 

In this chapter the Apache Hive project, part of a Hadoop Ecosystem has been introduced. 

The Hive project is designed to enable fast and simple access to data in HDFS using a 
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familiar SQL-like programming interface. How Hive works internally, including what is the 

purpose of metastore, that stores object definitions for Hive tables has been also mentioned. 

Then the step-by-step of Hive deployment and configuration has been presented. In last 

section has been demonstrated how to create and access Hive tables using both Hive DDL 

(Data Definition Language) and DML (Data Manipulation Language) statements. 

 

3.4 Data Ingestion 

Apache Hadoop with its storage system HDFS is just pure storage, as well as RDBMS are 

storage for their data. If we want to work with data in Hadoop, it’s necessary to create them 

or import them from external system. In chapter HDFS Command Line has been introduced 

how it is possible to import data into HDFS from local filesystem using command line hadoop 

fs -put. In this chapter will be presented how to import/export data between relational 

databases and HDFS with Apache Sqoop. 

 

3.4.1 Apache Sqoop 

3.4.1.1 Sqoop Introduction 

Apache Sqoop is a data ingestion tool designed for efficiently transferring bulk data between 

structured data-stores such as relational databases and Apache Hadoop (as shown in Figure 

40), Apache Hive and Apache HBase. Sqoop support the transfer between RDBMS and 

Hadoop bi-directional, to Hive and HBase supports only unidirectional transfers. 

 

 

Figure 40 – Apache Sqoop Import/Export 
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Sqoop Import 

Sqoop can be used for importing data from a relational database into HDFS. The input to the 

import process is a database table. Sqoop reads the table row-by-row and store it into HDFS. 

The output of this import process is a set of files containing a copy of the imported table. 

The import process is performed in parallel. For this reason, the output will be in multiple 

files. 

Sqoop Export 

Sqoop can be used for exporting data from a HDFS into relational database. Sqoop reads the 

set of delimited text files from HDFS in parallel, parses them into records, and inserts them 

as new rows in a target database table. 

 

3.4.1.2 Deploying Sqoop 

In this section we will install and configure Hive within out pseudo-distributed Hadoop 

cluster using the default embedded Derby database which serve as Hive metadata storage. 

 

Step 1: Prerequisites 

Check if Java and Hadoop pseudo-distributed cluster is installed and well configured. If 

not, follow instructions from above chapters. 

Step 2: Download Sqoop installation file 

#  wget https://www-us.apache.org/dist/sqoop/1.4.7/sqoop-1.4.7.bin__hadoop-
2.6.0.tar.gz 

 

Step 3: Unzip Sqoop installation file 

#  tar -xvf sqoop-1.4.7.bin__hadoop-2.6.0.tar.gz 

 

Step 4: Create SQOOP_HOME and set PATH 

#  export SQOOP_HOME=$HOME/sqoop-1.4.7.bin__hadoop-2.6.0 
#  export PATH=$SQOOP_HOME/bin:$PATH 

 

Step 5: Configure Sqoop 
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If HADOOP_COMMON_HOME and HADOOP_MAPRED_HOME wasn’t set with Hadoop installation, make 

following changes: 

#  cd $SQOOP_HOME/conf 
#  mv sqoop-env-template.sh sqoop-env.sh 

 

Open sqoop-env.sh and edit the following lines: 

export HADOOP_COMMON_HOME=$HADOOP_HOME  
export HADOOP_MAPRED_HOME=$HADOOP_HOME 

 

Step 6: Download and Configure mysql-connector-java 

#  wget http://ftp.ntu.edu.tw/MySQL/Downloads/Connector-J/mysql-connector-
java_8.0.16-1ubuntu18.04_all.deb 
#  sudo apt install ./mysql-connector-java_8.0.16-1ubuntu18.04_all.deb 
#  mv mysql-connector-java-8.0.16.jar $SQOOP_HOME/lib 

 

Step 7: Verifying Sqoop 

#  sqoop-version 

hadoop@hadoop-00:~$ sqoop-version 
... 
2019-05-05 15:42:11,602 INFO sqoop.Sqoop: Running Sqoop version: 1.4.7 
Sqoop 1.4.7 
git commit id 2328971411f57f0cb683dfb79d19d4d19d185dd8 
Compiled by maugli on Thu Dec 21 15:59:58 STD 2017 
hadoop@hadoop-00:~$ 

 

3.4.1.3 Examples of Sqoop usage 

In the following example will be described the process of importing table from MySQL 

relational database to HDFS. Is it expected, that MySQL database is already installed, 

configured and populated with some data. 

 

Step 1: Check MySQL source data 

To start interactive shell for MySQL database, run command mysql. 

#  mysql 

hadoop@hadoop-00:~$ mysql 
Welcome to the MySQL monitor.  Commands end with ; or \g. 
Your MySQL connection id is 33 
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Server version: 5.7.26-0ubuntu0.18.04.1 (Ubuntu) 
 
Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved. 
 
Oracle is a registered trademark of Oracle Corporation and/or its 
affiliates. Other names may be trademarks of their respective 
owners. 
 
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement. 
 
mysql> 

 

Query the list of local databases and use one. 

#  SHOW databases; 

mysql> SHOW databases; 
+--------------------+ 
| Database           | 
+--------------------+ 
| information_schema | 
| mysql              | 
| performance_schema | 
| sys                | 
| test               | 
+--------------------+ 
5 rows in set (0.00 sec) 
 
mysql> USE test 
Reading table information for completion of table and column names 
You can turn off this feature to get a quicker startup with -A 
 
Database changed 
mysql> 

 

And finally check the data. 

#  select * from my_emp limit 5; 

mysql> select * from my_emp limit 5; 
+--------+-----------+---------+---------------------+--------+ 
| emp_id | fname     | lname   | hire_date           | salary | 
+--------+-----------+---------+---------------------+--------+ 
|    100 | Steven    | King    | 2003-06-17 00:00:00 |  24000 | 
|    101 | Neena     | Kochhar | 2005-09-21 00:00:00 |  17000 | 
|    102 | Lex       | De Haan | 2001-01-13 00:00:00 |  17000 | 
|    103 | Alexander | Hunold  | 2006-01-03 00:00:00 |   9000 | 
|    104 | Bruce     | Ernst   | 2007-05-21 00:00:00 |   6000 | 
+--------+-----------+---------+---------------------+--------+ 
5 rows in set (0.00 sec) 
 
mysql> 

 

Step 1: Check MySQL source data 
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To start interactive shell for MySQL database, run command mysql. 

#  mysql 

hadoop@hadoop-00:~$ mysql 
Welcome to the MySQL monitor.  Commands end with ; or \g. 
Your MySQL connection id is 33 
Server version: 5.7.26-0ubuntu0.18.04.1 (Ubuntu) 
 
Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved. 
 
Oracle is a registered trademark of Oracle Corporation and/or its 
affiliates. Other names may be trademarks of their respective 
owners. 
 
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement. 
 
mysql> 

 

Step 2: Import data via Sqoop from MySQL to HDFS 

To start interactive shell for MySQL database, run command mysql. 

#  sqoop import --connect "jdbc:mysql://localhost/test" --username root --
table my_emp --target-dir mysql/my_emp 

hadoop@hadoop-00:~$ sqoop import --connect "jdbc:mysql://localhost/test" --
username root --table my_emp --target-dir mysql/my_emp 
... 
2019-05-05 15:06:36,967 INFO db.DBInputFormat: Using read commited transaction 
isolation 
2019-05-05 15:06:36,968 INFO db.DataDrivenDBInputFormat: BoundingValsQuery: 
SELECT MIN(`emp_id`), MAX(`emp_id`) FROM `my_emp` 
2019-05-05 15:06:36,974 INFO db.IntegerSplitter: Split size: 26; Num splits: 4 
from: 100 to: 206 
... 
2019-05-05 15:06:49,110 INFO mapreduce.Job: Job job_1556868916740_0052 running 
in uber mode : false 
2019-05-05 15:06:49,114 INFO mapreduce.Job:  map 0% reduce 0% 
2019-05-05 15:07:12,409 INFO mapreduce.Job:  map 25% reduce 0% 
2019-05-05 15:07:15,430 INFO mapreduce.Job:  map 50% reduce 0% 
2019-05-05 15:07:16,438 INFO mapreduce.Job:  map 75% reduce 0% 
2019-05-05 15:07:17,463 INFO mapreduce.Job:  map 100% reduce 0% 
2019-05-05 15:07:17,503 INFO mapreduce.Job: Job job_1556868916740_0052 
completed successfully 
2019-05-05 15:07:17,638 INFO mapreduce.Job: Counters: 33 
        File System Counters 
                FILE: Number of bytes read=0 
                FILE: Number of bytes written=900776 
                FILE: Number of read operations=0 
                FILE: Number of large read operations=0 
                FILE: Number of write operations=0 
                HDFS: Number of bytes read=441 
                HDFS: Number of bytes written=4818 
                HDFS: Number of read operations=24 
                HDFS: Number of large read operations=0 
                HDFS: Number of write operations=8 
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        Job Counters 
                Killed map tasks=1 
                Launched map tasks=4 
                Other local map tasks=4 
                Total time spent by all maps in occupied slots (ms)=88670 
                Total time spent by all reduces in occupied slots (ms)=0 
                Total time spent by all map tasks (ms)=88670 
                Total vcore-milliseconds taken by all map tasks=88670 
                Total megabyte-milliseconds taken by all map tasks=90798080 
... 
        File Output Format Counters 
                Bytes Written=4818 
2019-05-05 15:07:17,652 INFO mapreduce.ImportJobBase: Transferred 4.7051 KB in 
43.5016 seconds (110.7545 bytes/sec) 
2019-05-05 15:07:17,661 INFO mapreduce.ImportJobBase: Retrieved 107 records. 
hadoop@hadoop-00:~$ 

 

From the output, you can read, that first Sqoop query for min and max values of primary key 

and split read data to 4 part, so 4 jobs were running and import data into 4 equally parts in 

HDFS. 

 

Step 3: Check data in HDFS 

At the end, we can check data right in the HDFS with well-known command. 

#  hadoop fs -ls mysql/my_emp 
#  hadoop fs -cat mysql/my_emp/part-m-00000 
#  hadoop fs -cat mysql/my_emp/part-m-00001 
#  hadoop fs -cat mysql/my_emp/part-m-00002 
#  hadoop fs -cat mysql/my_emp/part-m-00003 

hadoop@hadoop-00:~$ hadoop fs -ls mysql/my_emp 
Found 5 items 
-rw-r--r-- 3 hadoop supergroup    0 2019-05-05 15:07 mysql/my_emp/_SUCCESS 
-rw-r--r-- 3 hadoop supergroup 1216 2019-05-05 15:07 mysql/my_emp/part-m-00000 
-rw-r--r-- 3 hadoop supergroup 1211 2019-05-05 15:07 mysql/my_emp/part-m-00001 
-rw-r--r-- 3 hadoop supergroup 1172 2019-05-05 15:07 mysql/my_emp/part-m-00002 
-rw-r--r-- 3 hadoop supergroup 1219 2019-05-05 15:07 mysql/my_emp/part-m-00003 
hadoop@hadoop-00:~$ hadoop fs -cat mysql/my_emp/part-m-00000 
100,Steven,King,2003-06-17 00:00:00.0,24000 
101,Neena,Kochhar,2005-09-21 00:00:00.0,17000 
... 
125,Julia,Nayer,2005-07-16 00:00:00.0,3200 
126,Irene,Mikkilineni,2006-09-28 00:00:00.0,2700 
hadoop@hadoop-00:~$ hadoop fs -cat mysql/my_emp/part-m-00001 
127,James,Landry,2007-01-14 00:00:00.0,2400 
128,Steven,Markle,2008-03-08 00:00:00.0,2200 
... 
152,Peter,Hall,2005-08-20 00:00:00.0,9000 
153,Christopher,Olsen,2006-03-30 00:00:00.0,8000 
hadoop@hadoop-00:~$ hadoop fs -cat mysql/my_emp/part-m-00002 
154,Nanette,Cambrault,2006-12-09 00:00:00.0,7500 
155,Oliver,Tuvault,2007-11-23 00:00:00.0,7000 
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... 
178,Kimberely,Grant,2007-05-24 00:00:00.0,7000 
179,Charles,Johnson,2008-01-04 00:00:00.0,6200 
hadoop@hadoop-00:~$ hadoop fs -cat mysql/my_emp/part-m-00003 
180,Winston,Taylor,2006-01-24 00:00:00.0,3200 
181,Jean,Fleaur,2006-02-23 00:00:00.0,3100 
... 
205,Shelley,Higgins,2002-06-07 00:00:00.0,12008 
206,William,Gietz,2002-06-07 00:00:00.0,8300 
hadoop@hadoop-00:~$ 

 

There is also possibility to see HDFS data with one command. 

#  hadoop fs -cat mysql/my_emp/part-m-* 

hadoop@hadoop-00:~$ hadoop fs -cat mysql/my_emp/part-m-00000 
100,Steven,King,2003-06-17 00:00:00.0,24000 
101,Neena,Kochhar,2005-09-21 00:00:00.0,17000 
...My very sincere thanks go to my thesis supervisor doc. Ing. Roman Šenkeřík, 
...Ph.D. for his valuable notes and suggestions and letting me doing my work.  
...I must also express my very profound gratitude to my mother who has been    
...supporting me throughout the whole life.                                    
...Last but definitely not least I also owe a gratitude to my girlfriend and   
...hopefully soon fiance for providing me with unfailing support and           
...encouragement throughout my years of study.                                 
...#stegano #marryme                                                           
205,Shelley,Higgins,2002-06-07 00:00:00.0,12008 
206,William,Gietz,2002-06-07 00:00:00.0,8300 
hadoop@hadoop-00:~$ 

 

3.4.1.4 Summary 

In this chapter the Apache Sqoop project, part of a Hadoop Ecosystem has been introduced. 

The Sqoop project is designed to transfer data between relational databases and HDFS in 

both direction. Step-by-step of Sqoop deployment and configuration has been presented. In 

the last section has been demonstrated how to make an import of relation table from MySQL 

database to HDFS.  
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CONCLUSION 

Human differs from all other species on this planet, there’s no doubt about it. The start of 

using sounds and voices led to better communication. Sharing knowledge and experience 

with descendants and next generations brought our genus to the necessity of recording 

information in a persistent form. First writing systems appeared 6000 BC and this is 

generally considered as milestone when human accelerate the speed of evolution. Ability to 

easy communicate, record and share thoughts and information started new epoch of human 

– The age of information. Another big milestone of recording and sharing information came 

in 1450 AC with Gutenberg’s printing press. It took next 500 years for another invention in 

human information processing – the first computers. And only next 50 years brought us to 

the Age of Internet. Each of these four milestones exponentially increased the amount of 

information processed. 

This thesis deals with phenomenon of Big Data and is divided into 3 big chapters. In the 

first chapter branded “Big Data” I started with explanation of human information processing 

from the very beginning and went through the whole millennia until these days. In very next 

subchapter I explained the difference or the hierarchy of Data-Information-Knowledge-

Wisdom, so every reader of this work has basic understanding why do we process the data. 

The business and technical requests in the age of internet brought IT experts to challenge of 

processing of unbelievable volume, velocity and variety of data. Old relational database 

systems were not able to address these requests. 

All these bring us to the second chapter branded NoSQL. Exactly, NoSQL databases was 

the right answer to this challenge. In the beginning of this chapter I presented these 

technologies from various viewpoints. Explanation of distribution and consistency of data 

leads to presenting CAP theorem. I continued with general classification of database systems 

from different perspectives and finished with a high-level taxonomy of the NoSQL 

datastores based on the data model which can classify them into five major categories: key-

value stores, document stores, wide-column (column-oriented) stores, graph databases and 

multi-model databases. In the rest of this chapter I took a closer look on each of these types 

of NoSQL databases. 

In the third chapter (practical part) branded Apache Hadoop Ecosystem I started with 

presenting Apache Hadoop project itself - the system for distributed storage and processing 

of enormous amount of data. Distributed filesystem and Resource manager are described 
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from big picture perspective into details. The processing model (MapReduce) continues with 

first set of examples and use cases. In the rest of practical part, I continued with presentation 

of projects (technologies) from Hadoop Ecosystem, like Apache Spark – for general data 

processing, Apache Pig and Apache Hive – for data access and analytics and finishing with 

Apache Sqoop – technology for data ingestion. Integral part of every single technology in 

this chapter is detail step-by-step guide how to install and configure particular technology. 

For each chosen technology I provided a set of functional examples and use cases with 

explanation how each of them work and fit together. Short summaries are attached at the end 

for each particular technology. 

Although one might think that it is a young technology or area of technologies, definitely 

the biggest challenge for me was the form of picking up the most important and present it in 

compressed way for different level of knowledge of readers. The biggest value of this work 

I see in collecting, summarization and presentation of phenomenon of Big Data and NoSQL 

technologies in one comprehensive paper. The practical part I built as stack of technologies, 

so the step-by-step instructions guide reader with installation and configuration and follow 

with explanation of typical example scenarios. It should be noted that only really core and 

most used technologies were presented in this work as the whole ecosystem consists of 

dozens of projects. 

At one place the reader gets all necessary and comprehensive introduction into the field 

of Big Data and NoSQL. Although the work is meant to be read from top down, different 

level of readers are free to jump right into the chapter or technology of their interests. 

Continuation of this thesis could be in horizontal direction and studying the other projects 

from Hadoop Ecosystem or in vertical direction, where honored reader can dig deeper in 

particular technology. Author’s intention is to focus on Data Science and Machine Learning 

during his further self-education. 

If I dare to subjectively evaluate the results of the work, I accomplished all submission 

points of the thesis and I truly believe, that also all goals I have defined in the beginning of 

this work have been met. 
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