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ABSTRACT 

Data analysis and data prediction is the field of informatics and mathematics, en-

gaged in calculation of algorithms and mathematical models that are able to extract practical 

data from analyzed data. Data analysis has many aspects and approaches, covers different 

methods in various fields of science and everyday human life.   

Data prediction and forecasting has interested people for thousands  of years, with 

the new stage of human civilization development – expenditure of computers and different 

computing machines, data prediction methods and techniques tremendously change. New 

field of “Big Data” and machine learning, which research data sets that are too large to deal 

with by traditional data analysis techniques and applications are expanding. In our days “Big 

Data” are widely used in areas of internet search, economics, business, urban informatics 

and etc.  

The urban informatics is one of the most interesting and applicable fields of “Big 

Data” usage. This field uses information and data sets in the context of smart cities and urban 

environments with purpose to make quality of life of pedestrians better and improve urban 

environment.  

The aim of this project is to create a model, which would predict behavior of one 

of the most visible part of every urban area – crossroad. Provided information from traffic 

light controllers (detectors) on the crossroad at “Makro” Zlin is being registered, stored with 

equal periods of time and analyzed. Data analysis is implemented through usage of different 

statistical and computation models in a free and open-source integrated development envi-

ronment “RStudio” and spreadsheet program for data storage “Microsoft Excel”. The project 

is aimed to predict traffic data on the crossroad.    
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INTRODUCTION 

In the current project traffic data from the crossroad “Makro” Zlin (76302, Czech 

Republic, Zlín tř. 3. května 1198) is being analyzed and forecasted. Data collected by use of 

“CROSS” company traffic light controller (detector), these detection inputs take value oc-

cupied by standing or moving vehicle and stored in database. Traffic light controllers save 

data per defined time unit – 10 minutes.  

From the “CROSS” database data is being transferred to a spreadsheet platform 

“Microsoft Excel” and processed. Afterwards the forecast of provided data is created by use 

of free and open-source integrated development environment “RStudio”.  

On the early stages of the forecast decisions about forecast horizon, frequency of 

the forecast and used methods being made.  Afterwards methods applied and implemented 

towards used development environment. At last forecasted results compared with real val-

ues, graph plotted and conclusion about used method accuracy and accuracy of the forecast 

made. In theoretical part of current project all needed background for analytical part de-

scribed. 
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I.  THEORY 
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1. FORECASTING 

Forecasting is the task required in many situations (weather forecast for being prepared 

to a weather conditions, energy consumption forecast for requirements of additional power 

stations). Forecasts could be required for different time in future (from minutes to several 

years in advance).  

Different events and things have different predictability. How complicated to build a 

forecast depends on a few things:  

1. Understanding of factors that contribute to event; 

2. Availability of data; 

3. Affect of the forecast to an event itself (could appear in trading and stock fore-

casting). 

Forecasting situations could widely vary in their types of provided data, time horizon 

which is being predict and factors which affect the event itself. Due to importance of fore-

casts for effective and efficient planning scientists were working towards the problem of 

accurate and various techniques of forecast for a long time, so forecasting methods can be 

simple or highly complex. In our days forecasting is an integral part of decision-making 

activities in the companies, depending on specific tasks modern organizations could require 

short-term, medium-term and long-term forecasts.  

No to mention that the thing we are trying to forecast is not known, so we can represent 

it as a random variable. The random variable is being predicted and the accuracy of this 

prediction will depend on many characteristics and in order to achieve certain level of accu-

racy we could represent a random variable in prediction interval giving a range of values 

examined parameter could take. This set of values with their probabilities we call forecast 

distribution, however the average value of forecast distribution could be used. 

By considering fact that all predicted values will be calculated by created mathematical 

model we could say that Thesis involves a Machine Learning part, where out time series will 

be a sort of “education” for a model built by machine (“R Studio”). The machine learning 

algorithm basically will make predictions and learn itself by improving in a lifetime (learning 

more by additional data). The software that is developed to make predictions for this thesis 

is using an algorithm of supervised learning, because and algorithm learning by using a his-

torical data. The difference between procedural programming methods and machine learning 

is that machine creates an algorithm by itself, without actual use of scripts. The process of 

observation and learning could be represented as an vector.  
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Figure 1: Process of Observation and Learning  

Not to mention a main challenge of machine learning, is to achieve a good prediction 

results on new data, data that is not a part of a training set. It is possible that after fitting a 

model the performance of it will be much worse on the new data than on a known training 

set, however we will try to avoid this appearance in the research.  

The purpose of this Project would be creating a forecasting model that will be describ-

ing Traffic Data on the crossroad. A forecasting model is intended to show results in the 

specific time horizon, factors determining a forecast, appropriate methods that could be used 

and evaluating the accuracy of used methods would be described lately.   
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2 DATA ANALYST FRAMEWORK 

A data analysis is the main concept of data prediction, in order to systematically ana-

lyze data it is necessary to understand a data analytics framework. Figure number 2 shows a 

simple flow in such a framework (Nabati & Thoben, 2017).  It represents information in 

form of visualization and reporting tools. 

 

Figure 2: Data Analysis Flow 

Data collection is the starting point of building successful data prediction model. Meth-

ods, equipment and data sources can vary. Real-life data streams usually taken from physical 

devices such as sensors. The used sensors can be infrared detectors, camera systems, ultra-

sonic sensors and others, equipment installed in special places for data monitoring. Another 

type of devices for measuring could be any kind of CPSs unit complex systems. Devices 

work with technique of Extract, Transform and Load – which helps to receive data in needed 

format. Later, collected data serve as a basis for further data analysis and to eliminate uncer-

tainties in decision making process.  

Data processing is important to get rid of redundant or event inconsistent data, because 

for quality data analysis it is necessary to have qualitative data in huge quantities. Conse-

quently in order achieve high quality of data analysis it is necessary to filter and change data 

on the way from data collection.  Well-known data preprocessing techniques are eliminating 

redundancies, handling of missing values and errors, removing irrelevant data and more 

complicated different data mining algorithms. Whatsoever full implementation of data fil-

tering can significantly reduce the amount of data it leads to a better quality of data analysis.  

Data storage is important in order to archive data for longer period of time. One of the 

up-to-date solutions for low cost archiving systems is Cloud Computing, it makes possible 
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to store data in distributed manner.  Data gets stored on different servers and can be accessed 

from any remote access device. From disadvantages we could mention data security vulner-

ability. 

Information representation is important in order to support decision making process. 

It makes it more convenient and understandable to present the results of data analysis in 

comprehendible format. Special diagrams, chats and graphs allow represent data in human 

readable format.  

Last step – “Decision making” based on actual Data Prediction or data-based decision 

making. Data prediction can be important for understanding trends of data in future. This 

can help companies to make correct decision towards processes or/and company actions. 

 

Figure 3: Model Creation Flow 

The goal of the project is basically, by having input data (and output data in case of 

filtering) from traffic data sensors – build a model which allow to gain a prediction results 

within different time frames. 
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3 TIME SERIES AND DATA PREDICTION 

Within Thesis and a task of Traffic Data Prediction we are using concept of Time 

Series and represent given data with dependence by time as analyzed Time Series. Anything 

that is observed sequentially over time (hourly, daily, weekly etc.) is a time series.  

In this section of work we will describe theoretical part of a Time Series, from what it 

consists and modelling (prognoses) made with using Time Series. 

By Time Series we implied sequence of data (one specific indicator) measured with 

specific time cuts – sequential set of data points in time. Mathematically we can basically 

represent a Time Series by formula: x(t) where t represents the time and x is a random vari-

able. Within a time series model we know variable from time 0 to t, everything after t - (t+d) 

is future values of investigated variable. 

𝑥0,  𝑥1 …  𝑥𝑡 … − 𝑡𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 𝑥𝑖 ∈ 𝑅 

𝑥̂𝑡+𝑑(𝑤) =  𝑓𝑡(𝑥0, … , 𝑥𝑡  ; 𝑤) – time series model 

𝑑 = 1, … , 𝐷, where D is forecast horizon 

𝑤 − vector of model parameters 

A time series could be discrete (variable measured at discrete points of time, usually 

with equal time cuts – hourly, daily, monthly) and continuous (variable measured at every 

instance of time). When time series data is being forecasted, the aim is to estimate how the 

sequence of data will continue in future.  

In Thesis we will use forecasting methods that use only information about variable to 

be forecast (ignoring all other information), therefore we could extrapolate 4 main Time 

Series components, which are:  

• Trend (general tendency of a time series (increasing, decreasing, or stagnate 

over time period) is termed a Trend); 

• Seasonal (changes in a time series, which cause seasonal variations, if they 

occur - displayed in Seasonal factor); 

• Cyclical (dependence that occurs in day-time or other cyclical dependence 

(caused by circumstances, which repeat in cycles) called Cyclical); 

• Irregular (unpredictable influences, which don’t have any particular pattern, 

they could be caused by any unusual event, like a hockey match will affect 

loads of roads and crossroads on the way to a stadium). 
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Considering the effect of these components, two models are usually used for time se-

ries: Multiplicative and Additive. 

𝑌(𝑡) = 𝑇(𝑡) × 𝑆(𝑡) × 𝐶(𝑡) × 𝐼(𝑡)  

𝑌(𝑡) = 𝑇(𝑡) + 𝑆(𝑡) + 𝐶(𝑡) + 𝐼(𝑡)  

Where in upper formulas Y(t) is the observation and T(t), S(t), C(t), I(t) are trend, 

seasonal, cyclical and irregular variation at time t.  

Consequently we can describe the main goal in time series research as finding and 

calculating all of the four components, to use the obtained information for data prediction. 

A main stages for time series analysis would be:  

1) Gathering information (in our case data were collected from crossroads using 

detectors); 

2) Graphical representation of a time series and exploratory analysis which 

includes determination of trend, seasonality, cycles; 

3) Choosing and fitting models. In this stage we are choosing the best model that 

would fit given time series, it is common to compare potential models among 

each other. In theoretical part of current Thesis we will describe possible 

models to be used; 

4) Examination and evaluating of built model. Predicted data is being compared 

with Test Set (real values of data traffic in our case), assessing the accuracy of 

forecasts.  

In forecasting theory models that use only information about forecasted variable are 

exponential smoothing, decomposition and ARIMA models. In current project  “mixed mod-

els” are not considered to be used (that include dependency of different variables which 

affect the system), because we assume that a system of data traffic is not fully described by 

multiple parameters and it is extremely difficult to measure the relationship among those 

parameters affecting a data. Secondly, the main concern for us is to predict what exactly will 

happened and not why it will happens. And finally, with time series model we might get a 

more accurate forecast.  

To conclude, in current Thesis built model would be fitted to a given time series. In 

forecasting of time series, past observations are collected and analyzed to, as a main goal – 

develop a suitable mathematical model, the future data are then predicted using built model. 
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3.1 Stationary time series and autocorrelation 

For building a time series model that is useful for future forecasting the necessary 

condition is stationarity of a time series. A stationary time series means that properties do 

not depend on the time at which a series is observed.  

A process is Strongly Stationary if the joint probability distribution function of {x_(t-

s),x_(t-s+1),…x_t…x_(t+s-1),x_(t+s)  } is independent of t for all s – for strongly stationary 

process joint distribution of any possible set of random variables from the process is inde-

pendent of time. For weakly stationary of order k – implies that statistical characteristics of 

a time series (variance, covariance) are dependent only (up to that order k) on time differ-

ences of the data being used to estimate the moments. In simple words – a distribution of a 

Strongly Stationary process is not time dependent (Trend and Seasonal component leads to 

non-stationarity, Cyclical component is not affecting stationarity). The way to make non-

stationary time series stationary – is to use differencing (difference between sequential ob-

servations) it can help to stabilize a mean of time series, in order to stabilize a variance of 

time series – logarithmic transformation could be used. 

One of the logarithmic transformations is a Box Cox transformation that may apply. 

A Box Cox transformation intend to transform non-normal dependent variables into a normal 

shape. At the core of the Box Cox transformation is an exponent, lambda (λ), which lays in 

range from -5 to 5, Box Cox transformation has the form: 

𝑦(𝜆) = {
𝑦𝜆 − 1

𝜆
log 𝑦 , 𝑖𝑓 𝜆 = 0 

 

It could also appear that differenced data will not appear to be stationary and it needs 

a second-order differencing (rarely appears in practice), it is calculated with the formula: 

𝑦𝑡
′′ = 𝑦𝑡

′ − 𝑦𝑡−1
′ = (𝑦𝑡 − 𝑦𝑡−1) − (𝑦𝑡−1 − 𝑦𝑡−2) 

Sometimes it could be useful to use a seasonal differencing, when we take the differ-

ence between an observation and the observation from the same season appeared previously, 

it is calculated with the formula, where m is the number of seasons: 

𝑦𝑡
′ = 𝑦𝑡 − 𝑦𝑡−𝑚 
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Next important parameter one should know while analyzing a time series is Autocor-

relation. Autocorrelation measures internal correlation within a time series, it explains inter-

nal association between observations in a time series.  

The way to tell if differencing is required for time series is to use a statistical hypoth-

esis tests of stationary - unit root test (designed to determine whether differencing is re-

quired). One of the most useful unit root tests is KPSS (Kwiatkowski–Phillips–Schmidt–

Shin) test. It is used to test that a null hypothesis that an observable time series is stationary 

around a deterministic trend against the alternative of a unit root. After the test result we 

could indicate if a null-hypothesis were rejected (test statistic should be significantly bigger 

then 1%) or approved (test statistics is close to 1%). Afterwards if the hypothesis about sta-

tionary were rejected we difference the data and apply the test again.   

Autocorrelation determines internal association: assigning a value from +1 (positive 

linear dependence) to -1 (negative linear dependence), 0 value will show no association. 

Strong autocorrelation will indicate that it is possible to predict variable values in future by 

observation of variable values in past.  

As an example of calculating autocorrelation function we would like to give a samples 

from signal-processing theory (however it could be input and output of any certain model) 

below showed an example of 250 samples with sampling time 5 seconds (the whole simula-

tion time 1250 seconds). After adjustments we are obtaining an input and output signal 

graphics: 

 

Figure 4: Input Signal  

 



TBU in Zlín, Faculty of Applied Informatics  16 

 

 

Figure 5: Output Signal  

Autocorrelation function is computed as a mean value of heterochronic values of one 

signal: 
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Autocorrelation function for input and output (The interval of the time shift is gradu-

ally increasing from 1 sampling interval to 25 sampling intervals: 0,1*250): 

 

Figure 6: Input ACF  
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Figure 7: Output ACF  

Computation of the autocorrelation function – mean value of a multiplication of time 

shifted values. Autocorrelation coefficients one by one form an autocorrelation function. In 

both input and output functions we could see the similar trend – important task is to deter-

mine the trend and create a Mathematical Model. Which would be describing the process.  

Further in theoretical part of the Thesis the application of the autocorrelation and sta-

tionarity will be explained. 

3.2 Time series forecasting using Stochastic Models 

In general processes models for time series data can have many forms and represent 

different stochastic processes. Two mostly used linear time-series models are Autoregressive 

(AR), Moving Average (MA) and combining this two, the Autoregressive Moving Average 

(ARIMA) models. ARIMA models and its different variations are based on the Box-Jenkins 

principle and basically known as Box-Jenkins models (looking for the best fit of time-series 

model to past values of a time-series).  

Linear models are easier to implement due to their relative simplicity in understanding. 

Whatsoever in practice many time series models shows non-linear patterns. Most well-

known non-linear models described in literature are Autoregressive Conditional Heterosce-

dasticity (ARCH) model and its variations.  

In this chapter important linear and non-linear stochastic time-series models with their 

different properties will be discussed. This chapter will provide us with theoretical back-

ground for choosing appropriate model for researched process of crossroad traffic.  
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The Autoregressive Moving Average (ARMA(p, q)) is combined of two models AR(p) 

and MA(q) and suitable for one variate time series modelling. Mathematical expression of 

the AR(p) model, where predicted value of a variable is calculated through linear combina-

tion of p past observations and a random error together with a constant term: 

𝑦1 = 𝑐 + ∑ 𝜑𝑖𝑦𝑡−𝑖 + 𝜀𝑡 = 𝑐 +  𝜑1𝑦𝑡−1 +  ____ + 𝜑𝑝𝑦𝑡−𝑝 + 𝜀𝑡

𝑝

𝑖=1

 

Where 𝑦𝑡 represents actual value and ε represents a random error at time period t with 

integer constant p representing an order of the model, 𝜑𝑖(𝑖 = 1,2, … , 𝑝) are model parame-

ters and c is a constant. 

In MA(q) model uses past errors as the explanatory variables: 

𝑦1 = 𝜇 + ∑ 𝜃𝑖𝜀𝑡−𝑖 + 𝜀𝑡 = 𝜇 +  𝜃1𝜀𝑡−1 +  ____ + 𝜃𝑝𝜀𝑡−𝑝 + 𝜀𝑡

𝑞

𝑖=1

 

Where µ is the mean of the time series, 𝜃𝑖(𝑖 = 1,2, … , 𝑞) are the model parameters and 

q is the order of the model. A noise in current model assumed to be a white noise, which has 

a zero mean value and constant variance. 

Previously in Thesis the time series were represented as a summary of seasonal, trend, 

cycle (usually trend and cycle combined together) and irregular components. Moving aver-

ages is one of the first steps in classical decomposition to estimate a trend-cycle. Usually 

after applying MA formula the trend-cycle becomes smoother than the original time series 

and shows main movement of the graph without shifts. The higher the order of applied mov-

ing average the smoother data curve becomes, typically the MA have an odd-order – so they 

are symmetric. In case we need to have an even order of MA and still keep it symmetric the 

moving average is being applied to a moving average (i.e. MA of an order 4 could be taken 

and then MA of an order 2 applied to the results).  

For a time series with seasonal period and if we assume that seasonal component is 

constant every year – classical decomposition could be used, which contains the next pattern 

(for additive decomposition):  

1. If seasonal period is an even number, a trend-cycle component calculated using 

a 2 order MA applied to an seasonal period number MA, if its an odd – seasonal 

period number MA is used; 

2. Series: 𝑦𝑡 −  𝑇𝑡̂ calculated  
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3. Then to estimate the seasonal component for each season, values from step 2 

for that season average; 

4. The irregular component calculated: 𝑅𝑡̂ = 𝑦𝑡 −  𝑇𝑡̂ − 𝑆𝑡̂ 

Besides classical decomposition there is several modern and better methods that could 

be used, however their explanation goes beyond the scope of current Thesis.  

If only one model would be taken time series most likely will fit to an AR model 

because in MA the random errors are not foreseeable. The combination of both autoregres-

sive (AR) and moving average (MA) models can be effectively combined together in ARMA 

models, represent with mathematical equation: 

𝑦1 = 𝑐 + 𝜀1 + ∑ 𝜃𝑖𝜀𝑡−𝑖 + ∑ 𝜑𝑖𝑦𝑡−𝑖

𝑝

𝑖=1

𝑞

𝑖=1

 

The term autoregression (AR) shows that there is a regression of the variable against 

itself. If we use a formula for AR component it will include a summary of a lagged values 

of analyzed variable in the past plus white noise: 

𝑦𝑡 = 𝑐 + 𝜑1𝑦𝑡−1 + 𝜑2𝑦𝑡−2+. . . +𝜑𝑝𝑦𝑡−𝑝 + 𝜀𝑡 

The term moving average (MA) uses past forecast errors in regression-like model. By 

using MA method each value of variable can be represented as weighted moving average of 

the past few forecasted errors. If we use a formula of MA component it will include a sum-

mary of forecast errors: 

𝑦𝑡 = 𝑐 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2+. . . +𝜃𝑞𝜀𝑡−𝑞 

The constant c and the value of d has an important effect on the long-term forecasts 

using ARIMA models:  

• If c=0 and d=0, the long-term will go to zero; 

• If c=0 and d=1, the long term will go to a constant; 

• If c=0 and d=2, the long term forecast will follow a straight line; 

• If c≠0 and d=0, the long-term forecast will go to the mean of the data; 

• If c≠0 and d=1, the long-term forecast will go to a straight line; 

• If c≠0 and d=2, the long-term forecast will go to a quadratic trend. 

Also important parameter for ARMA model representation is lag operator. The lag of 

backshift operator is defined by 𝐿𝑦𝑡 = 𝑦𝑡−1, it represent ARMA models as follows: 

𝜑(𝐿)𝑦𝑡 = 𝜃(𝐿)𝜀𝑡. ARMA and ARIMA models basically intend to describe the autocorrela-

tions in the data. 



TBU in Zlín, Faculty of Applied Informatics  20 

 

Data set from crossroad have strong seasonal character, so basic ARIMA model will 

not describe time series precisely in a long term. In this case Seasonal ARIMA model are 

capable of modelling a wide range of seasonal data. Additional seasonal terms are included 

in the ARIMA models: non-seasonal part (p, d, q) and seasonal part of the model (P, D, Q). 

The seasonal part is similar to non-seasonal but involves backshifts of the seasonal period.  

Important part of creating a data prediction model, based on past values of the re-

searched variable is calculating autocorrelation (ACF) and partial autocorrelation (PACF) 

function (they will allow us to determine a values of p and q and will allow us to see seasonal 

lags on the graph). These statistical measures reflect how the observations in a time series 

are related to each other. For modelling purposes it is important to plot both functions in 

certain time lags. Mathematical definition for a time series {𝑥(𝑡), 𝑡 = 0,1,2, … }, the auto-

covariance at lag k is defined as: 

𝑦𝑘 = 𝐶𝑜𝑣(𝑥𝑡, 𝑥𝑡+𝑘) = 𝐸[(𝑥1 − 𝜇)(𝑥𝑡+𝑘 − 𝜇)] 

The Autocorrelation Coefficient at lag k is calculated as: 

𝜌𝑘 =
𝛾𝑘

𝛾0
 

Where μ is the mean of the time series, autocorrelation coefficient belongs to interval 

from -1 to 1 and closer coefficient moves to an edges of the interval – the stronger linear 

dependence it shows.  

In case if autocorrelation of observation needs to be measured on specific lags – partial 

autocorrelation function (PACF) is used.  

In case of time-series data shows non-stationary behavior (when seasonal patterns and 

trends occurs) used ARIMA model (ARMA model could only be used for and stationary 

time series data).  

In ARIMA models a non-stationary time series is made stationary by applying finite 

differencing of the data points. The mathematical formulation of the ARIMA(p,d,q) model 

is shown below: 

𝜑(𝐿)(1 − 𝐿)𝑑𝑦𝑡 = 𝜃(𝐿)𝜀𝑡 

(1 − ∑ 𝜑𝑖𝐿
𝑖

𝑝

𝑖=1

) (1 − 𝐿)𝑑𝑦𝑡 = (1 + ∑ 𝜃𝑗𝐿𝑗

𝑞

𝑗=1

) 𝜀𝑡 
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• Where: p, d and q are integers that shows the order of the autoregressive, 

integrated and moving average parts of the model respectively; 

• The integer d shows the order of differencing. Generally 1st order is enough 

for most of the cases, it is important not to over differentiate the model, or it 

could loose connection with the real (not differentiate model). When d is 

equal to 0, then it is ARMA(p,q) model; 

• We could represent ARIMA(p,0,0) as the AR(p) model and ARIMA(0,0,q) 

as the MA(q) model. 

Selecting of suitable and accurate values of p, d and q could be difficult task, however 

modern tools (“R Studio” – practical part described later on) used in the Thesis will allow 

us to calculate it automatically.  

Once the order of the model has been chosen (p, d and q), we need to choose a constant 

parameter c in our Thesis for parameters estimation maximum likehood estimation (MLE) 

is used. 

After describing different time series model we would be determining which model 

data traffic from crossroad could be better implemented. 

3.3 Loess decomposition model  

The time series of traffic data on the crossroad have strong seasonal factor. Different 

and one of suitable methods for seasonal time series is a seasonal-trend decomposition based 

on Loess (“locally-weighted scatterplot smoothing”). This model decompose time series into 

three components: trend, seasonal and remainder. 

𝑌(𝑡) = 𝑇(𝑡) + 𝑆(𝑡) + 𝑅(𝑡) 

Loess method also known as locally weighted polynomial regression. At each point in 

the data set a low-degree polynomial is fit to a subset of the data. The polynomial is fit using 

weighted least squares, with more weight to points near the point. Basically the Loess fit is 

complete after regression function values have been computed for each of the data point.  

The main steps of Loess decomposition are: 

1. A window of specified step-size is placed over a data (the wider the window, 

the smoother the resulting loess curve); 

2. A regression curve is fitted to the observations that locate within the window 

using a least squares method, the points at the window are being weighted 

(closer to the evaluated at the moment point, greater the wright); 
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3. The process of moving the window further and weights recalculation repeated 

several times; 

4. The points of the regression line obtained and connected. Each point og the 

resulting loess curve is the intersection of a regression line and a vertical line 

at the center of such window.  

A simple example of using a Loess method, fitting a curve to a data with size 5 is given 

below: 

 

Figure 8: Data set for Loess Decomposition 

In current example we use window size 5: 

 

Figure 9: Window in Data Set for Loess Decomposition 

Afterwards a fitted line created by considering weights of the closest point and actual 

first point of the fitted curve determined: 
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Figure 10: Fitted Curve for Loess Decomposition 

Afterwards a next points are evaluated with window moving further during the pro-

cess. When the fitted curve is created – it is actually an regression function which could 

predict values in a future.  

Advantages of the Loess method are no need of function specification for fitting a 

model, Loess is very flexible and convenient to use with seasonal time series. However, the 

down sides of the Loess is that it requires large, densely sampled data, and it does not pro-

duce and actual regression function that represented by mathematical formula and might be 

applied in current project.   
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4 SETTING APPROPROATE MODEL (BOX-JENKINS 

METHODOLOGY) 

On the first stage of data prediction based on historical data – is to actually select 

appropriate model and optimal model orders that can produce accurate forecast of analyzed 

variable. One of the approaches were built by statisticians George Box and Gwilym Jenkins, 

which allows to find a best fit of parameters to build ARIMA model. 

Box-Jenkins method uses, so-called: three step iterative approach. It includes: 

• model identification; 

• parameter estimation; 

• diagnostic checking.  

This process is being repeated several times, until we are able to build a model which 

satisfy the accuracy. Then model could be used for future estimations and forecasting. Box-

Jenkins methodology graphically represented below: 

 

Figure 11: Box-Jenkins Methodology 

One of the most complex steps in appropriate model selection is to calculate estimated 

model parameters.  
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One of the most important criteria’s to indicate a model accuracy (could be used to 

any model) is Akaike’s Information Criterion (AIC), it could be written as:   

𝐴𝐼𝐶 = −2 log(𝐿) + 2(𝑝 + 𝑞 + 𝑘 + 1) 

Where L is a likelihood of the data. The formula is given for ARIMA models, however 

criteria could be used to any model. Good models are obtained by minimizing AIC. 
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5 FORECASTING ACCURACY. RESIDUALS.  

After creating and fitting a model it is important to measure an accuracy, and in the 

end - the “residuals” are what is left over. The residuals are equal to the difference between 

the real values and the values obtained through built model: 

𝑒𝑡 = 𝑦𝑡 − 𝑦̂𝑡 

After calculating residuals they are useful in checking if a model has fully captured the 

information in the provided data. A residuals of a good forecasting model will have follow-

ing properties:  

1. There is no correlation (close to zero) between residuals. If correlation 

appears it means that there is information left in the residuals itself, however 

this information needs to be used in calculating forecast; 

2. There is a zero mean (residuals mean close to zero). If the mean is differs 

from zero, it means that the forecasts are biased; 

3. The residuals variance are constant; 

4. The residuals have normal distribution. 

Forecasting methods that doesn’t satisfy first and second criteria’s can be improved 

and modified to give better forecasts. Whatsoever is it possible that it will be several fore-

casting methods that satisfy the criteria’s and still could be improved. Forecasting methods 

that do not match third and fourth criteria’s not necessarily could be improved.  

In addition, looking at the residuals autocorrelation plots from statistical point there is 

a more formal tests, which consider the whole set of residuals as a group, those type of tests 

called “portmanteau” test and include “Box-Pierce” test, “Ljung-Box” test and others.  

To conclude the role of residuals in forecast model accuracy – we expect the residuals 

and autocorrelations of residuals to look more like a white-noise process.  

To calculate residuals while evaluating forecasts accuracy - time series data will be 

separated in training and test data set, where the training data is used to create a forecasting 

model itself and the test data is used to compare predicted and real values. 
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Figure 12: Data Set Separation 

The size of the test data set is taken approximately 20% of the total data sample. Below 

important characteristics of built mathematical model are given: 

1. If model fits the training data set not necessarily leads to an accurate forecast; 

2. Creating model with enough parameters leads to a well-fit of the model; 

3. Over-fitting a model leads to an additional errors. 

While working on forecasting accuracy it is also important to work on forecast “error”, 

where “error” means an unpredictable part of an observation, it is calculated with formula: 

𝑒𝑇+ℎ = 𝑦𝑇+ℎ − 𝑦̂𝑇+ℎ|𝑇 

Important to mention that errors are different from residuals: 

1. Errors are calculated on the test data set, while residuals are calculated on the 

training data set;  

2. Errors could be based on multi-step forecast, while residuals always based on 

one-step forecast.  

Additionally forecast error could transformed in scale-dependent errors – calculated 

as a mean absolute error: 

𝑀𝐴𝐸 = 𝑚𝑒𝑎𝑛(|𝑒𝑡|) 

Could be used while comparing forecast methods applied to a single time series, or to 

several time series with the same units. Another error representation is percentage error, it is 

calculated as: 

𝑀𝐴𝑃𝐸 = 𝑚𝑒𝑎𝑛(|𝑝𝑡|) 

And it is unit-free, it is convenient to use while comparing forecast performances be-

tween data sets. 
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Forecast values could also be presented in prediction interval, within which we expect 

predicted values to lie with a specific probability. If assumption that forecast errors are nor-

mally distributed will be taken – then we can conclude then 95% of values in prediction 

interval for the h-step forecast is laying down in interval of 𝑦̂ ± 1.96𝜎ℎ, where 𝜎ℎ is a stand-

ard deviation of the forecast distribution, 1.96 – is a multiplier and it is depends on the cov-

erage probability (when percentage is lower– lower a multiplier). Basically the main purpose 

of the prediction intervals is that they show the uncertainty of the forecasts – giving not only 

point value, but a range of values that event could obtain in future.  

Most precise prediction intervals obtained while using one-step prediction intervals, 

the standard deviation of the residuals will be the same with the standard deviation of fore-

cast distribution, so interval could be easily calculated by using the values of the multiplier 

(dependent on percentage accuracy). In case of multi-step prediction intervals – the length 

if the forecast horizon will increase. Simply saying – the further ahead we forecast the more 

uncertainty will appear in forecast and larger the prediction interval will become. To calcu-

late the actual interval used a “benchmark methods”, which assumes that residuals are un-

correlated.  

Another more complicated case, when forecast errors does not have a normal distribu-

tion, in this case used a bootstrapping, which assumes forecast errors are uncorrelated. Boot-

strapping method workflow implements adding an errors one by one to an calculated data 

set. While we do this repeatedly – we obtain future values and calculate an forecast horizon, 

by calculating percentiles for each forecast horizon.  

When it goes to an actual forecast calculation we need to go back to ARIMA models 

in the theoretical part, and calculate an actual forecast using the following steps: 

 Expand the ARIMA equation, to move 𝑦𝑡 on the left side; 

 Rewrite the equation with replace of t to T + h; 

 On the right side of the equation replace the future observations with their 

calculated forecasts, future errors will be equal to 0 and past errors equal to 

residuals. 

To conclude, to obtain high forecast accuracy and have understanding of possible val-

ues of forecasted values – residuals analysis with prediction intervals are used. 
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II.  ANALYSIS 
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6 SITUATIONAL PLAN 

Below presented a situational plan from Satellite obtained from “Google Maps” of 

investigated intersection exit out of “Makro” (address tř. 3. května 1198, 763 02 Zlín, Czech 

Republic) provided below: 

 

Figure 13: Satellite Situational Plan 
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Situational plan with traffic data lights and detectors description (provided by 

“CROSS” company) showed below: 

 

Figure 14: Situational Plan 

Table that represents main Data Detectors showed below:  

DVA1 Straight from right to left 

DVA2 Straight from right to left 

DVE Left turn from right 

DVC1 Straight from left to right 

DVC2 Straight from left to right 

DVK Right turn from left 

DVB Straight from down 

DSB Right turn from down 

Table 1: Data Detectors 

Data (amount of cars passed through detector), taken from interval (1.05.2018 – 

30.06.2018) and analyzed, predicted values are being created by analysis of mentioned time 

period. Data in the future is provided for a test data set (cross-validation and comparison real 

and predicted values). 
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7 IMPLEMENTATION OF TECHNIQUES FOR TIME SERIES 

FORECASTING  

In the previous parts of Thesis, we have described various theoretical parts and popular 

techniques for time series forecasting. The next important step is - implementation, i.e. to 

apply these methods for generating forecasts. To conclude we are going to list each steps for 

actual Forecasting:  

1. When applying a particular model to simulated or real time series, first the 

raw data is divided into two parts, the Training Set and Test Set (data is 

usually divided 80% to 20% for sets).  

2. The observations in the training set are used for constructing the model itself. 

Validation Set – is a small part of a Training Set which is kept for validation 

purposes.  

3. Visual analysis of a time series. 

4. Next step is preprocessing it could be done by various techniques, it is done 

by normalizing the data or taking logarithmic, differencing (d, D parameters) 

or other transforms like a Box-Cox Transformation.  

5. Afterwards ACF and PACF graphs are being created and analyzed, 

parameters p, q, P, Q could be set up.  

6. Models are being created (different parameters could be used for testing of a 

most suitable model). AIC of models are calculated and used to compare the 

accuracy of models (lower AIC – better it should describe a process). 

7. Residuals of created model and real values are being calculated and 

compared. Residuals are being analyzed (graph should be close to a white 

noise which will indicate that residuals do not contain valid for the model 

data). 
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7.1 Graphical Representation  

For time series data first graph we built is a time plot. The observation of data traffic 

on a crossroad are plotted against the time (with 10 minutes lag).  

In our research we are provided with data from 23 “CROSS” radars. A detailed anal-

ysis and graph representation of a time interval will be shown from DVA1 and DVA2 radars 

(direct lines going from right to left side of the situational plane) 1.05.2018 to 29.06.2018 

showed below:  

 

Figure 15: DVA1 Time Series 
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Figure 16: DVA2 Time Series 

The time plot reveals some interesting features in the graphs:  

• We don’t see long-term increase or decrease, so could make conclusion about 

no trend in time series; 

• Clear seasonal factor, which occurs in peaks within a ”rush hour” during the 

day and weekly-dependency, which shows higher peaks within a week days 

and lower peaks during the weekend.  

For precise data forecasting we are dividing days within given time period into groups 

by day of the week from Monday to Sunday.  
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Data in form of time series for Mondays only for DVA1 and DVA2 data detectors 

showed below: 

 

Figure 17: DVA1 Time Series for Mondays 

 

Figure 18: DVA2 Time Series for Mondays 

Data analysis and actual forecasting using appropriate statistical model described later 

on in the project.  
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7.2 Forecasting Toolbox 

As a main tool for calculation in the Thesis program – “R” were used. “RStudio” is a 

free software and programming language mainly created for statistical computing, data anal-

ysis and graphics developed by “R Core Team”. 

First of all in order to work and analyze time series data additional packages needs to 

be installed at “RStudio”: 

install.packages("forecast") 

install.packages("seasonal") 

install.packages("fpp2") 

We write this code first in the command line before actual program implementation in 

order to complete installation of needed additional packages. 

Afterwards analyzed data (in first example is data from detector DVA1 on Mondays) 

is being stored in the .txt file at the same directory with .r file and Present Working Directory 

is being set up in “R” and all data from the .txt file is being stored to a variable dataIn with 

the commands:  

setwd('E:\\Data') 

dataIn <- read.table("dva1mon.txt", header=TRUE, sep=";") 

Time series itself is being stored into special “ts()” object in order to use all needed 

function for time series analytics. In order to store time series in variable tsData with speci-

fied frequency it is needed to be calculated. Originally frequency for time series data is set 

up as 1 year, in our case data is being stored every 10 minutes, so we need to calculate it as 

multiplication of hourly (measurement 6 times per hour), daily (24 hours) and amount of 

days per year 6*24*365=52560. The start of measurement is 7.05.2018, which will be 126 

days from the beginning of 2018, or 2018.345. In our case “RStudio” code shown below:  

tsData <- ts(dataIn, start=2018.345, freq=6*24*365) 

Time series is being stored in “tsData” variable as a “ts” object which takes data from 

already stored numerical vector “dataIn”. To build a graph of created time series we use 

function:  
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autoplot(tsData) +ggtitle("DVA1 detectors on Monday")  + xlab("Days") + 

ylab("Cars") 

Function autoplot will be used multiple times lately in the research in order to obtain 

time series plots, in our case built time plot showed below: 

 

Figure 19: DVA1 Detectors On Monday in R 

All steps described at “Implementation of Techniques for Time Series Forecasting” 

chapter are automatically implemented in used auto.arima() “RStudio” toolbox. 

Auto.arima() returns best ARIMA model according to their AIC value. The full function set 

in “RStudio” provided below: 

auto.arima(y, d = NA, D = NA, max.p = 5, max.q = 5, max.P = 2, 

max.Q = 2, max.order = 5, max.d = 2, max.D = 1, start.p = 2, 

start.q = 2, start.P = 1, start.Q = 1, stationary = FALSE, 

seasonal = TRUE, ic = c("aicc", "aic", "bic"), stepwise = TRUE, 

nmodels = 94, trace = FALSE, approximation = (length(x) > 150 | 

frequency(x) > 12), method = NULL, truncate = NULL, xreg = NULL, 
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test = c("kpss", "adf", "pp"), test.args = list(), 

seasonal.test = c("seas", "ocsb", "hegy", "ch"), 

seasonal.test.args = list(), allowdrift = TRUE, allowmean = TRUE, 

lambda = NULL, biasadj = FALSE, parallel = FALSE, num.cores = 2, 

x = y, ...) 

One last thing needed to be calculated before using auto.arima() is lambda function. In 

our case it could be done by using Box Cox transformation parameter. It is implemented by 

another function in “RStudio” – BoxCox.Lambda(), where inside an actual function we in-

sert calculated time series. 

BoxCox.lambda(tsData) 

Calculated result of lambda(λ) by “RStudio” in case of working with DVA1 data de-

tector for Monday is: λ=1, now the result could be used in auto.arima() function. First 

ARIMA model will be implemented without seasonality, in short term it will be giving an 

actual prediction, however in a long term forecast function will go to a straight line. The 

implementation showed below:  

fit1 <- auto.arima(tsData, stepwise=FALSE, seasonal=FALSE, trace=TRUE, 

lambda=1) 

Checked ARIMA models parameters are set up by AIC test result and presented in the 

table below: 

Model AIC result 

ARIMA(0,0,0) with zero mean : 13261.01 

ARIMA(0,0,0) with non-zero mean : 11789.85 

ARIMA(0,0,1) with zero mean: 11889.64 

ARIMA(0,0,1) with non-zero mean : 10630.48 

ARIMA(0,0,2) with zero mean: 11053.96 

ARIMA(0,0,2) with non-zero mean : 10039.64 

ARIMA(0,0,3) with zero mean: 10451.65 

ARIMA(0,0,3) with non-zero mean : 9619.931 

ARIMA(0,0,4) with zero mean: 10097.21 

ARIMA(0,0,4) with non-zero mean : 9389.293 

ARIMA(1,0,0) with zero mean : 9772.648 

ARIMA(1,0,0) with non-zero mean : 9207.024 

ARIMA(1,0,1) with zero mean: Inf 

ARIMA(1,0,1) with non-zero mean : 8598.968 
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ARIMA(1,0,2) with zero mean: Inf 

ARIMA(1,0,2) with non-zero mean : 8455.746 

ARIMA(1,0,3) with zero mean: Inf 

ARIMA(1,0,3) with non-zero mean : 8445.655 

ARIMA(1,0,4) with zero mean: Inf 

ARIMA(1,0,4) with non-zero mean : 8437.215 

ARIMA(2,0,0) with zero mean: Inf 

ARIMA(2,0,0) with non-zero mean : 8469.767 

ARIMA(2,0,1) with zero mean: Inf 

ARIMA(2,0,1) with non-zero mean : 8456.11 

ARIMA(2,0,2) with zero mean: Inf 

ARIMA(2,0,2) with non-zero mean : 8455.227 

ARIMA(2,0,3) with zero mean: Inf 

ARIMA(2,0,3) with non-zero mean : 8446.945 

ARIMA(3,0,0) with zero mean: Inf 

ARIMA(3,0,0) with non-zero mean : 8452.337 

ARIMA(3,0,1) with zero mean: Inf 

ARIMA(3,0,1) with non-zero mean : 8453.706 

ARIMA(3,0,2) with zero mean: Inf 

ARIMA(3,0,2) with non-zero mean : 8449.757 

ARIMA(4,0,0) with zero mean: Inf 

ARIMA(4,0,0) with non-zero mean : 8454.877 

ARIMA(4,0,1) with zero mean: Inf 

ARIMA(4,0,1) with non-zero mean : 8450.418 

ARIMA(5,0,0) with zero mean: Inf 

ARIMA(5,0,0) 

with non-zero mean : 

8457.901 

Table 2: ARIMA models 

After AIC test we could determine a best-fit model for a short-term prediction, as 

ARIMA(1,0,4) with non-zero mean. To build a graph using “RStudio” we use a following 

code:  

fcast <- forecast(fit1, h =500) 

plot(fcast) 

To indicate seasonality the ACF and PACF function is being created in “RStudio” and 

correlogram graphs are plotted. Correlogram is always starting from 1, so the started lag is 

being shifted. Implemented code and correlograms showed below:  

#ACF and PACF correlograms starting from lag 1 

Acf(tsData, lag = length(tsData)-1) 
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Pacf(tsData, lag = length(tsData)-1) 

 

Figure 20: ACF  

 

Figure 21: PACF  
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 Graph for 500 steps is plotted by previous code and showed below. We could 

see that in a long term function starts to get closer to a straight line so our suggestion is being 

approved. Talking about closest forecast the value of the first five predicted steps are: 

7.309917, 8.078554, 8.662148 , 9.457279, 10.157212. 

 

Figure 22: Long-Term Prediction for DVA1 Mondays 
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Now the predicted values and actual values will be compared and residuals between 

them will be calculated, meanwhile the model itself will be constantly expanded by adding 

actual values to the created ARIMA model. In additional .txt file added data from Monday 

(02.07.2018), so the time series graph represented 9 days showed below: 

 

Figure 23: DVA1 for Mondays with Additional Day 

In implemented “Rstudio” code data from .txt file is being imported. Afterwards time 

series (ts) object is being created with start and end value, to obtain new values the end value 

is being consistently changed to end value plus one in order to “teach” ARIMA model and 

the predicted values (10 values in our case) are generated and stored to “Excel” file as pre-

dicted values. Implemented programming code showed below: 

library(seasonal) # install.packages("seasonal") 

library(forecast) # install.packages("forecast") 

library(fpp2) # install.packages("fpp2") 

setwd('E:\\Data') 

dataIn3 <- read.table("dva1monPredict.txt", header=TRUE, sep=";") 

tsData4 <- ts(dataIn3, start = 1, end = 1155) 

fit4 <- auto.arima(tsData4, seasonal.test = "seas", stepwise=FALSE, sea-

sonal=TRUE, trace=TRUE, lambda=1) 
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fcast4 <- forecast(fit4, h =10) 

fcast4 

Programming code could be improved in our case by adding a loop, that will have an 

end value of analyzed time series as an variable which changes every interaction to end value 

plus one. In provided example implemented code will return 10 forecasted values from lag 

1165 to lag 1175, the values are being transferred to integer values, also “RStudio” returns 

values for 95 and 80 percent confidence interval:  

for (var in c(1165:1175)){ 

tsData4 <- ts(dataIn3, start = 1, end = var) 

fit4 <- auto.arima(tsData4, seasonal.test = "seas", stepwise=FALSE, sea-

sonal=TRUE, lambda=1) 

fcast4 <- forecast(fit4, h = 1) 

print(fcast4) 

} 

Real data to forecasted values and differences between them (residuals) for 02.07.2018 

showed below in graphical representation, blue line represents an actual data from DVA1 

data detector and red line represents predicted values with ARIMA (1, 0, 4) model: 

 

Figure 24: DVA1 Real and Forecasted Values 
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Figure 25: DVA1 Residuals 

By analyzing residuals and comparing both: real and predicted data graphs we can say 

that, beside sharp peak values in real data graph, forecast is accurate. Graph of residuals 

looks like a white noise, which approved by normal distribution function of residuals (built 

in “RStudio” with code showed below, firstly residuals stored in .txt object in the working 

directory):  

#Distribution histogram of residuals 

residuals <- read.table("dva1monResiduals.txt", header=TRUE, sep=";") 

tsRes <- ts(residuals) 

gghistogram(tsRes) 
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Figure 26: Residuals Distribution 

The right part of residuals distribution with 0 mean is looks a little longer than left part, 

however limited amount of residuals data (144) allows to make a conclusion about normal 

distribution of residuals consequently created with ARIMA(1,0,4) is precise for the forecasts 

on the investigated time series. 
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CONCLUSION 

In general data prediction is complicated and not ambiguous task, however in our days 

by means of up to date technologies and programs it is possible to precisely forecast data 

sets. Software environments contain complicated statistical calculations and algorithms and 

allow users to tremendously simplify the process of data analysis and data prediction.  Not 

to mention that field is rapidly developing and new, more powerful software is being con-

tinuously developed.  

Whatsoever, during the process of forecast development it is necessary to follow re-

strictions and certain flow in order to create a model that will describe process precise and 

actual data will fit predicted values.   

From the inception of data prediction and data analysis it is one of the most important 

and progressive fields that could be implemented in all parts of human life, from urbanistic 

and ecological to economical and financial. While creating accurate data forecast for the 

future let humanity know the best behavior towards the process which is described by ana-

lyzed data. All that gives us incredible advantage in sense of knowing the future, by knowing 

future events and processes incomes.     

A project helps to understand theoretical and practical components of modern data 

analysis and data prediction, beside that gives practical illustration of forecast usage in real 

urban crossroad.  
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LIST OF ABBREVIATIONS 

ARIMA  Autoregressive Integrated Moving Average 

AR  Autoregressive 

MA  Moving Avarage 

KPSS  Kwiatkowski–Phillips–Schmidt–Shin 

ACF  Autocorrelation Function 

PACF  Partial Autocorrelation Function 

TS  Time Series  

ARCH  Autoregressive Conditional Heteroscedasticity 

LOESS   Locally-Weighted Scatterplot Smoothing 

MAE  Mean Absolute Error 

MAPE  Mean Absolute Percentage Error 

AIC  Akaike’s Information Criterion 

CPS  Computer Power System 

STL  Seasonal and Trend decomposition using Loess 

MLE  Maximum Likehood Estimation 
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