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ABSTRAKT

Tato diplomova prace fesi detekci Skiideti pomoci modelti hlubokého uceni. Cilem bylo
natrénovat sit¢ hlubokého uceni pro ptfesnou a rychlou detekci sktdci. Vyhodnoceni
probihalo na zaklad¢ ukazatelii Precision, Recall a rychlosti sité. Vysledky ukazuji, Ze
nejrychlejsi z testovanych sit'i je Scaled YOLOv4 CSP Large a nejptesnejsi Faster R-CNN
s Resnet152. Zakladni augmentace siti zlepsili piesnost o 10%. V zavéru je zformulovano
zhodnoceni quality datasetu, vyhodnoceni modelt a zlepSeni, které mohou pomoc zlepsit

predikci sktidcit v budoucnu.

Kli¢ova slova: hluboké uceni, pocitacové videni, object detection, detekce Skidcu, Faster

R-CNN, YOLO, Scaled -YOLO

ABSTRACT

This diploma thesis addresses the detection of pests using deep learning models. The aim
was to train deep learning networks for accurate and fast pest detection. The evaluation was
based on Precision, Recall, and network speed indicator. The results show that the fastest of
the tested networks is Scaled YOLOv4 CSP Large and the most accurate is Faster R-CNN
with Resnet152. Basic network augmentations improved accuracy by 10%. In the final part,
an evaluation of the quality of the dataset, evaluation of models, and further possible im-

provements are formulated.

Keywords: deep learning, computer vision, object detection, pest detection, Faster R-CNN,

YOLO, Scaled -YOLO
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INTRODUCTION

The history of artificial intelligence has begun in 1943, when the first ideas and principles
of artificial neural networks were founded. During 1970s, more advanced methods and al-
gorithms emerged in the field, but most of them remained a theory. Advances in computer
performance have made it possible to use this theoretical knowledge in practice. In the last
years machine learning and especially deep learning made significant progress, which at-
tracts a lot of students, researchers, and supporters from governments and business. This
created a highly competitive market and the situation gave rise to deep learning algorithms,
especially in the area of computer vision. Computer vision can be used in many fields like
industry, traffic, and agriculture, which is also the topic of this work. Europe agriculture
must consistently increase productivity in the spirit of Industry 4.0 to catch up with low
prices from third world countries agriculture with cheap labor. Early automatic pest detection

can help in the case of productivity and quality of plants.

The first chapters of the theoretical part of this work describe deep learning as part of artifi-
cial intelligence. Further chapters describe computer vision, object detection, main object
detection systems, and possible evaluation metrics. Knowledge from the theoretical part is

then leveraged in a practical one.

The practical part of the work uses recent deep learning object detection systems on a dataset
with tomato pests and compare the results. Chapter 5: PREREQUISITES FOR TRAINING
OF DETECTION SYSTEMS describes the software, dataset quality, and other important
prerequisites for proper training of detection systems. The next chapters are about training
and comparison of the best detection system in terms of accuracy and speed. The thesis uses
the dataset of tomato plants with pests Bemisia tabaci (BT), Trialeurodes vaporariorum

(WF), and their eggs.
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1 MACHINE LEARNING

Machine learning (ML) is a part of artificial intelligence (Al), which was created on the idea
that systems can learn from data. Concretely ML are methods of data analysis that automates
analytical model building, identify patterns and make decisions with minimal human inter-

vention.

The first machine learning applications could work only with a small amount of data because
of technology limitations. As computation power was increasing, more ML applications
could be used in practice. Especially deep learning, as part of ML, made significant progress

in recent years.

Machine learning models learn (adapt) iteratively from training data to produce reliable, re-
peatable decisions and results. ML is a great example of exponential technologies because it
is not new, but one that has gained fresh momentum and radically increasing productivity in

affected areas in recent years.

1.1 Deep learning

Deep learning is a branch of machine learning, which uses multilevel networks and therefore
can solve nonlinear complex problems. One of the best definitions of deep learning was

written by Yann LeCun, Yoshua Bengio, and Geoffrey Hinton:

“Deep learning methods are representation-learning methods with multiple levels of rep-

resentation, obtained by composing simple but nonlinear modules that each transform the
representation at one level (starting with the raw input) into a representation at a higher,
slightly more abstract level. The key aspect of deep learning is that these layers are not de-
signed by human engineers: they are learned from data using a general-purpose learning

procedure” [1]
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Deep Learning

Machine Learning

Artificial Intelligence

Figure 1: Deep learning and machine learning as parts of artifi-

cial intelligence [1]

1.2 Neural networks

Traditional programming approach tasks are in style: if parameter A is in a certain interval
and another parameter B is in a different interval, then we diagnose two different classes.
Thus, there is a clear, explainable relationship between inputs and outputs. This is not the
case when using one of the interesting alternative programming techniques - artificial neural
networks. Neural nets do not work algorithmic. They set up weights, tolerate deviations and

changes.

1.2.1 Neuron

Artificial neural networks simulate human brain function with parallel distributed processing
systems. The basic element of the natural and artificial neural system is a neuron or percep-
tron. An example of one neuron is shown in Fig. 2. Neurons are interconnected and signals
are transferred to each other. Each neuron can have multiple inputs, but only one output (this

output can be sent to more than one other neuron) [2].
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Figure 2: Simple neuron with input weights and one output [2]

Inputs for neurons can be either output from other neurons or information from outside. At
the first, neuron receives the inputs. Then it multiplies their values by the weights. After that,
it adds these products and if the result is greater than the specified threshold, the result is
transformed by a predetermined transfer function and sent to the output. Perceptron can solve
only linearly separable problems. Simple neuron behaves like unit step transfer function as

shown below in the Fig. 3.

y / output
1]

1

x [ input

Figure 3: Step transfer function, which represents a simple neuron

1.2.2 Neural networks learning

The first neural network was created in 1958 by Frank Rosenblatt. The network used a sim-
ple learning algorithm based on fixed increments. Advanced networks were developed to
solve also nonlinear complex problems [4]. An example of the complex network is shown

in Fig. 4.
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e
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Figure 4: The example of a complex network with input, output and hidden layers [3]

The main problem of these networks was missing correctly propagated learning from the
output through shallow to deep networks. Fortunately, the already existing chain rule was
used in the Backpropagation algorithm. The Simple chain rule formula (1) is as follows:

dz dz d

—= (1)

dx dy dx
The Backpropagation algorithm, which uses the chain rule, was originally introduced in the
1970s and fully appreciated in 1986 in a famous paper by David Rumelhart, Geoffrey Hin-
ton, and Ronald Williams. Calculation. The algorithm calculates weights of the final layer

base on the output error and then the calculation continues till the first layer [6].

The first layer Hidden layer

O O Final layer
o~
- e
Figure 5: Schema of the neural network with output error

1.3 Learning methods

There are three main learning methods: unsupervised, supervised, and reinforcement learn-

ing. The main difference between them is the type of data that they need.
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1.3.1 Unsupervised learning

Unsupervised learning needs only input data. These technics try to find structures in data or
feature generation. Here are some examples of unsupervised learning methods: Dimension-
ality reduction, feature selection, and clustering. Clustering is an unsupervised technique
where the goal is to find natural groups or clusters in a feature space and interpret the input
data. Dimensionality reduction is commonly used where the goal is to reduce the number of

variables under consideration.

1.3.2 Supervised learning

Supervised learning needs input data and output labels. These methods map inputs to out-
puts. The main applications are image classification, categorization, and time-series predic-

tions.

1.3.3 Reinforcement learning

Reinforcement learning does not need input features and output labels. The system learns
through interactions with the environment and received feedback. Feedback can be positive

or negative base on the established rules.

1.4 Generalization

Generalization is the concept that humans and other animals use past learning in present
situations of learning if the conditions in the situations are regarded as similar. In the case of
machine learning, optimal generalization cause that our model can better predicts output
labels for new data. It is necessary to consider whether it is necessary to obtain a trend or an
exact approximation, which will not be too focused on specific data but will be robust to the
given data. Examples of under-fitting, over-fitting, and appropriate fitting are depicted in

Fig. 6:
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Figure 6: Examples of over-fitting, under-fitting, and appropriate fitting [7]

The generalization of models is changing through the learning process. If we would train our
model too much, at one point generalization will start decreasing and the model will start to
overfit because the model is too adapted to train data. Thus, training should be stopped before
validation loss starts increasing as shown in Fig. 7. In addition, generalization can be also

improved with the amount of training data and data augmentations.
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Figure 7: Validation and training loss through the training
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2 COMPUTER VISION

Computers could store and visualize images, but we did not know how to get meanings from
them for a long time. Firstly, there were used mainly image processing methods and manual
feature extractions. Lately, scientists try to imitate the human brain based on the fact that
people have a good understanding of what they see with no effort. All these techniques fall
under computer vision. Thus, computer vision is a field of study that seeks to develop tech-

niques to help computers to understand the content of images [8].

At an abstract level, the goal of computer vision problems is to use the

observed image data to infer something about the world [8]
Here are possible applications of computer vision:

e Image Classification - is the identification of the category to which an image be-
longs. An image can have only one class.

e Object Identification

e Object Recognition

e Object Verification

e Object Detection - is necessary when you want to locate an object in an image. One
image can contain more objects.

e Object Landmark Detection

e Object Segmentation - Segmentation can locate an element on an image to the near-
est pixel. For some cases, it is necessary to be extremely precise, as for the develop-

ment of autonomous cars.

The main topic of the thesis is Object Detection, but the author of the thesis will discuss here

also Image Classification as this is the precursor and base for Object Detection.

2.1 Image Classification

The task of Image Classification is the identification of one object on one image. It seems to
be easy, but this is not the case. The main challenges are objects at different scales and shift-
invariant. Shift invariant means, that the neural network should tolerate shifts of whole ob-
jects or parts of the objects. An example of shifted parts of objects is shown in Fig. 10. Shift

invariant was solved by Convolution Neural Network (CNN).
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Figure 8: Two objects with shifted blue parts. Convolution Neural Network (CNN) can

recognize these objects as objects of the same class.

2.1.1 Convolution Neural Network (CNN)

Convolution Neural Networks are the special hierarchical architecture of artificial neural
networks focused on computer vision tasks. And they are part of deep learning and are in-
spired by visual parts of the human brain. The first layers of the CNN recognize small parts
of the object (eyes and mouth in case of face recognition) and the last layers recognize if the
face contains all small parts already recognized by the first layers (whole face in case of face
recognition). The core of the CNN is the convolution layers and pooling layers. Fig. 9 shows

both types [9], [10].

I ¢ Conv + Conv + Conv + Conv + FC FC  Output
Eits Maxpool Maxpool Maxpool Maxpool = el

Figure 9: Example of CNN [9]

2.1.1.1 Convolution layers

Convolution layers work in a sliding window manner: they move small square windows (the

most used are 3x3 kernels) in the image, loop through every possible position, and extract
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useful features. Every single neuron in such a layer is a small square filter that performs a
convolution operation [10]. The main point is that one convolutional kernel learns features
of objects in all positions on images as it is looping through the whole image. A simple

example of convolutional operation is shown in Fig. 10.

1 1 1 010 1 | 1x1|1x0(0x1| O
0 1 1 1 0 1 0 1 0 |1x0]1x1[1x0( O 413
0 0 1 1 1 0 1 0 0 [Ox1]1xO[1x1| 1
010 1 1 0 1 0 1 010 1 1 0
0 1 1 010 0 1 1 010
Input Filter | Kernel Input x Filter Feature Map

Figure 10: Input, CNN kernel, and output feature map [11]

2.1.1.2 Pooling layers

Pooling layers group neighbors in neural networks based on specific calculations. The most
used is maximum (max-pooling layers) or average grouping (average pooling layers). The
pooling layer is the reason for the shift-invariant character of CNN. It is because does not
matter in what neighboring neuron is a maximum value (in case of max-pooling), the output

of the pooling layer will be the same. An example of simple max-pooling layer is depicted

in Fig. 11.
I 2 | 4
max pool with 2x2
516|178 window and stride 2 6 8
3| 2 BINED 3 | 4
11213 ]| 4

Figure 11: Input and output after max pooling with 2x2 window with stride 2 [11]

2.2 Object Detection

Object Detection is a more advanced method than image recognition. Because now we need
to not only identify one object on one image, but we need to detect all objects with corre-
sponding coordinates. Fortunately, networks already developed for image recognition can

be used with some additions for Object Detection tasks.
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2.2.1 Sliding window

The most intuitive approach how to solve object detection problems is to use the sliding
window method. The method must be combined with image classification systems like
AlexNet, which will recognize an object in every window. The sliding window is a rectangle
of fixed width and height that slides across an image. Therefore, the main parameters are
height, width, and step size. Step size is the number of pixels that we are skipping for every
step while looping through an image. An increase in step size decreases our computation

time but can also decrease the accuracy of our object classification and vice versa. Starting

and ending position of sliding window is shown in Fig. 12 below [12].

Figure 12: Starting and ending position of sliding window technique.

In practice, we have the same object at different scales within different images. This will
cause low accuracy for a simple classifier, while the classifier will see the same object, but

within different scales. Thus, we need to use also another method, called image pyramid.

2.2.2 Image pyramid

Detection of objects at different scales is one of the main object detection problems. Image
pyramids help to solve this intuitively. The main idea is to convolve different scales of one

image. The schema of the image pyramid [13] is shown in Fig. 13.
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Figure 13: Examples of two image pyramid methods. The left one with images at expanded

scales and the right one with pyramids at reduced scales [13]

The main issue of the image pyramid is high calculation cost because all scaled images must

go through a neural network in the training and also testing phase.

2.2.3 Pyramid of features

The feature pyramid is using similar logic as the image pyramid. In the case of feature pyr-
amid, a neural network for classification does not proceed with a few images of different
scales. Neural network proceeds only one image at once. As an image is going through the
network width and height dimensions of the features are decreasing. The features are ex-
tracted and then used for predictions. Visual comparison of the pyramid of images and pyr-

amid of feature maps is shown in Fig. 14.

» predict predict
2 predict - predict
predict ——7 > predict
/Zpredict ' ’
Pyramid of images Pyramid of feature maps

Figure 14: Visual comparison of the image pyramid and feature pyramid methods [14]
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2.2.4 1IoU — Intersection Over Union

Intersection over Union is simply an evaluation metric. In the case of the classification of
objects, we have only True or False predictions. But we cannot use the same method for
predicted object locations because then we lose information on how bad or good our predic-
tion is. Intersection over Union solved this problem [15]. The typical example of prediction

is shown in Fig. 15.

Figure 15: Example of predicted bounding box and ground-truth box

For evaluation, we need a predicted bounding box and a ground-truth bounding box. The

image below shows both boxes and IoU calculation [15].

Area of Overlap
loU =

Area of Union

Figure 16: Visualization of Intersection over Union [15]
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Intersection over Union is simply a ratio between Area of Union and Area of overlap. That
means [oU is 1 when ground-truth and predicted box are the same. loU = 0 means that boxes

are not overlapping each other [15].

2.2.5 Non-max suppression

Now we know how to recognize objects in different locations and different scales with slid-
ing windows and image/feature pyramid methods. But with these 2 techniques we can have

more region proposals for one object as shown in the picture below:

Figure 17: The example with more overlapping predictions for one object. Non-

max suppression should be used to get the best prediction for the object

Non-max suppression filters proposals for one object based on defined criteria. The most
used is filtering based on confidence scores of predictions and IoU between overlapping
prediction regions. NMS algorithm takes detections with the highest scores and removes all
overlapping lower-scoring detections which have an IoU greater than a pre-defined threshold

[15].

2.2.5.1 Anchor boxes

The first detection systems cannot correctly predict more overlapping objects (practice ex-
ample is shown in Fig. 18) and the researcher were developing methods to solve it. Problem

was that the first neural networks can predict only one class for one coordinate on an image.
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Then anchor boxes come on the playground. This technique generates more anchor boxes
for every coordinate. Normally there are 9 anchor boxes per one coordinate. Anchor boxes
have different aspect ratios and different scales (scales and ratios should be defined based
on relevant objects in the dataset). This allows predicting more objects and more classes for
every coordinate on the image. Nowadays, anchor boxes are a standard method used by top

object detection systems as Faster R-CNN, YOLO, and others [15].

Figure 18: Example of overlapping objects of different aspect ratios and different scales

2.3 Evaluation metrics

There are more standard evaluation metrics for object detections:

e PASCAL VOC Challenge used the Precision x Recall curve and Average Precision.
e COCO Detection Challenge used the 12 metrics used for characterizing the perfor-

mance of an object detector on COCO.

e IMAGENET OBJECT LOCALIZATION CHALLENGE defines an error for each image

considering the class and the overlapping regions between ground truth and detected

boxes. The total error is computed as the average of all errors.

From the metrics mentioned above, COCO metrics are recently most used for comparisons
of object detection systems in scientific articles. The metrics are calculated for the best 100

predictions. Here are the main COCO object detection metrics:

e Precision (2) - is the ability of a model to identify only the relevant objects. It is
given by:
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Precisi True Positives @
recision =
True Positives + False Positives

Recall (3)- is the ability of a model to find all the relevant cases (all ground-truth
bounding boxes). It is the percentage of true positive detected among all ground-truth

boxes and the formula is as follows:

Recall = True Positive 3
ecart = True Positives + False Negatives )

Precision x Recall curve — shows a relationship between Recall and Precision for
one detection system with different confidence threshold scores. An example is
shown in Fig. 19.

Average Precision — is not average of the precision. It is the area under the curve

(AUC) of the Precision x Recall curve [16].

2-class Precision-Recall curve: AP=0.88
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0.70 A

0.65

—— LinearSVC (AP = 0.88)
0.60

T T T
0.0 0.2 0.4 0.6 0.8 1.0
Recall (Positive label: 1)

Figure 19: Precision x Recall curve for one class [17]
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3 OBJECT DETECTORS

Object detection is the main part of computer vision and is getting more attention in recent
years. The object detection systems can predict classes and coordinates of all objects on the
image. This is useful mainly when we have more relevant objects on one image and simple

image recognition methods cannot help in this case.

There are two main categories of object detection systems: 1 and 2 stage detectors. The au-

thor of the thesis will describe the top detectors of both categories in this chapter [18].

3.1 One-stage detectors

One-stage detectors are in general faster than two-stage detectors with similar accuracy. This

chapter describes OverFeat, YOLO, and Scales YOLOvV4 in detail.

3.1.1 OverFeat

The idea of OverFeat is to use a convolutional network to simultaneously classify, locate
and detect objects with a single Convolutional Neural Network. This approach can simplify

training and increase speed and classification, detection, and localization accuracy.

OverFeat uses the image pyramid method and the sliding window is replaced by CNN. Im-
age of 14x14 input is transferred through CNN to 1x1 output picture as shown in Fig. 20.
For bigger inputs more regions of 14x14 are transferred to spatial output, so we can locate
objects, as you can see on the image. In addition, because the fully connected layers cannot

handle different input sizes, they were replaced by a 1x1 convolution filter [18].
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Figure 20: OverFeat detection system with information flow from input to output [18]

3.1.2 Localization and Detection pipeline

The raw classifier outputs a class and confidence for each location. The resolution of these
predictions can be increased using Multi-Scale Classification [18]. The regression network
then predicts the location of the object for each window of a different scale as shown in

Fig. 21.

Figure 21: Visualization of localization of objects at different scales using Multi-Scale

Classification [18]
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These bounding boxes are then merged and accumulated with non-max suppression to a

small number of objects. The final result is shown in Fig. 22.

Figure 22: The final prediction of the network [18]

3.1.3 YOLO (You Only Look Once)

YOLO is the state-of-the-art detection system developed in 2016. Next versions of YOLO
outperform all other systems in case of speed and retain very good accuracy [19]. A com-
parison of the best non-scaled YOLOs is shown in Fig. 23. The image express correlation
between inference time of the detection systems and mean Average Precision on MS-COCO

test-dev dataset.
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Figure 23: Comparison of a few state-of-the-art networks based on speed and mean Aver-

age Precision on COCO benchmark dataset [19]

YOLO’s main advantages are speed and generalization. Unlike sliding window and region

proposal-based techniques, bounding box predictions are made based on all pixels in the

image. Thus, it encodes also contextual information about classes [20], [21].

YOLO frame detection as a regression problem. Thus, it does not need an additional network

for classification and needs only one run of a single neural network on images to predict

detections. Processing images consists of three steps [20], [21].

1. The system resizes the input image to 448 x 448.
2. runs a single convolutional network on the image.

3. Non-max suppression.

Visualization of the pipeline is as follows:
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1. Resize image.
2. Run convolutional network.
3. Non-max suppression.

Figure 24: Three steps of the YOLO pipeline: resize the image, run the convolu-

tional network, and non-max suppression [20]

In the details, YOLO at the first divides the image into an S x S grid and for each grid cell
predicts B bounding boxes, confidence for those boxes, and C class probabilities as shown
in the middle of Fig. 25. These predictions are encoded as an S x S x (B * 5 + C) tensor on
output. Then, bounding boxes with the highest probabilities are chosen and final predictions

of locations are made, shown in the right Fig. 25.

Figure 25: An input image on the left, locations with predictions in the middle and

final predictions in the right part of the example [20]

YOLO uses the anchor boxes technique, so it can predict at every coordinate more than one

bounding box, usually 9.

YOLOQO'’s network architecture is inspired by the Googl.eNet [22] model for image classifi-
cation. The network has 24 convolutional and pooling layers followed by 2 FC layers. Al-
ternating 1 x 1 CNN layers reduce the feature space [20]. The network is shown in Fig. 26.
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Figure 26: Detection network with 24 CNN layers and 2 FC layers [20]

YOLO (the first version) model struggles with small objects that appear in groups and also
with a generalization of objects in unusual aspect ratios or configurations [20]. This issue

occurs because YOLO looks at the whole image.

3.1.4 Scaled-YOLOv4

Scaled-YOLOV4 is recently one of the best-published neural networks for object detection.
Scaled-YOLOvV4 has 55.8% AP on the COCO test-dev dataset. Only Swin-L [23] and Cas-
cade Eff-B7 NAS-FPN [24] from the year 2021 are more accurate. But it is still the best in

terms of the ratio of speed to accuracy.

Scaled-YOLOV4 consists of a few neural networks: CSP, P5, P6, P7. On the chart below,
you can see a comparison of these networks and others like EfficientDet [25], SpineNet [26],
other-YOLOv4 detection systems. Accuracy is on axis y and the speed of the system on axis

X.


https://cocodataset.org/#HOME
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Figure 27: Comparison of accuracy and latency for different YOLOs, SpineNet
and EfficientDet (GPU V100 for batch size = 1) [27]

As you can see on Fig. 27, P7 is best in terms of accuracy, and in general, all Scaled-
YOLOV4 systems are best in the ratio between speed and accuracy [27]. These improve-

ments were caused by the changes described later in the chapter.

Scaled-YOLOvV4 has a few main improvements over YOLOv4. At the first, it uses network
scaling methods to get from YOLOv4-CSP large-scale networks as P6 and P7. Larger net-
works are trained on images with larger resolutions to achieve higher mean average preci-
sion. On the other side inference time (same for training time) of the network is also in-
creasing as shown in Table 1 below. Table comparing different Scaled-YOLOv4 networks

base on FPS, size of the image, and different mAPs on test dataset [24].
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Table 1: Speed and accuracy comparison of large Scaled-YOLO networks on

COCO benchmark dataset (mAPS = Average Precision on small objects, APM =

Average Precision on medium objects, APL = Average Precision on large objects)

[28]
Model Test | mAPtest | mAP50test | mAP75test | mAPStest | mAPMtest | mAPLtest | batchl
Size throughput
YOLOvV4-P5 | 896 51.4% 69.9% 56.3% 33.1% 55.4% 62.4% 41 fps
YOLOvV4-P5 | TTA | 52.5% 70.3% 58.0% 36.0% 52.4% 62.3% -
YOLOvV4-P6 | 1280 | 54.3% 72.3% 59.5% 36.6% 582% 65.5% 30 fps
YOLOvV4-P6 | TTA | 54.9% 72.6% 60.2% 37.4% 58.8% 66.7% -
YOLOvV4-P7 | 1536 | 55.4% 73.3% 60.7% 38.1% 59.5% 67.4% 15 fps
YOLOvV4-P7 | TTA | 55.8% 73.2% 61.2% 38.8% 60.1% 68.2% -

3.1.4.1 Network scaling method

Scaling of YOLO is done by Cross-Stage-Partial (CSP) connections [29]. CSP scaling was

inspired by EfficientDet [25] scaling method. CSP connections are efficient, simple, and can

be applied to any neural network. CSP working as follows: half of the output signal goes

along the main path (generates more semantic information with a large receiving field) and

the other half of the signal goes bypass (preserves more spatial information with a small

perceiving field). A simple comparison of ResNeXt and CSP ResNeXt is shown in Fig. 28.

Base layer
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(b) CSPResNe(X)t

Figure 28: The simplest example of a CSP connection (on the left is vanilla ResneXt net-

work, on the right is a CSP network with ResneXt) [29]
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Below you can see the special case of CSP connections used in Scaled YOLOv4. Here the

connections allow part of the signal to skip 3 convolutional layers and one SPP layer.
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Figure 29: An example of a CSP connection in Scaled YOLOv4-CSP / P5/P6 /P7 (on the
left are reversed dark layers with SPP, on the right is reversed CSP dark layers with SPP)
[29]

3.1.4.2 Other improvements
Here are other main improvements of Scaled YOLOv4 over YOLOv4:

e Exponential Moving Average (EMA) is used during training. EMA improved train-
ing with small batches.

e Improved loss calculation

e Different neural networks are developed for different image resolutions

e Mosaic augmentation [27]

3.2 2 stage detectors

Two-stage object detectors were developed in parallel with one-stage detectors. In general,
2 stage detectors are slower because of more stages, but more accurate. These systems con-
sist of 1 part for finding regions of interest (Rol) and the second part for classification (some-

times include also part for adjustment of location) of an object in actual Rol.
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3.21 R-CNN

Region proposals with CNN come after over-feat. A new idea of R-CNN is the usage of a

selective search algorithm to find region proposals in R-CNN.

R-CNN consists of three modules. The first generates 2000 category-independent region
proposals. The second module is a convolutional neural network, which produces features
from each region. The third module is a set of class-specific linear SVMs. SVMs generate a
score for each feature vector and each class. After that, non-maximum suppression is used
to filter proposals. The system also predicts offset values to adjust the bounding box of the

region proposal. Detailed model is shown in Fig. 30.

N SVM per
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Classification

Algorithm u ——
L
for region g AlexNet/VGG ‘ F‘

proposals 3 Network L

Input image 2000 cropped Features Bounding box
and warped per Class
images

Localization

Figure 30: Main modules of R-CNN. Namely generator of region proposals, feature extrac-

tor, classification network, and bounding box regressor [30]

R-CNN has few fundamental drawbacks because of its architecture. First, we need to warp
every image because of AlexNet can only work with region proposals with 1 aspect ratio.
In addition, the warped image has different features than the original so we get worse accu-
racy. To overcome this, we need to train AlexNet on warped images. The second problem
is that it is not possible to train the whole system in one run. R-CNN first finetunes a Con-
vNet on object proposals using log loss. Then, it fits SVMs to CNN features. These SVMs
act as object detectors, replacing the Softmax classifier learned by fine-tuning. And lastly,
bounding box regressors are learned. The third, selective search algorithm is a fixed algo-

rithm, so it cannot learn [30], [31].
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3.2.2 Fast R-CNN

Fast R-CNN builds on R-CNN and SPPnet to efficiently classify object proposals. Fast R-
CNN employs several innovations to improve training and testing speed while also increas-

ing detection accuracy [31].

Fast R-CNN takes Region Proposals module and AlexNet/VGG CNN from R-CNN. But our
convolutional neural network now proceeds 1 image once and not 2000 proposals. This is

the reason why Fast R-CNN is 213 times faster at test-time than R-CNN.

After proposals generation, CNN generates feature maps, which are filtered for every region
proposal. After that, our filtered features are going through the SPP Region of Interest (Rol)
pooling layer 7x7. The pooling layer can proceed with inputs of different sizes and will pro-
duce output with 1 size. Thus, image warping is not needed here. Lastly, the SVM is replaced
with a Softmax layer, so we do not need 3 stages of training and can train our CNN, Softmax
for Classification, and Bounding box regressor at once. Additionally, Fast R-CNN uses com-
bined losses of Softmax layer for classification and Bounding box regressor, which caused
improved accuracy compared to R-CNN. Visualization of Fast R-CNN modules is as fol-

lows:

Algorithm
4 forregion ——# Softmax
proposals
Classification
ROI Pooling
layer

Regions

Input image
P g ! from Bounding box
N AlexNet/VGG Features per Class
Network

Localization

Figure 31: Visualization of modules of Fast R-CNN. Namely generator of region pro-
posals, feature extractor, ROI Pooling layer, classification network, and bounding box re-

gressor.

Another possibility of how to increase accuracy or increase speed of Fast R-CNN is to

change a number of region proposals. Accuracy is increasing only slightly from 1000 to
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3000 region proposals and then start to decrease because the Rol pooling layer is fed by
more regions with no objects, thus can produce more wrong detections. Comparison of mean

Average Precision and Average Recall versus number of object proposals is shown in Fig.

32 below.
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Figure 32: Comparison of mean Average Precision and Average Recall versus number of

object proposals [31]

3.2.3 Faster R-CNN

Faster R-CNN is the third generation of R-CNN. It uses 2 networks: attention network —
region proposal network(RPN) and network for object detection. Unlike Fast R-CNN, here
we do not use selective search to generate 2000 region proposals. Faster R-CNN is faster

because RPN uses already computed features from the object detection network [32].

RPN at the first generates object presence probability for all anchor boxes, then it uses non-
max suppression to filter anchor boxes with IOU more than some coefficient base on scores
of these anchor boxes. And at the latest, it filter 2000 best prediction boxes based on the
score [32].

3.2.3.1 Anchors

Anchors play an important role in Faster R-CNN. In the default configuration of Faster R-

CNN, there are 9 anchors at every position of an image. There is similar number of
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combinations of positions as for sliding window and pyramid technique. Fortunately, here

we we have region proposal network, which eliminates a lot of anchor boxes.

3.2.3.2 Region Proposal Network (RPN)

RPN is main improvent over Fast R-CNN. The output of a region proposal network are
proposals. In nutshell, RPN predicts if anchor is background or foreground. Then defined

proposals are moved to a classifier and regressor [32].

3.2.3.3 ROI Pooling layer

After RPN, we get proposals with different sizes (same like for Fast R-CNN). Thus, we have
different sized feature maps. Region of Interest Pooling reduces the feature maps into the
same size. Therefore the output of ROI Pooling is always k regardless the size of input [32],

[31]. Simplified schema of Faster R-CNN is as follows:

classifier

proposals i /
Region Proposal Network
'sutum maps

conv layers ,

—r 7
Figure 33: The latest incarnation of the R-CNN family, Faster R-CNN, introduces a Re-
gion Proposal Network (RPN) that bakes region proposal directly in the architecture, alle-
viating the need for the Selective Search algorithm [32]
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4 PEST DETECTION

Pest recognition is an active research topic in the last years. In most cases, computer vision,

machine learning, and deep learning methods are selected and used to detect plant disease.

Computer vision and mainly object recognition improved a lot in the last years. Traditional
methods for image classification tasks have been based on features detection algorithms,
such as DoG, Salient Regions, and SIFT [33]. These methods have used manually extracted
features, then some learning algorithms are trained on these features. The performance of
the approaches depends on predefined hand-engineered features. Thus, it depends a lot of
times on the experiences and skills of engineers in the field. In addition, feature engineering

is a hard process which needs to be revisited when the problem or the dataset change.

Fortunately, deep learning solved the feature extraction problem with automatic feature ex-
traction. For this work is used a dataset from Pest Detection and Identification on Tomato

Plants for Autonomous Scouting Robots Using Internal Databases [33].

4.1 PlantVillage project

The PlantVillage project collected thousands of images of healthy and diseased plants im-
ages. PlantVillage dataset is used for training deep learning models for different disease di-
agnoses. It contains 18 160 tomato images of different diseases as septoria leaf spot, tomato
yellow leaf curl virus, target spot, early blight, etc. Unfortunately, the dataset cannot be used
for pest detection of insect stage (an insect or egg level). Thus, we cannot use it to improve

our training [33].

4.2 Pest Detection and Identification on Tomato Plants for Autonomous

Scouting Robots Using Internal Databases

This dataset is labeled at insect and egg level, it is composed of original pictures of plants.
The deep learning approach in the work is focused on the detection of the disease using
object detection frameworks. Deep learning models are based on Faster RCNN and SSD
[35]. Results of their work showed great accuracy results of Faster R-CNN systems with
augmentation. Thus, Faster R-CNN will be used also in the next chapters of the practical

part of this thesis [33].
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5 PREREQUISITES FOR TRAINING OF DETECTION SYSTEMS

The first part of this chapter describes hardware and software needed for training. The second
part is about dataset split and dataset quality. And the last part discusses used evaluation

metrics.

5.1 Hardware used for training

Cloud computing is the best way to run high-performance computer technology without in-
vesting in the purchase of GPUs. These services include Azure, AWS, Oracle, and Google
Colab. The author of the thesis chose Google Colab because it is a low-cost solution with a

lot of manuals.

Google offers 2 possible setups for neural network training. Google Colab setup offers Tesla
K80 and a maximum of 12 hours of continuous training and Google Colab Pro Tesla V100

with a maximum of 24 hours of continuous training. Complete comparison in table form is

as follows:

Table 2: Comparison of Google Colab and Google Colab Pro
Parameter Google Colab Google Colab Pro
GPU Tesla K80 16GB Tesla V100 16GB
Max training time 12 hours 24 hours
Disk space 34 GB 34 GB
RAM 12,8 GB 26,3 GB
Price per Month 0 USD 9.99 USD

The author of the thesis decided to train models on Google Colab Pro with Tesla V100 and
the author of the thesis recommends doing it for all, who need to train really deep networks
as Scaled-YOLOvV4 P6 or P7. Detailed training times of the networks will be described later

in the details in the next chapters.
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5.2 Dataset split

Dataset consists of 4330 images. Images were randomly (random seed 0) divided into a
training dataset with 3900 images and a testing dataset with 430 images. These divided da-

tasets were used for all detection systems discussed later.

5.3 Dataset quality

Dataset quality is one of the most important prerequisites for accurate neural network train-
ing. Pest benchmark dataset suffers from low dataset quality. One of the troublesome issues
is missing labels for pests as is shown in Fig. 34 (different colors correspond with different
pest classes). Missing labels in the training dataset cause the detection system considers areas
with pests as a background which harms the network performance. On other hand. missing
labels in testing dataset cause, that network predicts bounding boxes where the real pests are,
but ground-truth bounding boxes are missing. This manifests in a lower overall precision

value.

Figure 34: The example of missing ground-truth bounding boxes

The second issue is missing ground-truth bounding boxes, which do not fit correctly real ob-
jects as is shown in figure 35 below. There you can see, that bounding boxes are more than
6 times bigger than real pests. Thus, the IoU of the ground-truth bounding box and the actual
bounding box (if correctly assigned) is only 0.166.
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Figure 35: The example of bigger ground-truth bounding boxes than real bounding boxes”

The last but also troublesome issue relates to labeling the group of pets as one object. Be-
cause of this, the network predicts groups of pests in coordinates where are only smaller
bounding boxes with no pest, and predictions are evaluated as wrong and vice versa. Exam-

ples of bounding boxes of groups are shown in Fig. 36.

Figure 36: Example of bounding boxes with groups of pests

The author of this thesis tried to improve the test dataset for evaluation in his experi-
ments to obtain a more realistic overview of the network performance. Details about exper-

iments are in chapter 9 Dataset improvements.
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5.4 Evaluation strategy

In general, predictions are correct if predicted bounding box lies close to ground-truth
bounding box and predicted class is the same as the real class of an object. There are more

possible methods to define which predicted objects are evaluated and which not.

5.4.1 Prediction confidence (score)

The author of the thesis used the most used and standardized benchmark evaluation method,
what consider the best 100 predictions (base on confidence score) for every image for eval-
uation in networks comparison parts in upcoming chapters. And the author of this thesis used
only filtered predictions based with confidence threshold > 0.6 for comparison my results

with results from benchmark paper [33], achieved on the same dataset.

54.2 10U

IOU is a metric is used in most state of art object detection algorithms. The metric finds the
difference between ground truth annotations and predicted bounding boxes. Here we have
two main standards IOU thresholds. The first considers all predictions with IOU > 0.75 be-
tween predicted and ground-truth box as correct and second all predictions with IOU > 0.5.

The author of the thesis used the second evaluation for 3 reasons:

1. Ground-truth boxes do not fit correctly on objects in the dataset.
2. Prediction of correct coordinates is not so important in practice as pests’ predictions.

3. Pest benchmark paper [33] used this logic, so the comparison will be easier.

5.4.3 Precision, Recall and mean Average Precision

There are a few standard evaluation metrics for object detection from different competitions.
The author of this thesis used COCO metrics as they are recently most used for comparisons
of object detection systems. Precision and Recall are calculated for 100 predictions with the
biggest prediction scores. And the author of this thesis used also the Precision x Recall curve.

All these metrics were described in the detail in the theoretical part of this work.
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6 PEST DETECTION WITH FASTER R-CNN WITH FPN

Faster R-CNN is one of the most used and researched two-stage object detection systems.
The first versions used images with low resolution and not so deep backbones as AlexNet.
But our pest dataset consists of images with high resolution 2064 x 1544 pixels with some
pests, which have only 30 x 30 pixels. Thus, the author of the thesis decided to use more
advanced and deeper backbones for Faster R-CNN with shortcuts between layers: namely
Resnet and ResneXt. Feature pyramid network was also used for better propagation of fea-

tures from deeper to shallow layers to increase more small object detection accuracy.

Some parts of the code were derived from the torch tutorial [36].

6.1 General setup for all networks

This chapter describes main training parameters for Faster R-CNN as anchor generator,

training scheduler, and augmentations.

6.1.1 Anchor generator

All Faster R-CNN systems used 15 generated anchors, concretely anchors with a size of 16,
32, 64, 128, and 256 pixels and ratios width: height 0.5, 1, and 2. Anchors should fit as much
as possible to all labeled objects in images. But regressor of Faster R-CNN can handle also
objects with different sizes and ratios and predict correct location. Thus, deletion of some
anchor size has only a minimal effect on final accuracy results. This is the case mainly for
anchors with sizes of 128 and 256 pixels, which were used only for tomato class detections

and not for pest detections.

6.1.2 Weights training algorithm

Stochastic Gradient Descent (SDG) algorithm was used for training with learning rate =
0.005, momentum = 0.9, and weight decay = 0.0009 for all Faster R-CNN training. Learning
rate scheduler was also used for adjustment of learning rate through training. Parameters of
scheduler are step size = 2 and gamma = 0.6. These parameters mean that every second
epoch is a learning rate multiplied by gamma = 0.6. After a few epochs learning rates is
lower and lower and the small learning step adjusts slowly weights of neural networks and

converges to the optimum.

In addition, also Cosines Annealing method was used for the learning rate schedule. The

method uses the annealing method to adapt the learning rate for faster convergence and


https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html
https://paperswithcode.com/method/cosine-annealing
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jumps from local minimums. This method achieved better accuracy results, but the author
of'this thesis does not use it for final comparison in chapter 8, because training is too unstable

and not easily replicable. Losses during training are shown in Fig. 37 below.
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Figure 37: Comparison of training losses with and without Cosines Annealing scheduler

6.1.3 Training setup

Net training of Faster R-CNN took always less than 24 hours, which is important for training
on Google Colab Pro can be done in one run without interruptions. ResneXt32 and Res-
net152 took more time because there are deeper than Resnet50. The batch size was chosen
to the possible maximum, based on the maximum capacity of GPU memory, which is 16
GB. Because in general, bigger batch size causing the increased quality of training due to

used batch normalization method.

Table 3: Comparison of Faster R-CNN training with different backbones.

Backbone Batch size | Training time per | Number of | Overall training time
epoch epochs

ResneXt32 |4 60 min 20 20 hours

Resnet50 8 30 min 20 10 hours

Resnet152 4 70 min 20 23 hours

All backbones pretrained on the COCO benchmark dataset were used and 5 backbone layers

were then trained on the training dataset. Also, training without a pretrained backbone was



TBU in Zlin, Faculty of Applied Informatics 46

done, but the neural network did not converge in these experiments, which caused wrong

results with overall Recall and Accuracy under 0.1.

6.1.4 Augmentations

The Albumentation framework [34] was used for Faster R-CNN augmentations. Concretely
functions, that cause changes of brightness with probability 0.3 and horizontal plus vertical

flip, both with probability 0.5.

The author of the thesis tried also more advanced methods as shifts, crops, and rotations. But
accuracy was not better and the network suffers from NaN loss through training, which

caused the end of the training.

Resnet152 is not augmented as augmentations of the data caused system exit error during

training. But it could be part of future work.

6.2 Pest detection results

In general, Faster R-CNN with FPN performs quite well for bigger objects, namely BT and
WT classes but egg prediction accuracy was relatively low even with consideration of dataset

quality. Detailed results on the test dataset can be seen in Tab. 4.

Table 4: The test set precision and recall results of Faster R-CNN models with different
backbone networks and training setups (AP = Average Precision, AR = Average Recall,

WF = pest Trialeurodes vaporariorum, BT = pest Bemisia tabaci)

Backbone | WF egg | WF egg | BT egg | BT egg | WF WF BT BT All All
AP AR AP AR AP Recall | AP AR AP AR

Resnet50 0.108 0.495 0.032 0.222 | 0.403 | 0.791 0.345 | 0.715 | 0.194 | 0.552

Resnet50 0.107 0.491 0.033 0.201 0.426 | 0.774 | 0.363 | 0.719 | 0.210 | 0.508
augment

Resnet152 | 0.121 0.509 0.038 | 0.249 | 0.504 | 0.808 | 0.346 | 0.679 | 0.223 | 0.522

ResneXt32 | 0.116 0.492 0.068 0.308 | 0.459 | 0.728 0.261 | 0.595 | 0.210 | 0.501

ResneXt32 | 0.117 0.490 0.070 | 0.299 | 0.485 | 0.703 0.270 | 0.601 | 0.216 | 0.484
augment

Resnet50 0.139 0.522 0.041 0.205 | 0.463 | 0.798 0.335 | 0.697 | 0.221 | 0.568
annealing

As results showed, backbone Resnet50 with cosine annealing scheduler and without aug-
mentation have the best overall results. But already mentioned unstable training with big

deviations in accuracy and training losses caused by cosine annealing scheduler will cause
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low accuracy on the validation dataset. Therefore, the author of the thesis considered Res-
net152 without augmentation as the best backbone for Faster R-CNN. The reason behind it
is that Resnet152 is a deeper network, so can better leverage small objects features from

deep layers through a neural network.

The best in egg predictions were ResneXt with augmentation and Resnet152. Resnet152 was

the best also in the case of WF and Resnet50 in the case of BT.

Disbalance between precision and recall is mainly caused by false negative predictions

caused by missing labels for pests as was mentioned in chapter 5.

6.2.1 Accuracy versus speed

Experiments also showed that an additional increase in depth of the backbone is causing an
overall increase in accuracy in the case of Resnet152 but slowing down training and infer-
ence speed. Comparison of different backbones of Faster R-CNN base on speed and accu-

racy is shown on Fig. 38 below.
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Figure 38: Precision and Recall versus speed in frames per second on GPU Tesla

V100
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7 SCALED-YOLO V4

YOLO is the most used and researched one-stage object detection system. The first versions
used a simple version of Darknet as a backbone. However, the first versions were not good
at predictions of small objects and small objects in the group. This was a case till YOLOv3
and YOLO v4. The latest advancements came with Scaled-YOLOv4. YOLOv4 was scaled
to get better accuracy and speed. Thus, this detection system was the best candidate for our

experiments [24].

Code for Scaled-YOLO models is provided by authors on the website.

7.1 General setup for all networks

Scaled-YOLO has a lot of parameters, which can improve training and final accuracy. The
author of the thesis used original parameters provided by the authors of the Scaled YOLOvA4.
These parameters are already optimized for standard detection training and inference. In ad-
dition, there is only low space for additional experiments, because the training time of more

accurate networks as Scaled-YOLO P6 is too high as you will see later in Tab. 5.

7.1.1 Training

Training of Scaled YOLOs was more stable and predictable than the training of Faster R-
CNN, but take more time. The training was interrupted because of the limitation of Google
Colab Pro. This caused a few strange deviations in losses (train part) and accuracy (test part)
during training as is shown in Fig. 39 below. Deviations affect mainly Scaled-YOLOv4 P7

as training time was the biggest here.


https://github.com/WongKinYiu/ScaledYOLOv4/blob/yolov4-large/%5d.
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Figure 39: Average Precision, Precision, and Recall during training of Scaled
YOLOV4 Pé6. Different colors represent different training started from the last

saved point

7.1.2 Training setup

Training of Scaled-YOLOv4 networks is more time-consuming than the training of Faster

R-CNN. Mainly due to the fact, that this YOLO needs more epoch to converge. For the batch

size the author of the thesis used the same logic as for Faster R-CNN, batch size was chosen

to possible maximum, based on maximum RAM capacity of GPU - 16 GB.

Table 5: Comparison of training of different Scaled YOLO.

Scaled- Layers | Parame- | Image size | Batch | Training Number | Overall

YOLO v4 ters size time  per | of epochs | training
epoch time

CSp 334 5.25e+07 | 608x608 4 10 min 100 17 hours

P6 417 1.26e+08 | 1216x1216 | 2 40 min 200 140 hours

P7 503 2.86e+08 | 1536x1536 |1 90 min 150 225 hours
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As you can see in the Tab. 5 above, training of P7 take 225 hours of GPU time and because
of the limitation on Google Colab Pro, you should expect +50% more time needed for train-

ing. This is approximately 15 days of training.

7.1.3 Augmentations

The author of the thesis used standard Scaled-YOLOv4 augmentations, namely random flips,
color augmentations, and mosaic augmentation from authors of Scaled-YOLO. All men-
tioned networks (CSP, P6, P7) were training with augmentation for comparison of these
networks. Especially P6 was trained also without augmentation and with a combination of

non-augmented and augmented training to see the impact of the augmentation.

7.2 Pest detection results

Scaled-YOLOV4 results confirm that bigger networks with augmentation have better accu-
racy, except P7. The accuracy of P7 is strange as it should have the best accuracy. A potential
reason for this is low batch size 1 and a lot of interruptions of training by Google Colab Pro
limitations, which caused already mentioned deviations. In addition, there was not time for

additional experiments with P7 because of its big training time.

The results showed that P6 has the best accuracy and the impact of augmentation is approx-
imately +10%. Scaled-YOLOv4 P6 Combo had similar accuracy as augmented P6 and both
have the best accuracy in our comparison. Detailed results on the test dataset are presented

in Tab. 6:

Table 6: The test set precision and recall results of different Scaled-YOLOv4 models and
training setups (AP = Average Precision, AR = Average Recall, WF = pest Trialeurodes

vaporariorum, BT = pest Bemisia tabaci)

Detection WF egg | WF egg | BT egg | BT egg | WF WF BT BT All All
system AP AR AP AR AP Recall AP AR AP AR
YOLO  CSP | 0.144 0.544 0.147 0.197 0.307 0.662 0.225 0.674 | 0.176 | 0.433
augment

YOLO P6 0.160 0.552 0.181 0.235 0.327 0.651 0.248 0.611 0.192 | 0.458
YOLO P6 | 0.174 0.585 0.193 0.344 0.358 | 0.681 0.255 | 0.653 0.209 | 0.492
augment

YOLO P6 | 0.167 0.599 0.202 0.330 0.352 0.681 0.267 0.638 0.209 | 0.485
Combo

YOLO P7 | 0.148 0.532 0.150 0.140 0.319 0.656 0.237 0.659 0.178 | 0.441
augment
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7.2.1 Accuracy versus speed

Scaled YOLOs are in general faster than Faster R-CNNs. In the case that the speed is the
most important parameter CSP Augment should be chosen since it is 4.5x faster than P6.

Visualization of Precision and Recall versus FPS is shown below in Fig. 40.
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Figure 40: Precision and Recall versus speed in frames per second on GPU Tesla

V100
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8 OVERALL OVERVIEW

This chapter will summarize results from Faster R-CNN and Scaled-YOLOv4 training and

compare one of the networks with results from the benchmark paper [33].

Only networks with the best results were chosen for this comparison. Results showed that
networks in the final overview had different advantages and disadvantages. Faster R-CNN
Resnet152 had the best detection results in terms of accuracy and Scaled-YOLOv4 CSP was
best in terms of speed. Scaled-YOLOv4 networks were, in general, better at inference time
and egg predictions and Faster R-CNNs were better at the prediction of BT and WF classes.

Summarized results on the test dataset are presented in Tab. 7:

Table 7: Overall comparison of precision, recall, and FPS for the best networks (AP = Av-
erage Precision, AR = Average Recall, FPS = Frame per Second, WF = pest Trialeurodes

vaporariorum, BT = pest Bemisia tabaci, FPS = Frames per Second)

Detection WF WF BT BT WF WF BT BT AllAP | All FPS
system egg egg egg egg AP Recall AP AR AR [1/s]
AP AR AP AR

Resnet50 0.107 | 0.491 0.033 0.201 0.426 | 0.774 0.363 0.719 | 0.210 | 0.508 3.8
augment

Resnet152 | 0.121 0.509 | 0.038 | 0.249 | 0.504 | 0.808 0.346 | 0.679 | 0.223 | 0.522 1.5

YOLOCSP | 0.144 | 0.544 | 0.147 | 0.197 | 0.307 | 0.662 0225 | 0.674 | 0.176 | 0.433 | 45
augment

YOLO P6 | 0.174 | 0.585 | 0.193 | 0.344 | 0.358 | 0.681 0.255 | 0.653 | 0209 | 0492 |10
augment

The results are based on the test dataset. But there was no additional Scaled-YOLOv4 ad-
justment for better prediction based on test data results. And there were only minimal ad-

justments for Faster R-CNN. Thus, the accuracy for the validation dataset would be similar.

8.1 Benchmark paper comparison

Object detection experiments were done with the dataset by authors of benchmark paper
[33], as was already mentioned in the theoretical part of this work. But authors used a little
bit different methodology for evaluations. Thus, the author of the thesis changed the confi-
dence threshold to 0.6 for Scaled-YOLOv4 P6 to compare it.

Results showed that our Scaled YOLOv4 P6 had comparable or better accuracy and better

results in terms of speed. The overview is shown in Tab. 8 below. Frame per second is the
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only expected value for networks from the benchmark paper and was not part of my experi-

ments.

Table 8: Comparison of my result of Scaled YOLOv4 P6 (bolt text) with adjusted predic-
tion confidence threshold and results from benchmark paper. The stated frame per second

values are expected values for each model; the authors of benchmark paper do not discuss
the model speed (AP = Average Precision, AR = Average Recall, FPS = Frame per Sec-

ond, WF = pest Trialeurodes vaporariorum, BT = pest Bemisia tabaci, FPS = Frames per

Second)
Detection system WF egg AP BT egg AP WF AP BT AP BT AR | FPS [1/s]
Faster RCNN Resnet101 /w | 0.54 0.16 0.72 0.34 0.200 2.5
augmentation
SSD MOBILENET V2 /w | 0.63 0.13 0.63 0.35 0.16 9
augmentation
Faster RCNN Inception V2 | 0.71 0.12 0.74 0.27 0.27 2.5
/w augmentation
SSD INCEPTION V2 0.59 0.13 0.69 0.33 0.16 6
Scaled-YOLOv4 P6 | 0.607 0.348 0.762 0.660 0.175 10
Combo confidence thresh-
old 0.6
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9 DATASET IMPROVEMENTS

Dataset quality is a major prerequisite for proper training. As was mentioned in chapter 5,
the dataset consists of images with wrong and missing labels. Thus, an experiment with an
improved dataset was made. Only the worst 85 images (from 430) were deleted. The worst
images consist of tomato class labels and missing pest labels. Detailed results of Scaled-

YOLOv4 P6 for classes are shown in Tab. 9:

Table 9: Comparison of results on the test dataset and improved test dataset (AP = Aver-
age Precision, AR = Average Recall, FPS = Frame per Second, WF = pest Trialeurodes va-

porariorum, BT = pest Bemisia tabaci)

Detection WF WF BT BT WF WF BT BT AIlAP | All AR
system egg egg egg egg AP Recall AP AR
AP AR AP AR

YOLO P6 | 0.174 | 0.585 0.193 0.344 | 0.358 0.681 0.255 0.653 0.209 | 0.492
augment

YOLO P6 | 0.186 0.590 0.193 0.338 0.383 0.677 0.290 0.649 0.291 0.560
augment on
changed

test dataset

The results confirmed that changes in the test dataset improved results. The biggest improve-

ment is on BT and WF classes.

There are other improvements, which could be done and can significantly improve dataset

and trained neural network. There are:

¢ Add missing labels for test and train dataset

e Change bounding box of actual labels
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10 FUTURE WORK

In this chapter the author of the thesis shortly describes possible improvements of tested

object detection systems and quality of dataset.

10.1 Scaled-YOLO v4

Scaled YOLOv4 P6 showed good results in this work. Thus, for future work, the author of
the thesis recommends mainly more experiments with Scaled-YOLOv4 P6 and try Scaled-
YOLOv4 P7 training with more GPUs with bigger RAM. The Bigger RAM memory will
increase the advantage of training bigger batches with batch normalization and more GPUs
will increase the speed of the training. With this hardware, the power of the bigger model
Scaled-YOLOvV4 P7 using a bigger image resolution over P6 can be seen. In addition, the
author of the thesis recommends playing with hyperparameter (available from SCALED-

YOLOV4 GIT), which optimizes anchor sizes and ratios base on the pest’s dataset.

10.2 Faster R-CNN

As the result showed, the main problem of Faster R-CNN is the detection of small objects.
Thus, the author of the thesis recommends trying to use a bigger image resolution (max size
approx.1200), which will also need better hardware for better training as was mentioned
before. In addition, the author of the thesis also recommends adding techniques, which

improve detections of small objects. The main techniques are as follows:

e Replace IOU with GIOU - GIOU is better for predictions of small objects and widely
used in recent state-of-the-art networks, including Scaled YOLO

e Soft Non-max suppression - Soft NMS is used to improve the accuracy of Faster R-
CNN on small objects

e Improvements for better context recognition

In addition, the author of the thesis recommends trying other new state-of-the-art networks

as Swin-L, Cascade Eff-B7 NAS-FPN, and others.

10.3 Dataset quality

Regarding the dataset quality, the author of the thesis recommends changing the wrong
ground-truth bounding boxes and add missing ones. Then the training might be more stable

and yield better overall results.


https://github.com/WongKinYiu/ScaledYOLOv4/blob/yolov4-large/%5d.
https://github.com/WongKinYiu/ScaledYOLOv4/blob/yolov4-large/%5d.
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CONCLUSION

This research aimed to identify and test fast accurate object detection systems for pest
detection on tomato plants. Based on a quantitative and qualitative analysis of models
indicators, it can be concluded that Scaled YOLOv4 CSP Large is a good choice for fast pest
detection and Faster R-CNN Resnet152 and Scaled YOLOv4 P6 Large is the best in terms

of accuracy.

Scaled YOLOv4 P6 Large was compared with results of different models from benchmark
paper. The results were similar in terms of accuracy and better in terms of speed. The
outcome also indicates the impact of basic data augmentations is approximately a 10%

accuracy increase.

Based on these conclusions, further research should focus on more advanced augmentations
in the case of Faster R-CNN and try Scaled YOLOv4 P7 Large on better hardware. In
addition, the author of the thesis recommends correcting wrong labeled ground-truth

bounding boxes in the dataset for future work.

This work solved the pest detection problem with state-of-the-art object detection models
and the results confirm the theoretical power of the models and the importantness of data

augmentation.
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