
A Design Application for physician-patient
communication

Lazar Slavković-Raco

Bachelor's thesis
2020

TBU in Zlín, Faculty of Applied Informatics 4

I hereby declare that:
 I understand that by submitting my Diploma thesis, I agree to the publication of my
work according to Law No. 111/1998, Coll., On Universities and on changes and
amendments to other acts (e.g. the Universities Act), as amended by subsequent
legislation, without regard to the results of the defence of the thesis.
 I understand that my Diploma Thesis will be stored electronically in the university
information system and be made available for on-site inspection, and that a copy of the
Diploma/Thesis will be stored in the Reference Library of the Faculty of Applied
Informatics, Tomas Bata University in Zlin, and that a copy shall be deposited with
my Supervisor.
 I am aware of the fact that my Diploma Thesis is fully covered by Act No.
121/2000 Coll. On Copyright, and Rights Related to Copyright, as amended by some
other laws (e.g. the Copyright Act), as amended by subsequent legislation; and
especially, by §35, Para. 3.
 I understand that, according to §60, Para. 1 of the Copyright Act, TBU in Zlin has
the right to conclude licensing agreements relating to the use of scholastic work within
the full extent of §12, Para. 4, of the Copyright Act.
 I understand that, according to §60, Para. 2, and Para. 3, of the Copyright Act, I
may use my work - Diploma Thesis, or grant a license for its use, only if permitted by
the licensing agreement concluded between myself and Tomas Bata University in Zlin
with a view to the fact that Tomas Bata University in Zlín must be compensated for
any reasonable contribution to covering such expenses/costs as invested by them in the
creation of the thesis (up until the full actual amount) shall also be a subject of this
licensing agreement.
 I understand that, should the elaboration of the Diploma Thesis include the use of
software provided by Tomas Bata University in Zlin or other such entities strictly for
study and research purposes (i.e. only for non-commercial use), the results of my
Diploma Thesis cannot be used for commercial purposes.
 I understand that, if the output of my Diploma Thesis is any software product(s),
this/these shall equally be considered as part of the thesis, as well as any source codes,
or files from which the project is composed. Not submitting any part of this/these
component(s) may be a reason for the non-defence of my thesis.

I herewith declare that:
 I have worked on my thesis alone and duly cited any literature I have used. In the
case of the publication of the results of my thesis, I shall be listed as co-author.
 That the submitted version of the thesis and its electronic version uploaded to
IS/STAG are both identical.

In Zlin; dated: 10.08.2020 Lazar Slavkovic-Raco v.r.
Student´s Signature

TBU in Zlín, Faculty of Applied Informatics 5

ABSTRAKT

Bakalářská práce se zabývá návrhem webové aplikace pro komunikaci mezi pacientem a

lékařem. V první části této práce vysvětlíme, co je přesně ochrana dat, jaké data můžeme

od uživatele získat a již existující řešení na českém trhu. V další části je rozebraná

technologie použita na tuto práci při návrhu aplikace. Následně je zpracován rozbor a

analýza požadavků na funkčnost aplikace, z kterého se rozvíjí aplikace a vypracování pro

uživatele.

Klíčová slova: webová aplikace, webová technologie, analýza požadavků

ABSTRACT

The bachelor thesis deals with the design of a web application for communication between

patient and doctor. In the first part of this work we will explain what exactly data protec-

tion is, what kind of data we can receive from user and existing solutions on the Czech

market. In the next part, the analyzed technology is used for this work in the design of the

application. Subsequently, the analysis and analysis of the requirements for the functional-

ity of the application is processed, from which the application and elaboration for users are

developed.

Keywords: web application, web technologies, requirement analysis

TBU in Zlín, Faculty of Applied Informatics 6

I want to thank to Veronika Vyvleckova for moral support and help with a grammar

correction. I hereby declare that the print version of the Bachelor's thesis and the electronic

version of the thesis deposited in the IS/STAG system are identical, worded as follows:

I hereby declare that the print version of my Bachelor's/Master's thesis and the electronic

version of my thesis deposited in the IS/STAG system are identical.

TBU in Zlín, Faculty of Applied Informatics 7

CONTENTS

INTRODUCTION..9

I THEORY..10

1 DATA PROCESSING..11

1.1 WHAT IS GENERAL DATA PROTECTION REGULATION..11

1.1.1 Type of user’s data..12

1.2 DATA LEAK SCANDALS..13

1.3 USER’S CONCERNS ABOUT COLLECTION OF DATA...13

2 EXISTING SOLUTIONS ON THE MARKET..14

2.1 E-HEALTH MORAVSKOSLEZKY KRAJ..14

2.1.1 Advantages..14
2.1.2 Disadvantages...14

3 USED TECHNOLOGIES...15

3.1 FRONT-END...16

3.1.1 HTML...16
3.1.2 CSS..17
3.1.3 JavaScript..18
3.1.4 Bootstrap...19
3.1.5 Node.js..20
3.1.6 Angular..21
3.1.7 Ng-Bootstrap...21

3.2 BACK-END..22

3.2.1 C#..22
3.2.2 ASP.NET Core..24
3.2.3 Entity Framework Core...24

3.3 OTHER USED TECHNOLOGIES...27

3.3.1 Git..27
3.3.2 GitKraken..27
3.3.3 Rider..28

4 WEB APP VULNERABILITIES...29

4.1 SQL INJECTION...29

4.2 CROSS-SITE SCRIPTING (XSS)..30

4.3 BROKEN AUTHENTICATION A SESSION MANAGEMENT..30

4.4 CROSS SITE REQUEST FORGERY (CSRF)...31

II PRACTICAL..32

5 DESIGN FOR APPLICATION..33

5.1 ANALYZATION OF REQUIREMENTS..33

5.1.1 Functional requirements..33
5.1.2 Non-functional requirements..36

TBU in Zlín, Faculty of Applied Informatics 8

5.2 USE-CASE MODELS..36

5.2.1 Scenarios...37

6 IMPLEMENTATION OF THE APPLICATIONS..47

6.1 FULFILLED REQUIREMENTS...47

6.1.1 Fulfilled requirements...47

6.2 CLIENT (FRONT-END)...47

6.2.1 View from patient/physician...49
6.2.2 View from administrator...52

6.3 SERVER (BACK-END)..55

6.3.1 Data Transfer Objects (DTO)..55
6.3.2 Database..56

7 SECURITY IMPLEMENTATION..61

CONCLUSION..62

REFERENCES...63

LIST OF ABBREVIATIONS..65

LIST OF FIGURES..66

LIST OF TABLES...68

APPENDICES..69

TBU in Zlín, Faculty of Applied Informatics 9

INTRODUCTION

The first web page in HTML started to exist somewhere at late 90’s and since then web

technology started to improve gradually overtime. In addition to web technology, a few

years later came CSS (Cascade Sheet Style), which improved the visualization of HTML

page with a range of styles and properties. JavaScript became standard alongside of HTML

and CSS and it’s job was to provide interaction to the web page for the user. Over the last

20 years HTML, CSS and JS (JavaScript) improved a lot. Nowadays, many frameworks

exist exists for creating either simple web page or simple functional web application.

They are some medical clinics that don’t use any type of app for creating appointments,

instead they use the old fashioned way: calling phone number of the clinic where nurse

picks up the call and writes it down to the appointment diary. Some people do not like to

call by phone due to communication troubles or they have hard time organizing their free

time where they could book an appointment.

This thesis will focus on design of such application and how should an application that

enables patients to book an appointment with a physician look like, with simplistic design

and functions.

TBU in Zlín, Faculty of Applied Informatics 10

I. THEORY

TBU in Zlín, Faculty of Applied Informatics 11

1 DATA PROCESSING

Before digital age, data were written on paper form, for example birth or death certificate,

contracts, transactions, medical history, ownership's. When technology slowly integrated in

daily lives, laws of data privacy started to emerge to give a person a control of his own

data.

Council of Europe signed the agreement Convention for the protection of individuals with

regard to automatic processing of personal data that was signed on 28th of January 1981

[1], then Czech Republic signed same agreement on 28th of January 2001, which went in

to full effect since 1st of November 2001 [2]. Czech Republic had already an Act regarding

protection of personal data, which was in full power on 1st of June 1992. Czech Republic

had created an Act on the protection of personal data in information systems (256/1992

Sb.) that was active till 1st of June 2000 that was replaced with Personal Data Protection

Act (101/2000 Sb.). PDPA was active till 24th of April 2019 due to existing data regula-

tion from European Union (EU for short) that introduced GDPR (General Data Protection

Regulation).

1.1 What is General Data Protection Regulation

General Data Protection Regulation (GDPR) is a regulation of data protection and

privacy in the European Union(EU) and European Economics Area(EEA). This regu-

lation also addresses when data is being collected outside of EU and EEA. Main goal

Figure 1: Graphs presenting history of development for user's right
and privacy [1]

TBU in Zlín, Faculty of Applied Informatics 12

of GDPR is to give the user control of his data and increase his privacy.

User has a right:

● to edit

● to remove (to be forgotten)

● to limit data that is being processed

1.1.1 Type of user’s data

GDPR can split those data into two categories [3]:

● personal data

○ e-mail

○ name (either as username or first and last name)

○ IP address

○ ...

● sensitive personal data (most companies tend to avoid to collect such information

due of possible discrimination)

○ religion

○ race

○ sexual orientation

○ criminal past

○ ...

Personal data can be expanded beyond basic information about user:

● biological data

● genetic data

● location

TBU in Zlín, Faculty of Applied Informatics 13

1.2 Data leak scandals

There has been two major scandals when it comes to data leakage of a large amount of

users, most famous one was Facebook – Cambridge Analytica in early 2018 when it was

used for Trump’s political campaign at 2016, data was used to target specific user to vote

for him during American elections. [4]

Another occurred same year when Google rushed to shut down their product Google+ in

mid 2018 when data was leaked on separate occasions, first one leaked 500,000+ users data

but it was never proved that those data were misused and two months later over

50,000,000+ user’s data were leaked again due to security bug that came with an update,

data such as leaked e-mail, name’s and corporation were leaked [5].

1.3 User’s concerns about collection of data

There are some companies that collected bio-metrical data even before GDRP was intro-

duced in 2018. Most known one is Fitbit. Fitbit was offering to remove data about user on

their website and such deletion took of maximum 7 days.

Users started to have concerns when Google announced that they are going to buy Fitbit

somewhere at 2020. A lot of users were not happy about this announcement and most of

them started to request their data to be deleted from Fitbit. Some of them even threw Fitbit

tracker to the trash can. [7]

TBU in Zlín, Faculty of Applied Informatics 14

2 EXISTING SOLUTIONS ON THE MARKET

text

2.1 E-health Moravskoslezky kraj

There is only one web application that exists on Czech market for Moravskoslezky county.

Besides appointment booking, it also offers to see medical history and transport arrange-

ments to one of hospital’s clinics. This application works for 6 hospitals that are in

Moravskoslezky county.

2.1.1 Advantages

This app’s interface is very simple to use, it also offers to book appointment to one of hos-

pitals clinics without login information. This app was created by Ministry for Regional

Development for Moravskoslezky county. It display’s nicely on any mobile’s browser.

2.1.2 Disadvantages

When user wants to register a new profile, a lot of information is required about the new

user. It requires birth number, number of medical insurance and contacts information.

Another author’s biggest concern is possible security risk of the medical history of the

user, however access to the user’s medical history requires login with either information

that user has to access to or with login info e-identita.cz or „datova schranka“.

Figure 3: Main page of web app e-health

TBU in Zlín, Faculty of Applied Informatics 15

3 USED TECHNOLOGIES

For creating web application we have always front-end and back-end. Logic behind such

solution is that front-end helps to display to the user what we want them to see. Back-end

consists of logic that is behind the front-end part of the application.

There are three core technologies that we use for front-end: HTML, CSS and JavaScript

When we want to work with the logic behind web application we need a programming lan-

guage that can work with HTTP (HyperText Transfer Protocol) requests/responses and

which can communicate with database. Another requirement for the language is that it

must have asynchronous code availability.

 Today we have a lot of frameworks and languages that work with back-end coding. Most

famous ones are ASP.NET, Ruby On Rails, Laravel (PHP framework) and Python.

Figure 5: Syncronous vs asyncronous code

TBU in Zlín, Faculty of Applied Informatics 16

3.1 Front-end

3.1.1 HTML

The cornerstone of any website is HyperText Markup Language (HTML). It is a markup

language that defines elements on a web page. This language started in the 90‘s. Current

version of HTML is HTML5.

Each HTML document consists of a basic structure containing a document type (DOC-

TYPE), which is used by browsers to recognize the HTML version, as well as the page

header, where we can define imports (cascade sheets, scripts, meta tags) and body of web-

Figure 7: First website [8]

Figure 6: Top framework that are being used in applications from entire Internet [10]

TBU in Zlín, Faculty of Applied Informatics 17

page, where you can define what will be displayed to the user. There are a lot of tags for its

usage, for example:

● header tags - <h1>, <h2>, ...<h6>

● paragraphs - <p> </p>

● section or division - <div> </div>

3.1.2 CSS

Cascade Style Sheet describes how HTML will be displayed to the user on their screen.

Before CSS existed, styles had to be inserted to HTML tag as attribute.

Nowadays a separate file that enables easier styling of HTML web page exists. This also

eases the job if global *.css file for all webpages is needed. A problem can occur when

there is a lot of classes/id in file and are not structured and therefore they can be lost in the

file. The structure when typing new classes or id to the file is called BEM (Block-Element-

Figure 8: Statistic of tag usage for HTML [9]

TBU in Zlín, Faculty of Applied Informatics 18

Modifier). This method teaches how to properly name classes or id and how to properly

write attributes of such named instance.

3.1.3 JavaScript

JavaScript is programming language that existed since early times of web pages. It is

designed to work with the logic of HTML pages. It is not to be confused with program-

ming language Java or island Java, as they are not the same.

Java is so called “weak type”, which means it has not data types even if we use numbers,

strings or dates. We use following keywords to declare variables that we can use later on in

development:

Figure 9: Attribute inside of HTML tag

Figure 11: CSS example for BEM method [11]

Figure 10: HTML example for BEM method [11]

TBU in Zlín, Faculty of Applied Informatics 19

● var

● let

● const

Problem with JavaScript that it has no debugger, only way you can debug something is to

print it to the console of the browser.

Another disadvantage is lack of browser support. While running, code is being run on

client-side and each browser engine can interpret it differently. Therefore it can be exposed

due to error in security and used for malicious purposes. Some people prefer disabling it

completely on their browser.

Main usage of JavaScript is DOM (Document Object Model), which is able to access and

change elements in HTML document. With this we can remove, change, add or delete spe-

cific elements of DOM either by marking the element with class or the first chosen tag.

3.1.4 Bootstrap

Bootstrap is free and open-source CSS framework that we can use to create „mobile-first“

graphical responsive interface on web page.

“Mobile-first” means that the goal of Bootstrap is to aim for mobile devices, such as smart-

phones or tablets. Because of this feature, Bootstrap is very popular among front-end

developers to create web application. There are 4 suffixes that Bootstrap uses to determine

display size.

● Without suffix – display to 567px („mobile-first“)

● Sm – small displays over 567px

● Md – medium to large displays over 768px

● Lg – large displays over 997px

● Xl – extra large displays over 1200px

Figure 12: Example of DOM in JavaScript

TBU in Zlín, Faculty of Applied Informatics 20

These suffixes can be used in combination with other classes, where the change of HTML

is depending on size of a display.

In Bootstrap we can create a Grid-view system that can help us to create a layout of our

application. Those grids will change based on he size of the device’s display.

Bootstrap also offers huge variety of prepared components that we can use for our HTML

page. Most useful components are for creating navigation bar, forms, pop-up and sliders.

Only disadvantage of using Bootstrap is that it needs to have correctly set up dependencies,

such as Popper.js and jQuery.

3.1.5 Node.js

Node.js is open-source, JavaScript runtime engine, that runs JavaScript code outside of

web browser. It is a cross-platform, which means that it can be used on any other operating

system such as Windows 10, MacOs or on any Linux distribution. It is a non-blocking

asynchronous I/O.

Meaning of non-blocking operation is that the code is not being blocked by execution. It

does not wait for other previous blocks to finish execution, which is the case for JavaScript

that has a blocking operations [12]. Advantage of asynchronous non-blocking code is that

it is using single thread to execute all requests. We can see the example on Figure 13.

When requests arrive to the server, they are serviced one at a time. But when the code that

is requesting service requires DB query, it sends the callback to a second queue and the

main thread will continue running [12].

Figure 13: Example of Grid display

TBU in Zlín, Faculty of Applied Informatics 21

3.1.6 Angular

Angular is a TypeScript-based open-source front-end web framework that is being main-

tained by Google, Angular team and community. With Angular, we can easily develop

applications, if developer knows basics of JavaScript. However, if we want to work with

JavaScipts DOM‘s (Document Object Model) or jQuery, it demands complex develop-

ment, maintaining the code and following patterns of design. That being said, using Angu-

lar as front-end, rather than using JavaScript or jQuery, saves a lot of time and money.

It is being used to develop single-page (SPA) applications. With Angular we can build not

only web-application, but we can use it to build mobile application as well. With Angular,

we develop front page with components, that have templates, which will be shown to the

user. In components we have two main templates, one that is showed to the user (*.compo-

nent.html) and another that is using data to bind to the view (*component.ts). Advantage of

Angular is that it does not call every single page when it is being called, it is using Routing

to do that job for you, it will show unique view with calling of URL, that is being written

in the file for routing.

3.1.7 Ng-Bootstrap

Ng-Bootstrap is set of components and directives that is designed for Angular. It needs

Bootstraps CSS. It offers easier usage of Bootstrap for Angular application.

Advantage of this set of components is that it is easy to install and does not require to be

installed manually. Another advantage is that it does not require to use Popper.js and

Figure 14: Example of asyncronous I/O with Node.js [13]

TBU in Zlín, Faculty of Applied Informatics 22

jQuery as dependency, which is important for classic Bootstrap. It has very good documen-

tation for each components including examples and API.

3.2 Back-end

3.2.1 C#

C# is high-level object-oriented programming language that is being developed by

Microsoft. It can be used to develop mobile applications and desktop applications, either as

WPF or UWP and many other things.

This language is inspired by C++ language, because it has data types such as int, long,

float, etc.

It is built to run on CLI, which is known as Common Language Infrastructure and it can

interact with other languages that are built on same architecture [14]

Over the course of beginning of the language existence, it is slowly starting to compete

with other programming languages. It received major enhancements that put it forward

including Generics, LINQ (Language Integrated Query), Dynamics and async/await pat-

tern.

TBU in Zlín, Faculty of Applied Informatics 23

When C# code is run, the code is firstly transformed to Intermediate Language (IL) and it

is being saved in executable file (*.exe). To execute the code, it needs to use Common

Language Runtime (CLR) to interpret it from IL with Just-in-Time compiler.

Figure 17: Overview of how JIT Compiler works in .NET Framework

Figure 16: Evolution of C# [14]

TBU in Zlín, Faculty of Applied Informatics 24

3.2.2 ASP.NET Core

ASP.NET Core is a open-source cross-platform C# framework designed for web develop-

ment. It is designed by Microsoft to allow programmers to create dynamic websites, appli-

cations and web services.

It is a modular of Window’s .NET Framework and for cross-platform .NET Core. At ver-

sion 3.0.x of ASP.NET Core dropped support for .NET Framework.

In ASP.NET Core we can start creating from modules for web development:

● Main modules for web development

○ ASP.NET Web Forms

○ ASP.NET MVC – allowing to build web pages using model-view-controller

design pattern

○ ASP.NET Web Page

○ ASP.NET. Web API – framework to build Web API on server-side

○ SignalR – real-time communication framework for communication between

client and server

● Other modules

○ ASP.NET Handler

○ ASP.NET AJAX

○ ASP.NET Dynamic Data

Framework also offer CLI (Command Line Interface) for creation of projects if user’s code

is using text editor like Vim.

3.2.3 Entity Framework Core

Entity Framework Core is open-source Object Relation Mapping framework (ORM) that

was part of .NET Core but since version 6 its has detached. Since then it has own release

schedule.

Entity Framework makes it easier to create database with C# instead of writing SQL

queries when programming an app that uses databases. With this, we can create models and

it’s relationships with other models, we can call from database to get specific data from it

using LINQ or Collection. EF Core is compatible with today’s major open-source and

TBU in Zlín, Faculty of Applied Informatics 25

commercial SQL and NoSQL engines, all thanks to the official and third-party packages

that are available through NuGet package manager [15]. EF Core also offers command line

interface (CLI) to create migrations, databases and database contexts

EF Core support three types of creation of data modeling for database:

● Database-first

● Model-first

● Code-first

Each of these data modeling has pros and cons, but we will focus rather on code-first

approach that is being used for the thesis.

Figure 18: Example of CLI command for EF Core "dotnet ef" in
Linux's terminal

TBU in Zlín, Faculty of Applied Informatics 26

Code-first is more popular approach due to the simplicity of database design. Database is

being created based on model that is defined using standard classes being created in the

code. With this, we do not need any XML mapping or design tool [15].

As mentioned before, advantage of code-first approach is that we do not need design tools

to create database and such approach is ideal for small to medium sizes projects because it

helps to easily to maintain the code and saves a lot of time when designing database.

Disadvantage is that it is not suitable for large projects, because the code needs to be con-

stantly maintained and having a large amount of models can cause spending more time

checking the code. It also requires to have good amount of knowledge of C# and EF to be

able to successfully create tables.

Figure 19: Example of code-first approach [15]

Figure 20: Example of class for creating table with code-first
approach

TBU in Zlín, Faculty of Applied Informatics 27

3.3 Other used technologies

3.3.1 Git

Git is open-source tool for handling projects from small to large size. It is used to track

changes in a source code during development. Creator of Git is Linus Torvald, who created

it for development Linux kernels since 2005. Before Git, BitKeeper was being used, a pro-

prietary source-control management (SCM).

Git controls changes in documentation and it is initialized in specific directory called work-

ing directory where programmer will be working on it during development.

There are services that offer Git repositories online. The most popular one is GitHub and

GitLab (mainly for bussines).

3.3.2 GitKraken

GitKraken is multi-platform GUI (graphical user interface) for Git, it was developed as an

alternative to the command line. In GitKraken we can visually see our commits, branches,

easy sync with Git services (either with Github or Gitlab).

Figure 21: Example of declaring class for database context

TBU in Zlín, Faculty of Applied Informatics 28

GitKraken later created other products and changed it’s name to GitKraken Git. Other

products that are free if user signs as a student through universities/high schools e-mail is

GitKraken Boards (Kanban board) and GitKraken Timeline.

3.3.3 Rider

Rider is a cross-platformed IDE (Integrate Developing Environment) from the company

JetBrains. It is a complex IDE for development in C# language for applications, web appli-

cations, web API’s, desktop applications, mobile development, and so on.

Rider offers extending IDE with plugins from JetBrains or from community that created

them for Rider and other products.

This product’s version is payed but it is possible to get it for free as a student either with e-

mail from university/high school or international student’s ISIC card.

Rider offers IntelliSense that whispers auto-completion and giving tips on code (naming

the variable for example). It also offers great deal of other tools such as Database viewer,

debugger, integrated terminal, it’s own Git’s GUI tool.

Figure 22: GitKraken for Git

TBU in Zlín, Faculty of Applied Informatics 29

4 WEB APP VULNERABILITIES

Web apps contain a lot of user’s information that can be exposed to potential security risk.

In this chapter we will present some of the most common web app attacks than can happen.

4.1 SQL Injection

SQL Injection (or as commonly known as SQLi) is one of most common attacks on web

application. It attacks vulnerabilities with queries to the database through form. It allows

attacker to see data from database that is not normally visible to the user. Attacker can see

data that belongs to other users, see other data that is in database or delete data. There are

some situations that can come to compromise to the server or DOS (denial-of-service)

attack [16].

If attack is successful, attacker can get sensitive data of user such as passwords or user’s

details (which can lead to identity theft). Most of the time, breaches in recent years are due

to SQL Injection attacks. There are some cases where attacker can gain access to backdoor

authorization of the system, where it can lead to large damage to the organization’s appli-

cation, if it is unnoticed[16].

Figure 23: Example of SQL Injection attack using form [17]

TBU in Zlín, Faculty of Applied Informatics 30

4.2 Cross-site scripting (XSS)

Cross-site scripting is another type of an attack that uses Javascript to execute commands

in another user’s browser [18].

This attack does not directly attacks victim but instead, this attack exploits a vulnerability

in a website that every victim visits. Once the victim visits that website, it can collect some

of user’s sensitive information, get user’s key logging (registering user’s keyboard using

addEventListener and return to the attacker’s server information) or phishing (creating fake

login form to get sensitive data from user) [18].

There are three types of XSS attacks:

● Persistent – malicious string originates from web’s database

● Reflected – originates from victim‘’s request

● DOM-based – in client-side code rather than on server-side code

4.3 Broken Authentication a Session Management

This type of attack creates a session cookie and session ID for each time where there is a

valid session, and these cookies will collect data like username and password. When user

ends his session either by a logout or browser, these cookies should be invalidated. This

means that for every new session there should be new cookie. If this cookie is not invali-

dated, user’s sensitive data will exist in the system [19].

We can secure against this type of an attack with [20]:

● setting up properly application’s timeout

● properly hashing and salting a password

● forcing user to create a strong password policy

● never exposing credentials in URL’s or in logs.

TBU in Zlín, Faculty of Applied Informatics 31

4.4 Cross Site Request Forgery (CSRF)

Cross Site Request Forgery, or commonly known as CSRF, is an attack that forces the vic-

tim to execute malicious requests on a web app from where they are authenticated.

Attacker can trick victims of web application to perform an action of attacker’s choosing. It

can be two main scenarios. If the victim is a regular user, an attack can force the user to

perform requests like transferring funds, change password or email, etc. If the user is an

administrator, this attack can compromise an entire web application [21].

Figure 24: Overview how CSRF attack works

TBU in Zlín, Faculty of Applied Informatics 32

II. ANALYSIS

TBU in Zlín, Faculty of Applied Informatics 33

5 DESIGN FOR APPLICATION

In this section of the thesis, author will show requirements for the app, use-case models

with scenarios and implementation of the front-end and back-end.

5.1 Analyzation of requirements

In this part, author will display the requirements for the application that are needed for this

application. These requirements are split into two parts:

● functional requirements

● nonfunctional requirements

5.1.1 Functional requirements

With functional requirements, the functionality of the system is defined. These require-

ments are split into packages:

● Patient

● Physician

● System

● User

Figure 25: Functional requests

TBU in Zlín, Faculty of Applied Informatics 34

RQ001: The system must create a temporary password for each newly registered user

● The system will create a temporary password for each new customer account,

which will be valid until the first login. The password will respect the password

strength requirements.

RQ002: System will enforce that user will need to change his password after first login.

● If a new user logs in for the first time, they will need to change password according

to the security rules on creating passwords.

RQ003: System will assign a role to the user based on how was the user registered

● System will assign a role to the user based on how has the user been registered. If a

user is being registered on sign-up form, it will be registered with role 'Patient'. If

user is being registered through admin’s register form it will be registered with role

'Physician'

RQ004: System will offer to the user with the ‚Patient‘ role to create and remove appoint-

ments.

● When patient wants to create appointment, he can choose:

○ physician of his choice

○ type of appointment of his choice

○ date

○ time

○ and if needed, description can be added

RQ005: System will allow user with role ‚Physician‘ to see his appointments

● This user can see the name of the patient and date of an appointment with some

details in description upon inspection.

RQ006: System will record patients based on their role

● System will give users role ‚Patient‘ after being registered. Patient will be recorded

on two tables:

○ ‘UserRoles’

○ ‘Patient’

TBU in Zlín, Faculty of Applied Informatics 35

RQ007: System will allow to plan appointments between patient and physician

● Patient can choose from available physicians to create an appointment, they can

also add notes into the description of the appointment so the chosen physician will

know ahead of time.

RQ010: System will not allow the user to reuse their previous password

● System will not allow the user to have their new password to be identical to their

previous one, it needs to be unique

RQ011: System will allow users to change their own data

● User can change their own first and last name

RQ012: System will allow user to request deletion of data from the database

● All data relating to that user will be deleted, that includes tables, where data is

being recorded such as what role they have and their appointments

RQ013: System will allow users to request data from database that has been collected since

the existence of the user

● User can request only his data, not data of entire system.

RQ014: System will allow to keep record of a patient's vaccination history

● Patient will be able to have a record of his vaccination history in the application for

him to see and keep up with

RQ015: Physician will be able to create a record of vaccinations of the patient

● When physician enters new record to the patient he will:

○ choose a patient to create a new record

○ type of vaccine

○ dosage of vaccine

○ date of vaccination

○ if needed, description

RQ016: System will offer to the patient to see it's records of vaccination

● User with role 'Patient' can see his own records of vaccination.

TBU in Zlín, Faculty of Applied Informatics 36

5.1.2 Non-functional requirements

Non-functional requirements are part of the application that define how the system is sup-

posed to be.

RQ008: System will force user, based on time cycle, to change their password

● For extra layer of safety, users will have to change password based on time cycle

(every 3 months)

RQ009: System will enforce security rules upon new passwords after user requests its cre-

ation

● Rules for creating a password are:

○ minimum length is 8 characters

○ maximum length is 16 characters

○ it requires a digit in a password

5.2 Use-case models

Use-case models describe basic functionality of the application. In the application there are

4 basic actors:

● User

● Admin

● Patient

● Physician

TBU in Zlín, Faculty of Applied Informatics 37

5.2.1 Scenarios

In this section, we will show the scenarios that are part of the use-case model. There are

two types of scenarios:

● Main scenario

● Alternative scenario

Figure 26: Use-case model

TBU in Zlín, Faculty of Applied Informatics 38

Table 1: Scenario for registering user

Name: Registering user
Characteristic:
If user wants to use the app for booking an appointment, he has to register.
Primary actor:
User
Secondary actor:
None
Input condition:
User wants to register

Output condition:
Generating validation e-mail

Main scenario:
Steps Actor/System Description

1 User User enters the registration page

2 System System will show the User register form

3 User User fills it out

4 System System creates record of the new User

5 User <include> Generating e-mail confirmation

Alternative scenario:
None

TBU in Zlín, Faculty of Applied Informatics 39

Table 2: Scenario for user to log in

Name: User login to the system
Characteristic:
User will log in with login data they created during registration
Primary actor:
User
Secondary actor:
None
Input condition:
User logs into the application

Output condition:
User is successfully logged in

Main scenario:
Steps Actor/System Description

1 User User logs into the app

2 System System checks if User exists and if it is verified

3 User User gains access to the app

Alternative scenario:
2a - System denies access to the app because the user is not verified.

Table 3: Alternative scenario for user to login

Name – System denies access to the app because the user is not verified.
Characteristic:
System requires from user to be verified by generated e-mail he received during
registration
Alternative scenario:
Step Actor/System Description

1 System System denies login details of the User

2 User User is returned to the login page

TBU in Zlín, Faculty of Applied Informatics 40

Table 4: Scenario for booking appointment

Name: Booking appointment
Characteristic:
 Patient can book an appointment with the physician
Primary actor:
Patient
Secondary actor:
None
Input condition:
User starts to book appointment

Output condition:
User’s appointment is successfully booked

Main scenario:
Steps Actor/System Description

1 User Patient creates appointment

2 System System processes creation of the appointment

3 User Patient receives confirmation from the system about
existence of the appointment

Alternative scenario:
3a - User receives a message that says that the appointment cannot be created due to the
time being already booked or outside office hours

Table 5: Alternative scenario for booking appointment

Name – User receives a message that says that the appointment cannot be created due to
the time being already booked or outside office hours
Characteristic:
System requires from the user to be verified by generated e-mail he received during
registration
Alternative scenario:
Step Actor/System Description

1 System System rejects booking a appointment

2 User Patient is redirected to the booking form

TBU in Zlín, Faculty of Applied Informatics 41

Table 6: Scenario for updating personal data

Name: Changing personal data
Characteristic:
User can change his personal data in account settings
Primary actor:
User
Secondary actor:
None
Input condition:
User is changing his personal data

Output condition:
User has successfully changed his personal data

Main scenario:
Steps Actor/System Description

1 User User requests his own personal data

2 System System processes request for the user's data

3 User User changes his personal data

4 System System processes new changed information

5 User User sees new data displayed

TBU in Zlín, Faculty of Applied Informatics 42

Table 7: Scenario for deleting user account

Name: Deleting account
Characteristic:
User can delete his account data in account settings
Primary actor:
User
Secondary actor:
None
Input condition:
User is deleting his account

Output condition:
User is successfully deleted his account

Main scenario:
Steps Actor/System Description

1 User User requests his data to be deleted from the app

2 System System processes user's request for deleting their account

3 User User is deleted

Alternative scenario:
3a - System shows error during deletion

Table 8: Alternative scenario for deleting user

Name – System shows error during deletion
Characteristic:
System denies deletion of account
Alternative scenario:
Step Actor/System Description

1 System System rejected deletion of user's profile

2 User User is being redirected to the account's settings

TBU in Zlín, Faculty of Applied Informatics 43

Table 9: Scenario for browsing appointments

Name: Browsing all appointments
Characteristic:
Admin can browse all data that is being recorded in database by the system.
Primary actor:
Admin
Secondary actor:
None
Input condition:
Admin is requesting data of all appointments

Output condition:
Admin has successfully received data

Main scenario:
Steps Actor/System Description

1 User Admin requests data about appointments

2 System System process request about appointments

3 User Admin is browsing data

Alternative scenario:
None

Table 10: Scenario for browsing user‘s

Name: Browsing user records
Characteristic:
Admin can browse recorded users that are saved in database
Primary actor:
Admin
Secondary actor:
None
Input condition:
Admin is requesting data of all users

Output condition:
Admin has successfully received users data

Main scenario:
Steps Actor/System Description

1 User Admin requests records about a user in database

2 System System processes request

3 User Admin is browsing

Alternative scenario:
None

TBU in Zlín, Faculty of Applied Informatics 44

Table 11: Scenario for requesting records of vaccination

Name: Browsing records of vaccination
Characteristic:
Patient is browsing his records of vaccination
Primary actor:
Patient
Secondary actor:
None
Input condition:
Patient request records of his vaccination

Output condition:
User has successfully received records

Main scenario:
Steps Actor/System Description

1 User Patient request to see his records of vaccination

2 System System processed request

3 User Patient receives his record from the system

Alternative scenario:
None.

TBU in Zlín, Faculty of Applied Informatics 45

Table 12: Scenario for creating record of vaccination for the patient

Name: Creating record of vaccination for the patient
Characteristic:
Physician will create a record of vaccination for the patient
Primary actor:
Physican
Secondary actor:
None
Input condition:
Physician enters record of vaccination to the patient

Output condition:
Physician has successfuly added record of vaccination

Main scenario:
Steps Actor/System Description

1 User Physician creates a record of vaccination for the patient

2 System System processed request for recording

3 User Physician succesfully receives recordings of vaccination
for the patient

Alternative scenario:
None.

TBU in Zlín, Faculty of Applied Informatics 46

Table 13: Scenario for creating user with role ‚Physician‘

Name: Creating physician
Characteristic:
Admin can create another user with role 'Physician'
Primary actor:
Admin
Secondary actor:
None
Input condition:
Admin creating user with role ‚Physician‘

Output condition:
Admin has created new physician

Main scenario:
Steps Actor/System Description

1 User Admin request sregister form

2 System System shows register form to the Admin

3 User Admin fills registration details about Physician

4 System System creates new user with role 'Physician'

Alternative scenario:
None.

TBU in Zlín, Faculty of Applied Informatics 47

6 IMPLEMENTATION OF THE APPLICATIONS

In this chapter we will show what requirements are fulfilled and client-side and server-side

of application.

6.1 Fulfilled requirements

In this section we will show what requirements have been fulfilled.

6.1.1 Fulfilled requirements

Requirements that are fulfilled:

● RQ003: System will assign role to the user based on how is user being registered

● RQ001: The system must create a temporary password for each newly registered

user

● RQ004: System will offer to the user with the ‚Patient‘ role to create and remove

appointments.

● RQ005: System will allow user with role ‚Physician‘ to see his appointments

● RQ006: System will record patients based on their role

● RQ007: System will allow to plan appointments between patient and physician

● RQ011: System will allow users to change their own data

● RQ012: System will allow user to request deletion of data from the database

● RQ009: System will enforce security rules upon new passwords after user requests

its creation

● RQ014: System will allow to keep record of a patient's vaccination history

● RQ015: Physician will be able to create a record of vaccination for the patient

● RQ016: System will offer to the patient to see their records of vaccination

6.2 Client (Front-end)

In this section we will present front-end of the web application. Note this is a prototype,

therefore the design of the application has according looks to mainly show functionality of

the app.

When creating application author tried to create as simple as possible front-end that does

not have a lot of visual elements on the application.

TBU in Zlín, Faculty of Applied Informatics 48

On application we can see from two points of view:

● as patient or physician

● as administrator

There are error messages that are same across application to the user. Alerts of either suc-

cessful message or error message will pop up. It is implemented with AlertifyJS that

allowed us to create pop up messages on bottom right screen.

Main page

On the main page, navigation bar with ‚Sign In‘ and ‚Sign Up‘ buttons was created, that

allow user to either sign-in or allow a new user to be created. We can also see information

about working hours.

Registering form is very simple, it does not require a lot of personal information and does

not require any sensitive personal information to register. It only requires first name, last

name and e-mail to register.

Figure 27: Example of AlertifyJS pop up message

Figure 28: Main page of application

TBU in Zlín, Faculty of Applied Informatics 49

6.2.1 View from patient/physician

When user signs in as a patient, he can see his upcoming appointments that they have

recorded in database. Information about his upcoming appointments show to which physi-

cian is patient going, at what time is patient booked with physician and if patient added

description during booking, it will also show description about appointment.

This goes similar for physician, that can also see his appointments, that he has in upcoming

days, but difference is, that physician cannot delete those appointments neither can he cre-

ate a new ones.

Figure 29: Sign up form

Figure 30: Appointment page from patient side

TBU in Zlín, Faculty of Applied Informatics 50

Physician can add details to the patients vaccinations records. He can add such information

at any time.

Physician can choose to which patient, type of vaccine, date of vaccination, dosage in ml

and, if needed, a description to the record.

Vaccination record can look something like this to the patient upon inspection.

To see ids of vaccination, there is a list of vaccines in navigation bar, where patient or

physician can see.

Figure 31: Appointment page from physician side

Figure 32: Vaccination record form

Figure 33: List of vaccinations patient had

TBU in Zlín, Faculty of Applied Informatics 51

The profile’s settings is the same for patient and physician. They can edit their first and last

name and set a new password for their account. It also shows details about user in the pro-

file settings.

User can also delete their account in tab ‚Account settings‘, where they can find button for

deletion of their account.

Figure 35: Profile settings from user's

Figure 34: List of available vaccines

TBU in Zlín, Faculty of Applied Informatics 52

After user clicks button, it will be needed to confirm if the user really wants to be „forgot-

ten“. If he does confirm, his relevant account information will be deleted, such as what

roles he got, his appointments and record of being either a patient of physician.

6.2.2 View from administrator

Administrator has access to data that are stored. He can see users, appointments, but he can

also create new physician from his side and add to the list of available vaccines on his

page. He can also change his password, first name and last name in profile’s settings.

Admin can also delete user in the same way as a regular user would request deletion. Only

difference is, that it does not require any confirmation whether he is sure. Administrator

also cannot delete himself.

Figure 36: Button for user if want to delete account

Figure 37: Confirmation if user wants to be deleted.

TBU in Zlín, Faculty of Applied Informatics 53

In another tab of administrator’s page, he can also see all past and upcoming appointments

with names of patients and physician with date and description. Admin can’t manipulate

these data.

Administrator can also see and add new vaccine that clinic offers for the patients to get

vaccinated.

If administrator wants to add new vaccine in the offer, he can do it with simple form of just

adding a name of the vaccine.

Figure 38: Admin side for viewing users that are stored in database with their role
displayed

Figure 39: Admin side for viewing appointments

Figure 40: Admin side for viewing list of vaccines in the offer

TBU in Zlín, Faculty of Applied Informatics 54

In another tab, administrator can add new physicians if needed. This way admin can create,

if necessary, new user with role ‚Physician‘ to the database. Once created they will also

receive on their e-mail verification and password.

Figure 41: Form for adding new vaccine to the list

Figure 42: Form of registering a new physician through admins control panel

TBU in Zlín, Faculty of Applied Informatics 55

6.3 Server (Back-end)

6.3.1 Data Transfer Objects (DTO)

To work with data that are being sent from client-side, we used Data transfer object, also

known as DTO. Task of DTO is to minimize requests to the server when we are communi-

cating. There are cases, where we need to get complex data, that are made from multiple

objects, with that we need to create multiple requests. DTO makes it simple to create one

model, which requests will be sorted rather than having multiple models requesting.

There are several NuGet packages that are working with DTO, but most popular one is

AutoMapper, a lightweight and simple to use library for mapping DTO models in C#. To

create mapping you need two things:

● Source

● Destination

Once you determine these two things, you can create simple model that you can use during

development.

Figure 43: Example of DTO for User's login

TBU in Zlín, Faculty of Applied Informatics 56

6.3.2 Database

 As mentioned before, for creation of the database, author used approach of code-first (see

chapter 3.2.3) that makes it simple for development. Each model created in application

basically represents a table in the database.

 Tables for Users, roles and user roles are created with AspNet library Identity, the rest of

the tables that are created are Patients, Physicians and Appointments.

Figure 44: Example of AutoMapper's mapping for DTO

Figure 45: Entity relationship diagram

TBU in Zlín, Faculty of Applied Informatics 57

Table AspNetUsers

This table represents user’s account. Generated table contains basic information about user

such as username, email, phone number, password in hash form. It can be expanded with

more attributes, such as first name and last name.

Table AspNetRoles

This table contains roles that will be available for the user.

Figure 47: Entity attributes of AspNetRoles

Figure 46: Entity attributes of AspNetUsers

TBU in Zlín, Faculty of Applied Informatics 58

Table AspNetUserRoles

This table shows what users have roles from table AspNetRoles.

Table Physicians

This table is to keep record of users that have role ‚Physician‘ in AspNetUserRoles.

Figure 49: Entity attributes of Physicians

Figure 48: Entity attributes of
AspNetUserRoles

TBU in Zlín, Faculty of Applied Informatics 59

Table Patient

This table is to keep record of users that have role ‚Patient‘ in AspNetUserRoles.

Table Appointments

This table is to keep record between physician and patient.

Figure 50: Entitty attributes of Patients

Figure 51: Entitty attributes of Appointments

TBU in Zlín, Faculty of Applied Informatics 60

Table Vaccine

This table is to keep record of vaccines to offer for vaccination.

Table PatientsVaccine

This table is to keep record of patients history of vaccination.

Figure 52: Entitty attributes of Vaccine

Figure 53: Entitty attributes of PatientsVaccine

TBU in Zlín, Faculty of Applied Informatics 61

7 SECURITY IMPLEMENTATION

Application is protected against Cross-site scripting with implementation Content-Secu-

rity-Policy. Thanks to that implementation any foreign links will be blocked on site and

marked as violation of Content Security Policy.

Protection against SQL Injection does not need any special protection method since we are

communicating with the database directly. Against SQL Injection we have Language Inte-

grated Query (LINQ) that helps us to send data to database as SQL parameters, that pre-

vents attack.

To prevent attack against CSRF application is using JWT (JSON web token) rather than

cookie. With this JWT is in a way a ‚cookie‘ that allows user to be identified. CSRF targets

mainly cookies but JWT is placed in ‚Authorization‘ header that allows user to sign in and

use it during usage of web application.

When user creates account, his password is being hashed in application to protect his data

when database is being exposed. This is due to AspNet Core’s class UserManager that is

creating new account to the table of users. Thus passwords are unreadable by an average

user.

Figure 54: Example of Content Security Policy refusing favicon in Angular

Figure 54: Example of using LINQ to get data from database

Figure 55: Example of JWT token

TBU in Zlín, Faculty of Applied Informatics 62

CONCLUSION

Realization of this bachelor thesis was accomplished by creating simple web application

that allows to communicate between patient and physician in form of booking appoint-

ment. Application needs to follow guideline of GDPR when it comes to collecting personal

data, permission of editing personal data and user’s choice of „being forgotten“.

In theory part of the thesis, author explained what data can be collected, existing solutions

and technologies that were used for creating web application. Author tried to explain in

detail technologies, that will be used, so that the reader can understand after reading.

In practical part of the thesis, author shows requirements for application, use-case model

and implementation of the requirements into application.

TBU in Zlín, Faculty of Applied Informatics 63

REFERENCES

[1] ŽŮREK, Jiří. Praktický průvodce GDPR. Olomouc: ANAG, [2017], 223 s. Právo.

ISBN 9788075540973.

[2] ČESKO. sdělení č. 115/2001 Sb. m. s., Ministerstva zahraničních věcí o přijetí

Úmluvy o ochraně osob se zřetelem na automatizované zpracování osobních dat.

Zákony pro lidi.cz [online]. c AION CS 2010-2020 [cit. 24. 7. 2020]. Dostupné

z: https://www.zakonyprolidi.cz/ms/2001-115

[3] KOUBA, Tomáš. Jak na GDPR na webu – praktický návod . Net Magnet [online] [cit.

2020-07-25]. Dostupné z: https://www.netmagnet.cz/blog/gdpr/

[4] CHAN, Rosalie. The Cambridge Analytica whistleblower explains how the firm

used Facebook data to sway elections. Business Insider [online]. 5 Oct 2019, , 1 [cit.

2020-07-24]. Dostupné z: https://www.businessinsider.com/cambridge-analytica-

whistleblower-christopher-wylie-facebook-data-2019-10

[5] SNIDER, Mike. Google sets April 2 closing date for Google+, download your photos

and content before then. USA Today [online]. 14 Dec 2019 [cit. 2020-07-24]. Dostupné z:

https://eu.usatoday.com/story/tech/talkingtech/2019/02/01/google-close-google-social-

network-april-2/2741657002/

[6] OSTERLOH, Rick. Helping more people with wearables: Google to acquire Fitbit.

Google [online]. 1 Nov 2019 [cit. 2020-07-24].

[7] K. Paul, `Tossed my Fitbit in the trash´: users fear for privacy after Google buys

company, The Guardian, lis. 06, 2019.

[8] Tim Berners-Lee created the first website. Web Design Museum [online]. [cit. 2020-07-

27]. Dostupné z: https://www.webdesignmuseum.org/web-design-history/tim-berners-lee-

created-the-first-website-1991

[9] Average web page data analyzing 8 million websites. CSS tricks [online]. [cit. 2020-07-

27]. Dostupné z: https://css-tricks.com/average-web-page-data-analyzing-8-million-

websites/

[10] Top Frameworks from entire Internet. Similar Tech [online]. [cit. 2020-07-27].

Dostupné z: https://www.similartech.com/categories/framework

https://www.similartech.com/categories/framework
https://css-tricks.com/average-web-page-data-analyzing-8-million-websites/
https://css-tricks.com/average-web-page-data-analyzing-8-million-websites/
https://www.webdesignmuseum.org/web-design-history/tim-berners-lee-created-the-first-website-1991
https://www.webdesignmuseum.org/web-design-history/tim-berners-lee-created-the-first-website-1991
https://eu.usatoday.com/story/tech/talkingtech/2019/02/01/google-close-
https://www.zakonyprolidi.cz/ms/2001-115

TBU in Zlín, Faculty of Applied Informatics 64

[11] CSS example of BEM method. Get BEM [online]. [cit. 2020-07-27]. Dostupné z:

http://getbem.com/naming/

[12] What is non-blocking or asynchronous I/O in Node.js? [online]. In: . StackOverflow

[cit. 2020-07-27]. Dostupné z: https://stackoverflow.com/a/10570261/7574597

[13] ROTH, Issac. What Makes Node.js Faster Than Java? [online]. Strongloop by IBM,

30th Jan 2014 [cit. 2020-07-27]. Dostupné z: https://strongloop.com/strongblog/node-js-is-

faster-than-java/

[14] TAHER, Rainan. Hands-On Object-Oriented Programming with C#. I. edition. Packt

Publishing, 2019. ISBN 978-1-78829-622-9.

[15] DE SANCTIS, Valerio. ASP.NET Core 3 and Angular 9. III. edition. Packt

Publishing, 2020. ISBN 978-1-78961-216-5.

[16] What is SQL Injection? [online]. Port Swigger [cit. 2020-07-29]. Dostupné z:

https://portswigger.net/web-security/sql-injection

[17] POLLACK, Ed. SQL Injection: Detection and prevention [online]. SQLShack, 30th

August 2019 [cit. 2020-07-29]. Dostupné z: https://www.sqlshack.com/sql-injection-

detection-and-prevention/

[18] KALLIN, Jakob a Irene Lobo VALBUENA. What is XSS? [online]. Excess XSS [cit.

2020-07-29]. Dostupné z: https://excess-xss.com/#:~:text=Cross%2Dsite%20scripting

%20(XSS),JavaScript%20in%20another%20user's%20browser.&text=Instead%2C%20he

%20exploits%20a%20vulnerability,the%20malicious%20JavaScript%20for%20him.

[19] EATI, Prasanthi. 10 Most Common Web Security Vulnerabilities [online]. Guru99

[cit. 2020-07-29]. Dostupné z: https://www.guru99.com/web-security-vulnerabilities.html

[20] BLAZQUEZ, Daniel. What is Broken authentication and session management?

[online]. HDVI Security, 19th May 2020 [cit. 2020-07-29]. Dostupné z:

https://hdivsecurity.com/owasp-broken-authentication-and-session-management

[21] Cross Site Request Forgery (CSRF) [online]. [cit. 2020-07-29]. Dostupné z:

https://owasp.org/www-community/attacks/csrf

https://hdivsecurity.com/owasp-broken-authentication-and-session-management
https://excess-xss.com/#:~:text=Cross-site%20scripting%20(XSS),JavaScript%20in%20another%20user's%20browser.&text=Instead%2C%20he%20exploits%20a%20vulnerability,the%20malicious%20JavaScript%20for%20him
https://excess-xss.com/#:~:text=Cross-site%20scripting%20(XSS),JavaScript%20in%20another%20user's%20browser.&text=Instead%2C%20he%20exploits%20a%20vulnerability,the%20malicious%20JavaScript%20for%20him
https://excess-xss.com/#:~:text=Cross-site%20scripting%20(XSS),JavaScript%20in%20another%20user's%20browser.&text=Instead%2C%20he%20exploits%20a%20vulnerability,the%20malicious%20JavaScript%20for%20him
https://portswigger.net/web-security/sql-injection
https://strongloop.com/strongblog/node-js-is-faster-than-java/
https://strongloop.com/strongblog/node-js-is-faster-than-java/
https://stackoverflow.com/a/10570261/7574597
http://getbem.com/naming/

TBU in Zlín, Faculty of Applied Informatics 65

LIST OF ABBREVIATIONS

GDPR General Data Protection Regulation

HTML HyperText Markup Language

CSS Cascade Style Sheet

REST Representational state transfer

API Application programming interface

HTTP HyperText Transfer Protocol

BEM Block-Element-Modifier

DOM Document Object Model

WPF Windows Presentation Foundation

UWP Universal Windows Platform

CLI Common Language Interface

LINQ Language Integrated Query

IL Intermediate Language

CLR Common Language Runtime

EF Entity Framework

GUI Graphical User Interface

SQL Stuctured Query Language

IDE Integrated Developing Enviroment

XML Extensible Markup Language

SCM Source-Control Management

SQLi SQL Injection

XSS Cross-site scriptin

URL Uniform resource locator

CSRF Cross-site request forgery

TBU in Zlín, Faculty of Applied Informatics 66

LIST OF FIGURES

 Figure 1: Graphs presenting history of development for user's right and privacy [1].........11

 Figure 2: Fitbits notification of removing user's data...13

 Figure 3: Main page of web app e-health..14

 Figure 4: Difference between front-end and back-end of what user can see.......................15

 Figure 5: Syncronous vs asyncronous code..15

 Figure 6: Top framework that are being used in applications from entire Internet [10].....16

 Figure 7: First website [8]...16

 Figure 8: Statistic of tag usage for HTML [9]...17

 Figure 9: Attribute inside of HTML tag..18

 Figure 10: HTML example for BEM method [11]..18

 Figure 11: CSS example for BEM method [11]..18

 Figure 12: Example of DOM in JavaScript...19

 Figure 13: Example of Grid display..20

 Figure 14: Example of asyncronous I/O with Node.js [13]...21

 Figure 15: Visual overview of the Common Language Infrastructure................................22

 Figure 16: Evolution of C# [14]..23

 Figure 17: Overview of how JIT Compiler works in .NET Framework.............................23

 Figure 18: Example of CLI command for EF Core "dotnet ef" in Linux's terminal...........25

 Figure 19: Example of code-first approach [15]...26

 Figure 20: Example of class for creating table with code-first approach............................26

 Figure 21: Example of declaring class for database context...27

 Figure 22: GitKraken for Git...28

 Figure 23: Example of SQL Injection attack using form [17]...29

 Figure 24: Overview how CSRF attack works..31

 Figure 25: Functional requests..33

 Figure 26: Use-case model..37

 Figure 27: Example of AlertifyJS pop up message...48

 Figure 28: Main page of application...48

 Figure 29: Sign up form..49

 Figure 30: Appointment page from patient side..49

 Figure 31: Appointment page from physician side...50

 Figure 32: Vaccination record form..50

 Figure 33: List of vaccinations patient had...50

 Figure 34: List of available vaccines...51

TBU in Zlín, Faculty of Applied Informatics 67

 Figure 35: Profile settings from user's...51

 Figure 36: Button for user if want to delete account...52

 Figure 37: Confirmation if user wants to be deleted...52

 Figure 38: Admin side for viewing users that are stored in database with their role

displayed...53

 Figure 39: Admin side for viewing appointments...53

 Figure 40: Admin side for viewing list of vaccines in the offer..53

 Figure 41: Form for adding new vaccine to the list..54

 Figure 42: Form of registering a new physician through admins control panel..................54

 Figure 43: Example of DTO for User's login..55

 Figure 44: Example of AutoMapper's mapping for DTO...56

 Figure 45: Entity relationship diagram..56

 Figure 46: Entity attributes of AspNetUsers...57

 Figure 47: Entity attributes of AspNetRoles...57

 Figure 48: Entity attributes of AspNetUserRoles..58

 Figure 49: Entity attributes of Physicians...58

 Figure 50: Entitty attributes of Patients...59

 Figure 51: Entitty attributes of Appointments...59

 Figure 52: Entitty attributes of Vaccine..60

 Figure 53: Entitty attributes of PatientsVaccine..60

 Figure 46: Example of using LINQ to get data from database..61

 Figure 54: Example of Content Security Policy refusing favicon in Angular....................61

 Figure 55: Example of JWT token..61

TBU in Zlín, Faculty of Applied Informatics 68

LIST OF TABLES

Table 1: Scenario for registering user..38

Table 2: Scenario for user to log in..39

Table 3: Alternative scenario for user to login...39

Table 4: Scenario for booking appointment...40

Table 5: Alternative scenario for booking appointment...40

Table 6: Scenario for updating personal data...41

Table 7: Scenario for deleting user account...42

Table 8: Alternative scenario for deleting user..42

Table 9: Scenario for browsing appointments..43

Table 10: Scenario for browsing user‘s..43

Table 11: Scenario for requesting record of vaccination..44

Table 12: Scenario for creating record of vaccination to the patient....................................45

Table 13: Scenario for creating user with role ‚Physician‘..46

TBU in Zlín, Faculty of Applied Informatics 69

APPENDICES

Appendix P 1: CD Content

APPENDIX P 1: CD CONTENT

Content that CD has:

● Text

○ bachelor thesis in format *.odt

○ bachelor thesis in format *.pdf

● Source code

○ med-app.zip – source code of the thesis

○ thesis.eapx – UML

