

Doctoral Thesis Summary

Fault Tolerance for Big Data Scientific Workflows

in Cloud Computing Environments

Spolehlivost a odolnost vůči poruchám cloudových systémů pro

automatické řízení a koordinaci procesů zpracování

rozsáhlých a heterogenních vědecko technických dat

Author: Ammar Nassan Alhaj Ali

Degree programme: P3903 Engineering Informatics

Degree Course: 3902V037E Engineering Informatics

Supervisor: Prof. Said Krayem

Zlin, June 2021

2

© Ammar Nassan Alhaj Ali

Published by Tomas Bata University in Zlín in the Edition Doctoral Thesis

Summary.

The publication was issued in the year 2021.

Klíčová slova: odolnost vůči poruchám, spolehlivost, rozsáhlá a heterogenní data,

workflow, cloud.

Keywords: Fault Tolerance, reliability, Big Data, workflow, cloud.

Full text of the scientific publication is available in the Library of TBU in Zlín.

ISBN 978-80-………

3

Abstract

Past few years, Big Data and cloud computing have become buzzwords in IT

region, and we have been seeing that data are generated in massive amounts and at

an increasing rate in all domains. The reliability and efficiency of distributed

systems have always been a major concern of the service providers and users.

Therefore, fault tolerance is among the most essential issues in distributed clouds to

deliver reliable services to customers.

In Big Data domain, scientific workflows are increasingly used for Big Data

analysis, processing, and management. With movement the world to Big Data,

single-site processing becomes unsuitable and Big Data scientific workflows can no

longer be accommodated within a single computing system, and ensuring a level of

reliability for a scientific workflow execution is a complex task that will tend to

increase the cost.

Replication of tasks increases redundancy and thereby the reliability, which is

achieved by parallel execution of a task on multiple virtual machines simultaneously

to guarantee a viable result, which leads to a high cost.

This doctoral Thesis presents a fault-tolerant model with two approaches that

optimize the reliability and execution cost of Big Data scientific workflows on cloud

computing environments and ensure a predefined level of reliability by replicating

tasks.

Finally, the model was implemented using WorkflowSim, it is extension of the

CloudSim simulator framework that is used for modelling and simulation of cloud

computing infrastructures and services.

4

Abstrakt

V posledních několika letech se v oblasti IT staly hesly Big Data a cloud

computing a my jsme svědky toho, že data jsou generována resp. zpracovávána v

obrovských objemech a stále rychleji ve všech oblastech. Spolehlivost a bezpečnost

distribuovaných systémů byla vždy hlavním zájmem poskytovatelů služeb i

uživatelů. Proto patří odolnost proti výpadkům a chybám mezi klíčové požadavky na

provoz cloudových systému, podmiňující spolehlivost a použitelnost služeb pro

zákazníky.

V oblasti velkých dat se pro analýzu, zpracování a správu velkých dat stále častěji

používají metody vědeckotechnické analýzy (matematické a statistické metody,

aplikace umělé inteligence apod). S přechodem uživatelských aplikací ke zpracování

velkých dat je použití distribuovaných cloudových řešení stále častěji jediným

ekonomicky přijatelným řešením.

Jednou z metod, které cloudový systém nabízí je replikace úloh, která zvyšuje

redundanci, a tím i spolehlivost paralelním prováděním úlohy na více virtuálních

strojích současně. Tak lze zaručit přijatelné řešení, avšak za cenu vysokých nákladů.

Tato disertační práce představuje model odolný proti poruchám se dvěma

přístupy, které optimalizují spolehlivost a náklady na provádění vědeckých

pracovních postupů s velkými objemy dat v prostředí cloudového systému a zajišťují

předem definovanou úroveň spolehlivosti replikací úloh.

Navržený model byl implementován pomocí WorkflowSim, což je rozšíření

simulátorového rámce CloudSim, který se používá pro modelování a simulaci

infrastruktur a služeb cloudovho systému.

5

CONTENTS
1. INTRODUCTION .. 6

2. STATE OF THE ART ... 8

3. THESIS GOAL ... 10

4. FAULT TOLERANCE MODEL .. 12

4.1 System model. ... 12

4.2 Workflow model ... 12

4.3 Reliability model ... 13

4.4 Cost model ... 14

4.5 Task scheduling ... 15

4.5.1 Task prioritization .. 16

4.5.2 Task allocation ... 17

5. RELIABILITY DRIVEN WORKFLOW SCHEDULING USING GENETIC

ALGORITHM. ... 18

5.1 Experimental results of GA ... 19

5.2 Multi-objective optimization using NSGA-II ... 23

5.3 Experimental results of NSGA-II .. 23

6. DYNAMIC FAULT TOLERANCE USING GREEDY ALGORITHM 26

6.1 Satisfying required reliability .. 26

6.2 The DFTGA algorithm .. 27

6.3 Experimental results and performance evaluation of DFTGA 29

7. THESIS OUTCOMES ... 32

8. CONCLUSIONS ... 34

9. REFERENCES ... 35

ABBREVIATIONS .. 39

LIST OF FIGURES .. 40

LIST OF THE PUBLICATIONS BY THE AUTHOR ... 41

CURRICULUM VITAE .. 42

6

1. INTRODUCTION

Cloud computing systems have become mature sufficient to manage and handle a

huge volume of heterogeneous data that is rapidly changing. However, failures are

unavoidable in cloud computing systems as they are composed of a large number of

hardware resources (e.g., CPU, storage, and network).

Scientific workflows allow users easily to express multi-step computational tasks,

for example, retrieve data from a database, reformat the data, and run an analysis. A

scientific workflow usually describes the dependencies between the tasks. In most

cases, the workflow is described as a directed acyclic graph (DAG), where the nodes

are tasks and the edges denote data dependencies between tasks [1].

Scientific workflows demand massive resources from diverse computing

infrastructures to process a massive amount of Big Data. Automatic provisioning of

such Big Data applications on the cloud platform is challenging since current

resource management and scheduling approaches may not be able to scale well,

especially under highly dynamic conditions [2].

Fault tolerance to failures is of major importance when running on cloud

computing systems, where a predefined level of reliability is required for long-

running applications and services, to ensure that level of reliability, the cloud should

be uncommonly fault tolerant.

One of the best ways for increasing the reliability is by replication tasks.

Task replication is a proficient technique in case of a task running on an unreliable

execution environment. The goal of the replication is to ensure that at least one

replica is always able to complete the computation in case the others fail [3].

On the other hand, the cost of reliability improvements are paid by a reduction in

failure, this issue is not quite so simple for many failures, nevertheless, there is

never an endless budget for improving the reliability and some consideration of cost

is inevitable [4].

AWS, Microsoft Azure, and Google Cloud Platforms provide many services. One

thing is constant over all companies: the cloud cost is a headache to predict and

control. A fresh Forbes article included an interesting statistic that 30 percent of

cloud spend is wasted! This waste is due to using duplicate services; give up

services and reckless buying [5].

According to a survey by Spiceworks company (April 2018), the reliability and

cost are at the top as extremely important factors when evaluating cloud-based IT

services. (Figure 1.1) shows a priority of IT decision-makers when they buy services

cloud.

This Thesis primarily addresses to optimize the reliability and execution cost of

Big Data scientific workflows on cloud computing environments by a model with

fault tolerance is offered. We propose two approaches to optimize the reliability and

7

cost of scientific workflows on cloud computing environments. In Addition, the

thesis reviews former researches in the same field, and evaluate them by results

comparison.

Fig. 1.1: Most important factors of cloud-based IT services 1

The rest of the thesis is organized as follows:

• Chapter 2 presents a state of the art of algorithms that have been proposed

to improve the reliability and cost of performance in distributed

environments.

• Chapter 3 presents the goals and benefits of the thesis.

• Chapter 4 proposes a fault tolerance model for scheduling and processing

scientific workflows on computing cloud environments

• Chapter 5 presents the first approach which we proposed for scheduling

scientific workflows on computing cloud environments using the genetic

algorithm.

• Chapter 6 presents the second approach that guarantees predefined level of

reliability for scheduling scientific workflows with minimum execution

cost by the greedy algorithm.

• Chapter 7 provides our achievements in this Thesis.

• Chapter 8 concludes this thesis with a summary of contributions and the

perspectives brought by our solutions.

1 https://www.spiceworks.com/

Diving into IT Cloud Services

3%

15%

15%

18%

29%

32%

41%

58%

71%

0% 10% 20% 30% 40% 50% 60% 70% 80%

Innovation

Scalability

Ease of setup

User friendlieness

Trusted vendor

Customer support

Security

Reliability

Cost

https://www.spiceworks.com/marketing/reports/it-cloud-services/

8

2. STATE OF THE ART

Although the cloud computing systems themselves promise high reliability,

ensuring a high quality of service is still one of the challenging and critical research

problems, and it has gained increasing attention recently [6].

The cloud computing systems are often made up of heterogeneous resources and

ensuring reliability is a complex task, therefore fault tolerance mechanism operates

as a backbone of distributed systems and has an important role in the reliability of

enterprise distributed applications [7].

Many scheduling techniques and algorithms have been proposed to improve the

reliability of performance in distributed environments, and ensuring a predefined

level of reliability under various constraints such as task deadline or execution cost,

and improving the economic aspect of scheduling in distributed systems.

Fault-Tolerant Scheduling Algorithm FTSA [8] is proposed which aims to

tolerate multiple processor failures. FTSA is based on an active replication scheme

to mask failures, in this approach we don't need for detecting and handling failures.

Multiple copies of each task are mapped on different processors, which are run in

parallel to tolerate a fixed number of failures. It assumes that some processors are

reserved only for realizing fault tolerance, i.e., the reserved processors are not used

for the original scheduling, and a static number of replicas are used of each task on

processors.

 In FTSA, the processor is selected for replication which has a minimum finish

time. We can see that in FTSA we can increase reliability but sometimes we cannot

satisfy the required reliability.

Other attempts for designing fault-tolerant systems by the use of replication have

been made, the MaxRe algorithm (Max Reliability) [9] focused to satisfy the user's

reliability requirement with minimum resources, and the number of replicas for each

task should be as few as possible. The MaxRe algorithm transfer the reliability

requirement of the workflow to the sub-reliability requirement of each task, and

iteratively select available replicas and VMs with the maximum reliability value for

each task to minimize the number of replicas, and thereby to reduce execution cost,

until the sub-reliability of the task is satisfied.

The RR Algorithm (Reliability Requirement) [10] uses the same approach of

MaxRe algorithm in selection VMs with the maximum reliability and transfers the

reliability requirement of the workflow to the sub-reliability requirement, whereas

the sub-reliability requirement of the entry task is still calculated same equation, but

the sub-reliability requirement of other tasks is calculated by a different way.

Optimizing the makespan and reliability for workflow applications by genetic

algorithm [11] has been proposed. The reliability-driven RD reputation can be used

to effectively evaluate the reliability of a resource in distributed systems. And it

9

proposed the genetic algorithm which utilizes the RD reputation to optimize both the

makespan and the reliability of a workflow.

A fault tolerant framework with deadline guarantee FTDG [12] has been proposed

to achieve high fault tolerance and low response time in a Big Data stream

computing environment, and obtain the conditions to meet the high reliability and

low response time.

Another approach to enhance reliability on heterogeneous computing systems by

the use of replication is proposed in [13], in this approach, the main objective is to

propose a replication-based algorithm that maximizes the system reliability while

considering the communication between tasks.

In [14], a model with dynamic fault tolerance is presented, which ensures the

required reliability is met by replicating tasks. By dynamically adapting to changing

attributes of the system and resources, it also ensures that the optimal numbers of

replicas are used. The model ensures a minimized use of resources by not using

more replicas than needed, and by minimizing the number of resources needed. This

was achieved by placing replicas on the most reliable resources first and foremost.

In [15], the authors proposed the quantitative fault-tolerance with minimum

execution cost QFEC and QFEC+ algorithms for a workflow. QFEC is implemented

by iteratively choosing available replicas and VMs with the minimum execution

time (Makespan) for each task until its sub-reliability requirement is satisfied. On

another side, QFEC+ is implemented by filtering out partial QFEC opted replicas

and VMs for each task with less redundancy (remove some replicas) while still

satisfying its sub-reliability requirement.

10

3. THESIS GOAL

The following items are proposed as aims of the thesis:

1. Exploring and a comprehensive survey of the state-of-the-art algorithms of

fault tolerance for Big Data scientific workflows in cloud computing

environments.

2. Critical overview and evaluate former researches by comparison in the

experiments.

3. Identification of the important objectives for scheduling scientific

workflows on cloud computing according to the latest researches.

4. Creation of a model with two fault-tolerant approaches for scheduling

scientific workflows on the cloud, the first approach uses a genetic

algorithm and the second one uses the greedy algorithm.

5. Evaluating the model on different sizes and types of scientific workflows

to validate the effectiveness of the proposed methods.

6. Deep analysis of the results, summarizing the results, benefits, and

drawbacks of the proposed approaches, formalizing the recommendations

for future development in the related researches.

The methods to fulfil the proposed aims of the thesis include:

Analysis:

• Identification of the state-of-the-art in improving the reliability of

performance in distributed environments.

• Overview of the wide range of algorithms and techniques, with a focus on

the most popular and used methods.

Implementation:

• Using WorkflowSim, which is an extension of the CloudSim framework

that is completely written in Java, for modelling and simulation of cloud

computing environments.

• The selected state-of-the-art algorithms will be coded in java alongside our

proposed algorithms in CloudSim framework.

• Using scientific workflows that are taken from diverse domains such as

astronomy, earthquake science, and biology, and are similar to real

workflows.

• Simulation results will be handled and examined in the Excel spreadsheet.

11

Testing:

• Testing each individual component of the code to see if these components

are working properly, then testing them as a collective group to see if there

are potential errors and malfunctions.

Evaluation:

• All the simulation results will be collected in an appropriate manner for

analysing them in the Excel spreadsheet.

• The proposed methods will be assessed by their influence on improving

multi objectives of scheduling scientific workflows on cloud.

• Based on the analysis of the simulation results, the pros and cons of the

proposed methods will be determined.

• The general recommendations and suggestions for good practice in fault-

tolerant scheduling of scientific workflows will be formulated for use in

relevant researches.

12

4. FAULT TOLERANCE MODEL

4.1 System model.

The system architecture is presented in (Figure 4.1). The workflow engine acts as

a middle layer between the Big Data management systems and the cloud. Workflow

submitted into the engine which schedules the workflow tasks, provide fault

tolerance mechanism, and allocate resources in a manner for achieving a trade-off

between reliability and cost or fulfilling required reliability with minimum cost.

Fig. 4.1: System architecture.

Fault-Tolerant Mechanism (FTM): the cloud is prone to failures and an

efficient fault-tolerant strategy is critical for increasing the reliability of unreliable

execution environment. In this Thesis, we use replication mechanism as a fault

tolerant strategy and offer two approaches for that, first one depends on genetic

algorithm and the second one depends on greedy algorithm for optimizing the

reliability and execution cost.

The Resource Manager (RM): acts as a broker for the available computing

resources in the cloud. This module allocates the appropriate resource (virtual

machine) for every task as chosen by the task scheduler.

The Task Scheduler (TS): can schedule workflow tasks to different resources.

According to the scheduling information, the task scheduler employs a scheduling

algorithm to find a suitable resource for every task.

The Task Monitor (TM): detect if a task ti on virtual machine vk successfully

completes or fails before completion, and it sends a report about virtual machine vk

to the reliability assessor RA.

Reliability Assessor (RA): can maintain and recalculate the failure rate λ for

each resource, which can be used to schedule the next workflow.

4.2 Workflow model

A scientific workflow with dependent tasks is modelled by a directed acyclic

graph (DAG). Let consider that V represents a set of heterogeneous virtual machines

13

(VMs) on cloud, each individual virtual machine is denoted by Vk ,V= {V1,V2,…,

Vk}[9][10][11][13][15][16][17][18][19]. We also presume that communication can

be overlapped with computation, which means data can be transmitted from one

virtual machine to another while a task is being executed on the recipient virtual

machine [9][10][15].

In this thesis a DAG is defined as G= (T, W, Din, Dout , E, C).

• T is the set of scientific workflow tasks, each individual task is denoted by ti,

T= {t1,t2,…,ti}. Each node ti∈T is a task with different execution times on

different VMs. pred(ti) is the set of immediate predecessor tasks of ti, while

succ(ti) is the set of immediate successor tasks of ti. Tasks without predecessor

tasks are denoted by tentry, and tasks with no successor tasks are denoted by texit

[15][16][17][19].

• W =|T|×|V| represents matrix, where wi,k∈ W denotes the execution time of

task ti running on VM vk.

• Din is the set of input datasets for all workflow. Each task ti has input datasets

is denoted by d_ini,j= {d_ini,1, d_ini,2,…, d_ini,j}.

• Dout is the set of output datasets for all workflow. Each task ti has output

datasets is denoted by d_outi,j= {d_outi,1, d_outi,2,…, d_outi,j}.

• E represents the set of directed edges among tasks in the workflow. Each

individual an edge ep,c ∈ E means that a part or all of the output data of task tp

is the input data of tasks tc.

• C represents the set of the communication time of data between tasks. cp,c∈ C

represents the communication time of data between task tp and tc.

4.3 Reliability model

Faults can be classified into three major types (according to duration) as transient,

intermittent and permanent [20][21]. In this Thesis considers the transient failure of

VMs.The mean time between failures (MTBF) for a VM is the average time between

successive failures for that VM [22].

The MTBF can be calculated as:

 𝑀𝑇𝐵𝐹 =
𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠
 (E.1)

The failure rate λ calculate:

 𝜆 =
1

𝑀𝑇𝐵𝐹
 (E.2)

14

The models using the Poisson distribution to model the probability of failure

assume constant failure rates. And the reliability for VM can be calculated as

[9][10][13][15][18][19][22][23][24]

 𝑅(𝑡) = 𝑒−𝜆𝑡 (E.3)

The probability of fail during a time interval of length t for VM is

 𝐹(𝑡) = 1 − 𝑒−𝜆𝑡 (E.4)

The reliability of task ti executed on VM vk in its execution time is denoted by

 𝑅(ti,vk)= 𝑒−𝜆𝑘𝑤𝑖,𝑘 (E.5)

Where, 𝜆𝑘 is the failure rate of vk and 𝑤𝑖,𝑘 is the execution time of the task ti on

the VM vk. And the failure probability for ti is

 F(ti,vk)= 1-𝑅(ti,vk)=1-𝑒−𝜆𝑘𝑤𝑖,𝑘 (E.6)

When we use replication, the reliability of a task ti with m replicas placed on m

different VMs is

 𝑅(𝑡𝑖) = 1 − ∏ 𝐹𝑘(𝑡𝑖)

𝑚

𝑘=1

 (E.7)

The reliability of the workflow with all tasks should be

 𝑅(𝐺) = ∏ 𝑅(𝑡𝑖)

𝑡𝑖∈𝑇

 (E.8)

In this Thesis, we assume communication networks between VM provide fault-

tolerance for themselves.

4.4 Cost model

Cloud computing environment contains many resources (datacentres), which

include a number of hosts, where each host has a number of VMs with various

configurations (CPU, memory, bandwidth, and storage) [25]. The cost includes

execution cost, bandwidth cost, memory cost and storage cost [25][26][27][28][29]

[30][31][32]. The cost model in this Thesis is based on a pay-as-you-go pricing

model. The users are charged according to the amount of time and data that they

have used computing resources [25][33].

The execution cost which computes the cost for the execution of the task ti on the

VM vk is

 𝐶𝑜𝑠𝑡𝐸(𝑡𝑖)𝑣𝑘
=

𝐿(𝑡𝑖)

𝑆(𝑣𝑘)
× 𝐶𝑒,𝑣𝑘

 (E.9)

15

Where L(ti) is the length of task ti and S(vk) speed of VM vk in millions of

instructions per second (MIPS) and 𝐶𝑒,𝑣𝑘
 is the cost of using processing on VM vk.

The bandwidth cost of task ti on VM vk is

 𝐶𝑜𝑠𝑡𝐵(𝑡𝑖)𝑣𝑘
=

(∑ 𝑆(𝑑𝑖𝑛𝑖,𝑛
) + ∑ 𝑆(𝑑𝑜𝑢𝑡𝑖,𝑚

)) × 8𝑚𝑛

𝐵𝑊𝑣𝑘

× 𝐶𝑏,𝑣𝑘
 (E.10)

Where 𝑆(𝑑𝑖𝑛𝑖,𝑛
) and 𝑆(𝑑𝑜𝑢𝑡𝑖,𝑚

) are size of input and output dataset respectively

(MB) of task ti, 𝐵𝑊𝑣𝑘
is bandwidth of VM vk in Mbps and 𝐶𝑏,𝑣𝑘

 is the cost of using

bandwidth on VM vk.

The memory (RAM) cost of task ti on VM vk is

 𝐶𝑜𝑠𝑡𝑅(𝑡𝑖)𝑣𝑘
= (∑ 𝑆(𝑑𝑖𝑛𝑖,𝑛

) + ∑ 𝑆(𝑑𝑜𝑢𝑡𝑖,𝑚
))

𝑚𝑛

× 𝐶𝑟,𝑣𝑘
 (E.11)

Where 𝑆(𝑑𝑖𝑛𝑖,𝑛
) and 𝑆(𝑑𝑜𝑢𝑡𝑖,𝑚

) are sizes of input and output dataset respectively

of task ti and 𝐶𝑟,𝑣𝑘
 is the cost of using memory on VM vk.

• The storage cost of task ti on VM vk is

 𝐶𝑜𝑠𝑡𝑆(𝑡𝑖)𝑣𝑘
= (∑ 𝑆(𝑑𝑖𝑛𝑖,𝑛

) + ∑ 𝑆(𝑑𝑜𝑢𝑡𝑖,𝑚
))

𝑚𝑛

× 𝐶𝑠,𝑣𝑘
 (E.12)

Where 𝑆(𝑑𝑖𝑛𝑖,𝑛
) and 𝑆(𝑑𝑜𝑢𝑡𝑖,𝑚

) are sizes of input and output dataset respectively

of task ti and 𝐶𝑠,𝑣𝑘
 is the cost of using storage in VM vk.

The total cost of processing for mapped task ti on VM vk is

 𝐶𝑜𝑠𝑡(𝑡𝑖)𝑣𝑘
= 𝐶𝑜𝑠𝑡𝐸(𝑡𝑖)𝑣𝑘

+ 𝐶𝑜𝑠𝑡𝐵(𝑡𝑖)𝑣𝑘
+ 𝐶𝑜𝑠𝑡𝑅(𝑡𝑖)𝑣𝑘

+ 𝐶𝑜𝑠𝑡𝑆(𝑡𝑖)𝑣𝑘
 (E.13)

The cost of all tasks on workflow is

 𝐶𝑜𝑠𝑡(𝐺) = ∑ 𝐶𝑜𝑠𝑡(𝑡𝑖)𝑣𝑘

𝑡𝑖∈𝑇,𝑣𝑘∈𝑉

 (E.14)

4.5 Task scheduling

Task scheduling for a DAG-based workflow includes two phases:

• Task prioritization: this phase orders tasks based priorities.

• Task allocation: this phase allocates each task to the appropriate VM, (see

Figure 4.2).

Both task scheduling phases for a DAG-based workflow are NP-hard problem

[9][10][11][13][15][17][24][25][34].

16

Fig. 4.2: Task prioritization and Task allocation for workflow

4.5.1 Task prioritization

Heterogeneous earliest finish time (HEFT) is one of the most famous scheduling

algorithms for its low complexity, it is a classical static list scheduling algorithm

[1][15][18][36][37]. HEFT uses the mean value of the computation cost and the

mean value of communication cost as the rank value to determine the scheduling

sequence [16], and it maintains a list of tasks sorted in decreasing order of their

upward rank [17]. The tasks on the workflow are ordered by descending order of

ranku [9][10][15][17][37][38][39], which is obtained by next equation .

 𝑟𝑎𝑛𝑘𝑢(𝑡𝑖) = 𝑤̅𝑖 + 𝑚𝑎𝑥𝑡𝑗∈𝑠𝑢𝑠𝑠(𝑡𝑖){𝑐𝑖,𝑗 + 𝑟𝑎𝑛𝑘𝑢(𝑡𝑗)} (E.15)

Where 𝑤̅𝑖 represents the average execution times of task ti, it is calculated by

 𝑤̅𝑖 =
∑ 𝑤𝑖,𝑘

|𝑉|
𝑘=1

|𝑉|
 (E.16)

Where 𝑤𝑖,𝑘is the execution time of the task ti on the virtual machine vk ,each task has

variable computation time on a different virtual machine, and ci,j is communication

time of a data between two tasks ti ,tj ,it is calculated by

 𝐶𝑖,𝑗 =
(∑ 𝑆(𝑑𝑜𝑢𝑡𝑖,𝑛

) + ∑ 𝑆(𝑑𝑖𝑛𝑗,𝑚
)) × 8𝑚𝑛

𝐴𝑉𝑅(𝐵𝑊)
 (E.17)

Where ∑ 𝑆(𝑑𝑜𝑢𝑡𝑖,𝑛
) is the size of output datasets of task ti and ∑ 𝑆(𝑑𝑖𝑛𝑗,𝑚

) is the

size of input datasets of task tj in MB.

𝐴𝑉𝑅(𝐵𝑊) is the average bandwidth of all virtual machines in Mbps, it is

calculated by

 𝐴𝑉𝑅(𝐵𝑊) =
∑ 𝐵𝑊𝑣𝑘

|𝑉|
𝑘=1

|𝑉|
 (E.18)

17

4.5.2 Task allocation

Scheduling tasks find the solving which virtual machine resource that will be

allocated to which task, for increasing the reliability and decreasing the execution

cost [15][25][35][40][41][42][43]. We assume that we have a scientific workflow G

and a set of heterogeneous virtual machines VM. The problem is to assign replicas

and corresponding VMs for each task ti; at the same time, we must ensure to

minimize the execution cost of the workflow and ensure also that the obtained

reliability value R)G) satisfies required reliability Rreq(G).

The replica set of ti is {𝑡𝑖
1, 𝑡𝑖

2, … , 𝑡𝑖
𝑛𝑖}, where 𝑡𝑖

1 is primary and the remainder is the

backups. The total number of replicas for the workflow is

 NRep(G)=∑ 𝑛𝑖
|𝑇|
𝑖=1 (E.19)

Let's suppose that, we want to execute workflow G at reliability level is (0.995),

Rreq(G)=0.995. The problem is to find the minimum execution cost of the workflow

when assigning replicas and corresponding VMs for each task in a workflow.

𝐶𝑜𝑠𝑡(𝐺) = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚(∑ 𝐶𝑜𝑠𝑡(𝑡𝑖)𝑣𝑘𝑡𝑖∈𝑇,𝑣𝑘∈𝑉𝑀)

AND

 R)G)= Rreq(G)=0.995

18

5. RELIABILITY DRIVEN WORKFLOW SCHEDULING

USING GENETIC ALGORITHM.

In this thesis, we propose an approach to optimise reliability and cost for Big Data

scientific workflows in cloud computing environments using a genetic algorithm.

We offer an idea to form chromosome structure, approach to encoding solution and

build of genetic operators. The genetic algorithms can give several satisfying

solutions by iterative evolutions over the first random generation of workflow

scheduling.

To ensure fault-tolerant scheduling and improve the reliability and cost, each task

is assigned on m distinct virtual machine (VM) resources. In this Thesis case m=2, a

chromosome is a data structure in which a scheduling solution is encoded. As

illustrated in (Figure 5.1), we use a two-dimensional string to represent a scheduling

solution. One dimension of the string represents the first allocation of task ti on

virtual machine vk, while the other dimension denotes the second allocation of task ti

on virtual machine vj, where vk ≠ vj.

The fitness function is used to measure each scheduled chromosome (solution).

One of the most often used assessment methods is the weighted sum (as fitness

function), which aggregates the objective values to a single quality measure. As the

objective functions frequently have different scales, they are usually normalized

[44]. This can be done for example by using equations (E.20) or (E.21) when

minimizing and maximizing the objectives respectively:

 𝑓𝑛𝑜𝑟𝑚 =
𝑓−min (𝑓)

max(𝑓)−min (𝑓)
 for objectives to be minimized (E.20)

 𝑓𝑛𝑜𝑟𝑚 = 1 −
𝑓−min (𝑓)

max(𝑓)−min (𝑓)
 for objectives to be maximized (E.21)

In our Thesis, the fitness function is defined as:

 𝑓(𝑠) = 𝑊𝑐 × (
𝐶𝑜𝑠𝑡(𝐺)−Min _𝐶𝑜𝑠𝑡(𝐺)

Max _𝐶𝑜𝑠𝑡(𝐺)−Min _𝐶𝑜𝑠𝑡(𝐺)
) + 𝑊𝑅 × (1 −

𝑅(𝐺)−Min _𝑅(𝐺)

Max _𝑅(𝐺)−Min _𝑅(𝐺)
) (E.22)

Both cost and reliability are assigned weights WC and WR respectively, according

to the trade-off requirement of the user, where WC+WR=1, to calculate reliability

R(G) and cost Cost(G) of the workflow we use the equations (E.8) and (E.14)

respectively.

19

Fig. 5.1: Chromosome Structure

5.1 Experimental results of GA

The simulation is carried out by WorkflowSim, we create one datacenter, 6 hosts

and 40 VMs; each host has several VMs based on its power. (Table 5.1) shows the

characteristics of the resources used for the simulation.

Table 5.1 Characteristics of Resources

Virtual Machines

MIPS of VM VM memory Bandwidth MTBF of VMs

1000-3000 MIPS 512-1048MB 500-1000mbps 104 - 105 h

Virtual Machines Cost per unit

Processing Memory Bandwidth Storage

1.5-2.0 0.01-0.05 0.1-0.05 0.01-0.05

And we use three different sizes of the CyberShake workflow, Small (30 tasks),

medium (100 tasks), and large (1000 tasks), (see Figure 5.2), and relative weights

WC and WR are set as (Table 5.2).

Table 5.2 Relative Weights Values Used

WC 0.99999 0.70000 0.50000 0.30000 0.00001

WR 0.00001 0.30000 0.50000 0.70000 0.99999

(Figure 5.3, Figure 5.5 and Figure 5.7) present the reliability of the small,

medium, and large CyberShake workflow respectively, and (Figure 5.4, Figure 5.5

and Figure 5.8) present the cost of the small, medium, and large CyberShake

workflow respectively, according to previous relative weights and after 1000, 2500

and 50000 generations.

20

Fig. 5.2: The structures of some scientific workflows types.

Even though we achieved fast convergence of the solution to a close optimal level

according to relative weights for small workflow (30 tasks), but for large workflow,

we need to a larger number of generations to achieve optimization and stability in

the output.

The number of generations set to 1000 for small workflows (30 tasks) and 25000

from the medium workflows (100 tasks) and 50000 for large workflows (1000

tasks). We kept the population size fixed for all workflow sizes under all choices for

the number of generations and the number of virtual machines, in order to observe

stability in the output. On another side, the number of virtual machines will have an

important role to achieve optimization and stability in the output, for large

workflows (1000 tasks), we achieve convergence of the solution to a close optimal

level after 1000 generations when we use less number of virtual machines for

allocating tasks, (see Figure 5.9 and Figure 5.10)

Fig. 5.3: The reliability of small CyberShake workflow (30 tasks)

0,9996

0,9997

0,9997

0,9998

0,9998

0,9999

0,9999

1,0000

1,0000

0,00001 0,30000 0,50000 0,70000 0,99999

R
el

ia
b

il
it

y

Relative weights of reliabilty Wr

50000 Gen 25000 Gen 1000 Gen

21

Fig. 5.4: The cost of small CyberShake workflow (30 tasks)

Fig. 5.5: The reliably of medium CyberShake workflow (100 tasks)

Fig. 5.6: The cost of medium CyberShake workflow (100 tasks)

0

3000

6000

9000

12000

15000

18000

21000

0,99999 0,70000 0,50000 0,30000 0,00001

C
o
st

Relative weights of cost Wc

50000 Gen 25000 Gen 1000 Gen

0,9992

0,9993

0,9994

0,9995

0,9996

0,9997

0,9998

0,9999

1

0,00001 0,30000 0,50000 0,70000 0,99999

R
el

ia
b

il
it

y

Relative weights of reliabilty Wr

50000 Gen 25000 Gen 1000 Gen

0

10000

20000

30000

40000

50000

60000

0,99999 0,70000 0,50000 0,30000 0,00001

C
o
st

Relative weights of cost Wc

50000 Gen 25000 Gen 1000 Gen

22

Fig. 5.7: The reliability of large CyberShake workflow (1000 tasks)

Fig. 5.8: The cost of large CyberShake workflow (1000 tasks)

Fig. 5.9: The reliability of large CyberShake workflow after 1000 generations

0,999

0,9991

0,9992

0,9993

0,9994

0,9995

0,9996

0,9997

0,00001 0,30000 0,50000 0,70000 0,99999

R
el

ia
b

il
it

y

Relative weights of reliabilty Wr

50000 Gen 25000 Gen 1000 Gen

80000

85000

90000

95000

100000

105000

0,99999 0,70000 0,50000 0,30000 0,00001

C
o
st

Relative weights of cost Wc

50000 Gen 25000 Gen 1000 Gen

0,998

0,9981

0,9982

0,9983

0,9984

0,9985

0,9986

0,9987

0,9988

0,00001 0,30000 0,50000 0,70000 0,99999

R
el

ia
b

il
it

y

Relative weights of reliabilty Wr

VM=40 VM=20 VM=10

23

Fig. 5.10: The cost of large CyberShake workflow after 1000 generations

5.2 Multi-objective optimization using NSGA-II

In this thesis, we propose NSGA-II to optimize reliability and cost for scheduling

scientific workflows in the cloud computing, to calculate reliability R(G) and cost

Cost(G) of the workflow we use the equations (E.8) and (E.14) respectively.

Each individual or chromosome is represented as a vector of length equal to the

number of tasks (1x100), the values specified in this vector are in the range (1,

number of virtual machines (40)), the value corresponding to each position in the

vector represents the VM to which task T is allocated.

5.3 Experimental results of NSGA-II

We create one datacenter, 6 hosts and 40 VMs; each host has several VMs based

on its power. (Table 5.1) shows the characteristics of the resources used for the

simulation, and we use three types of workflows, namely, CyberShake, Montage,

and LIGO Inspiral workflows to validate the effectiveness of the proposed

algorithm.

As it is noticeable in (Figure 5.11), (Figure 5.12) and (Figure 5.13) NSGA-II is

capable to yield better optimal solutions to maximize reliability and minimize the

cost for scheduling different types of workflows, where it gives consistent

performance and has a good spread Pareto optimal set of solutions.

Sometimes, as well, MOO could give close results to single-objective

optimization (reliability or cost) when achieves a trade-off between them. (Figure

5.14), (Figure 5.15) and (Figure 5.16) show a comparison of single-objective

optimization of reliability, cost, and optimal solutions from MOO to schedule three

different workflows; we can notice that some trade-off solutions are close to values

of single-objective optimization. So, we can consider, the Pareto front of (reliability,

cost) is a good option to make a decision regarding the optimized solution of

scheduling big data scientific workflows on cloud computing.

89500

90000

90500

91000

91500

92000

92500

93000

0,99999 0,70000 0,50000 0,30000 0,00001

C
o

st

Relative weights of cost Wc
VM=40 VM=20 VM=10

24

Fig. 5.11: Pareto-optimal solutions for scheduling CyberShake workflow

Fig. 5.12: Pareto-optimal solutions for scheduling Montage workflow

Fig. 5.13: Pareto-optimal solutions for scheduling Inspiral workflow

10000

15000

20000

25000

30000

35000

0,86 0,88 0,9 0,92 0,94 0,96 0,98 1

C
o
st

Reliability

Pareto-optimal solutions Random solutions

770

870

970

1070

1170

1270

1370

0,973 0,978 0,983 0,988 0,993 0,998

C
o
st

Reliability

Pareto-optimal solutions Random solutions

13000

15000

17000

19000

21000

23000

25000

27000

0,55 0,65 0,75 0,85 0,95

C
o
st

Reliability

Pareto-optimal solutions Random solutions

25

Fig. 5.14: Single objective against Multi-objective solutions for CyberShake workflow

Fig. 5.15: Single objective against Multi-objective solutions for Montage workflow

Fig. 5.16: Single objective against Multi-objective solutions for Inspiral workflow

5000

10000

15000

20000

25000

30000

35000

0,92 0,93 0,94 0,95 0,96 0,97 0,98 0,99

C
o
st

Reliability

Pareto-optimal solutions Single objective (Reliability)

Single objective (Cost)

700

730

760

790

820

850

880

910

940

0,991 0,992 0,993 0,994 0,995 0,996 0,997

C
o
st

Reliability

Pareto-optimal solutions Single objective (Reliability)

Single objective (Cost)

12500

12800

13100

13400

13700

14000

14300

0,8 0,85 0,9 0,95

C
o
st

Reliability

Pareto-optimal solutions Single objective (Reliability)

Single objective (Cost)

26

6. DYNAMIC FAULT TOLERANCE USING GREEDY

ALGORITHM

In this Thesis, we also propose the greedy scheduling algorithm that moves the

reliability requirement of the workflow to the sub-reliability requirement of each

task and finding replicas that satisfy sub-reliability with minimum execution cost.

The use a static approach to determine how many copies are required to reach a

certain level of reliability is impractical and insufficient.

6.1 Satisfying required reliability

Many algorithms were presented to transfer the reliability requirement of the

workflow to the sub-reliability requirement of each task [9][10][14][15].

 Older algorithms as MaxRe [9], the sub-reliability requirement of each task is

calculated by

 𝑅𝑟𝑒𝑞(𝑡𝑖) = √𝑅𝑟𝑒𝑞(𝐺)
|𝑇|

 (E.23)

Later algorithms as RR [10] and QFEC+ [15], where the sub-reliability

requirement of the entry task tentry (t1) is calculated by (E.23)

 𝑅𝑟𝑒𝑞(𝑡1) = √𝑅𝑟𝑒𝑞(𝐺)
|𝑇|

 (E.24)

In RR algorithm, the sub-reliability requirements of the remainder of tasks (non-

entry tasks) are calculated continuously based on the actual reliability achieved by

previous allocations:

 𝑅𝑟𝑒𝑞(𝑡𝑗) = √
𝑅𝑟𝑒𝑞(𝐺)

∏ 𝑅(𝑡𝑥)
𝑗−1
𝑥=0

|𝑇|−𝑗

 (E.25)

And QFEC+ algorithm, the sub-reliability requirements of the remainder of tasks

(non-entry tasks) are calculated also based on the actual reliability achieved by

previous allocations:

 𝑅𝑟𝑒𝑞(𝑡𝑗) =
𝑅𝑟𝑒𝑞(𝐺)

∏ 𝑅(𝑡𝑥)
𝑗−1
𝑥=1 × ∏ 𝑅𝑢𝑝𝑝𝑒𝑟 _𝑟𝑒𝑞(𝑡𝑦)

|𝑇|
𝑦=𝑗+1

 (E.26)

Where Rupper-req(ti) is the upper bound on the reliability requirement of the task ti,

that is calculated by

 𝑅𝑢𝑝𝑝𝑒𝑟_𝑟𝑒𝑞(𝑡𝑖) = √𝑅𝑟𝑒𝑞(𝐺)
|𝑇|

 (E.27)

MaxRe and RR choose replicas and VMs with the maximum reliability for each

task to minimize the number of replicas until the sub-reliability of the task is

27

satisfied, thereby to reduce execution cost. On another side, QFEC+ algorithm

selects replicas and VMs with the minimum execution time value for each task,

thereby to reduce execution cost until the sub-reliability of the task is satisfied, then

it removes some replicas that have minimum reliability while still satisfying its sub-

reliability requirement. However, the minimum number of replicas does not mean

minimum execution cost because of the heterogeneity of VMs.

In this Thesis, we use equation (E.26) to calculate sub-reliability for each task ti,

and we propose a novel approach which selects replicas and VMs with the minimum

execution cost value and satisfies the sub-reliability for each task, therefore satisfies

the reliability requirements of the workflow.

6.2 The DFTGA algorithm

In our algorithm DFTGA the reliability requirement of the workflow is

transferred to the sub-reliability requirement of each task. Then, DFTGA simply

locates replicas with the minimum execution cost on VMs for each task and sub-

reliability requirement should be satisfied.

The main steps are as follows:

1. In lines 1-5, finding a possible maximum number of replicas M.

2. In line 6, If M larger than an allowed maximum number of replicas MaxRep

then remove 𝑉𝑚𝑖𝑛 _𝑅 that has minimum reliability from the cloud and go to 2.

3. In line 7, we order tasks descending according to ranku, using the equation

(E.15).

4. In lines 10-11, we calculate reliability and cost of ti on each virtual machine,

using the equations (E.5) and (E.13) respectively.

5. In line 14, we calculate the sub-reliability requirement of the entry task t1

𝑅𝑟𝑒𝑞(𝑡1), using the equation (E.24).

6. In line 16, we calculate the sub-reliability requirement of non-entry

tasks 𝑅𝑟𝑒𝑞(𝑡𝑖) 𝑤ℎ𝑒𝑟𝑒 𝑖 ≠ 1, using the equation (E.26).

7. In line 18, for task ti, create a set M of minimum execution cost of replicas on

virtual machines.

8. In line 19, finding the sub-set SM of replicas from M, which achieve the

minimum cost of task ti and sub-reliability requirement is satisfied, and

calculate R(ti), 𝐶𝑜𝑠𝑡(𝑡𝑖)𝑣𝑘
and ni.

9. In line 21, DFTGA calculates the real reliability value R(G), execution cost

cost(G) and the number of replicas NRep(G) of the workflow, (see Figure 6.1).

28

Input: G= (T, W, Din, Dout , E, C),V ,Rreq(G), MaxRep.

Output: Cost(G) , R(G) , 𝑁𝑅𝑒𝑝(G).

1: Finding a virtual machine 𝑉𝑚𝑖𝑛 _𝑅 that has minimum reliability.

2: Finding the task that has maximum length 𝑡𝐿.

3: Calculate 𝑅𝑟𝑒𝑞(𝑡𝐿) , using the equation (E.24).

4: Calculate 𝑅(tL,vmin_R) , using the equation (E.5).

5: Finding M, the number of replicas of 𝑡𝐿 that satisfy 𝑅𝑟𝑒𝑞(𝑡𝐿) 𝑜𝑛 𝑉𝑚𝑖𝑛 _𝑅

6: If M > MaxRep then

 Call_Proc: Remove 𝑉𝑚𝑖𝑛 _𝑅 from V , Call_Proc: Add new VM,

 Go to 2:

End if

7: Sort(Tasks), descending order of ranku, using the equation (E.15).

8: For(i=1; i≤|T| ; i++)

9: For(k=1; k≤|V| ; K++)

10: Calculate 𝑅(ti,vk) ,using the equation (E.5).

11: Calculate 𝐶𝑜𝑠𝑡(𝑡𝑖)𝑣𝑘
 ,using the equation (E.13).

12: End for

13: If (i==1) then

14: Calculate 𝑅𝑟𝑒𝑞(𝑡1), using the equation (E.24).

15: Else

16: Calculate 𝑅𝑟𝑒𝑞(𝑡𝑖), using the equation (E.26).

17: End if

18: Create a set |M| of minimum execution cost of ti

19: finding the sub-set SM of replicas from M, where

 𝑀𝑖𝑛𝑖𝑚𝑢𝑚(∑ 𝐶𝑜𝑠𝑡(𝑡𝑖)𝑣𝑘𝑡𝑖∈𝑇,𝑣𝑘∈𝑆𝑀) and 𝑅(𝑡𝑖) >= 𝑅𝑟𝑒𝑞(𝑡𝑖)

 Calculate 𝑅(𝑡𝑖), using the equation (E.7).

 Calculate 𝐶𝑜𝑠𝑡(𝑡𝑖)𝑣𝑘
 , using the equation (E.13).

 ni=|SM|

20: End for

21: Calculate 𝑅(𝐺), using the equation (E.8).

Calculate 𝐶𝑜𝑠𝑡(𝐺), using the equation (E.14).

Calculate 𝑁𝑅𝑒𝑝(𝐺), using the equation (E.19).

Fig. 6.1: The DFTGA algorithm

29

6.3 Experimental results and performance evaluation of DFTGA

We use WorkflowSim to measure the performance of the proposed algorithm and

compare with MaxRe, RR and QFEC+. WorkflowSim can use scientific workflows

generated by Pegasus workflow management system [45]. The workflow

characteristics are taken from diverse domains such as astronomy, earthquake

science, and biology resemble real workflows [46].

We create one datacenter, 6 hosts and 40 VMs; each host has several VMs based

on its power. Table 5.1 shows the characteristics of the resource. And we use five

types of workflows, namely, Montage, Sipht, LIGO Inspiral CyberShake, and

Epigenomics workflows (see Figure 6.2), and use several level of required reliability

Rreq(G) (0.99900 to 0.99999) to validate the effectiveness of the proposed algorithm

, and MaxRep=8.

 (Figure 6.2A), (Figure 6.3A), (Figure 6.4A), (Figure 6.5A) and (Figure 6.6A)

show the results of execution costs of five workflows types for varying reliability

requirements, the execution costs increase with the increase in reliability

requirements. In all cases, DFTGA produces minimum execution costs followed by

QFEC+, RR, MaxRe, as we see, the results indicate that DFTGA is more effective in

reducing execution cost than all previous algorithm. (Figure 6.2B), (Figure 6.3B),

(Figure 6.4B), (Figure 6.5B) and (Figure 6.6B) show the results of the number of

replicas of five workflows types for varying reliability requirements, the number of

replicas increases with the increase in reliability requirements. The following

observations are taken:

• In Sipht workflow, DFTGA produces a minimum number of replicas.

• In Montage workflow, DFTGA produces a minimum number of replicas in

case low and medium reliability requirements.

In LIGO Inspiral, CyberShake and Epigenomics workflows, RR produces a

minimum number of replicas.

(A) Cost (B) Number of Replicas

Fig. 6.2: Cost and number of replicas of Montage workflow

15000

16000

17000

18000

19000

20000

0
,9

9
9

0
0

0
,9

9
9

5
0

0
,9

9
9

9
0

0
,9

9
9

9
5

0
,9

9
9

9
9

C
o

st

Required Reliability

MaxRe RR QFEC+ DFTGA

1900

1950

2000

2050

2100

0
,9

9
9

0
0

0
,9

9
9

5
0

0
,9

9
9

9
0

0
,9

9
9

9
5

0
,9

9
9

9
9

N
u

m
b

er
 o

f
re

p
li

ca
s

Required Reliability

MaxRe RR QFEC+ DFTGA

30

(A) Cost (B) Number of Replicas

Fig. 6.3: Cost and number of replicas of Sipht workflow

(A) Cost (B) Number of Replicas

Fig. 6.4: Cost and number of replicas of LIGO Inspiral workflow

(A) Cost (B) Number of Replicas

Fig. 6.5: Cost and number of replicas of CyberShake workflow

0

100000

200000

300000

400000

500000

0
,9

9
9

0
0

0
,9

9
9

5
0

0
,9

9
9

9
0

0
,9

9
9

9
5

0
,9

9
9

9
9

C
o

st

Required Reliability

MaxRe RR QFEC+ DFTGA

0

500

1000

1500

2000

2500

0
,9

9
9

0
0

0
,9

9
9

5
0

0
,9

9
9

9
0

0
,9

9
9

9
5

0
,9

9
9

9
9

N
u

m
b

er
 o

f
re

p
li

ca
s

Required Reliability

MaxRe RR QFEC+ DFTGA

0
100000
200000
300000
400000
500000
600000

0
,9

9
9

0
0

0
,9

9
9

5
0

0
,9

9
9

9
0

0
,9

9
9

9
5

0
,9

9
9

9
9

C
o
st

Required Reliability

MaxRe RR QFEC+ DFTGA

0

1000

2000

3000

4000

0
,9

9
9

0
0

0
,9

9
9

5
0

0
,9

9
9

9
0

0
,9

9
9

9
5

0
,9

9
9

9
9

N
u
m

b
er

 o
f

re
p
li

ca
s

Required Reliability

MaxRe RR QFEC+ DFTGA

0

50000

100000

150000

200000

0
,9

9
9

0
0

0
,9

9
9

5
0

0
,9

9
9

9
0

0
,9

9
9

9
5

0
,9

9
9

9
9

C
o
st

Required Reliability

MaxRe RR QFEC+ DFTGA

0
500

1000
1500
2000
2500
3000

0
,9

9
9

0
0

0
,9

9
9

5
0

0
,9

9
9

9
0

0
,9

9
9

9
5

0
,9

9
9

9
9

N
u

m
b

er
 o

f
R

ep
li

ca
s

Required Reliability

MaxRe RR QFEC+ DFTGA

31

(A) Cost (B) Number of Replicas

Fig. 6.6: Cost and number of replicas of Epigenomics workflow

0

5000000

10000000

15000000

0
,9

9
9

0
0

0
,9

9
9

5
0

0
,9

9
9

9
0

0
,9

9
9

9
5

0
,9

9
9

9
9

C
o

st

Required Reliability

MaxRe RR QFEC+ DFTGA

0
500

1000
1500
2000
2500
3000

0
,9

9
9

0
0

0
,9

9
9

5
0

0
,9

9
9

9
0

0
,9

9
9

9
5

0
,9

9
9

9
9

N
u

m
b

er
 o

f
re

p
li

ca
s

Required Reliability

MaxRe RR QFEC+ DFTGA

32

7. THESIS OUTCOMES

The challenges brought by the fault tolerance paradigm for execution Big Data

scientific workflows reveal varied limitations such as the cost of execution.

Providing fault-tolerant technologies for scientific workflow, a trade-off between the

reliability and the cost and ensuring a predefined level of reliability with minimum

cost are some of the issues identified in this work. The faults and the cost of fault

tolerance prevent to fully benefit from the advantages brought by cloud computing

such as elasticity and scalability.

In this Thesis, we addressed these issues by proposing two approaches that

enhance the reliability to execute Big Data scientific workflow and reduce the cost

within cloud computing. We demonstrated the advantages of our contributions by

applying and compare them to state-of-the-art solutions, and consequently

improving their performance, for tackling Big Data scientific workflows.

Model of fault tolerance for Big Data scientific workflows

The main objective of our work was to propose a fault tolerance paradigm and

fulfill the reliability of Big Data scientific workflows on cloud computing. Because

of the complexity of cloud computing, executing Big Data scientific workflows

reliably is a challenge, we have developed a fault tolerance model that uses a

replication mechanism for reliable execution of workflows on the cloud. It takes into

consideration the cost of execution to determine the best fault tolerance strategy.

A trade-off between the reliability and the cost

Reaching a level of reliability to execute workflows on cloud computing is the

main objective of the cloud providers and users. However, the costs users are willing

to pay to execute these workflows and the reliability levels they seek are specific to

each scenario. Therefore, an important focus of this work was to provide fault

tolerant scheduling approach which optimizes for trade-offs between the cost and

reliability.

To this purpose, we modeled the relation between cost and reliability for

customizable levels of reliability according to cost constraints. As an intelligent

search optimization technique, we have used a genetic algorithm which is

considered an important approach to NP-hard and complex nature optimization

problems, the results showed that our solution is able to optimize and the trade-off

between cost and reliability.

Ensuring a predefined level of reliability with minimum cost

Replication is an important fault-tolerant technique applied to satisfy the

reliability requirement. A static approach of fault tolerance to determine how many

copies are required to reach a certain level of reliability is not the best fit for the

dynamic environment of the cloud, due to the scientific workflows usually are

executed in highly heterogeneous distributed environments.

33

Therefore, we proposed dynamic fault-tolerant scheduling for scientific workflow

in the cloud computing environment. The purpose of DFTGA algorithm is to ensure

a predefined level of reliability with minimizing cost which is based on tasks

replication method that is one of the widely used faults tolerant mechanisms. The

simulation results with real-world scientific workflow models show that DFTGA

algorithm can offer best results compare with former researches in the same field.

34

8. CONCLUSIONS

The main goal of this thesis is to devise methods for improving the reliability of

executing Big Data scientific workflows in cloud computing environments and

reduce the cost that produces by the fault-tolerance mechanism. To accomplish this;

this thesis described a model with two fault-tolerant approaches that manage

scientific workflows on cloud computing with an objective to minimize execution

cost, the first one was based on a genetic algorithm and the second one was built on

a greedy algorithm.

The thesis formally described and defined the scheduling problems in the context

of Big Data scientific workflows on the cloud, and provided an overview of

scientific workflows, motivated by real-world examples that we used to evaluate our

model. Following the problem definition based on motivational examples, this thesis

presented state-of-the-art techniques to schedule workflows in distributed systems

and described several works, and identified their contributions and shortcomings.

The thesis provided a background of faults that are common in cloud computing,

and discuss the fault tolerance techniques and tools used for implementing fault

tolerance techniques in cloud computing to execute scientific workflows.

The objective was also to propose a platform to be used to further experiments

and evaluations because researchers often cannot reach the real cloud environment,

and this was accomplished by implementing and evaluating our experiments using

the WorkflowSim platform.

We have increased the reliability by the replication of tasks and at the same time

achieved a trade-off between the reliability and cost to execute workflow on cloud

computing by genetic algorithm. As well, this study experimentally demonstrates the

positive impact of NSGA-II to support decision-makers in solving multi-objective

problems by providing a set of final solutions. As a Pareto-based method, it provides

a set of solutions that show different trade-offs between multiple objectives.

In DFTGA, we transferred the reliability requirement of the workflow to sub-

reliability requirement of each task. And the required sub-reliability is ensured by

creating enough replicas with the minimum execution cost. Simulation results show

the improvement in the cost of workflows comparing to the other algorithms. In

previous works, selecting VM depends on the reliability and ignores VM that has

low reliability, but in DFTGA we improved the reliability of the cloud by removing

VM with minimum reliability and add new VM, but more effort and further research

are needed to optimize numbers of replicas.

Finally, this thesis demonstrated the applicability of a fault-tolerant model on

scientific workflow applications and made significant contributions toward the

advancement of the field, and formalized the model of the cloud computing

environment.

35

9. REFERENCES

[1] da Silva, R.F., Glatard, T. and Desprez, F., (2015). Self-Management of

Operational Issues for Grid Computing: The Case of The Virtual Imaging

Platform. In Emerging Research in Cloud Distributed Computing Systems ,pp.

187-221. IGI Global. ISBN13: 9781466682139, ISBN10: 1466682132,

EISBN13: 9781466682146.

[2] Zhang, F., Cao, J., Hwang, K., Li, K. and Khan, S.U., (2015). Adaptive

workflow scheduling on cloud computing platforms with iterativeordinal

optimization. IEEE Transactions on Cloud Computing, Vol.3 ,No.2, pp.156-168.

[3] Haryanti, S.C. and Sari, R.F., (2014). Reliability of resource allocation in mobile

ad hoc grid with tasks replication. Journal of Computers, Vol.9 ,No.2, pp.328-

336.

[4] Smith, D.J., (2011).Reliability, Maintainability and Risk: practical methods for

engineers, Eighth Edition. Butterworth-Heinemann. ISBN: 978-0-08-096902-2.

[5] Software engineering daily: Cloud Cost Optimization [Online]. © 2018 [viewed

2019-03-09]. Available from:

https://softwareengineeringdaily.com/2018/11/07/cloud-cost-optimization/

[6] Mesbahi, M.R., Rahmani, A.M. and Hosseinzadeh, M., (2018). Reliability and

high availability in cloud computing environments: a reference

roadmap. Human-centric Computing and Information Sciences, Vol.8,No.1,

p.20. https://doi.org/10.1186/s13673-018-0143-8.

[7] Ahmed, W. and Wu, Y.W., (2013). A survey on reliability in distributed

systems. Journal of Computer and System Sciences, Vol.79,No.8, pp.1243-1255.

[8] Benoit, A., Hakem, M. and Robert, Y., (2008), April. Fault tolerant scheduling

of precedence task graphs on heterogeneous platforms. In 2008 IEEE

International Symposium on Parallel and Distributed Processing ,pp. 1-8. IEEE.

[9] Zhao, L., Ren, Y., Xiang, Y. and Sakurai, K., (2010), September. Fault-tolerant

scheduling with dynamic number of replicas in heterogeneous systems. In 2010

IEEE 12th International Conference on High Performance Computing and

Communications (HPCC) ,pp. 434-441. IEEE.

https://doi.org/10.1109/HPCC.2010.72.

[10] Zhao, L., Ren, Y. and Sakurai, K., (2013). Reliable workflow scheduling with

less resource redundancy. Parallel Computing, Vol.39,No.10 , pp.567-585.

[11] Wang, X., Yeo, C.S., Buyya, R. and Su, J., (2011). Optimizing the makespan

and reliability for workflow applications with reputation and a look-ahead

genetic algorithm. Future Generation Computer Systems, Vol.27,No.8, pp.1124-

1134.

[12] Sun, D., Zhang, G., Wu, C., Li, K. and Zheng, W., (2017). Building a fault

tolerant framework with deadline guarantee in big data stream computing

environments. Journal of Computer and System Sciences, Vol.89, pp.4-23.

36

[13] Wang, S., Li, K., Mei, J., Xiao, G. and Li, K., (2017). A reliability-aware task

scheduling algorithm based on replication on heterogeneous computing

systems. Journal of Grid Computing, Vol.15,No.1, pp.23-39.

[14] Stahl, P., Broberg, J. and Landfeldt, B., (2017), April. Dynamic Fault-

Tolerance and Mobility Provisioning for Services on Mobile Cloud Platforms.

In 2017 5th IEEE International Conference on Mobile Cloud Computing,

Services, and Engineering (MobileCloud), pp. 131-138. IEEE.

[15] Xie, G., Zeng, G., Li, R. and Li, K., (2017). Quantitative fault-tolerance for

reliable workflows on heterogeneous IaaS clouds. IEEE Transactions on Cloud

Computing. https://doi.org/10.1109/TCC.2017.2780098.

[16] Ebrahimi, M., Mohan, A., Kashlev, A. and Lu, S., (2015), March. BDAP: a big

data placement strategy for cloud-based scientific workflows. In 2015 IEEE

First International Conference on Big Data Computing Service and

Applications pp. 105-114. IEEE.

[17] Xie, G., Li, R. and Li, K., (2015). Heterogeneity-driven end-to-end

synchronized scheduling for precedence constrained tasks and messages on

networked embedded systems. Journal of Parallel and Distributed

Computing, Vol.83, pp.1-12.

[18] Mei, J., Li, K., Zhou, X. and Li, K.,(2015). Fault-tolerant dynamic rescheduling

for heterogeneous computing systems. Journal of Grid Computing, Vol.

13, Issue 4, pp.507-525.

[19] Chen, H., Wen, J., Pedrycz, W. and Wu, G., (2018). Big data processing

workflows oriented real-time scheduling algorithm using task-duplication in

geo-distributed clouds. IEEE Transactions on Big Data.

[20] Lackovic, M., Talia, D., Tolosana-Calasanz, R., Banares, J.A. and Rana, O.F.

(2010). A taxonomy for the analysis of scientific workflow faults. In 2010 13th

IEEE International Conference on Computational Science and Engineering ,pp.

398-403. IEEE.

[21] Sozer, H., Tekinerdogan, B. and Aksit, M., (2007). Extending failure modes

and effects analysis approach for reliability analysis at the software architecture

design level. In Architecting dependable systems IV ,pp. 409-433. Springer,

Berlin, Heidelberg.

 [22] Koren, I. and Krishna, C.M., (2010). Fault-tolerant systems. ISBN 13: 978-0-

12-088568-8, ISBN 10: 0-12-088568-9, Elsevier.

 [23] Hwang, S. and Kesselman, C., (2003), June. Grid workflow: a flexible failure

handling framework for the grid. In High Performance Distributed Computing,

2003. Proceedings. 12th IEEE International Symposium on (pp. 126-137). IEEE.

[24] Benoit, A., Dufossé, F., Girault, A. and Robert, Y., (2013). Reliability and

performance optimization of pipelined real-time systems. Journal of Parallel

and Distributed Computing, Vol.73,No.6, pp.851-865.

[25] Alworafi, M.A., Dhari, A., Al-Hashmi, A.A. and Darem, A.B., (2017). Cost-

aware task scheduling in cloud computing environment. International Journal of

Computer Network and Information Security, Vol. 9, No. 5, p.52.

https://doi.org/10.1109/TCC.2017.2780098
https://link.springer.com/journal/10723/13/4/page/1

37

[26] Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A. and Buyya, R.,

(2011). CloudSim: a toolkit for modeling and simulation of cloud computing

environments and evaluation of resource provisioning algorithms. Software:

Practice and experience, Vol.41,No.1, pp.23-50.

[27] Calheiros, R.N., Ranjan, R., De Rose, C.A. and Buyya, R., (2009). Cloudsim: A

novel framework for modeling and simulation of cloud computing

infrastructures and services. arXiv preprint arXiv:0903.2525.

[28] Buyya, R., Ranjan, R. and Calheiros, R.N., (2009), June. Modeling and

simulation of scalable Cloud computing environments and the CloudSim toolkit:

Challenges and opportunities. In 2009 international conference on high

performance computing & simulation ,pp. 1-11. IEEE.

 [29] Ahmed-Nacer, M., Gaaloul, W. and Tata, S., (2017), June. Occi-compliant

cloud configuration simulation. In 2017 IEEE International Conference on Edge

Computing (EDGE) ,pp. 73-81. IEEE.

[30] Ahmed-Nacer, M., Suri, K., Sellami, M. and Gaaloul, W., (2017), June.

Simulation of configurable resource allocation for cloud-based business

processes. In 2017 IEEE International Conference on Services Computing

(SCC) ,pp. 305-313. IEEE.

 [31] Chawla, Y. and Bhonsle, M., (2013). Dynamically optimized cost based task

scheduling in Cloud Computing. International Journal of Emerging trends &

technology in computer science, Vol.2,No.3, pp.38-42.

[32] Sheeja, Y.S. and Jayalekshmi, S., (2014), December. Cost effective load

balancing based on honey bee behaviour in cloud environment. In 2014 First

International Conference on Computational Systems and Communications

(ICCSC) ,pp. 214-219. IEEE.

[33] Abrishami, S., Naghibzadeh, M. and Epema, D.H., 2013. Deadline-constrained

workflow scheduling algorithms for infrastructure as a service clouds. Future

Generation Computer Systems, Vol. 29, No. 1, pp.158-169.

[34] Mohan, A., Ebrahimi, M., Lu, S. and Kotov, A., (2016), December. Scheduling

big data workflows in the cloud under budget constraints. In 2016 IEEE

International Conference on Big Data (Big Data) ,pp. 2775-2784. IEEE.

 [35] Dubey, K., Kumar, M. and Sharma, S.C., (2018). Modified HEFT algorithm

for task scheduling in cloud environment. Procedia Computer Science, Vol.125,

pp.725-732.

[36] Liu, J., Pacitti, E., Valduriez, P. and Mattoso, M., (2015). A survey of data-

intensive scientific workflow management. Journal of Grid Computing, Vol.13,

No.4, pp.457-493.

[37] Ghafarian, T., Javadi, B. and Buyya, R., (2015). Decentralised workflow

scheduling in volunteer computing systems. International Journal of Parallel,

Emergent and Distributed Systems, Vol.30,No.5, pp.343-365.

38

[38] Anwar, N. and Deng, H., (2018). Elastic scheduling of scientific workflows

under deadline constraints in cloud computing environments. Future

Internet, Vol.10,No.1, p.5.

[39] Wang, G., Wang, Y., Liu, H., & Guo, H. (2016). HSIP: A Novel Task

Scheduling Algorithm for Heterogeneous Computing. Scientific Programming,

2016, pages11.

[40] Chronaki, K., Rico, A., Badia, R.M., Ayguadé, E., Labarta, J. and Valero, M.,

(2015), June. Criticality-aware dynamic task scheduling for heterogeneous

architectures. In Proceedings of the 29th ACM on International Conference on

Supercomputing, pp. 329-338. ACM.

[41] Chen, J.J., Yang, C.Y., Kuo, T.W. and Tseng, S.Y., (2007), April. Real-time

task replication for fault tolerance in identical multiprocessor systems. In 13th

IEEE Real Time and Embedded Technology and Applications Symposium

(RTAS'07) ,pp. 249-258. IEEE.

[42] Girault, A., Saule, E. and Trystram, D., (2009). Reliability versus performance

for critical applications. Journal of Parallel and Distributed

Computing, Vol.69,No.3, pp.326-336.

[43] Benoit, A., Canon, L.C., Jeannot, E. and Robert, Y., (2012). Reliability of task

graph schedules with transient and fail-stop failures: complexity and

algorithms. Journal of Scheduling, Vol.15,No.5, pp.615-627.

 [44] Jakob, W. and Blume, C., (2014). Pareto optimization or cascaded weighted

sum: A comparison of concepts. Algorithms, Vol.7,No.1, pp.166-185.

[45] Juve, G., Chervenak, A., Deelman, E., Bharathi, S., Mehta, G. and Vahi, K.,

(2013). Characterizing and profiling scientific workflows. Future Generation

Computer Systems, Vol.29,No.3, pp.0682-692.

 [46] Bharathi, S., Chervenak, A., Deelman, E., Mehta, G., Su, M.H. and Vahi, K.,

(2008), November. Characterization of scientific workflows. In 2008 third

workshop on workflows in support of large-scale science ,pp. 1-10. IEEE.

39

ABBREVIATIONS

DAG Directed Acyclic Graph.

DCG Directed Cyclic Graph

ETF Earliest Time Finished

FTM Fault Tolerance Manager

FTSA Fault Tolerant Scheduling Algorithm

FTTs Fault Tolerance Techniques

GA Genetic Algorithms

HEFT Heterogeneous-Earliest-Finish-Time

HPC High Performance Computing

IaaS Infrastructure as a Service.

IDC International Data Corporation

MaxRe Max Reliability

MOO Multi-Objective Optimization

NSGA-II Non-Dominated Sorting Genetic-II

OS Operating System

PaaS Platform as a Service

QFEC Quantitative Fault-Tolerance With Minimum Execution Cost

QoS Quality of Services

RA Reliability Assessor

RD Reliability-Driven

RM Resource Manager

RR Reliability Requirement

SWfMSs Scientific Workflows Management Systems

TM Task Monitor

TS Task Scheduler

VM Virtual Machine.

WEP Workflow Execution Plan

XML Extensible Markup Language

ZB ZettaByte

40

LIST OF FIGURES

Fig. 1.1: Most important factors of cloud-based IT services 7

Fig. 4.1: System architecture. .. 12

Fig. 4.2: Task prioritization and Task allocation for workflow 16

Fig. 5.1: Chromosome Structure ... 19

Fig. 5.2: The structures of some scientific workflows types. 20

Fig. 5.3: The reliability of small CyberShake workflow (30 tasks) 20

Fig. 5.4: The cost of small CyberShake workflow (30 tasks) 21

Fig. 5.5: The reliably of medium CyberShake workflow (100 tasks) 21

Fig. 5.6: The cost of medium CyberShake workflow (100 tasks)............................. 21

Fig. 5.7: The reliability of large CyberShake workflow (1000 tasks) 22

Fig. 5.8: The cost of large CyberShake workflow (1000 tasks) 22

Fig. 5.9: The reliability of large CyberShake workflow after 1000 generations 22

Fig. 5.10: The cost of large CyberShake workflow after 1000 generations 23

Fig. 5.11: Pareto-optimal solutions for scheduling CyberShake workflow 24

Fig. 5.12: Pareto-optimal solutions for scheduling Montage workflow 24

Fig. 5.13: Pareto-optimal solutions for scheduling Inspiral workflow 24

Fig. 5.14: Single objective against Multi-objective solutions for CyberShake

workflow .. 25

Fig. 5.15: Single objective against Multi-objective solutions for Montage workflow

 ... 25

Fig. 5.16: Single objective against Multi-objective solutions for Inspiral workflow 25

Fig. 6.1: The DFTGA algorithm .. 28

Fig. 6.2: Cost and number of replicas of Montage workflow 29

Fig. 6.3: Cost and number of replicas of Sipht workflow ... 30

Fig. 6.4: Cost and number of replicas of LIGO Inspiral workflow 30

Fig. 6.5: Cost and number of replicas of CyberShake workflow 30

Fig. 6.6: Cost and number of replicas of Epigenomics workflow 31

41

LIST OF THE PUBLICATIONS BY THE AUTHOR

1- Ali, A. A., Jasek, R., Krayem, S., & Zacek, P. (2017, April). Proving The

Effectiveness Of Negotiation Protocols KQML In Multi-Agent Systems

Using Event-B. In Computer Science On-line Conference (pp. 397-406).

Springer, Cham. https://link.springer.com/chapter/10.1007/978-3-319-57264-

2_40

2- Ali, A. A., Jasek, R., Krayem, S., Chramcov, B., & Zacek, P. (2018, April).

Improved Adaptive Fault Tolerance Model For Increasing Reliability In

Cloud Computing Using Event-B. In Computer Science On-line

Conference (pp. 246-258). Springer, Cham.

https://link.springer.com/chapter/10.1007/978-3-319-91192-2_25.

3- Ali, A. A., Vařacha, P., Krayem, S., Žáček, P., & Urbanek, A. (2018).

Distributed Data Mining Systems: Techniques, Approaches And Algorithms.

In MATEC Web of Conferences(Vol. 210, p. 04038). EDP Sciences.

https://doi.org/10.1051/matecconf/201821004038.

4- Ali, A. A., Vařacha, P., Krayem, S., Jašek, R., Žáček, P., & Chramcov, B.

(2018). Modeling Of Distributed File System In Big Data Storage By Event-

B. In MATEC Web of Conferences (Vol. 210, p. 04042). EDP Sciences.

https://doi.org/10.1051/matecconf/201821004042.

5- Capek, P., Jasek, R., Kral, E., Ali, A. A., & Senkerik, R. (2018, December).

Cross Platform Configurable ERP Framework. (2018) International

Conference on Computational Science and Computational Intelligence

(CSCI) (pp. 1456-1457). IEEE.

6- Ali, A. A. , Krayem, S., Lazar,I , Kady ,M, Awwama, E. (2018). Solving NP-

complete problem using formal method event-B. 9th Comparative European

Research,CER 2018 (issue I.).

http://www.sciemcee.org/library/proceedings/cer/cer2018_proceedings01.pdf

7- Ali, A. A., Krayem, S., Chramcov, B., & Kadi, M. F. (2018). Self-Stabilizing

Fault Tolerance Distributed Cyber Physical Systems. Annals of DAAAM &

Proceedings, 29.

https://www.daaam.info/Downloads/Pdfs/proceedings/proceedings_2018/169.

pdf.

42

CURRICULUM VITAE

• PERSONAL INFORMATION

▪ Full name: Ammar Nassan Alhaj Ali.

▪ Nationality: Syrian.

▪ Birth Date: 28-2-1977.

▪ Phone: +965 960 82 510 (Kuwait).

▪ Email:Ammar282n@hotmail.com.

• EDUCATION

▪ Diploma Degree of Computer Engineering 2002, Aleppo University-Syria

(5 years).

▪ Doctoral (PhD), Tomas Bata University in Zlin, Czech Republic, Since

2016.

• EXPERIENCE

▪ Computer engineer: Syria, Syrian Railways Corporation (2003-2005).

▪ Senior web developer: Kuwait, Ministry of education (2005-2021).

▪ Software engineer: Kuwait, Public AWQAF Foundation (2012-2013).

▪ Lecturer: in Computer Science Department, College of Basic Education

(Kuwait -2015-2019).

• PROFESSIONAL PROFILE

▪ 18 years of professional experience in software design, development,

debugging, deployment, documentation and testing of Client–Server, Web

based Applications, Winforms and WPF.

▪ Extensive Knowledge in .NET Framework (All versions) and SQL Server.

• TECHNICAL SKILLS:

▪ Languages: C#, Python, JAVA, C, C++, PHP, VB.net and .NET

Framework (All versions).

▪ Machine learning: Scikit-learn, Tensorflow, Pytorch, Keras.

▪ Web Technologies: ASP.NET, ASP, JavaScript, Web Services, JQuery,

AJAX, HTML, DHTML, HTML5, CSS, CSS3, XML and ADO.NET.

▪ RDBMS: SQL Server (All versions), MySQL.

▪ Report: Crystal Report (All versions).

43

44

Fault Tolerance for Big Data Scientific Workflows

in Cloud Computing Environments

Spolehlivost a odolnost vůči poruchám cloudových systémů

pro automatické řízení a koordinaci procesů zpracování

rozsáhlých a heterogenních vědecko technických dat

Doctoral Thesis Summary

Published by: Tomas Bata University in Zlín,

nám. T. G. Masaryka 5555, 760 01 Zlín.

Edition: published electronically

Typesetting by: Ammar Nassan Alhaj Ali

This publication has not undergone any proofreading or editorial review.

Publication year: 2021

ISBN 978-80-…………….

