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ABSTRAKT

Hejnové algoritmy se staly standardním nástrojem novodobé optimalizace. Příliv
nových metaheuristik však přinesl kritiku vůči kvalitě, kvantitě a diskutabilní
novosti těchto optimalizačních technik. Tato práce se zabývá momentálními
trendy hejnových algoritmů v oblasti vývoje a modifikace, ale i nástrahami,
které skýtají.

Už přes 30 let se metaheuristické algoritmy potýkají se stále stejnými prob-
lémy. Otázka stagnace, předčasné konvergence či nízké rozlišnosti řešení je
výzvou, která je důležitá dnes stejně jako v počátcích oboru. To nemění ani
vývoj nových algoritmů, protože ty mnohdy spíše odkrývají limity stávajících
metodologických postupů v benchmarkingu, než aby přispívaly ke skutečnému
posunu v optimalizaci. Nové metaheuristiky tak čelí předsudkům a všeobecné
nedůvěře. Přestože otázka správných postupů je velmi aktuální, většina součas-
ných doporučení zůstává zpravidla v teoretické rovině bez praktické aplikace. To
si tato práce klade za cíl začít měnit.

Autorka navrhuje sadu doporučení pro vývoj nových metaheuristik, které pak
implementuje ve vlastním návrhu hejnového algoritmu s únikovým mechanismem
z lokálního optima. Bizoní algoritmus představuje ukázku vývoje orientovaného
na konkrétní optimalizační problém a zároveň funguje jako model vybraných
aktuálních trendů a modifikací. Spojením teorie s praxí tato práce otevírá cestu
k řešení nové generace výzev.



SUMMARY

Swarm algorithms have become standard tools of modern optimization. How-
ever, the advent of new metaheuristics brought a wave of criticism against the
quantity, quality, and novelty of these optimization techniques. This disser-
tation describes the current trends in development and modification of swarm
algorithms, as well as the challenges it includes.

For several decades metaheuristic algorithms have fought the very same opti-
mization problems. The issues of stagnation, premature convergence, or low
diversity of the solutions are dealt with today as well as in the beginning. The
development of new algorithms does not state a change. Rather than genuinely
advancing the field, new algorithms raise malpractice awareness in benchmark-
ing. Due to the common low standard of their proposal studies, novel meta-
heuristics face a significant stigma of general distrust and disrespect. Although
the good practice in benchmarking is a very recent topic, most current guidelines
stay strictly in theory, i.e., are not applied. This work aims to start a change in
this regard.

The Author proposes a set of recommendations for new metaheuristic devel-
opment and implements them in a new swarm algorithm, which was developed
with an escape mechanism out of the local optimum containment challenge. The
Bison Algorithm showcases problem-oriented development and models current
trends and modifications. The connection between theory and practice opens a
way toward a new generation of challenges.
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1 Introduction

Artificial Intelligence has become an essential part of human lives today. Some-
times explicitly, sometimes undercover, AI guides us on the road, assists our
phones, drives autonomous vehicles, controls our calendar, Google, Netflix, even
Facebook have an entire department focused on advancement and more profound
research on Artificial Intelligence. As a technology, it helps almost everywhere
and it also proves to be a brilliant optimization tool.

The current trend in optimization is to find inspiration in nature. Simulations
of various bio-inspired phenomena solve nontrivial optimization tasks. Com-
plex optimization problems may find solutions by simulating diverse natural
phenomena like foraging, hunting, courtship behavioral patterns, the Darwinian
theory of evolution, and Mendelian genetic processes. The foundation lies in the
multi-agent system. Each agent represents one particular solution to the solved
problem, whose quality is determined by an objective function.

The bio-inspired optimizers are called metaheuristics. They include a wide range
of algorithms like Differential Evolution [371], the Genetic Algorithm [166], Par-
ticle Swarm Optimization [219], the Cuckoo Search [439], the Grey Wolf Opti-
mizer [269], the Self-Organizing Migrating Algorithm [443], the Passing Vehicle
Search Algorithm [354], and many others.

Unlike classical mathematical optimization methods (e.g., linear, dynamic, or
integer programming, [199, 318]), metaheuristics cannot guarantee the actual
discovery of optimal solutions. However, as compensation, they offer a viable
solution in a reasonable time. Thus, the metaheuristic approach can be construc-
tive, especially when exact mathematical methods struggle to solve a problem
in a tolerable period of time.

But even metaheuristics sometimes sail against the wind. There are currently
more than 300 algorithms [275], which often face criticism questioning their ac-
tual novelty, contribution, and their quality. Many troubles come from fallacious
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parameter settings, the inapplicability of the proposed algorithms, or embed-
ding the same principles under a new alias [275, 368]. General disrespect for the
population-based algorithms is not the only problem they face. Other struggles
include standard optimization setbacks such as stagnation, premature conver-
gence, low diversification of the population, or local optimum containment.

This dissertation analyses the current trends in metaheuristic algorithms, includ-
ing the optimization and development struggles. It investigates specific methods
employable to tackle these problems and suggests recommendations for novel
metaheuristic development. As proof of concept, adopting the suggested guide-
lines, the Author introduces a new metaheuristic swarm algorithm with a mech-
anism against local optimum containment.

The thesis is structured as follows:

- Section 2 reviews metaheuristic algorithms. It describes the popular al-
gorithms’ selection, classification systems, current optimization struggles,
and types of metaheuristic modifications.

- Section 3 describes a particular category of metaheuristics: swarm algo-
rithms. It presents a selection of popular optimizers and analyses the nu-
merous reservations against the development of novel swarm algorithms.
As a reaction, it formulates a set of recommendations for new metaheuristic
development.

- Section 4 designates the goals and methods of this dissertation.

- Section 5 proposes a new swarm algorithm based on bison herds’ behav-
ioral patterns while adopting previous sections’ principles and recommen-
dations.

- Section 6 reviews available modifications of the Bison Algorithm and out-
lines the development process. The later part of the section analyses the
assets which result from the modifications when facing the local optimum
containment challenge.
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- Section 7 investigates the performance of the proposed algorithm and its
modifications. The algorithm is compared to four popular swarm algo-
rithms and two competition winners on the set of problems of IEEE CEC
2015 and 2017 benchmarking test suites. It examines the solution errors,
mean convergence, population diversity, and computational complexity of
the algorithms, and the benefits of the modifications.

- Section 8 evaluates the benefit of the thesis, considering both the applica-
tions and critical points of view.

- Finally, the conclusion contemplates the work and considers its meaning
for science and practice.
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2 Metaheuristic Optimization

Modern optimization methods fall into two groups: exact and heuristic meth-
ods. Exact mathematical methods guarantee finding the optimal solution to the
solved problem. The run-time, though, often increases with higher complexity
and dimensionality of the problem. Hence, complicated or large-scale tasks may
require a compromise between optimality and computational time. That is when
heuristics and metaheuristics come into use [318].

Although metaheuristic solutions lack the guarantee of optimality, they offer
a reasonable computation time. Population-based metaheuristics use a multi-
agent approach. Every agent represents a solution to the solved problem and
is evaluated by the objective function value. This way, metaheuristics operate
with a set of (often random) solutions to the problem, right from initialization,
and improve them in the process.

The difference between heuristics and metaheuristics lies in problem dependency.
While heuristics solve a specific task, metaheuristics apply to a broad range of
problems, treating them as black boxes [382].

Metaheuristics typically simulate bio-inspired phenomena. The inspiration comes
from both natural (and supernatural) sources, including a wide range of scien-
tific fields such as Physics [41], Chemistry [180], Biology [37], behavioral patterns
of animal groups [58, 440], the Darwinian theory of evolution, and Mendelian
principles of genetics [166, 371].

Examples of exact optimization methods include linear and integer program-
ming, dynamic programming, branch-and-bound, or Lagrangean relaxation meth-
ods [318]. On the other hand, metaheuristics are identified mainly by the in-
spiration source. Typical instances are Evolutionary Strategies [53], the Genetic
Algorithm [166], Particle Swarm Optimization [219], Differential Evolution [371],
Ant Colony Optimization[106], the Artificial Bee Colony algorithm [200] or the
Cuckoo Search [439]. The exact and heuristic methods do not necessarily have to
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be segregated. Since both approaches provide advantages, suitable combinations
may benefit from synergy [318].

The following chapters review metaheuristics from four points of view:

- Section 2.1 describes the selection of popular metaheuristics, their basic
methodology and principles,

- Section 2.2 depicts metaheuristics classification systems,

- Section 2.3 identifies contemporary optimization struggles and correspond-
ing countermeasures that tackle them,

- and Section 2.4 names current modification trends.

2.1 Popular Metaheuristic Algorithms

This section describes the main principles of the most popular metaheuristics.
However, it is not easy to select a few algorithms out of the ocean of meta-
heuristics, let alone measure the popularity of an algorithm. The number of
metaheuristic algorithms rises every year. In the Comprehensive Taxonomies of
Nature- and Bio-inspired Optimization, the authors (Molina et al., 2020) list 324
metaheuristics [275].

The algorithm’s popularity is affected by diverse factors including the publication
date, the form of the original proposal, naming conventions, and the published
language. A very recent algorithm may be disadvantaged compared with well-
established algorithms known for decades. The original proposal’s form also
has an important role – first and foremost if the popularity measure relates to
the original publication citation score. Some algorithms do not have one original
publication of a new metaheuristic proposal, but the idea is dispersed into several
publications. The Evolutionary Strategies may serve as an example, as they were
formed in several publications across the 1960s [339, 340, 356].
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Tab. 2.1 Top 10 metaheuristics most cited in Scopus database in 30/10/2020 –
1/11/2020 (swarm-based algorithms excluded).

Algorithm Year Reference Scopus Citations Inspiration Class
H

1 Genetic Algorithm 1975 [166] 34,159 Breeding
2 Simulated Annealing 1983 [220] 26,959 Chemistry
3 Differential Evolution 1997 [370] 14,769 Breeding
4 Self-Driven Particles 1995 [401] 4,195 Physics
5 Gravitational Search Algorithm 2009 [335] 3,237 Physics
6 Evolution Strategies 1973 [339] 2,093 Breeding
7 Biogeography Based Optimization 2008 [365] 2,082 Breeding
8 Teaching-Learning 2011 [334] 1,688 Human

Based Optimization Algorithm
9 Imperialist Competitive Algorithm 2007 [24] 1,458 Human
10 Harmony Search 2005 [233] 1,281 Physics

Another popularity factor is the naming convention: an inappropriate name may
discourage researchers from using the algorithm. In some cases, using an uncon-
ventional algorithm may even jeopardize the work’s reputation. For instance,
imagine a proposal for a Covid-19 vaccination designed with the help of the
Zombie Survival Optimization algorithm [292]. Finally, the reputation of the
inspiration source is essential. For example, when somebody disputes Darwin’s
theory of evolution [26], it may reflect on the Differential Evolution’s popularity.

To the best of the Author’s knowledge, there is no universal measure of an
algorithm’s popularity. Therefore, the most popular metaheuristics were based
on the citation score of the algorithms proposal publications. The complete list
of metaheuristics (from [275]), with the addition of the citation scores from the
Scopus and Google Scholar databases, is in Appendix A.

Table 2.1 presents the top 10 most-cited metaheuristics in the Scopus database.
Since the main focus of this work was on swarm algorithms, these were excluded
from Table 2.1, and listed separately in Section 3. The following section provides
a brief description of the six top-cited algorithms.
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2.1.1 Genetic Algorithm

The Genetic Algorithm (GA) was introduced by John Holland in 1975 [166].
The algorithm used Darwin’s natural selection principles and was the first to
implement mutation, selection, and cross-over techniques in optimization. Fig-
ure 2.1 shows the flowchart of the Genetic Algorithm. The individuals – also
called chromosomes – were initially represented by binary vectors. The cross-
over operation splits two chromosomes in half and swaps the remaining parts;
the mutation randomly changes one chromosome gene. The Genetic Algorithm
principles have become the starting point of many other metaheuristics [275].

Generation

t = t + 1
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Are the stopping 
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Evaluate fitness function

for each chromosome

Initialization of GA:
random population 

of chromosomes

Select a pair of chromosomes
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Place the offsprings
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Yes
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complete?
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of the offsprings
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chromosomes to create 2 offsprings

Start

Stop

Fig. 2.1 Flowchart of the Genetic Algorithm.
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2.1.2 Simulated Annealing

Simulated Annealing (SA) was proposed by Kirkpatrick et al. in 1983 [220] and
was inspired by the physical annealing of materials. It provides a specific way
to face the local optimum containment problem.

Simulated Annealing allows the degradation of solution quality with a probability
affected by the potential quality decrease and the current cooling temperature
(Eq. 2.1). Degradation probability tends to be initially high and lowers with
more iterations [101]. Figure 2.2 shows a flowchart of Simulated Annealing.

P = exp(
−(f(xi)− f(xj))

T
) (2.1)

Where:
– f(xi)−f(xj) is the decrease in the objective function values of the current

and potential solutions,
– and T is the cooling temperature parameter.

2.1.3 Differential Evolution

Differential Evolution (DE) was developed by Storn and Price in 1995 [371] and
implemented the Genetic Algorithm’s basic principles. DE works with individu-
als of randomly generated vectors. Each generation creates a new population of
offsprings with the recombination technique and adopts a better solution from
the parent-offspring couple. Differential Evolution employs both mutation and
crossover and is considered the pillar of modern optimization [148].

The algorithm operates with two major parameters: the scaling factor F and
the cross-over rate CR. The algorithm employs various mutation strategies.
The basic one is called the Rand/1/Bin and follows three steps: mutation,
cross-over, and selection.

In the mutation step, the algorithm randomly selects three solutions from
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the population and compiles them to create a mutation vector v (Eq. 2.2).
The cross-over step creates the trial vector u, selecting the attributes either
from the mutation vector v or the original solution based on the cross-over rate
CR (Eq. 2.3). The jrand variable prevents the trial vector from copying the
existing solutions. Finally, the selection step selects the better solution from the
offspring–parent pair for the next generation.

vj,i = xr1,i + Fi(xr2,i − xr3,i) (2.2)

uj,i =

{
vj,i if U [0, 1] ≤ CR or j = jrand

xj,i otherwise
(2.3)

Where:
– vj,i is the mutation vector,
– j is the iterator through dimensions j = 1...D,
– i is the index of the individual,
– xr1,i, xr2,i, and xr3,i are the randomly selected solutions from the popula-

tion,
– Fi is the scaling factor parameter,
– uj,i is the trial vector,
– U [0, 1] is a random number of the uniform distribution within given

bounds,
– CR is the cross-over rate parameter,
– jrand is the index that the trial vector automatically adopts from the mu-

tation vector,
– and xj,i is the original parent solution.

Differential Evolution has many modifications. Among the most advanced are
JDE, or SHADE [403]. The current trend is to use the memory of successful
solutions or parameter configurations and adaptive parameters instead of static
ones. The algorithm’s flowchart in its canonical form is depicted in Figure 2.3.
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2.1.4 Self–Driven Particles

Self-Driven Particles (also called Self-Propelled Particles, the Vicsek model or
SPP) was proposed by Vicsek et al. in 1995 [401]. This originally extended the
Bird-Like Object Model (BOID) by Reynolds (1987) [182, 342].

The model describes the collective motion of fish schools and bird flocks. With
several mathematical equations, Vicsek managed to specify a collective motion
model that strongly resembles the motion of birds. The movement is described
by Eq. 2.4, the velocity of a particle vi(t+1) was constructed to have an absolute
value v and the direction θ in Eq. 2.5. This model is frequently used in swarm
robotics, biomedical applications such as drug delivery or cargo transportation
[304].

xi(t+ 1) = xi(t) + vi(t)∆t (2.4)

θi(t+ 1) = 〈θ(t)〉r + ∆θ (2.5)

Where:
– xi is the particle agent,
– vi presents the velocity of the particle,
– ∆t is the time interval between two position and direction updates,
– θ(t+ 1) is the angle of the movement direction,
– 〈θ(t)〉r denotes the average direction of the particles’ velocities,
– and ∆θ represents noise.

The Self-Propelled Particles model was listed as a metaheuristic in [275] and
[437]. However, the model does not fit entirely the scope of other metaheuristics
described in this thesis. Foremost, the SPP is not an optimization algorithm.

Figure 2.4 implies two possible meanings of the word ’metaheuristic’. Accord-
ing to Sörensen and Glover (2013), the definition of metaheuristics identifies the



30 TBU in Zlín, Faculty of Applied Informatics

metaheuristic framework as a set of rules or strategies for the design of heuris-
tic algorithms and a metaheuristic algorithm that implements these rules [369].
Based on this definition, the SPP model is a metaheuristic framework that does
not offer an optimization procedure but a valuable functional motion model.

Fig. 2.4 Definition of metaheuristics by Sörensen and Glover (2013).

2.1.5 Gravitational Search Algorithm

The Gravitational Search Algorithm (GSA) was developed by Rashedi et al. in
2009 [335]. The algorithm simulates Newton’s laws of gravity and motion. The
applied metaphor regards individual solutions as objects whose performance is
evaluated by their masses. All objects attract each other and move towards
heavier masses, in correspondence with the inspiration source. At the same
time, heavy masses move slower than light ones. The algorithm is described in
a sequence of equations (Eq. 2.6 – 2.10). The next position of the solution is
calculated in Eq. 2.10.
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F dij(t) = G(t)
Mpi(t)×Maj(t)

Rij(t) + ε
(xdj (t)− xdi (t)) (2.6)

F di (t) =
∑

j∈kbest,j 6=i
randjF

d
ij(t) (2.7)

adi (t) =
F di (t)

Mii(t)
(2.8)

vdi (t+ 1) = rand× vdi (t) + adi (t) (2.9)

xdi (t+ 1) = xti + vdi (t+ 1) (2.10)

Where:
– F dij(t) is the force acting on mass i from mass j,
– G(t) is the gravitational constant as a function of time,
– Maj , Mpi, Mii are the active, passive, and inertia mass respectively,
– Rij is the distance between the i and j solutions,
– ε is a small constant,
– xdi is the position of the solution i at dimension d,
– F di (t) is the total force on solution i,
– randi, randj are uniform random values in range (0-1),
– kbest is the set of first K agents with the vest objective values and the

biggest masses,
– vdi is the velocity of the solution i,
– and adi is the acceleration of the solution i.

The principle of the Gravitational Search Algorithm very much resembles Parti-
cle Swarm Optimization. However, according to [335], there are several consider-
able differences in the movement strategy. First, GSA calculates the movement
from all the available solutions, while PSO employs only the personal and global
best solutions. Unlike PSO, GSA includes the distance between the solutions
in the calculation procedure. Finally, GSA is a memory-less algorithm, whereas
PSO utilizes personal and global best solutions. A flowchart of the algorithm is
presented in Figure 2.5.
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2.1.6 Evolutionary Strategies

Evolutionary Strategies (ES) were developed by Bienert, Rechenberg, and Schwe-
fel in the 1960s [339]. At first, Evolutionary Strategies resembled the Genetic Al-
gorithm: but the original ES did not use cross-over and worked with real numbers
instead of Binary ones. Over time, several ES variants were proposed: including
two-membered, multi-membered, recombinant, and self-adaptive strategies.

ES operate with several parameters: µ to define the number of parent solutions,
λ for the offspring, and + or , for the selection strategies. The first selection
strategy (+) denotes that the new population adopts the best solutions of both
parents and offsprings, while the latter (,) promotes only offsprings. The syntax
is therefore (µ+λ)-ES or (µ,λ)-ES [38]. Figure 2.6 shows a flowchart of ES.
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Fig. 2.6 Flowchart of the µ+λ Evolutionary Strategy.
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2.2 Classification of Metaheuristic Algorithms

This section describes three classification systems: by the inspiration source, by
behavior, and by application.

2.2.1 By Source of Inspiration

The selected inspiration source designates the majority of metaheuristic classifi-
cation [139, 275, 331]. Comprehensive taxonomy from Molina et al. specifies the
main classes based on Swarm Intelligence, Breeding, Physics, Chemistry, Hu-
man Behavior, Plants, and Miscellaneous [275]. Swarm Intelligence algorithms
are further divided into subcategories based either on the simulated behavior
(like foraging or movement) or closer identification of the inspiration source to
aquatic, terrestrial, micro, flying, or others. This classification and the enumer-
ation of the individual classes are shown in Figure 2.7. Table 2.2 shows the
number of metaheuristics in each category and the Swarm Intelligence–based
subclasses.

Tab. 2.2 Enumeration of metaheuristics by class and subclasses of swarm
intelligence-based class. Data were extracted from [275].

Inspiration class Algorithms SI-subclasses I SI-subclasses II
Swarm intelligence 154 Micro 15 Foraging 92
Physics 51 Flying 57 Movement 62
Human behavior 37 Other 23
Misc 33 Terrestrial 40
Breeding 26 Aquatic 19
Chemistry 13 Sum 154 Sum 154
Plants 10
Sum 324
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Fig. 2.7 Number of metaheuristics in classes defined by inspiration source.

2.2.2 By Algorithms’ Behavior

Recently, there has been an effort to classify metaheuristics based on the algo-
rithms’ behavior [72, 275]. In [72], the author (Chu et al., 2020) distinguishes
three types of behavior classifiers by learning, interaction, and diversification
patterns. Learning behavior traces how solutions learn from their predeces-
sors: whether globally, individually (e.g., inside of a neighborhood), or not at
all. Interaction distinguishes if the individuals cooperate or compete. Finally,
diversification describes the general tendency of the population to converge or
diffuse.

In addition, Molina et al. (2020) proposed a behavior taxonomy based on the
methodology of creating new solutions [275]. The classification distinguishes two
categories: differential vector movement, which uses one reference solution, and
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creates a new solution by a shift or mutation. The second category uses more
than a single reference, but a combination of solutions by a crossover, combina-
tion, or indirect coordination between the solutions. Figure 2.8 summarizes the
classes mentioned.

Fig. 2.8 Classification of metaheuristics based on algorithms’ behavioral patterns.

Unlike inspiration source-based classification, which merely provides interesting
facts about the modeled metaphor, behavior-based categories offer more infor-
mation about the algorithms. Such an investigation may lead to uncovering
potential similarities between the algorithms. For example, using the second
creation-based taxonomy in [275] revealed that some algorithms have very simi-
lar behavioral patterns, despite their different inspiration sources (like GSA and
PSO). On the other hand, algorithms coming from identical bio-inspiration, like
the Dolphin Echolocation and Dolphin Partner Optimization, belong to entirely
diverse behavior categories.

Albeit, the behavior-based classification of metaheuristics is in its infancy. Be-
sides the cases mentioned, other categories could take into account other aspects,
such as stochasticity, determinism, number of parameters, memory use, or to dis-
tinguish population-based and single point-based solutions.
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2.2.3 By Application Field

Finally, metaheuristic classification may be named by the field of application,
how the optimization algorithm is used, and what kind of problems it solves.
The optimization areas include, for instance:

• Discrete / Continuous optimization
• Constrained / Hybrid / Unconstrained optimization
• Large-scale optimization
• Single objective / Multi-objective / Many-objective optimization
• Unimodal / Multimodal optimization
• Dynamic / Static optimization
• Sequential or Parallel optimization
• Applications

The application field’s selection is closely related to the possible metaheuristics
modifications [98, 100, 452]. Changing the metaheuristic algorithm’s orientation
from one type of problem to another (e.g., from discrete to continuous problems
or extending single-objective algorithms to multi-objective optimization) is a
frequent modification step. The modification trends are further analyzed in
Section 2.4.
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2.3 Optimization Struggles of Current Metaheuristics and Corre-
sponding Countermeasures

Current metaheuristic algorithms face two key adversities: general optimization
problems and existential problems. The former are basic phenomena connected
to the optimization process, such as stagnation, premature convergence, or low
population diversity. They are common points of the struggle of all the optimiza-
tion techniques. The latter result from criticism directed at novel metaheuristics
and are further analyzed in Section 3.2. This section introduces the common
optimization challenges of current metaheuristics and corresponding methods to
avoid them.

2.3.1 Stagnation and Premature Convergence

Premature convergence and stagnation are key optimization struggles of meta-
heuristics Both describe a similar setback of solutions that stop proceeding to-
wards the global optimum. However, while premature convergence often relates
to the low diversity of the population or local optimum confinement, according to
Zelinka et al., stagnation might happen with no apparent reason [231]. Neri and
Tirronen define stagnation as an undesirable situation in which the algorithms
do not converge yet maintain a high population diversity [290]. Stagnation may
be caused by various factors, including inappropriate parameter configuration or
the problem’s dimensionality [108].

Nicoara links premature convergence with dominating solutions, leading the pop-
ulation to a local optimum. That is why the primary tool to avoid premature
convergence is enhancing the solutions’ diversity [294].

Perils closely relate to exploitation and exploration practice. Too much ex-
ploitation causes premature convergence, and too much exploration slows down
the optimization process [254]. Therefore, it is essential to set an appropri-
ate exploitation-exploration balance; in fact, the main difference between meta-
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heuristics is defined by the way in which they try to achieve this balance [39].

Since premature convergence and stagnation are affected by the parameter set-
tings, the allocation of the current population, and the nature of the objective
function, methods to tackle the predicaments of the optimization include:

• Dynamic adaptation of parameters
• Randomization of the parameters
• Diversification of the population
• Population restart
• Population subgroups

2.3.2 Local Optimum Containment

Local optimum containment describes a state in which the whole population of
solutions merges into one local optimum. Figure 2.9 illustrates the problem.
Many metaheuristics do not have a mechanism to escape local optimum. More-
over, some optimizers prioritize the exploitation of found solutions at the expense
of exploration in later iterations. However, acquired quick convergence may lead
to an unintended improvement of a local optimum instead of finding the global
one [460].

The methods of tackling local containment problems differ based on elitism char-
acteristics: whether the next population adopts only better quality solutions.
Elitist algorithms rely on variation operators. They use mutation, crossover,
diversity enforcement, parallel populations, and other mechanisms to create a
solution out of the incriminated area.

The second approach to dealing with the local containment problem allows for
even worse quality solutions. According to Oliveto (2018), both elitist and non-
elitist approaches provide benefits, and it is still unclear when one should be
preferred to the other [301].
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local minimum global minimum

Fig. 2.9 Example of local optimum containment.

2.3.3 Low Diversity of the Population

A population with low diversity refers to a state where all solutions are very
similar. The problem may often be closely connected with the local optimum
containment. The solutions’ insufficient diversity poses a severe problem, mainly
if the next generation is created from the existing solutions.

There are multiple diversity measures (see, e.g., [68, 293, 316]). This thesis
works with the diversity measure formulated in Equations 2.11, 2.12 proposed
by Polakova et al. [316].

Diversity =
1

NP

NP∑
i=1

D∑
j=1

(xi,j − xj)
2 (2.11)

xj =
1

NP

NP∑
i=1

xi,j (2.12)
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Where:
– NP is the population size,
– D is the dimensionality of the problem,
– i and j are the population and dimension iterators respectively,
– xi,j is the vector value of the solution at the given dimension,
– and (xj) is the corresponding mean of the solutions.

There is a connection between the found solutions’ diversity and the desirable
exploration–exploitation balance. The exploitation practice concentrates new
solutions around a promising area and hence lowers population diversity. How-
ever, in the case of Particle Swarm Optimization, a fast clustering of solutions
may compromise the algorithm’s search potential and deteriorate the exploration
ability [68].

Diversity-enhancing methods include [426]:

• Reinitialization of some individuals
• Adaptive parameters
• Adjustment of control parameters that directly affect exploration
• Multiple subpopulations
• Repulsion mechanism

2.3.4 Parameter Configuration

Most algorithms use a wide range of parameters, which often require expert
knowledge a priori. Therefore, users usually follow the initial parameter rec-
ommendations. However, there is no guarantee of how and for what type of
problems these parameters were set; many initial parameter configurations were
set empirically on a limited selection of problems.

The No Free Lunch theorem states that there is no universal algorithm to solve
every problem optimally. However, this theory may be extended even for pa-
rameter selection: while one set of parameters may work on a specific problem,
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it may be entirely inappropriate for others [51].

A proper choice of parameters has a considerable effect on optimization algo-
rithms’ performance [217]. For example, providing a small population of Parti-
cle Swarm Optimization leads to premature stagnation [123]. Also, parameter
requirements may change during the optimization process, implying the benefit
of an adaptive parameter approach.

There are two main approaches, offline and online, that deal with the parameter
configuration problem. The offline approach is called Parameter Tuning and ad-
dresses the selection of proper parameters before applying the algorithm. These
parameters do not change during the optimization process [172]. The Parame-
ter Tuning strategies are mostly based on the generate–evaluate principle. First,
they generate different parameter settings and evaluate them on a training set of
problems by selected performance metrics. The Parameter Tuning practices are,
for example, F-Race, iRace, REBAC, ParamILS, SPO, or SMAC [172, 366, 243].

The second, online, approach is called Parameter Control. Unlike the offline
approach, Parameter Control adjusts the parameters during the actual run.
The main classification of Parameter Control is based on what is changed and
how [119]. The major types of online control involve deterministic (e.g., time-
dependent), adaptive (with feedback from the search process), and self-adaptive
strategies [119]. The self-adaptive approach encodes parameter selection as an
instance of the optimization problem and runs the optimization algorithm on it-
self. Dragoi et al. [108] also add a hybrid strategy that combines the algorithms
with fuzzy logic or chaotic systems [80, 239]. The possibilities of how to apply
adaptive control parameters are multiple. There are several strategies based on
the multi-populational principle ([152, 311, 394]). For instance, Pham (1995)
used a strategy in which subpopulations compete for the computing time [311].
Pellerin et al. (2004) proposed a self-adaptive Genetic Algorithm in which one
solution represents the current parameter settings [309].

In Ph.D. Thesis [366], Smit (2012) describes the Parameter Control Framework
as a Self-Adaptivity manual. Based on his guidelines, the development process
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of the self-adaptive algorithm consists of three steps:

1. The choice of controlled parameter
2. The choice of condition to launch the control mechanism
3. The technique for adjusting the parameter value

2.3.5 Countermeasures Against Optimization Struggles

Many optimization struggles are connected. Premature convergence is often
induced by both local optimum containment and low diversity measures. Stag-
nation resembles premature convergence. A wrong choice of control parameters
may inflict all of the problems mentioned.

Therefore, the suggested counter methods also often overlap. What solves one
problem may work on the other. Table 2.3 names several fundamental methods
used in the fight against the optimization threats mentioned with some examples
of use.

Tab. 2.3 Methods to tackle optimization struggles with examples of publications
that use them.

Method Examples of use
Dynamic adaptation of the parameters [50, 298]
Parameter Tuning [366]
Parameter Control [108]
Randomization of the parameters [327]
Diversification of the population [428]
Population restart [196]
Population subgroups [3, 254]
Allow non-improving steps [220]
Diversity enhancement [426]

The Bison Algorithm proposed in Section 5 adopts a variation of the subgroup
mechanism performing the exploitation and exploration separately. Exploration
happens at the same rate throughout the whole optimization process and thus
provides an escape mechanism from traps of local optima.
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2.4 Modifications of Metaheuristics

After the initial proposal of a novel methodology, algorithms typically shift their
focus to another area of optimization, e.g., from continuous to discrete, from
single objective to multi-objective. Thorough testing and more applications also
lead to new ideas on improving the developed algorithm [98, 100].

Modifications aim to expand the optimization capabilities of established meta-
heuristics. Some propose adjustments that try to patch the identified gaps or
cover the corresponding algorithm’s current optimization struggles. Typical ex-
amples are hybridization and dynamic adaptivity of parameters (Sections 2.3.4
and 2.4.1).
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Fig. 2.10 The number of publications in the Scopus database with ti-
tle/abstract/keywords including selected metaheuristics’ names, modification,
and optimization in years 1980–2021 (accessed 28/03/2022).

Modifications enable a way for the evolution of algorithms more than 25 years
old. Figure 2.10 represents the number of publications belonging to the modi-
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fication topic of selected metaheuristics in the Scopus database in 1980–20211).
To provide a comparison with the novel metaheuristic proposal avalanche (in
Section 3.2), Figure 2.11 compares the number of publications with novel meta-
heuristic proposals and the number of publications about the modifications of
Particle Swarm Optimization2). This comparison illustrates the popularity (and
frequency) of metaheuristic modifications. Particle Swarm Optimization had
hundreds of modifications already in 2015 [452]. In 2020, the sum of PSO mod-
ifications publications was 1,000.
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Fig. 2.11 The number of publications in the Scopus database addressing novel
metaheuristic proposals compared to the number of publications addressing Par-
ticle Swarm Optimization modifications.

The modification possibilities are virtually unlimited. Modifications may affect
parameter behavior, boost stochasticity, add multiple swarms or populations, or
respond to a poignant problem that needs to be solved [187]. The classification of

1)The database query (presented in the legend of Figure 2.10) searched all the titles, abstract
and keywords, including: the acronym of the metaheuristic or the algorithm’s name and “mod-
ification” and “optimization”. The optimization keyword was necessary, as both differential
evolution and simulated annealing apply to a wide range of non-metaheuristic scientific fields.
The results were processed on 18/11/2020.

2)Figure 2.11 shows data from 1995–2020, since PSO was first introduced in 1995.
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modifications distinguishes classes like external/internal, major or slight mod-
ifications, hybridization, parallelism, or extension to other optimization fields
(identified in Section 2.2.3) [187, 452].

The naming convention usually reflects the modified algorithm. Table 2.4 depicts
the names and acronyms of selected Particle Swarm Optimization modifications.

Tab. 2.4 Selected examples of Particle Swarm Optimization modifications.

Acronym Modification Name
APSO [419] Adaptive Particle Swarm Optimization
BBPSO [444] Bare-bones Particle Swarm Optimization
Center PSO [241] Center Particle Swarm Optimization
CPSO [76] Chaotic Catfish Particle Swarm Optimization
FPSO [193] Fuzzy Particle Swarm Optimization
MPSO [242] Modified Particle Swarm Optimization
OPSO [102] Opposition-Based Particle Swarm Optimization
PSO-GA [228] Hybrid Particle Swarm Optimization Genetic Algorithm
PSO-DT [161] Particle Swarm Optimization with Disturbance Term
PSOPC [162] Particle Swarm Optimization with Passive Congregation
PSOTVAC [54] Particle Swarm Optimization with Time-Varying

Accelerator Coefficients
QPSO [188] Quantum-Behaved Particle Swarm Optimization
SPSO [61] Simplified Particle Swarm Optimization
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2.4.1 Hybridization

Hybridization is a technique that combines two or more algorithms to improve
the optimizer’s methodology. The aim is to tackle the most common optimiza-
tion problems collectively and cooperatively. There are many ways to hybridize
an algorithm. The algorithms involved may solve the same problem, or one al-
gorithm might tune another’s parameters. A multi-stage collaborative hybrid
employs different algorithms on the exploitation and exploration practice; the
algorithms might swap sequentially, run in parallel, or share a population. Inte-
grative hybrid algorithms implement characteristic methodologies across meta-
heuristics (e.g., GA’s mutation into PSO).

Even though many examples and applications show that hybridization may
significantly improve optimization performance [34, 45], it also increases the
complexity of the algorithms and adds more parameters [392]. Hybridization
also comes with specific non-uniform (occasionally unpronounceable) jargon.
Table 2.5 represents some examples of hybrid algorithms naming conventions
[382, 392].

Tab. 2.5 Examples of hybrid metaheuristic names.

Acronym Full Name of the Hybrid Algorithm
PSO–SQP [402] Particle Swarm Optimization with Sequential Quadratic Programming
FFPSO [223] Hybrid Firefly and Particle Swarm Optimization Algorithm
mFFPSO [197] Hybrid MultiSwarm Firefly and Particle Swarm Optimization
HABCDE [184] Hybrid Artificial Bee Colony Differential Evolution
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3 Swarm Algorithms

Swarm algorithms are metaheuristics based on the collective intelligence phe-
nomenon as a characteristic feature of animal swarms, flocks, or herds. Animal
groups often make smart decisions only with local information and simple rules
but no centralized control. Some believe that collective intelligence’s origin lies
in adapting to the environment and community [440].

While swarm intelligence itself remains a mystery, its simulations produced a
significant number of swarm algorithms. In fact, with more than 150 speci-
mens, swarm-based algorithms account for the majority of known metaheuristic
algorithms (see Section 2.2.1). Table 3.1 represents the list of swarm-based
metaheuristics. The data were derived from the Comprehensive Taxonomies of
Nature- and Bio-Inspired Optimization by Molina et al. [275]. The following
exceptions were made to the origin:

• Some publications were switched for an earlier paper than referenced in
[275], e.g., the Artificial Bee Colony [200], the Great Salmon Run Algo-
rithm [281], African Buffalo Optimization [299], and Glowworm Swarm
Optimization [224].

• Similar algorithms proposed by the same authors were merged into one
algorithm (e.g., the Bacterial Foraging Algorithm [91, 240, 307], or the
(Cultural) Coyote Optimization Algorithm [312, 313]).

• The Improved Raven Roosting Algorithm [395] was replaced by original
Raven Roosting Optimization [49].

• The table adds information about the original proposals’ popularity mea-
sured by the Scopus database’s citation score of the original proposal pub-
lication (data were collected 27/01/2021).

This section studies the current trends in swarm algorithms. It starts by in-
troducing the most popular swarm optimizers. The algorithms’ selection was
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Tab. 3.1 Swarm-inspired metaheuristics sorted by the number of citations of the
original proposal paper (from 27/01/2021).

Swarm Algorithm Acronym Year Original H Scopus H
Paper Citations

1 Particle Swarm Optimization PSO 1995 [115] 11198
2 Ant Colony Optimization ACO 1996 [107] 8199
3 Artificial Bee Colony ABC 2005 [200] 4096
4 Cuckoo Search CS 2009 [439] 3856
5 Grey Wolf Optimizer GWO 2014 [269] 3842
6 Bat Inspired Algorithm BAT 2010 [436] 2597
7 Whale Optimization Algorithm WOA 2016 [265] 2222
8 Bacterial Foraging Optimization BFOA 2002 [307] 2197
9 Firefly Algorithm FA 2009 [430] 2143
10 Moth Flame Optimization Algorithm MFO 2015 [262] 1105
11 Ant Lion Optimizer ALO 2015 [268] 1048
12 Sine Cosine Algorithm SCA.2 2016 [263] 1011
13 Krill Herd KH 2012 [143] 1004
14 Salp Swarm Algorithm SSA.2 2017 [267] 924
15 Fruit Fly Optimization Algorithm FOA 2012 [305] 907
16 Dragonfly Algorithm DA 2016 [264] 777
17 Shuffled Frog-Leaping Algorithm SFLA 2006 [126] 707
18 Bees Algorithm BA 2006 [310] 695
19 Grasshopper Optimisation Algorithm GOA 2017 [352] 682
20 Crow Search Algorithm CSA 2016 [23] 632
21 Symbiosis Organisms Search SOS 2014 [67] 630
22 Cuckoo Optimization Algorithm COA 2011 [328] 612
23 Group Search Optimizer GSO.1 2009 [163] 526
24 Modified Cuckoo Search MCS 2011 [404] 424
25 Harry’s Hawk Optimization Algorithm HHO 2019 [165] 388
26 Cat Swarm Optimization CSO 2006 [71] 356
27 Social Spider Optimization SSO.2 2013 [86] 296
28 Bacterial Chemotaxis Optimization BCO.2 2002 [287] 284
29 Bee Colony Optimization BCO 2005 [389] 283
30 Chicken Swarm Optimization CSO.1 2014 [255] 269
31 Glowworm Swarm Optimization GSO 2005 [224] 258
32 Dolphin Echolocation DE.1 2013 [204] 250
33 Pigeon Inspired Optimization PIO 2014 [111] 244
34 Virtual Bees Algorithm VBA 2005 [429] 232
35 Spider Monkey Optimization SMO 2014 [26] 208
36 Lion Optimization Algorithm LOA 2014 [330] 200
37 Regular Butterfly Optimization Algorithm RBOA 2019 [18] 186
38 Elephant Herding Optimization EHO 2016 [405] 182
39 Eagle Strategy ES.1 2010 [432] 181
40 Social Spider Algorithm SSA 2015 [441] 176
41 Spotted Hyena Optimizer SHO 2017 [103] 168
42 Monarch Butterfly Optimization MBO.1 2019 [407] 164
43 Hunting Search HuS 2010 [300] 161
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Swarm Algorithm Acronym Year Original H Scopus H
Paper Citations

44 BeeHive Algorithm BHA 2004 [411] 156
45 Squirrel Search Algorithm SSA.1 2019 [186] 155
46 Bird Swarm Algorithm BSA 2016 [256] 152
47 Monkey Search MS 2007 [282] 148
48 Migrating Birds Optimization MBO.2 2012 [113] 141
49 Wolf Search Algorithm WSA.1 2012 [386] 131
50 Shark Search Algorithm SA 1998 [181] 128
51 Fish School Search FSS 2008 [136] 119
52 Virus Colony Search VCS 2016 [237] 116
53 Wasp Colonies Algorithm WCA 1991 [259] 109
54 Bee Swarm Optimization BSO 2010 [8] 107
55 Wolf Pack Search WPS 2007 [424] 100
56 Bees Swarm Optimization Algorithm BSOA 2005 [109] 96
57 Catfish Optimization Algorithm CAO 2011 [75] 96
58 Artificial Algae Algorithm AAA 2015 [400] 90
59 Shark Smell Optimization SSO 2016 [4] 89
60 Bee System BS.1 2002 [245] 88
61 Fish Swarm Algorithm FSA 2011 [397] 88
62 Coyote Optimization Algorithm CCOA 2018 [313] 85
63 Flocking Base Algorithms FBA 2006 [88] 80
64 Seeker Optimization Algorithm SOA 2006 [90] 77
65 Lion Algorithm LA 2012 [329] 71
66 Bees Life Algorithm BLA 2018 [42] 64
67 Fast Bacterial Swarming Algorithm FBSA 2008 [73] 63
68 Satin Bowerbird Optimizer SBO 2017 [351] 60
69 Snap-Drift Cuckoo Search SDCS 2017 [332] 59
70 Roach Infestation Problem RIO 2008 [160] 58
71 Bee System BS 1998 [353] 51
72 Cuttlefish Algorithm CFA 2013 [117] 49
73 Dolphin Partner Optimization DPO 2009 [427] 49
74 Wolf Colony Algorithm WCA.1 2011 [238] 47
75 Chaotic Dragonfly Algorithm CDA 2018 [355] 46
76 African Buffalo Optimization ABO 2015 [299] 42
77 Collective Animal Behavior CAB 2012 [85] 41
78 Swallow Swarm Optimization SSO.1 2013 [291] 40
79 Sperm Whale Algorithm SWA 2016 [116] 40
80 Termite Hill Algorithm TA 2012 [459] 40
81 Elephant Search Algorithm ESA 2015 [97] 38
82 Penguins Search Optimization Algorithm PSOA 2013 [146] 36
83 Prey Predator Algorithm PPA 2014 [155] 35
84 Egyptian Vulture Optimization Algorithm EV 2013 [378] 34
85 Red Deer Algorithm RDA 2016 [128] 33
86 Termite Colony Optimization TCO 2010 [164] 31
87 The Great Salmon Run Algorithm TGSR 2012 [281] 30
88 Viral Systems Optimization VSO 2008 [82] 29
89 Natural Aggregation Algorithm NAA 2016 [244] 28
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Swarm Algorithm Acronym Year Original H Scopus H
Paper Citations

90 Pity Beetle Algorithm PBA 2018 [198] 27
91 Simulated Bee Colony SBC 2009 [251] 25
92 Bacterial-GA Foraging BGAF 2007 [64] 24
93 Goose Team Optimization GTO 2008 [409] 24
94 Raven Roosting Optimisation Algorithm RRO 2016 [49] 24
95 Binary Whale Optimization Algorithm BWOA 2019 [341] 22
96 Honeybee Social Foraging HSF 2007 [323] 22
97 Killer Whale Algorithm KWA 2017 [44] 22
98 Mouth Breeding Fish Algorithm MBF 2018 [185] 22
99 Hierarchical Swarm Model HSM 2010 [62] 21
100 Cricket Behavior-Based Algorithm CBBE 2015 [56] 20
101 Naked Mole Rat NMR 2019 [348] 20
102 Swarm Inspired Projection Algorithm SIP 2009 [373] 20
103 Slime Mould Algorithm SMA 2008 [276] 20
104 Invasive Tumor Optimization Algorithm ITGO 2015 [385] 19
105 Optimal Foraging Algorithm OFA 2017 [458] 19
106 Bumblebees BB 2009 [81] 18
107 Magnetotactic Bacteria Optimization Algorithm MBO 2013 [270] 17
108 Bee Colony-Inspired Algorithm BCIA 2009 [176] 16
109 Cheetah Based Algorithm CBA 2018 [222] 16
110 Laying Chicken Algorithm LCA 2017 [168] 16
111 Weightless Swarm Algorithm WSA 2012 [391] 16
112 Wasp Swarm Optimization WSO 2005 [314] 16
113 Meerkats Inspired Algorithm MIA 2018 [221] 13
114 Blind, Naked Mole-Rats Algorithm BNMR 2013 [380] 13
115 Modified Cockroach Swarm Optimization MCSO 2014 [297] 13
116 Bat Intelligence BI 2012 [249] 12
117 Consultant Guide Search CGS 2010 [417] 12
118 Virtual Ants Algorithm VAA 2006 [433] 12
119 Frog Call Inspired Algorithm FCA 2009 [284] 11
120 Locust Swarms Optimization LSO 2009 [63] 11
121 Butterfly Optimizer BO 2015 [225] 10
122 Artificial Beehive Algorithm ABA 2009 [286] 10
123 Animal Behavior Hunting ABH 2014 [288] 10
124 Flock by Leader FL 2012 [32] 10
125 Good Lattice Swarm Optimization GLSO 2007 [374] 10
126 Rhino Herd Behavior RHB 2018 [408] 10
127 Biology Migration Algorithm BMA 2019 [448] 9
128 Seven-Spot Labybird Optimization LBO 2013 [410] 9
129 Nomadic People Optimizer NPO 2020 [349] 9
130 Bioluminiscent Swarm Optimization Algorithm BSO.1 2011 [96] 8
131 Group Escape Behavior GEB 2011 [260] 8
132 Camel Travelling Behavior COA.1 2016 [177] 7
133 Mox Optimization Algorithm MOX 2011 [261] 7
134 Population Migration Algorithm PMA 2009 [449] 7
135 Surface-Simplex Swarm Evolution Algorithm SSSE 2017 [322] 7
136 Virus Optimization Algorithm VOA.1 2009 [194] 7
137 Artificial Tribe Algorithm ATA 2012 [66] 6
138 Bison Behavior Algorithm BIA 2017 [214] 6
139 Andean Condor Algorithm ACA 2019 [11] 5
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Swarm Algorithm Acronym Year Original H Scopus H
Paper Citations

140 African Wild Dog Algorithm AWDA 2013 [376] 5
141 Jaguar Algorithm JA 2015 [60] 5
142 Mosquito Flying Optimization MFO.1 2016 [10] 5
143 Reincarnation Concept Optimization Algorithm ROA 2010 [361] 5
144 Artificial Searching Swarm Algorithm ASSA 2009 [65] 4
145 Bacterial Colony Optimization BCO.1 2012 [296] 4
146 Worm Optimization WO 2014 [17] 4
147 Zombie Survival Optimization ZSO 2012 [292] 4
148 Hoopoe Heuristic Optimization HHO.1 2012 [122] 3
149 OptBees OB 2013 [248] 3
150 Bald Eagle Search BES 2019 [12] 2
151 See-See Partridge Chicks Optimization SSPCO 2015 [302] 2
152 Hypercube Natural Aggregation Algorithm HYNAA 2020 [247] 0

similar to the metaheuristics selection in Section 2.1. The algorithms were com-
pared based on the citation score of the original proposals. Section 3.1 describes
the top 9 swarm algorithms.

Section 3.2 analyzes criticism that swarm algorithms face. It presents all kinds
of reservations concerning these algorithms’ quantity and quality and the cor-
responding existing (and non-existing) implications. In response, the Author
proposes a set of recommendations for the future development of new swarm
algorithms and metaheuristics in Section 3.3.
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3.1 Popular Swarm Algorithms

This section presents the fundamentals and basic principles of the top 9 most
popular swarm algorithms. The popularity rate was based on the number of
references citing proposal publications in the Scopus database. The selection
represents only a tiny sample of the total mass of swarm algorithms; however,
an attentive reader might notice several peculiarities in the terminology and
reccurring methods.

It should be mentioned that three of the presented algorithms: the Grey Wolf
Optimizer, the Bat Algorithm, and the Firefly Algorithm, were analyzed for their
novelty [55]. The authors (Camacho Villalón et al.) concluded that the examined
optimizers were merely modifications of former Particle Swarm Optimization
variants. However, since there is still no defined metric to distinguish the novelty
between the algorithms, these algorithms are presented as an example of popular
swarm optimizers in Sections 3.1.5, 3.1.6, and 3.1.9.

3.1.1 Particle Swarm Optimization

Kennedy and Eberhart developed Particle Swarm Optimization (PSO) in 1995
[219]. The inspiration came from the emerging behavior of fish swarms and bird
flocks. It employs a population of particles flying at various speeds through the
search space. The speed varies for every particle, based on the local and global
optimal positions. The basic PSO motion is described in Equations 3.1 and 3.2.
Figure 3.1 shows a flowchart of the optimization process.

The PSO algorithm ignited interest in swarm algorithms and the collective in-
telligence phenomenon and thus sowed the seeds of the development of other
bio-inspired algorithms [440].

xt+1
i = xti + vt+1

i (3.1)

vt+1
i = vti + αr1[g

∗ − xti] + βr2[x
∗
i − xti] (3.2)
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Where:
– xti and xt+1

i are the current and next solutions at iteration t,
– vi is velocity of the ith solution in range (0, vmax),
– r1, r2 are random vectors in range (0-1),
– α and β are constant acceleration parameters,
– x∗i and g∗ are the local and global best solutions respectively.

Iteration
t = t + 1

No

Yes

Are the 
stopping criteria

satisfied?

Stop

Evaluate objective function
for local and global best solutions

Initialization of PSO:
random particles
random velocity

Update velocity 
of each particle

Update position
of each particle

Fig. 3.1 Flowchart of Particle Swarm Optimization.
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3.1.2 Ant Colony Optimization

Ant Colony Optimization (ACO) was introduced by Dorigo in his dissertation
thesis in 1992 [105]. It simulates ant colonies’ behavior when seeking and col-
lecting food as a problem of optimal path searching. As an example of collective
intelligence, ant colonies, despite being blind, accumulate enormous food sup-
plies. The algorithm is based on pheromone paths that indicate their quality.
Since the pheromones are designed to evaporate, shorter routes are advantaged.

Ants move from node i to node j with probability pi,j (Eq. 3.3). Pheromone
level is updated with Eq. 3.4.

pi,j =
(ταi,j)(η

β
i,j)∑

(ταi,j)(η
β
i,j)

(3.3)

τi,j = (1− ρ)τi,j + ∆τi,j (3.4)

Where:
– τi,j is the amount of pheromone on edge i, j,
– α is a parameter to control the influence of τi,j ,
– ηi,j is the desirability of edge i, j (typically 1/di,j),
– β is a parameter to control the influence of ηi,j ,
– ρ is the rate of pheromone evaporation,
– and ∆τi,j is the amount of pheromone deposited, typically given by:

∆τi,j =

{
1/Lk if ant k travels on edge i, j

0 otherwise
(3.5)

Where:
– Lk is the cost of the kth ant’s tour (typically length).
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Initially, the ACO algorithm solved combinatorial problems in discrete space.
However, nowadays, there are multiple modifications for other application fields,
the continuous domain included [153]. A flowchart of the ACO algorithm is
depicted in Figure 3.2.

Iteration
t = t + 1

No

Yes

Are the 
stopping criteria

satisfied?

Stop

Construct solutions
using the probability distribution

(pheromone trail and randomization)

Initialization of ACO:
parameter settings

Update local pheromone

Yes

No

Have all 
ants visited through

all cities?

Compute the length of the optimal path 
& update optimal pheromone amount

Fig. 3.2 Flowchart of Ant Colony Optimization.

3.1.3 Artificial Bee Colony

In 2005, Karaboga proposed another member of the sizable bee-inspired meta-
heuristic family: the Artificial Bee Colony (ABC) [200]. Table A.1 of all the
metaheuristic algorithms in Appendix A count up to 17 bee-based algorithms
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and one Bumblebee. However, the ABC is the most popular one.

The algorithm simulates the specialization characteristic of bee colonies, dividing
the solutions into employed bees, onlookers, and scouts. At first, one half of the
colony consists of employed bees, the other half of onlookers. The employed bees
correspond to good solutions. The onlookers simulate the bees waiting in the
hive. They can choose the source to collect food from and move towards better
solutions dependent on the probability given by Eq. 3.6. The candidate solutions
are made by Eq. 3.7.

pi =
f(xi)∑SN
n=1 f(xn)

(3.6)

vi,j = xi,j + φi,j(xi,j − xk,j) (3.7)

Where:
– f(xi) is the objective function value of the solution xi,
– and SN is the number of food sources, equal to the number of employed

bees,
– k ∈ 1, 2, ..., SN and j ∈ 1, 2, ..., D are randomly chosen indexes k 6= i,
– and φi,j is a random number between [-1, 1].

If the solution does not improve for a defined limit of iterations, the food source
is abandoned, and replaced by a new scout solution that improves its quality
(Eq. 3.8).

xji = xjmin + rand(0, 1)(xjmax − x
j
min) (3.8)

Where:
– xi is the abandoned solution,
– and j is the index j ∈ 1, 2, ..., D.

All the bees move towards better solutions only. The algorithm parameters in-
clude the number of food sources SN , which also defines the number of employed
or onlooker bees, the limit of unimproved solutions, and the maximum number
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of iterations MCN .

Similarly to ACO, the ABC algorithm is quite an effective optimizer for discrete
optimization, but there are also continuous problem variations. A flowchart of
the ABC algorithm is depicted in Figure 3.3.

Iteration
t = t + 1

No

Yes

Are the 
stopping criteria

satisfied?

Stop

Produce & evaluate
new solutions for the onlooker bees

Initialization of ABC:
generate & evaluate 
random initial population

Apply greedy selection

Produce & evaluate
new solutions for the employed bees

Apply greedy selection

Calculate the selecting probabilities 
of food sources for the onlooker bees

Replace it with a
new scout
solution

No

Yes

Is there an
abandoned
solution?

Fig. 3.3 Flowchart of the Artificial Bee Colony Algorithm.
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3.1.4 Cuckoo Search

Cuckoo Search Optimization (CS) was developed by Yang and Deb in 2009
[439]. It simulates the aggressive reproduction strategy of cuckoos. Cuckoos
are known for their brood parasitism: laying eggs in other birds’ nests. The
algorithm considers each solution as an egg of a quality defined by the objective
function value.

In each iteration, the algorithm creates a new cuckoo solution by Eq. 3.9 and
replaces the original solution if it is of better quality. The algorithm applies the
probability that the cuckoo egg will be discovered. A fraction of the worst nests
are abandoned and replaced by new random solutions.

xt+1
i = xti + α⊕ Levy(λ) (3.9)

Where:
– xi is the ith solution from the population,
– t presents the current iteration,
– α > 0 is the step size related to the scales of the problem of interest (for

most cases α = 1),
– and Levy(λ) presents a random number of the Levy distribution:

Levy ∼ u = t−λ (3.10)

The main advantage of the algorithm is that there are only two parameters: the
population size NP and probability pa controlling the randomization balance.
The Cuckoo Search thus represents a robust algorithm with extraordinary opti-
mization capabilities. The main loop of the algorithm is described in a flowchart
(Figure 3.4).
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Iteration
t = t + 1

No

Yes
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satisfied?

Stop

Get & evaluate position of new nest i

via Levy flight

Initialization of CS:
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YesNo

Has new nest
i better fitness 

than a randomly selected 
host j nest?

Replace a fraction, Pa of the worst nests

by new nests using via Levy flights

Compare new nests with worst nests
& keep the best

Replace j by the new solution iKeep the j solution

Fig. 3.4 Flowchart of the Cuckoo Search Algorithm.
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3.1.5 Grey Wolf Optimizer

The GreyWolf Optimizer was developed by Mirjalili in 2014 [269]. The algorithm
mimics the hunting mechanism and hierarchy of a wolf pack. The social hierarchy
model consists of alpha, beta, delta, sorted by the objective function value, and
the rest of the solutions are omegas. According to the rank defined, wolves
command lower ranks and obey higher ones. Wolves hunt by encircling their
prey. The motion is described in Eqs. 3.11–3.14.

D = |C ·Xp(t)−X(t)| (3.11)

X(t+ 1) = Xp(t)−A ·D (3.12)

Where:
– t is the current iteration,
– Xp is the position vector of the prey,
– and X is the position vector of a grey wolf,
– and A and C are coefficient vectors calculated as follows:

A = 2a · r1 − a (3.13)

C = 2 · r2 (3.14)

Where:
– a linearly decreases from 2 to 0,
– and r1, r2 are random vectors in [0,1] range.

The hunting movement updates the solutions according to the positions of the
best agents as represented in Eqs. 3.15–3.17. A flowchart of the GWO is depicted
in Figure 3.5.

Dα = |C1 ·Xα −X| ,Dβ = |C2 ·Xβ −X| ,Dδ = |C3 ·Xδ −X| (3.15)

X1 = Xα −A1 · (Dα),X2 = Xβ −A2 · (Dβ),X3 = Xδ −A3 · (Dδ) (3.16)

X(t+ 1) =
X1 + X2 + X3

3
(3.17)
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Iteration
t = t + 1
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Yes

Are the 
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Stop
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Save the best solution

X
� = the best solution

Xß = the second best solution

X
�

= the third best solution

Update a, A and C
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Fig. 3.5 Flowchart of the Grey Wolf Optimizer.

3.1.6 Bat Algorithm

The Bat Algorithm (BAT) was developed by Yang in 2010 [436]. It simulates the
echolocation ability of microbats and operates with a model of wavelengths and
frequencies. The algorithm is defined by Eqs. 3.18–3.20, determining frequency,
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velocity, and new solution computation.

fi = fmin + (fmax − fmin)β (3.18)

vti = vt−1i + (xti − x∗)fi (3.19)

xti = xt−1i + vti (3.20)

Where:
– fi is a frequency, that is initially drawn uniformly from [fmin, fmax], and

essentially controls the pace and the movement range of the solutions,
– β ∈ [0, 1] is a random vector from a uniform distribution,
– x∗ is the current global best solution,
– t presents the current iteration,
– vi is the velocity,
– and xi is the new solution,

Each bat generates a new solution locally with Eq. 3.21. In addition, the algo-
rithm operates with loudness and pulse rates defined by Eq. 3.22 and 3.23.

xnew = xold + εAt (3.21)

At+1
i = αAti (3.22)

rt+1
i = r0i [1− exp(−γt)] (3.23)

Where:
– ε ∈ [−1, 1] is a random number,
– At =< Ati > is the average loudness of all the bats at the iteration t,
– Ati is the loudness of the current solution xi at iteration t, decreasing once

the solution is improved,
– α and γ are constants,
– and ri is the pulse rate, that increases once the solution xi is improved.

The increase or decrease of the pulse rate and loudness variables are defined for
any 0 < α < 1 and γ > 0 in Eq. 3.24.



64 TBU in Zlín, Faculty of Applied Informatics

Ati → 0, rti → r0i , ast→∞ (3.24)

In the initial proposal [436], the author (Yang, 2010) admits that with specific
parameter settings, the algorithm becomes the standard PSO (or eventually the
Harmony Search). The main loop of the algorithm is shown in Figure 3.6.

Iteration

t = t + 1

No

Yes

Are the stopping criteria satisfied?

Stop

Define: pulse frequency fi,, pulse rate ri and loudness Ai

Initialization of BAT:

random population

objective function f(xi)

velocity vi 

Adjust: frequency fi
Update: velocity vi

Generate: new solutions

Yes
No

If (rand > ri)

Choose a solution xs among the best solutions

Generate a local solution around xs

Generate a new solution by Levy flight

Yes

No

If (rand<Ai) 

& f(xi)<f(x*)

Update: the solution xi

Increase: pulse rate ri
Reduce: loudness Ai

Rank the solutions

Fig. 3.6 Flowchart of the Bat Algorithm.
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3.1.7 Whale Optimization Algorithm

Mirjalili and Lewis developed the Whale Optimization Algorithm (WOA) in
2016 [265]. The algorithm models the hunting behavior of whales and the spiral
bubble-net maneuver.

Like the Grey Wolf Optimizer, the Whale Optimization Algorithm assumes that
the best objective function value solution is the one closest to the target prey.
Other solutions update their positions accordingly (Eqs. 3.25 – 3.28).

D = |C.X∗(t)−X(t)| (3.25)

X(t+ 1) = X∗(t)−A ·D (3.26)

A = 2a · r − a (3.27)

C = 2 · r (3.28)

Where:
– t is the current iteration,
– A and C are the coefficient vectors calculated by Eqs. 3.27 and 3.28,
– X∗ presents the position of the best solution,
– X is the current solution,
– . indicates an element-by-element multiplication,
– a linearly decreases from 2 to 0,
– and r is a random vector in range of [0, 1].

The bubble-net attacking behavior represents the exploitation phase of the algo-
rithm. The movement consists of two mechanisms: shrinking encircling, or spiral
updating. The former is managed by decreasing the value of a in Eq. 3.27, while
the latter simulates a helix-shaped movement by Eq. 3.29.

X(t+ 1) = D′ · expbl · cos(2πl) + X∗(t) (3.29)

Where:
– D′ = |X∗(t)−X(t)| is the distance of the ith and the current best solu-
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tion,
– b is a constant defining the spiral shape,
– and l is a random number in between [-1,1].

The selection of the bubble-net mechanism employed is random (Eq. 3.30).

X(t+ 1) =

{
X∗(t)−A ·D if p < 0.5

D′ · expbl · cos(2πl) + X∗(t) if p ≥ 0.5
(3.30)

Where:
– p is a random number in range [0,1].

The exploration phase of the Whale Optimization Algorithm simulates the search
for prey behavior, moving away from a randomly chosen reference solution
(Eqs. 3.31 – 3.32).

D = |C ·Xrand −X| (3.31)

X(t+ 1) = Xrand −A.D (3.32)

Where:
– Xrand is a random solution from the current population.

Despite the relatively complex structure of the algorithm, the WOA has only two
adjustable parameters: A and C. A flowchart of the algorithm is represented in
Figure 3.7.
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Fig. 3.7 Flowchart of the Whale Optimizer Algorithm.
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3.1.8 Bacterial Foraging Optimization

Passino developed the Bacterial Foraging Optimization Algorithm in 2002 [307].
The algorithm models the foraging behavior of bacteria E.Coli living in hu-
man intestines, mainly four mechanisms observed in a natural bacterial system:
chemotaxis, swarming, reproduction, and elimination-dispersal.

The chemotaxis procedure involves the swimming and tumbling of the E.coli
cell via flagella. The movement is described by Eq. 3.33.

θi(j + 1, k, l) = θi(j, k, l) + C(i)
∆(i)√

∆T (i)∆(i)
(3.33)

Where:
– θ represents the ith solution,
– j, k, l are the indexes for the chemotactic, reproduction and elimination-

dispersal events respectively,
– C(i) is the size of the step taken in the random direction specified by the

tumble (run length unit),
– and ∆ indicates a vector in the random direction in between [−1, 1].

The swarming movement simulates the aggregation into groups, moving in
characteristic patterns with high bacterial density. The E. coli bacteria have a
control guidance system repelled by alkaline and acidic environments and at-
tracted towards neutral ones. The swarming behavior is presented in Eq. 3.34.

Jcc(θ, P (j, k, l)) =

S∑
i=1

Jcc(θ, θ
i(j, k, l)) =

S∑
i=1

[−dattractantexp(−wattractant
p∑

m=1

(θm − θim)2)]+

S∑
i=1

[hrepellantexp(−wrepellant
p∑

m=1

θm − θim)2)] (3.34)
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Where:
– Jcc(θ, P (j, k, l)) is the objective function value to be added to the actual

objective function to a present time varying objective function,
– S is the total number of solutions in the population,
– p is the number of variables to be optimized,
– θ = [θ1, θ2, ..., θp]

T is a point in the p-dimensional search domain,
– and dattractant, wattractant, hrepellant, wrepellant are different coefficients.

The reproduction step simulates the bacterium’s ability to divide itself. When
E. coli find a good food source, they get longer and break in the middle to form
a replica of themselves. Analogously, the model abandons the solutions of worse
quality while the best solutions are duplicated.

Finally, elimination and dispersal liquidate random bacteria at a small prob-
ability and replace them with randomly initialized solutions. This mimics the
event in the natural bacterial population, during which a whole region of bacte-
ria is killed or dispersed into a new environment. The complete flowchart of the
algorithm is shown in Figure 3.8.
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Fig. 3.8 Flowchart of the Bacterial Foraging Optimization Algorithm.
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3.1.9 Firefly Algorithm

The Firefly Algorithm (FFA) was developed by Yang in 2009 [430]. The algo-
rithm mimics the courtship behavior of fireflies. In the proposed model, fireflies’
attractivity is defined by their ability to shine. Brightness decreases with dis-
tance. One firefly represents one solution of an optimized task, and the objec-
tive function computes its light-emitting abilities. In each iteration, every firefly
looks around and moves towards the brighter fireflies by Eq. 3.35. The original
proposal operates with the Cartesian distance (Eq. 3.36). A flowchart of the
algorithm is in Figure 3.9.

xi = xi + β0 exp−γr
2
ij (xj − xi) + α(rand− 1

2
) (3.35)

Where:
– xi, xj present the current and the more attractive solutions respectively,
– β0 is the attractiveness at distance r = 0,
– r is the distance between the current and more attractive solution,
– γ is the variation of the attractiveness,
– α is the randomization parameter,
– and rand is a random number drawn from a uniform distribution [0, 1].

rij = ‖xi − xj‖ =

√√√√ D∑
k=1

(xi,k − xj,k)2 (3.36)

Where:
– i, j are the index keys of the compared solutions,
– xi,k is the kth component if the ith solution in the population,
– and D presents the dimensionality of the problem.
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Fig. 3.9 Flowchart of the Firefly Algorithm.
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3.2 Swarm Algorithms Criticism

The increasing emergence of swarm algorithms during the last few decades
evoked a "novel algorithms dilemma." The introduction of metaphor-based de-
velopment was followed by a massive wave of new swarm algorithms with gold
rush resemblance [100]. To clarify the trend, Figure 3.10 shows the proportion
of swarm-based algorithms compared to the total number of new metaheuristics
created in the years 1973–2018 based on data from [275].
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Fig. 3.10 The number of metaheuristic proposals in the years 1973-2018.

As a reaction to this "metaheuristic avalanche," an eye-catching project, the
Evolutionary Computation Bestiary, started in 2018. The EC Bestiary1) cata-
logs the metaphor-based metaheuristics. The primary purpose of this catalog
is to highlight the number of metaheuristics and to point out (and make fun
of2)) the pitfalls of metaheuristic development. However, it also offers valuable
sources that bring to light valid recurring mistakes linked to many metaheuristic
proposals.

1)Available at https://github.com/fcampelo/EC-Bestiary, accessed 01/11/2021
2)See, e.g., the Twitter account Daily Bio-heuristics of metaheuristic inspiration for every

day (https://twitter.com/BioHeuristics) or the Ghost Detection Algorithm Parody (http:
//oneweirdkerneltrick.com/spectral.pdf), both accessed 01/11/2021

https://github.com/fcampelo/EC-Bestiary
https://twitter.com/BioHeuristics
http://oneweirdkerneltrick.com/spectral.pdf
http://oneweirdkerneltrick.com/spectral.pdf
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The plethora of new metaphor-based optimizations provoked a tide of criticism,
questioning mainly the asset and novelty of such algorithms [344, 367, 368]. The
authors point out these reservations:

• Bio-inspired lingo
• Duality of the algorithms
• Too simplified models of bio-inspiration
• Excessive focus on competition and novelty
• Experiments of poor quality
• Undefined relation between academic and real-world problems

3.2.1 Bio-Inspired Lingo

Many metaheuristics use specific unorthodox language adapted to the metaphor
that inspired them. Standard terms from evolutionary computation like the
solution, population, or fitness are replaced by a range of names like flies, bats,
bees, harmony, melody, and sounds. However, according to [367], the standard
vocabulary would help a better understanding.

The lingo paradigm does not concern only recent swarm algorithms but the
original contributions as well. Figures 2.1, 2.3, and 3.1 show that even the
Genetic Algorithm, Differential Evolution, and Particle Swarm Optimization
do not use the same terminology. However, with a proper definition of the
special terms, different terminology mostly does not stand in the way of general
understanding.

3.2.2 Duality of Algorithms

One of the crucial weak points of novel metaheuristic development is that many
novel algorithms are, in fact, not novel at all. They merely repackage old ideas
with new aliases. The problem becomes more pressing with the ever-rising num-
ber of metaheuristics.
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Several algorithms, including the Harmony Search, the Grey Wolf Optimizer, the
Firefly Algorithm, and the Bat Algorithm, were accused of reiterating existing
principles [55, 414, 415]. Although to the Author’s knowledge, there is no known
metric to estimate the novelty of a proposed technique yet, several steps have
been made in this direction.

In the Comprehensive Taxonomy of Metaheuristics, Molina et al. suggest a pos-
sible way to expose the duality of newly proposed algorithms through a behavior
classification system (see Section 2.2.2) [275]. Using their original metrics, the
authors concluded that 37% of the algorithms reviewed could be regarded as
incremental variants of the existing algorithms rather than a novel algorithm.

In 2021, Armas et al. made exciting progress in this regard in the Similarity in
Metaheuristics: a Gentle Step towards a Comparison Methodology [93]. Many
algorithms reuse known techniques such as following the best solution, randomiz-
ing them, sorting them by quality, or mutation. Therefore, the author proposed a
methodology for the algorithms’ description based on module composition. The
formal description of these algorithms enabled a new similarity metric applied
to 15 algorithms.

3.2.3 Bio-Inspiration Stress

Metaheuristic development conceals a paradox regarding the inspiration source.
On the one hand, there is an excessive focus on the inspiration source, admiring
natural optimization principles and advocating why it should be modeled. On
the other hand, the models are often oversimplified, hardly resembling the simu-
lated phenomena [229, 367]. Regarding the aforementioned questionable novelty
of some proposed optimizers, a different inspirational source should not justify
recreating an already existing algorithm [275, 367].

Despite the overemphasis, the inspirational source is not the main characteristic
of metaheuristic algorithms. A similar bio-inspiration does not necessarily lead to
a similar algorithm. The Dolphin Partner Search and the Dolphin Echolocation
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algorithms may serve as an example since they fall into different behavior classes,
despite the identical mammal model [275]. Then again, various inspirational
sources do not guarantee a different algorithm.

3.2.4 Excessive Focus on Competition

The following criticism points to too much competitiveness. The current setup is
over-focused on the algorithms’ performance and how many algorithms were out-
performed. This so-called up-the-wall game falls short for multiple reasons [52].
First, the results of such comparisons are oversensitive to numerous conditions:
the benchmark and algorithms selection, parameter configuration, termination
criteria, coding skills, or used programming language [217, 218, 232, 367]. Thus,
the transferability of these results is questionable.

The No Free Lunch theorem claims that there is no ultimate function to solve
every possible problem optimally [259]. Therefore, not only that one algorithm
cannot outperform all others, but beating a bunch of others does not make the
heuristic insuperable. It merely means that the results favored the promoted
algorithm on the testbed being examined [51].

Competitive testing might imply which algorithm is faster or came with a better
solution, but it does not reveal why [167]. However, understanding the inner
mechanisms of metaheuristic optimizers is more important than performance, as
performance is affected by too many factors. Also, the quality of the solution is
not the only criterion for algorithmic evaluation. Finally, the focus on compe-
tition might indirectly lead to cheating, often seconded by private source codes
[344].

3.2.5 Experiments of Poor Quality

In Heuristic Scheduling: Running Away from the Bio-inspired Tsunami [344],
the author (Ruiz, 2002) highlights the frequent poor quality of studies. The
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black marks of such practice are inappropriate comparisons, lack of statistical
testing to check significance, insufficiently large samples of objective functions,
and lack of care in selecting competitors. Inappropriate comparisons rise from
diverse starting points, different processor employment, compilers, and uneven
stopping criteria.

The most crucial point, however, concerns the fair comparison condition. Many
algorithms are compared to the basic versions of the algorithms, rather than
the state-of-the-art methods. Parameters are tuned for the promoted optimizer
only, algorithms examined on biased problems, results presented in tables only
without additional context or proper interpretation [232].

3.2.6 Gap between Academic and Real-World Problems

The frequent practice of testing and validating optimization algorithms is to
analyze the optimizer on a showcase minimization problem with a known location
of the global optimum. Such problems are called benchmarks and consist of well-
known problems like the De Jong’s, Schwefel’s, Rosenbrock’s, Michalewicz’s,
Easom’s Function, and many others.

While some algorithms define their own test sets, others use the advantage of
already defined testbeds, e.g., from the IEEE CEC benchmark competitions.
The CEC test suites provide a wide range of optimization tasks covering vari-
ous characteristics such as the simple unimodal, multimodal, and compositions
problems. The testbed has already defined evaluation criteria as a bonus, and
the proposed algorithm may be easily compared to other optimizers.

However, there is still an unresolved question: How well do standard benchmark
problems reflect dynamics of real-world optimization tasks [399]? There often
may be little relevance of academic problems to the real world [343]. Defining
the relation of benchmark problems to real-world optimization tasks remains one
of the open issues of heuristic optimization.
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One of the exposed benchmark handicaps concerns a missing noise [232]. Al-
though noise is a characteristic component of real problems, most academic
problems suppress it. In this matter, the BBOB 2009 benchmark creates an
exception, as it includes the noise into the problem testbed [137].

3.2.7 General Disrespect for Novel Metaheuristic Proposals

The reservations above result in preconceptions harming novel metaheuristic
proposals, though mainly during the invisible process of reviews and rejections
that are part of publication practice. The author of Running Away from the
Bio-inspired Tsunami (Ruiz, 2002) [344] addresses these algorithms as spam
and hyperbolically suggests a possible solution to the problem with his own
metaheuristic-like acronym RTHOTP – meaning: "Reject The Hell Out of These
Papers." Of course, an actual breakthrough paper would probably never be re-
jected, despite its potential natural inspiration source. Still, the statement may
reflect general scientific public opinion on the novel algorithms avalanche.

The publication instructions for the Swarm Intelligence Journal employed since
the 11th Volume3) may serve as an example of such a mindset. The guidelines
directly address the metaheuristic issue, stating:

"There is a relatively recent trend that consists in taking a natu-
ral system/process and use it as a metaphor to generate an algorithm
whose components have names taken from the natural system/process
used as metaphor. This algorithm is often advertised as a “new nat-
ural metaphor algorithm” and used to solve a specific problem (most
of the time an optimization problem).

Unfortunately, this approach has become so common that there are
now hundreds of so-called “new” algorithms that are submitted (and
unfortunately often also published) to journals and conferences every

3)https://media.springer.com/full/springer-instructions-for-authors-
assets/pdf/1593723_Additional_submission_instructions.pdf, accessed 01/11/2021

https://media.springer.com/full/springer-instructions-for-authors-assets/pdf/1593723_Additional_submission_instructions.pdf
https://media.springer.com/full/springer-instructions-for-authors-assets/pdf/1593723_Additional_submission_instructions.pdf
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year. The problem is that it often takes a lot of work and effort for
editors, and sometime referees, to understand why the authors are
using the proposed metaphor, what is really new and what is the same
as the old with just a new name, and whether the proposed algorithm
is just a small incremental improvement of a known algorithm or a
radically new idea.

The number of such manuscripts submitted to Swarm Intelligence
has greatly increased in the last few years. I have therefore asked
the associate editors to pay particular attention to these “natural
metaphor” inspired manuscripts and to send them to referees only
if the manuscript seems to be of very high quality. In other words, I
have asked the associate editors to increase the number of manuscripts
that they reject directly so as to decrease the work load on referees,
who are a precious resource that we need to protect."

(Instructions for publications in the Swarm Intelligence Journal,

Volume 11, p.1)

The instructions further direct some additional rules for metaphor-based algo-
rithms: advising that the inspirational source should be thoroughly scientifically
understood and must match the simulation model in a formal mathematical way.
It should avoid self-made bio-linguistic terms, and the authors are expected to ad-
vocate the novelty of their approach. Without meeting these conditions, further
rejections are to be referred to the guidelines document. Also, the instructions
highlight the importance of fair comparison and good practice in experiments.
The Swarm Intelligence Journal’s full instructions are quoted in Appendix B:
Instructions for the Swarm Intelligence Journal Submissions Regarding Novel
Natural Metaphor Articles. Similar guidelines face mischievous practice in the
Journal of Heuristics (Appendix C).

In November 2021, more than one hundred of scientists signed a letter named
Metaphor-based metaheuristics, a call for action: the elephant in the room [15].
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The letter warned from the mischievous practice and recommended optimization
oriented journals to accept only articles that:

i use standard terminology

ii provide novel and useful concepts

iii name the motivation of the research based on scientific base

iv present a fair comparison with state-of-the-art methods and practices

3.2.8 Lack of Insight

Metaheuristics often deal with problems in a black-box manner. They serve as
a general optimization tool to solve any problem. However, though it neatly
illustrates the versatility of these optimizers, it also raises concerns about the
credibility of the results. How did the algorithms discover the proposed outcome?
Is the examined system biased?

A sole solution often may not represent a satisfactory outcome. The end-user
might benefit from additional information that would undertake various what-if
scenarios and outline which hyper parameters strongly affect the outcome and
which barely.

These questions ignited the interest in a new trend: the Explainable Artificial
Intelligence (XAI), which forms this field towards better understandability, in-
terpretability, and transparency of AI outcomes. In Evolutionary Computation
Techniques, it means, among others, advancing optimizers toward a better un-
derstanding of the inner dynamics of the algorithms and their parameters [19].
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3.2.9 Implications of Criticism

There are three general responses to the abovementioned reservations:

1. Complete ignorance of critical points

2. Rejection of novel metaheuristics

3. Reflection of valid critical points in future metaheuristic development

Unfortunately, the first two approaches are adopted in most scenarios: the users
of metaheuristics, completely ignoring the suggestions for good practice on one
hand, versus the reviewers, who are getting fed up with metaheuristic malprac-
tice and are inclined to reject the novel metaheuristic once they have read the
title.

In 2005, Lee and Geem proposed the Harmony Search algorithm inspired by
musicians’ improvisation [233]. Five years later, the algorithm was proved to be
a particular case of Evolutionary Strategies [414]. Its novelty and contribution
were impeached. However, the effect was minimal. Figure 3.11 presents the
number of publications citing the Harmony Search proposal versus the exposing
publication. The ratio illustrates that the algorithm’s popularity was not caused
by, nor despite, the duality revelation. It was rather unnoticed.

Most recently, in 2020/2021, a group of researchers stood up against the practice
of this corrupt science and worked towards solving the named issues. Researchers
called attention to current metaheuristic problems [132, 344, 368]. IEEE estab-
lished a benchmarking taskforce4) and networks5). Molina et al. (2020) fought
the metaphor threat by proposing behavior-based classification of metaheuristics
[275]. LaTorre et al. (2020) proposed a set of guidelines for fair methodology
in metaheuristic development and comparison [232]. The first steps were even
made towards the detection of similarity between algorithms [93]. In 2020, more

4)https://cmte.ieee.org/cis-benchmarking/, accessed 01/11/2021
5)https://sites.google.com/view/benchmarking-network/home, accessed 01/11/2021

https://cmte.ieee.org/cis-benchmarking/
https://sites.google.com/view/benchmarking-network/home
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Fig. 3.11 Number of publications citing the Harmony Search Algorithm versus
the exposure publication in 2005-2020.

than a dozen researchers created guidelines for benchmarking, summarizing their
ideas on the best practice and declaring open issues [27]. To raise the standard,
some journals made avoidance of the malpractice presented mandatory (see Ap-
pendices B and C). The mood is supported of the evolution of the metaheuristic
optimization field.

Still, when compared to the number of contrasting literature, the effort to im-
prove the metaheuristic situation concerns just a drop in the ocean of academic
publications. In addition, critical publications mainly state the problem and
mark the territory of metaheuristic badlands. The reservations point to the cor-
rupt practice and wrongs in metaheuristic optimization but rarely offer solutions,
and the applications are scarce.
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3.3 Recommendations for New Metaheuristics Development

The criticism mentioned can be formulated on a positive note into guidelines for
metaheuristic design. The Author presents a set of rules based on recommen-
dations from the following sources: [27, 178, 232, 275, 344, 367]. The guidelines
may be sorted into the algorithm’s design, experimental and comparison prac-
tice in Sections (Section 3.3.1 - 3.3.4). Finally, Section 3.3.5 summarizes all the
proposed recommendations in a convenient check list.

3.3.1 Guidelines for Algorithm Design

The first set of recommendations concerns the development of a new metaheuris-
tic or its variant. According to LaTorre [232], researchers should name their
motivation for the development. New algorithms should not root from finding
a new metaphor but from an original, clearly expressed idea. Algorithms are
advised to use standard vocabulary rather than metaphor-based terms [368] and
adopt flowchart descriptions for a better understanding.

New algorithms should honor the keep it simple principle. The contribution of
each component should be analyzed and carefully considered, if the individual
contribution is small. Beautiful examples of such practice are in [232, 315], where
simplifying advanced, even state-of-the-art, algorithms.

The algorithm’s design should always be transparent. It is advisable to keep in
mind the possibilities of being configured by automatic techniques right from
the start. New algorithms should be handled as a configurable framework with
each module, function, and parameter clearly defined, seeking the way toward
explainable AI [372].

Development recommendations culminate in the absolute necessity of sharing
the source codes of novel algorithms [178, 275]. Public source codes benefit
both the developer and the user. They improve the usability of the algorithm,
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enable future advancement, and allow for the detection of potential glitches in
the proposal.

3.3.2 Guidelines for Selection of Benchmark and Algorithms to Be Com-
pared

After developing a new algorithm, standard practice compares the proposal with
other metaheuristics to highlight its contribution and performance. The fairness
of such comparisons is crucial and concerns the whole design of the experiment.

The first step is the selection of algorithms to be compared. Many algorithms
compare with original well-established algorithms only (see, e.g., [17, 49, 164,
194, 238, 314, 386, 391]). However, general advice is to employ also the reference
version of the algorithm also (i.e., the one that is modified), other algorithms
based on a similar principle, and the best algorithms so far for the selected
benchmark [232].

The last point may be debatable since it resembles a parallel with the match
of David and Goliath: How could newborn ideas be expected to outperform
algorithms fine-tuned for decades? In this regard, it is essential to note that
superior performance is not the only vital contribution made by an algorithm if
the algorithm offers a relevant methodology advancement or a completely new
technological procedure. At the same time, many algorithms, like the Fire-
fly Algorithm, Cuckoo Search, and others, are widely used, despite not being
state-of-the-art. Still, it is unacceptable to cherry-pick algorithms with worse
performance, to claim the effectiveness of an algorithm proposal. Thus, sole
comparison with a basic, randomly chosen algorithm should be avoided [232].

The appropriate selection of algorithms to be compared relates to the goal of the
experiment. Where the goal is to create an algorithm of superb performance on
the testbed being examined, the state-of-the-art comparison is in place. Is the
goal to present new methodology? It should be compared to similar algorithms
to show the difference. If the goal is to advance a piece of standard optimization



TBU in Zlín, Faculty of Applied Informatics 85

technology, the experiment should prove the transferability of the knowledge and
its usefulness for other optimization techniques.

The selection of the benchmark problem test set is also vital. The benchmarks
should be biased neither towards the coordination system nor towards the ori-
gin. Researchers are advised to use the standard competition benchmark test
suites, e.g., the IEEE CEC benchmarks [232], which employ problems of broad
characteristics, and potential pitfalls are more likely to be exposed.

3.3.3 Guidelines for Experimental Setup

The actual experiment should provide conditions as close as can be for all the
algorithms being examined. One’s own implementations with an open source
code are preferable to literature-based results. Each algorithm should employ
parameter settings tuned for the problems being examined. All results should
be tested for statistical significance.

When following the CPU computation time as a termination condition, all al-
gorithms should be examined on the same computer, in the same programming
language, programmed by the same programmer, and ideally, share most func-
tions.

3.3.4 Guidelines for Results’ Analysis

Experiments should allow negative results. Aside from performance-oriented
tests, they should focus on understanding and deepening the knowledge of algo-
rithms. The presentation should provide tables, statistical data, figures, ranks,
and charts. The discussion should not just declare a winner but analyze and
interpret the context of the results. Problem characteristics might lead the way.
Discovering that one algorithm excels on separable/multimodal/unimodal/noisy
problems provides more information than that one algorithm outperformed some
others on a randomly composed benchmark test set.
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At the same time, practitioners should be cautious about generalization of results
[51]. Each experiment should be described precisely. It is essential to distinguish
between algorithm and algorithm instances (e.g., Particle Swarm Optimization
vs. Particle Swarm Optimization with particular parameter settings) and prob-
lems vs. problem instances (e.g., the Sphere Function vs. the Sphere Function
in 5 dimensions with boundary limitations) [51].

Finally, the analysis of results should fulfill and evaluate the initial hypotheses
declared during the motivation stage. The need for justification of new algo-
rithm development was expressed in multiple publications [93, 232, 344, 368].
According to LaTorre [232], the arguments in favor of the usefulness of novel
methodology are: undeniable novelty, results surpassing state-of-the-art opti-
mizers, and contribution to methodology, the last of which has to be precisely
described and argued.

In this regard, the Author would like to add another motivation for the justi-
fication of novel metaheuristic development: aiming the development of novel
algorithms at the known problems of current metaheuristic practice. Tackling
the fundamental puzzles of metaheuristic optimization may lead to the evolution
of metaheuristics.
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3.3.5 Guidelines Summary

Guidelines for Algorithm Design

• Name motivation (not metaphor-based)
• Use standard vocabulary
• Share the source code of novel algorithms
• Describe algorithms with flowcharts for a better understanding
• Analyze components of the proposed algorithm individually
• Keep it simple

Guidelines for Selection of Algorithms to be Compared and Benchmark

• Select algorithms to be compared with respect to the goal of the experiment

For performance-oriented comparison, compare algorithms with:

• Original version of the algorithm (first proposal)
• Reference version of the algorithm (the one that is modified)
• Best algorithms so far on the benchmark being examined (competition

winner)
• Other algorithms operating on a similar principle

Select benchmark problems:

• Of broad characteristics without bias
• Prefer standard benchmark test sets

Guidelines for Experimental Setup

• Prefer own implementation over literature-based results
• Provide the same conditions for all the experiments
• Share the source codes of all the algorithms
• Tune the parameters of all the algorithms for the problem at hand with
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statistical tests
• Combine multiple performance measures

When examining the CPU execution time, all algorithms should:

• Be coded by the same programmer
• Be coded in the same programming language
• Share most functions
• Be examined on the same computer

Guidelines for Results’ Analysis

• Use statistical tests for significance
• Allow negative results
• Show results in context, provide interpretation
• Be cautious with generalization
• Depict the results in both graphs and tables
• Advocate assets and contribution of the algorithm (novelty/performance/

methodology/challenge particular problem)
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4 Goals and Methods of the Dissertation

1. Map the current scene of modern swarm algorithms, its trends, and
challenges.

2. Investigate the methods addressing the weaknesses of swarm algorithms.
3. Propose a set of recommendations for new metaheuristics creation.
4. Proof of concept testing: Implement the proposed recommendations

and methods in a new swarm algorithm.
5. Evaluate the benefits of the proposed algorithm for applied sciences.

Methods of fulfillment of goals of the dissertation include:

Critical analysis:
• Of novel metaheuristics creation process and its challenges.
• Of modifications, trends, and weaknesses of swarm algorithms.

Experiments:
• The proposed algorithm is compared to other state-of-the-art algorithms

on various benchmarking testbeds IEEE CEC 2015, and 2017.
• The experiments focus on the investigation of the dynamics and inner

processes of the proposed algorithm.

Evaluation:
• Evaluation of the algorithms comply with the evaluation criteria [25].
• The results are examined for statistical significance.
• Identification of the types of optimization problems suitable for the pro-

posed techniques through an in-depth analysis of results.

Programming:
• Algorithms are coded in Python or MATLAB.
• Results are examined in Wolfram Mathematica.
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5 Bison Algorithm

Even though many current algorithms try to balance the exploration and ex-
ploitation rate to prevent premature stagnation, many metaheuristics prioritize
exploiting the found solutions at the expense of the exploration in later itera-
tions, which may lead to the unintended improvement of local optimum solutions
instead of finding the global one.

To avoid this pattern, the Author proposed a new swarm optimization algorithm
that emphasizes the exploration process. The algorithm finds inspiration in the
protection mechanism and the running advancements of bison herds.

5.1 Motivation

The proposed algorithm was designed to prove two concepts: applying good
practice recommendations and advocating a novel development justification ar-
gument. Manifold publications (like [27, 84, 167, 344, 367, 368]) point to the
common substandard practice of metaheuristic proposals and result in general
conclusions. The actual applications of these studies are, however, scarce (see,
e.g., [232]). The proposed algorithm was designed to follow the presented guide-
lines, demonstrating the significance of the recommendations from Section 3.3.

The second motivation was to advocate an additional justification argument for
metaheuristic development. So far, three arguments have justified the usefulness
of novel algorithm proposals [232], namely:

• Superb performance surpassing state-of-the-art optimizers
• Absolute novelty
• Contribution to methodology, e.g., improving a commonly used technique

In addition, the Author would like to add a fourth argument,
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• Aiming development at tackling the current optimization problem

To support this argument, an algorithm aimed at fighting the local optimum
containment problem was developed. It embeds a unique mechanism to avoid
local optimum and ensures the same rate of exploration throughout the whole
optimization process.

5.2 Inspiration

The Bison Algorithm simulates the typical behavior of bison herds: swarming
and running. When predators attack bison, they form a circle with strong cattle
at the outer edge of the circle. The weaker ones (like calves) hide inside the circle
in a safer position. When running, bison can reach a velocity of 56 km per hour
and keep it up for as much as thirty minutes [36, 333]. These behavior patterns
serve as model exploitation and exploration techniques for a new, swarm-oriented
methodology called the Bison Algorithm.

5.3 Definition

The main characteristic of the Bison Algorithm lies in the division of the pop-
ulation into two groups. The first group, called the swarming group, takes care
of exploitation, approaching closer to the center of several fittest solutions. In
contrast, the second group steadily examines the search space for new, promising
solutions.

The algorithm is outlined in Algorithm 1 and a simplified flowchart in Figure 5.1.
The UTB A.I. Lab Github repository1) hosts the source code of the Bison Algo-
rithm, which is free to use.

1)https://github.com/TBU-AILab/Bison-Algorithm, accessed 01/11/2021

https://github.com/TBU-AILab/Bison-Algorithm
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Algorithm 1 Pseudocode of the Bison Algorithm.

1. Initialization:
Objective function: f(x), x = (x1, x2, ..., xD)
Generate swarming group SG randomly
Generate running group RG around xbest,f(xbest) ≤ f(x), ∀x ε SG
Select elite bison group EG based on obj. function value
Sort the population and redefine SG based on obj. function
value SGj = (sort(SG ∪ EG))j , j = 1, ..., |SG|
Generate the run direction vector (Eq. 5.4)

2. For every iteration i do
3. Compute the center of EG (Eqs. 5.1, 5.2)
4. For every bison x in SG do
5. Compute a new candidate solution xnew (Eq. 5.3)
6. If f(xnew) < f(x) then x = xnew
7. End for
8. Adjust run direction vector (Eq. 5.5)
9. For every bison x in RG do
10. x = x + run direction (Eq. 5.6)
11. End for
12. Redefine SG for the next iteration i+ 1 :

SGi+1,j = (sort(SGi ∪ RGi))j , j = 1, ..., |SG|
13. End for

The control parameters of the Bison Algorithm include:
• Population NP defines the number of individuals in the population,
• Elite group size EG determines the number of fittest solutions for center

computation,
• Swarm group size SG represents the number of solutions in the swarming

group,
• Overstep parameter defines the maximum length of the swarming move-

ment to the center (0 meaning no movement, 1 meaning a maximum move-
ment to the center)

The parameters were tuned on the IEEE CEC 2017 benchmark for 10 and 30
dimensions, recommending the following configuration: population of 50, elite
group size of 20, swarm group size of 40 and overstep of 3.5 [210].
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5.4 Swarming Group

The swarming group shifts its members in the direction of the center of several
fittest solutions. Preliminary experiments promoted ranked center computation
(Eqs. 5.1, 5.2), considering the order of the best solutions during the calculation.
Every solution in the swarming group computes a new solution candidate that
replaces the current swarmer if it improves its quality (Eq. 5.3).

The flowchart Figure 5.2 represents the principle of the swarming movement.
Figure 5.3 a) shows the cumulative locations of the swarming group in 50 itera-
tions during the actual run on the 2-dimensional Rastrigin’s Function.

weight = (10, 20, 30, ..., 10 · EG) (5.1)

ranked center =
EG∑
i=1

weighti · xi∑EG
j=1weightj

(5.2)

xnew = x + (ranked center − x) · random(0, overstep) (5.3)

Where:
– EG is the elite group size parameter,
– i, j are indexes for center computation i, j = 1, ..., |EG|,
– x and xnew represent a swarming group solution and a new position can-

didate,
– random yields a random vector of unified distribution within the argu-

ments,
– and overstep defines the maximum length of the swarming movement.
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Iteration
t = t + 1

Yes

No
Is the stopping

criteria satisfied?

Stop

Compute center 
of the fittest solutions

Initialization of Bison Algorithm:
generate run direction vector
generate swarming group randomly
generate running group around xbest

Swarming group
exploits the search space

Running group 
explores the search space

Copy successful runners to the
swarming group

Sort swarming group by objective
function value

Start

Fig. 5.1 Simplified flowchart of the Bison Algorithm.
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Fig. 5.2 Flowchart of swarming movement.
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5.5 Running Group

The running group systematically shifts the solutions in the run direction vector
(Eqs. 5.4, 5.5, 5.6). The algorithm generates the run direction vector randomly
during the initialization (Eq. 5.4), and then it slightly changes in every iteration
(Eq. 5.5). The running movement happens even if it lowers the quality of the
solutions. Figure 5.3 b) presents the cumulative movement of the running group
of 50 iterations.

run directionD = random(
ub− lb

45
,
ub− lb

15
) (5.4)

run directioni+1 = run directioni · random(0.9, 1.1) (5.5)

xi+1 = xi + run directioni+1 (5.6)

Where:
– run direction is the run direction vector,
– D is a dimension,
– i is current iteration,
– ub and lb are the upper and lower boundaries of the search space,
– and xi and xi+1 represent a running group member and its updated posi-

tion.

This exploration implementation crosses the borders quite often. The study
Border Strategies of the Bison Algorithm [213] examined the most feasible bor-
der strategy and recommended using the hypersphere strategy, connecting the
dimensional upper and lower boundaries. Figure 5.4 shows the movement of
the whole population to validate the model of the proposed algorithm on a 2-
dimensional Schwefel’s Function.
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(a) Swarming group (b) Running group

Fig. 5.3 Cumulative movement of the swarming group (a) and the running group
(b) on the 2-dimensional Rastrigin’s Function.

Fig. 5.4 Positions of solutions on the 2-dimensional Schwefel’s Function.
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6 Modifications of the Bison Algorithm

The development of the Bison Algorithm was a gradual process that started with
a conundrum. Imagine a search space with a global optimum surrounded by a
narrow, monotonous neighborhood. When adding the local optimum contain-
ment problem, trapping all solutions in one area may considerably hinder the
capability of finding the true optimum.

The Bison Algorithm was developed with an escape mechanism from local con-
tainment. The key idea was to employ the unique exploration and exploitation
potential of bison herds. Simulating these behavior patterns in two groups based
on their objective function value separately founded the first version of the al-
gorithm [214].

Further variations investigated the options for how to advance the explorative
capacity of the algorithm. The first modification tested the benefits of coher-
ent exploration, which was ultimately employed in all the modifications that
followed [212]. The Bison Seeker modification investigated the behavior change
of the explorative solutions when discovering an attractive solution [211]. The
Run Support Strategy added a new parameter to support the utilization of the
discovered solutions [216].

Figure 6.1 maps the development process, application, and corresponding stud-
ies. The following sections present the modifications of the Bison Algorithm.

• Section 6.1 describes the original proposal of the Bison Algorithm,
• Section 6.2 presents the Run Support Strategy,
• Section 6.3 outlines the Bison Seeker modification,
• and Section 6.4 explains the self-adaptive variation of the Bison Algorithm.

Finally, Section 6.5 presents how each modification handles the local optimum
containment challenge.
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Fig. 6.1 Pipeline of the Bison Algorithm development process.
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6.1 Original Bison Algorithm Proposal

The initial proposal of the algorithm divided the population into two groups
solely by the objective function value criterion. Solutions of better quality were
in the swarming group, while the rest were in the running group. Therefore, the
groups could swap their members easily. Figure 6.2 shows a movement of the
original algorithm, namely the scattering of the running group throughout the
search area since iteration 1.

This feature suppressed the potential asset of "collective group search". There-
fore, the redefinition of the Bison Algorithm, as presented in Section 5.3 and
Algorithm 1, suppressed this trait [212]. This modification kept the exploring
solutions together, and successful solutions were copied to the swarming group.

The original algorithm is presented in pseudocode Algorithm 2 and Figure 6.3.
Besides the exploration-exploitation solution classification, the algorithm works
with the same mechanism for swarming and running movement.

Algorithm 2 Pseudocode of the Original Bison Algorithm.

1. Initialization:
Objective function: f(x), x = (x1, x2, ..., xD)
Generate swarming group SG randomly
Generate running group RG around xbest

2. For every iteration i do
3. swarming group swarm
4. running group run
5. sort the whole population by the objective function value

-> swarming group SG = {x1, x2, ..., x|SG−1|}
-> running group RG = {x|SG|, x|SG+1|, ..., x|NP |}

6. End for
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(a) (b)

(c) (d)

Fig. 6.2 Movement of the swarming group and running group solutions in the
original Bison Algorithm.
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Iteration
t = t + 1

Yes

No
Is the stopping

criteria satisfied?

Stop

Compute center 
of the fittest solutions

Initialization of Bison Algorithm:
generate run direction vector
generate swarming group randomly
generate running group around xbest

Swarming group
exploits the search space

Running group 
explores the search space

Sort the whole population 

by objective function value

Start

Fig. 6.3 Flowchart of the original Bison Algorithm proposal.
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6.2 Run Support Strategy

The Run Support Strategy modification was developed to improve the utilization
of newly discovered solutions [216]. In this modification, a promising solution
found by the running group replaces the target of the swarming movement for
several iterations with a much smaller overstep parameter. If the running solu-
tions do not find a better solution, the target of the swarming movement stays
with the center of several fittest solutions like in the standard Bison Algorithm.
The main principle is shown in Algorithm 3 and Figure 6.4.

Algorithm 3 Center Computation of the Run Support Strategy.

If f(xrunner) < f(xswarmer) do:
For next run support iterations do

target = xrunner
overstep = rand (0.95, 1.05)

End for
End if

Where:
– xrunner and xswarmer are the current running and the worst swarming

solutions, respectively,
– f(x) is the objective function value,
– run support is an additional parameter defining the number of iterations

for the planned exploitation of the promising solution,
– rand(from, to) is a random number in the range of the two given argu-

ments,
– target is the target of the swarming movement, called “center” in the

original Bison Algorithm,
– and overstep is the overstep parameter.

To illustrate the asset of the Run Support Strategy, Figure 6.5 shows the move-
ment of the Bison Algorithm with the Run Support Strategy solving 2-dimensional
Schwefel’s Function with the global optimum placed at [418.982887, 418.982887].
In this case, the swarming group solutions were trapped in local optimum until
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Copy successful runners to the
swarming group

Sort swarming group by objective
function value.

Yes

No

Did runners discover 
a promising solution 

f(xrunner) < f(xswarmer)?

targett+1 = promising solution xrunner

overstept+1 = random(0.95, 1.05)

targett+1 = center of the fittest solutions

overstept+1 = 3.5

Fig. 6.4 Flowchart of the Run Support Strategy.

iteration 40 (Figure 6.5 b). However, in the next iteration, the exploring run-
ning group discovered better solutions. Replacing the target of the swarming
movement (Figure 6.5 c) helped the swarming group escape the local optimum
and find the global one (Figure 6.5 d).
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(a) (b)

(c) (d)

Fig. 6.5 Performance of the Bison Algorithm with the Run Support Strategy on
the 2-dimensional Schwefel’s Function.
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6.3 Bison Seeker Algorithm

The Bison Seeker modification offers a different approach [211]. When the run-
ning group discovers a promising solution, it changes its behavior from running
to seeking and exploits the promising area on its own. After one iteration, the
running group continues the running procedure, in the original formation, from
where it ended. The main principle is represented in Figure 6.6. The xrunner
and xswarmer represent the current running solution (explored iteratively) and
the worst swarming solution.

The movement of the Bison Seeker Algorithm is represented in Figure 6.7. The
running group clusters toward the promising area in Figure 6.7 b) and d) and
then returns to the standard formation in Figure 6.7 a), c).

Copy successful runners 
to the swarming group

Sort swarming group 
by objective function value.

No

Yes

Did runners discover 
a promising solution 
in the last iteration 

f(xrunner) < f(xswarmer)?

Running group: 

explore the search space

in the original formation

Running group: 

exploit the promising solution area
with overstep = 2.0

Save the running formation positions

Fig. 6.6 Flowchart of the Bison Seeker modification.
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(a) (b)

(c) (d)

Fig. 6.7 Performance of the Bison Seeker Algorithm on the 2-dimensional Schwe-
fel’s Function.

6.4 Self-Adaptive Bison Algorithm

The self-adaptive modification employs multiple parallel populations of various
parameter settings. The “core population” represents a standard population,
with the initial configuration based on the parameter tuning experiment [210].
Additional populations modify a selected parameter: one after another, the pop-
ulations raise or lower the swarming group SG parameter, the elite group EG
parameter, and the overstep parameter.

After each iteration, the configuration with the most successful solution (further
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referenced as the population S) shares the best result with the core population,
which adopts its corresponding characteristic parameter. The population S then
raises (or lowers, if it is the lower population type) its characteristic parameter
to avoid having two populations of the same configuration. The adjustment step
is 1 for SG and EG and 0.01 for the overstep parameter.

The main idea of the Self-Adaptive Bison Algorithm is presented in Figure 6.9
and Figure 6.10. Figure 6.8 shows the parameter setting configurations of the
initial populations. The self-adaptive modification opens a new way of under-
standing the effect of the parameter configuration on the examined landscape.
The code of the Self-Adaptive Bison Algorithm is available at Tomas Bata Uni-
versity Artificial Intelligence Laboratory’s GitHub repository1).

Fig. 6.8 Initial parameter settings of all the sub-populations in the Self-Adaptive
Bison Algorithm.

1)https://github.com/TBU-AILab/Bison-Algorithm-OOP, accessed 02/06/2022

https://github.com/TBU-AILab/Bison-Algorithm-OOP
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iteration
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best result to the core
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The core population C 

adopts the parameter of S

Initialization

Fig. 6.9 Simplified principle of the Self-Adaptive Bison Algorithm.
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Fig. 6.10 Flowchart of the Self-Adaptive Bison Algorithm.
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6.5 Bison Algorithm Modifications Vs. the Local Containment Prob-
lem

The problem of local optimum containment was the main motivation for the
development of the Bison Algorithm. To establish how the algorithm actually
deals with local optimum containment, this section analyses the behavior of the
Bison Algorithm, and all its modifications, when facing the local containment
challenge.

Figures 6.12–6.15 show the movement of the solutions, given the same initial
conditions: a predefined initial population (illustrated in Figure 6.12 a) and the
same starting run direction vector of the running group. The experiments solved
the De Jong Function N.5 (Figure 6.11, Eq. 6.1) in 2 dimensions, with 24 local
optima and the global one in [-32, -32] (the bottom left optimum in Figures 6.12–
6.15). Following figures show how the particular Bison Algorithm modifications
cover local optimum containment.

Out[ ]=

Fig. 6.11 De Jong Function Number 5.

f(x) = (0.002 +
25∑
i=1

1

i+ (x1 − a1i)6 + (x2 − a2i)6
)−1, where (6.1)

a =

(
−32 −16 0 16 32 −32 ... 0 16 32

−32 −32 −32 −32 −32 −16 ... 32 32 32

)
(6.2)
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6.5.1 Original Bison Algorithm

Figure 6.12 models the behavior of the solutions in the original proposal of the
Bison Algorithm [214]. The figure shows:

a) the initial distribution of the solutions common for all the subsequent sce-
narios,

b) the scattering of the running solutions,
c) their shift,
d) and vanishing of the bottom left running solution (around [-32, -32]), which

transformed into the swarming solution of a better objective function value.

(a) (b)

(c) (d)

Fig. 6.12 Behaviour of the original Bison Algorithm when exposed to the local
optimum containment problem.
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6.5.2 Standard Bison Algorithm (with Coherent Running Group)

Figure 6.13 illustrates how the standard Bison Algorithm from Section 5 dealt
with the local containment situation. This modification kept the running group
together throughout the search process to exploit the benefits of a systematic
group search. However, despite running through the global optimum area, the
effect of the exploration group was minimal in Figure 6.13 c) and vanished in
Figure 6.13 d).

(a) (b)

(c) (d)

Fig. 6.13 Behaviour of the standard Bison Algorithm when exposed to the local
optimum containment problem.
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6.5.3 Bison Algorithm with Run Support Strategy

To utilize the solutions better, the Run Support Strategy modification switches
the target of swarming movement for the newly discovered solution, should the
running solutions find something interesting. Figure 6.14 shows a neat example
of a local optimum breakout with the help of the exploration group. When
compared to the standard Bison Algorithm in Figure 6.13, the Run Support
Strategy quite effectively shifted the population from three local optima areas
to the newly discovered solution in Figure 6.14 d), and the global optimum in e)
and f).

6.5.4 Bison Seeker Algorithm

Figure 6.15 illustrates the Bison Seeker Algorithm. This algorithm employs two
behavior patterns of the running group. The running group explores the feasible
solutions in Figure 6.15 a) and d). However, when the running group finds a
promising solution, it transforms the behavior to exploit the promising area on
its own. The difference between the Run Support Strategy and the Bison Seeker
mechanism is in the acting group which examines the promising area. While
Run Support Strategy sends the swarming group, the Bison Seeker Algorithm
employs the running solutions. The seeking behavior can be seen in Figure 6.15
b) and c).
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(a) (b)

(c) (d)

(e) (f)

Fig. 6.14 Behaviour of the Bison Algorithm with the Run Support Strategy when
exposed to the local optimum containment problem.
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(a) (b)

(c) (d)

Fig. 6.15 Behaviour of the Bison Seeker Algorithm when exposed to the local
optimum containment problem.
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7 Performance of the Bison Algorithm

Following the guidelines in Section 3.3, the first step of performance evaluation
should name the goal and the motivation of the experiment. Rather than focus-
ing on superior performance, the goal of the proposed algorithm was to contribute
to methodology oriented towards the particular problem with a potentially novel
approach.

Nonetheless, it is essential to examine the optimization capabilities of a proposed
algorithm. For this purpose, four popular optimizers out of the top 10 swarm
algorithms were chosen. They were implemented from the EvoloPy optimization
library [129], enabling the same template to be used for most functions of the
algorithms. The parameter tuning process preceded the experiment, to provide
the best parameter configuration setting for all the tested algorithms. The per-
formance analysis criteria included: error values, convergence trends, change in
population diversity, and computation complexity.

The ultimate goal of the experiment was not to prove the Bison Algorithm’s su-
periority to the state-of-the-art optimizers. However, since the algorithms being
compared were examined on the IEEE CEC benchmark test sets, the last Sec-
tion 7.1.6 compares the Bison Algorithm with the winners of the competitions.
In addition, since the original motivation of the Bison Algorithm was to design
an algorithm with an escape mechanism from local optimum containment, the
previous Section 6.5 analysed how the algorithm deals with the local optimum
containment challenge in practice.

7.1 Comparison with Other Metaheuristics

The Bison Algorithm was compared to other swarm algorithms on the benchmark
sets of IEEE CEC 2015 and IEEE CEC 2017 in 10, 30, 50, and 100 dimensions.
Following the recommendations for results evaluation [25], each experiment took
51 independent runs, each consisting of 10, 000× dimensions evaluations of the
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objective function.

The selected algorithms were: the Bison Algorithm (BIA), the Cuckoo Search
(CS), Particle Swarm Optimization (PSO), the Bat Algorithm (BAT), and the
Firefly Algorithm (FFA). The control parameters were tuned for each algorithm
separately in Section 7.1.1. The implementations were derived from the EvoloPy
optimization library [129] and from [138] and modified to fit the same template
as the Bison Algorithm.

The statistical tests in the following sections include the Wilcoxon Rank-Sum
test and the Friedman Rank test, both with the significance level set to 0.05.
The Wilcoxon Rank-Sum tests (in Tables 7.2, 7.3, and 7.9) enumerate how many
times a particular algorithm significantly outperformed all the other algorithms
on a specific optimization problem. On the other hand, the Friedman Rank tests
(Figures 7.3, 7.7, 7.6, 7.4) rank all the algorithms across all the solved problems
and calculate the Nemenyi critical distance: all the optimizers ranked over the
distance are of significantly worse performance than the first-ranked algorithm.

The complete results showing the objective function values of the mean solution
and standard deviations of all the tested algorithms are presented in Appendix D.
Standard statistic output of the Bison Algorithm showing the minimal, maxi-
mal, median, and mean solution qualities and standard deviations is shown in
Appendix E.

7.1.1 Parameter Tuning

The parameter tuning experiment compared 20 parameter configurations from
11 literature sources [35, 129, 156, 210, 246, 271, 421, 434, 435, 436, 438]. No-
ticeably, in most cases, the selected configurations have already gone through
the parameter tuning selection and recommended these parameter settings.

Each algorithm optimized the IEEE CEC 2017 benchmark test set with various
parameter settings in 10 and 30 dimensions. The errors were tested for statistical
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significance (Wilcoxon Rank-Sum test and Friedman Rank test, p<0.05 both),
and the following configurations were evaluated as the best.

The complete experiment was carried out as a part of the discussion about the
importance of proper parameter configuration for fair comparison [217]. Inter-
estingly, the paper showcased three comparison examples in which inappropriate
parameter selection utterly shuffled the interpretation of the results.

Tab. 7.1 Control parameters used in experiments.

BIA CS PSO BAT FFA
NP 50 NP 20 NP 50 NP 50 NP 50
Swarm group size 40 Pa 0.25 vmax 6 Loudness 1.5 α 0.5
Elite group size 20 α 0.01 Wmax 0.9 Pulse rate 0.5 β 0.2
Overstep 3.5 Wmin 0.2 Qmin 0 λ 1.0
Run support 0 C1 2 Qmax 2

C2 2

7.1.2 Error Values Analysis

The most common method of performance analysis is to investigate the error val-
ues of the final solutions. This section examines them from several perspectives.
The first set of tests analyzed the benchmarking testbed as a whole. Figures 7.1
and 7.2 depict the mean solution error of the tested algorithms on 45 IEEE CEC
2015 and 2017 benchmarking problems. Table 7.2 and Table 7.3 summarize the
Wilcoxon Rank-Sum test results (p<0.05). The tests count the number of prob-
lems where one algorithm performed significantly better than all the remaining
algorithms. Finally, the problems were compared with the Friedman Rank test in
Figure 7.3. This test ranks the algorithms by another performance measure and
sets the significance threshold as the Nemenyi critical distance; the algorithms
over the distance performed significantly worse than the first-ranked algorithm.
The Friedman Rank test is valid when the P-Value is lower than 0.05, as shown
in Table 7.4.

After the performance analysis on the complete benchmark sets, the algorithms
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were compared with respect to the character of the solved problems. Since some
problems from the IEEE CEC 2015 and 2017 test suites might be identical,
examining both testbeds could bias the results. The class-oriented tests were,
hence, performed solely on the IEEE CEC 2017.

Based on the benchmark definitions [25], the problems from CEC 2017 bench-
mark test set were classified into six classes: all problems, unimodal problems,
multimodal problems, asymmetrical problems, problems with a huge amount of
local optima, and problems with the second-best solution being far from the
global best solution. The results were then examined with the Friedman Rank
test (Figure 7.4) and the Wilcoxon Rank-Sum test (Figure 7.5) on the corre-
sponding test sets across all dimensions. Table 7.5 defines the problem classes
and the P-Values of the Friedman Rank test. Figure 7.5 shows the percentage
of the problems in the examined class, where the algorithm delivered the best
results (Wilcoxon, p<0.05).

Analysis of the Whole Set of Benchmarking Problems IEEE CEC 2015
and CEC 2017

Tab. 7.2 Winning Algorithms on CEC 2015 (Wilcoxon Rank-Sum test, p<0.05).

None BIA CS PSO BAT FFA
10 dimensions 6 3 5 0 1 0
30 dimensions 4 5 3 0 1 2
50 dimensions 5 4 3 0 1 2
100 dimensions 4 5 0 0 1 5
Sum of wins 19 17 11 0 4 9

Tab. 7.3 Winning Algorithms on CEC 2017 (Wilcoxon Rank-Sum test, p<0.05).

None BIA CS PSO BAT FFA
10 dimensions 7 7 13 1 0 2
30 dimensions 3 14 6 1 0 6
50 dimensions 7 10 5 1 0 7
100 dimensions 6 11 2 1 0 10
Sum of wins 23 42 26 4 0 25
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Fig. 7.1 Mean solution comparison of algorithms tested on the IEEE CEC 2015
test set.

Tab. 7.4 Friedman Rank test P-Values (significant, if p<0.05).

10 D 30 D 50 D 100 D
CEC 2015 4.96E-05 2.79E-07 5.94E-07 2.42E-06
CEC 2017 2.67E-17 2.18E-20 9.41E-19 3.38E-16
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Fig. 7.2 Mean solution comparison of algorithms tested on the IEEE CEC 2017
test set.
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Fig. 7.3 Rank comparison of the BIA, CS, PSO, BAT, and FFA on benchmarks
CEC 2015 and CEC 2017 (Friedman Rank Test, p<0.05).
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Performance Analysis Based by the Problem Classes

Tab. 7.5 Friedman Rank Test P-Values (p<0.05) in CEC 2017 problem selection
across all dimensions.

Problem feature Problems P-Value
All problems F1-F30 1.72E-67
Unimodal problems F1-F3 1.48E-07
Multimodal problems F4-F10, F21-F30 2.06E-42
Many local optima F4-F6, F8-F10 5.86E-19
Second best is far from global optimum F5, F10 3.11E-05
Assymetrical problems F6-8, F21-30 5.11E-34
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Fig. 7.4 Performance measure featuring the ranks from the Friedman Rank test
(p<0.05) based on the character of solved problems.
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Discussion of Overall Results vs. Problem Class-Based Results

Based on the mean solution-oriented experiments (Figures 7.1 and 7.2), the
Bison Algorithm excelled particularly in F6 and F9 of CEC 2017 over all of the
tested dimensions and was generally quite successful when solving CEC 2015,
though occasionally outperformed by the Cuckoo Search algorithm. According
to the Wilcoxon Rank-Sum test, the Bison Algorithm had the best or second-
best results and the highest rate sum of significant wins across all the tested
dimensions when solving CEC 2015 and CEC 2017 problems (Table 7.2 and
Table 7.3).

The Friedman Rank test ranked the Bison Algorithm (4x), Cuckoo Search (3x),
and the Firefly Algorithm (1x) among the best ranks. The Bat Algorithm was,
on the other hand, outperformed in all of the tested scenarios. Comparing
the complete test set results with the problem class-based results yielded an
interesting twist featuring the Firefly Algorithm in half of the problem classes
and the Bison Algorithm in the rest. The Wilcoxon Rank-Sum test in Figure 7.5
showed the percentage of algorithm’s wins on the individual problem classes.

Consistently with both statistical tests (Figure 7.4 and Figure 7.5), the Bison
Algorithm delivered the best results when solving asymmetrical problems and the
complete IEEE CEC 2017 test set. The Firefly and Bison Algorithms switched
the first and second ranks on multimodal and multiple local optima problems.
However, there was a surprising imbalance between the Friedman Rank test and
the Wilcoxon Rank-Sum tests comparing the problem class with the second-best
solution far from the global one.

The Friedman Rank tests might explain the discrepancy in the problems individ-
ually in Figure 7.6. Testing Function 5 and Function 10 separately showed that
while the Bison Algorithm ranked well on the first problem, it performed the
worst on the other. Therefore, the overall Friedman Rank test in Figure 7.4 e),
ended over the Nemenyi’s critical distance, despite the success of the Wilcoxon
Rank-Sum test.
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Fig. 7.6 Friedman Rank test on the individual problem F5 and F10 (p<0.05).
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Similarly, the unimodal problem class favored the Bison Algorithm with the
Friedman Rank test despite no win in the Wilcoxon Rank-Sum test (compare
Figure 7.4 b) and Figure 7.5 b)). The final rank of the Friedman Rank test
is explained in Figure 7.7. Individual tests revealed that the Bison Algorithm
never reached the first rank when solving an individual problem, yet ended in
the final first place due to the inconsistency of other algorithms. In other words,
the Bison Algorithm’s consistent second performance resulted in the overall first
rank.

7.1.3 Convergence Analysis

The convergences of the algorithms are presented in Figure 7.8 and Figure 7.9.
Compared to other methods, the Bison Algorithm was able to regain convergence
towards better solutions even after a period of population quality stagnation,
as shown in Figure 7.8. This figure represents the convergence of all 51 runs
optimizing Function 4 from the CEC 2017 benchmark. The Bison Algorithm
offered a higher rate of sudden drops than the other algorithms. However, since
the convergence data are highly problem-dependent, Figure 7.9 showed the mean
convergences of all 15 functions in the CEC 2015 benchmark in 100 dimensions.
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Fig. 7.8 Convergence of all runs of the swarm algorithms compared on IEEE
CEC 2017 Function F4 in 30 dimensions.
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Fig. 7.9 Mean convergences of benchmark test set IEEE CEC 2015 in 100 di-
mensions.
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7.1.4 Population Diversity Analysis

The loss of diversity poses a significant optimization threat. This section studies
the change in diversity of the algorithms examined throughout the optimization
process. The diversity computation followed a metric by [316] in Equations 7.1 ,
7.2. Tables 7.6 and 7.7 show the mean and median population diversities of the
final populations from all the tested functions. Figure 7.10 represents the course
of the mean diversities in the optimization process on the 100-dimensional set
of CEC 2015 problems. The data are presented as a percentage relative to the
theoretical maximum of the diversity value.

Diversity =
1

NP

NP∑
i=1

D∑
j=1

(xi,j − xj)
2 (7.1)

xj =
1

NP

NP∑
i=1

xi,j (7.2)

Where:
– NP is the population size,
– D is the dimensionality of the problem,
– i and j are the population and dimension iterators respectively,
– xi,j is the vector value of the solution at the given dimension,
– and (xj) is the corresponding mean of the solutions.

The population diversity investigation (Figure 7.10) revealed that the Bison Al-
gorithm guarantees a stable level of diversity throughout the optimization pro-
cess. While the diversities of Particle Swarm Optimization, the Bat Algorithm,
and the Firefly Algorithm mostly gradually drop, and Cuckoo Search Optimiza-
tion keeps a high diversity level in half of the problems, the Bison Algorithm
holds the same diversity level in all the tested functions. Table 7.6 and Table 7.7
confirmed the lead of the bison population’s diversity with mean and median
diversity values.
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Fig. 7.10 Mean diversity convergences of benchmark test set IEEE CEC 2015 in
100 dimensions.
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Tab. 7.6 Mean and median values of mean diversities percentual to the theoretical
maximal diversity value computed from all functions in benchmark CEC 2015.

BIA CS PSO BAT FFA
Mean Median Mean Median Mean Median Mean Median Mean Median

10 D 33.72% 33.22% 24.96% 27.65% 2.03% 1.69% 0.22% 0.01% 0.01% 0.01%
30 D 34.83% 32.97% 25.83% 23.45% 1.66% 1.21% 0.18% 0.00% 0.01% 0.01%
50 D 35.23% 35.23% 24.75% 24.75% 1.56% 1.56% 1.04% 1.04% 0.01% 0.01%
100 D 36.10% 35.93% 22.45% 10.85% 1.92% 0.70% 1.23% 0.00% 0.01% 0.01%

Tab. 7.7 Mean and median values of mean diversities percentual to the theoretical
maximal diversity value computed from all functions in benchmark CEC 2017.

BIA CS PSO BAT FFA
Mean Median Mean Median Mean Median Mean Median Mean Median

10 D 33.50% 32.87% 21.99% 19.57% 1.38% 1.15% 1.39% 0.01% 0.01% 0.01%
30 D 33.14% 32.85% 26.11% 30.58% 0.75% 0.41% 0.02% 0.00% 0.01% 0.01%
50 D 33.97% 33.26% 25.97% 27.83% 0.96% 0.47% 0.01% 0.00% 0.01% 0.01%
100 D 34.43% 34.29% 24.65% 25.36% 1.31% 0.50% 0.00% 0.00% 0.01% 0.01%

7.1.5 Computational Complexity

This section studies the computational complexities of the algorithms compared
by following the Evaluation Criteria for IEEE CEC 2017 [25]. Table 7.8 repre-
sents the results of the computational complexities, evaluated by Eq. 7.3, and
ranked in Figure 7.11. The partial data for complexity computation are in Ta-
ble D.1 in Appendix E.

Complexity =
T̂2 − T1
T0

(7.3)

Where:
– T0 is the computing time for computation of the mathematical operations

defined in [25],
– T1 is the computing time needed for 200,000 evaluations of Function 18,

which is a hybrid optimization problem of the IEEE CEC 2017 benchmark-
ing testbed [25],

– T2 is a sequence of 5 computing times, that the algorithm needs to compute
200,000 evaluations of Function 18,

– and T̂2 is the mean value of all the computing times from T2.
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Tab. 7.8 Complexity computation (by Eq. 7.3) of the compared algorithms based
on the Evaluation Criteria for IEEE CEC 2017.

Algorithm 10 D 30 D 50 D 100 D
Bison Algorithm 1.37 3.30 5.45 9.70
Cuckoo Search 0.61 0.69 0.81 0.96
Bat Algorithm 1.57 2.84 4.12 6.78
Particle Swarm Optimization 1.90 5.22 8.38 15.20
Firefly Algorithm 27.64 28.66 28.27 26.09

2.75

1.

4.

2.25

5.

BIA

CS

PSO

BAT

FFA

0 1 2 3 4 5
Avg. Rank

51

R nk

Fig. 7.11 Average rank of the overall computational complexity (Friedman Rank
test, p<0.05).
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The complexity computation results in Table 7.8 steadily ranked the Cuckoo
Search the first, followed by the Bat Algorithm or the Bison Algorithm, Particle
Swarm Optimization, and the Firefly Algorithm in last place.

However, there is a wide variety of optimization goals. While the computation
time may be crucial for some problems, others may prefer a reliable quality
of the final solutions. Therefore even the Firefly Algorithm, with the highest
computational complexity of all metaheuristics compared, may be convenient for
solving problems with unlimited time, as has been proven on the 100-dimensional
IEEE CEC 2015 benchmarking testbed (Table 7.2).

7.1.6 Comparison with Benchmark Winners

Compared to selected optimizers from the swarm family, the Bison Algorithm
provided stable, competitive results. However, the introduction of novel meta-
heuristics should be linked with up-to-date performance analysis to find out how
it stands against state-of-the-art methods. It is even more important when the
aim of development is to create a tool of superior performance. Although the
goal of the Bison Algorithm was of a different nature, this section compares
the proposed optimizer with the winners of the CEC 2015 and CEC 2017 com-
petitions: EBO with CMAR [226] and SPS L SHADE EIG. The codes of the
competition winners were employed from the official IEEE CEC repository1).
Both Table 7.9 and Figure 7.12 show that the competition winners generally
outperformed the Bison Algorithm on the tested set of problems.

1)https://github.com/P-N-Suganthan/CEC2017-BoundContrained and https://github.
com/P-N-Suganthan/CEC2015-Learning-Based, accessed 08/2021

https://github.com/P-N-Suganthan/CEC2017-BoundContrained
https://github.com/P-N-Suganthan/CEC2015-Learning-Based
https://github.com/P-N-Suganthan/CEC2015-Learning-Based
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Tab. 7.9 Winning Algorithms on CEC 2015 and CEC 2017: BIA vs the compe-
tition winners (Wilcoxon Rank-Sum test, p<0.05).

CEC 2015 CEC 2017
None SPS L BIA None EBO with BIA

SHADE EIG CMAR
10 dimensions 2 13 0 2 28 0
30 dimensions 1 14 0 1 28 1
50 dimensions 1 13 1 1 29 0
100 dimensions 0 15 0 0 29 1
Sum of wins 4 55 1 4 114 2

1.925

1.075

BIA

SPS L SHADE EIG

0.0 0.5 1.0 1.5 2.0
Avg. Rank

(a) CEC 2015
P-Value = 9.78E-24

1.958

1.042

BIA

EBO with CMAR

0.0 0.5 1.0 1.5 2.0
Avg. Rank

(b) CEC 2017
P-Value = 2.24E-26

Nemenyi Critical Distance

Fig. 7.12 Friedman Rank test comparing the Bison Algorithm with the compe-
tition winners (p<0.05).
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7.2 Performance of the Bison Algorithm Modifications

This section analyses the Bison Algorithm modifications and fulfillment of their
goals. Table 7.10 represents the motivations of each bison variation and corre-
sponding show-case analysis.

Tab. 7.10 Analysis of the Bison Algorithm modifications.
Version Development motivation Experiment Section
Original Bison Algorithm Mean solution error Figure 7.13

in Section 7.2
Standard Bison Algorithm Potential benefit of Thorough analysis on 7
(with a coherent running group} group exploration IEEE CEC 2015 and 2017

benchmark testbeds
compared to six optimizers

Bison Seeker Algorithm Better utilization of Success simulation 7.2.1
promising solutions experiment

Run Support Strategy Better utilization of Success simulation 7.2.1
promising solutions experiment

Self-Adaptive Bison Algorithm Robust parameter setting Comparison with the 7.2.2
standard Bison Algorithm

Detailed information on CEC 2015/2017
about the inner
dynamics of the Statistics of final
algorithm parameter settings

Convergence of
individual parameters

Most Bison Algorithm modifications vary in the exploration mechanisms, condi-
tioned mainly by finding an extraordinary solution. However, since the success
of the running group depends on a stochastic element, it rarely happens. Ta-
ble 7.11 shows the average number of iterations in which the running group
found a better solution than the swarming group on the IEEE CEC 2017 test
set. The exploration found a promising solution 1–786 times, but mostly in less
than 0.20% of all the iterations. Nevertheless, in theory, the true success of the
running group is needed once.

Since most algorithm modifications examined differ on these rare occasions, there
are usually no significant performance differences in the mean error value crite-
ria. Some modifications were, therefore, examined precisely at the moment of
successful exploration. In the “success simulation experiment,” further expanded
in Section 7.2.1, both the Bison Seeker Algorithm and the Run Support Strategy
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generally outperformed the standard Bison Algorithm [216, 211]. However, the
results were primarily insignificant on the complete set of the IEEE CEC 2017
benchmark, like in Figure 7.13.

Tab. 7.11 Successful running group statistics on CEC 2017: examining the min-
imum number of iterations in which the running group found a promising so-
lution. Average of minimal encounters, average of maximal, average number of
encounters, standard deviation of the means, median number of encounters, and
percentage of all the iterations.

Dimensions Min Max Mean Std mean Median Median (%)
10 D 1.1 34.0 4.6 2.83 4.03 0.20%
30 D 1.6 49.0 5.0 4.43 4.63 0.08%
50 D 1.7 85.0 6.1 6.37 5.73 0.06%
100 D 2.6 786.0 7.7 8.99 6.87 0.03%

Standard Bison Algorithm

Run Support Strategy

Original Bison Proposal

Bison Seeker Algorithm

Self-Adaptive Bison Algorithm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
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Fig. 7.13 Mean error values of all the Bison Algorithm variations solving the
IEEE CEC 2017 benchmark test set in 50 dimensions.
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7.2.1 Success Simulation Experiment

The success simulation experiments placed the running group solutions in the
proximity of the global optimum. The Bison Seekers were randomly generated in
1/15 of the search space around the optimum, and the Run Support Strategy one
run direction vector over the optimum location. The results were examined on
three problems with known optimum locations: Schwefel’s Function, Rastrigin’s
Function, and Easom’s Function.

Table 7.12 summarizes the statistics of three Bison Algorithm variants during
the success simulation experiments, examining the mean solution values, their
standard deviations, and the optimum find rate. The optimum find rate (Fig-
ure 7.14) illustrates the ratio of all the cases, where the algorithm found the exact
global optimum. Table 7.13 shows cases where one Bison Algorithm variant sig-
nificantly outperformed the others according to the Wilcoxon Rank-Sum test
(α = 0.05). This table favored the Run Support Strategy as the most successful
algorithm at utilizing the explored solutions.

It should be noted that besides the three problems studied, the original suc-
cess simulation experiments in [216, 211] also examined Rosenbrock’s Function
with insignificant differences, as they are in Rastrigin’s Function. On the other
hand, the significant differences were in Schwefel’s and Easom’s Functions, mod-
eling a many local optima problem, and a planar problem with global optimum
surrounded by narrow monotonous neighborhood, respectively.
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Tab. 7.12 Performance of the Run Support Strategy, Bison Seeker Algorithm,
and standard Bison Algorithm on functions with simulated success (mean error,
standard deviation, and optimum find rate).

Run Support Strategy Bison Seeker Algorithm Standard Bison Algorithm
Rastrigin avg std opt avg std opt avg std opt
10D 3.33 1.96 (7%) 3.31 4.12 (2%) 3.97 3.39 (0%)
30D 19.27 6.38 (0%) 20.19 7.08 (0%) 22.00 14.69 (0%)
50D 45.24 12.49 (0%) 47.79 2.58E06 (0%) 44.64 10.39 (0%)
Schwefel
10D 203.52 330.81 (53%) 342.8 544.85 (55%) 741.07 610.45 (27%)
30D 578.11 1070.85 (23%) 578.43 969.15 (18%) 3022.16 1156.57 (3%)
50D 1091.92 1785.85 (10%) 1152.8 1094.59 (2%) 5129.62 1349.55 (0%)
Easom
10D 1.84 3.15 (73%) 1.38 2.83 (80%) 1.84 2.95 (70%)
30D 5.11 9.48 (73%) 19.63 11.1 (22%) 19.19 10.87 (20%)
50D 4.37 11.94 (80%) 45.27 6.48 (2%) 41.40 9.87 (3%)

Tab. 7.13 Wilcoxon Rank-Sum test (p=0.05), comparing three Bison Algorithm
variants on a 3 functions testbed (Schwefel, Rastrigin, Easom).

Run Support Bison Seeker Standard Bison None Decisive
Strategy Algorithm Algorithm problems

10 D 1 0 0 2 Schwefel
30 D 2 0 0 1 Schwefel, Easom
50 D 2 0 0 1 Schwefel, Easom
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50%

100%

150%

200%

250%

300%
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Algorithm

Standard Bison

Algorithm

Easom Function

Found global optimum Global optimum not found
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Algorithm

Schwefel's Function

Found global optimum Global optimum not found

Fig. 7.14 Optimum find rate of the Run Support Strategy, the Bison Seeker Al-
gorithm, and the standard Bison Algorithm in Easom’s Function and Schwefel’s
Function in 10+30+50 dimensions.
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7.2.2 Self-Adaptive Bison Algorithm Performance

This section analyses the asset of the Self-Adaptive Bison Algorithm (SA BIA).
The experiments followed the IEEE CEC evaluation guidelines [25] with 51 runs
and 10,000 × dimension objective function evaluations. To meet the maximum
function evaluation limit, each sub-population consumed 1/7 of the budget.

First, the algorithm was compared to the standard Bison Algorithm. The com-
parison of mean error values of all the variations tested (Figure 7.13 in Sec-
tion 7.2) implied minimal differences, insignificant with the Friedman Rank test
(p>0.05). However, the standard Bison Algorithm provided significantly bet-
ter results on most of the problems tested with the Wilcoxon Rank-Sum test
(α = 0.05) in Table 7.14, highlighting the problem-dependency of the results.

The algorithm was then analyzed for the final parameter configurations. Ta-
ble 7.15 states the median values of the core population’s last parameter con-
figurations in CEC 2015. Generally, several recurrent configurations appeared
across all the dimensions, which are enumerated in Figure 7.15. Interestingly,
the most employed final configurations included the initial setting of the core
population, formerly recommended by the Bison Algorithm parameter tuning
experiment [210]. The second most frequent configuration of SG = 49 (the up-
per limit of possible SG values) boosted the exploitation factor and suppressed
the exploration factor completely.

Since the optimal parameter configuration may evolve during optimization, the
next set of tests studied the change in parameters in the process. Figure 7.16
shows the mean convergence of the overstep parameter values of the core popu-
lation, solving each IEEE CEC 2015 problem separately. With two exceptions,
the general course was quite similar, keeping the overstep parameter at 3.5. Fig-
ure 7.17 illustrates the mean convergence of the swarm group size and elite group
size parameters. Neither figure shows surprising drops or rises in the mean con-
vergences. Figure 7.18 summarizes the range of mean parameter values in one
chart.
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Finally, the populations were tested for their contribution – how often each pop-
ulation was used for its superior solutions. This experiment allowed a possible
bias favoring the core population since the best solution is always shared with
the core from the next iteration after the discovery. Nevertheless, it still provides
valuable information about the usefulness of the individual subpopulations. Fig-
ure 7.16 shows the rate of the successful subpopulation in 10, 30, 50, and 100
dimensions in CEC 2015. Figure 7.19 sums up the percentual success rate of
the subpopulations across all the dimensions tested. Based on these results, the
most fruitful subpopulations were the core population, the SG high population,
and the EG high population. On the other hand, the SG low and both overstep
populations made a minimal difference.

These findings unlocked a new level of understanding of the inner dynamics of
the algorithm. The Self-Adaptive version provided a robust approach for param-
eter tuning. Further studies may include different configurations of the initial
subpopulations — set to the featured final parameter settings. Also, despite
the favored exploitation, it might be interesting to add one purely explorative
population.

Tab. 7.14 Wilcoxon Rank-Sum test (p=0.05) comparing the standard Bison Al-
gorithm (BIA) and Self-Adaptive Bison Algorithm (SA BIA).

CEC 2015 CEC 2017
None BIA SA BIA None BIA SA BIA

10 dimensions 6 6 3 3 15 12
30 dimensions 5 8 2 9 11 10
50 dimensions 4 8 3 9 12 9
100 dimensions 1 9 5 8 14 8
Sum of wins 16 31 13 29 52 39
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Tab. 7.15 Median parameter configurations of final core populations on CEC
2015.

EG SG
10D 30D 50D 100D 10D 30D 50D 100D

F1 20 20 20 20 49 49 49 49
F2 20 20 20 20 40 40 49 49
F3 20 20 20 20 40 40 40 40
F4 20 20 20 40 40 40 40 40
F5 1 20 20 20 40 40 40 40
F6 20 20 20 20 40 49 49 49
F7 20 20 20 40 49 49 40 40
F8 20 20 20 20 40 49 49 49
F9 20 20 20 40 49 49 49 40
F10 20 20 20 20 49 49 49 49
F11 20 20 40 40 40 40 40 40
F12 40 40 40 40 40 40 40 40
F13 20 32 40 20 49 40 40 40
F14 20 20 20 20 40 49 49 49
F15 20 20 20 20 49 49 49 49

Tab. 7.16 Mean usage of population groups within the Self-Adaptive Bison Al-
gorithm solving the IEEE CEC 2015 benchmark.

Core SG SG EG EG Overstep Overstep low
high low high low high low

10 D 261.27 11.14 0.65 4.43 4.13 0.98 1.75
30 D 812.78 21.57 0.65 13.33 1.61 0.73 1.57
50 D 1376.82 29.46 0.63 16.34 1.30 0.60 1.65
100 D 2801.07 31.95 0.67 17.81 1.56 0.54 1.75
Sum 5251.95 94.12 2.60 51.91 8.60 2.84 6.71

Percentual 97% 2% 0% 1% 0% 0% 0%
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Fig. 7.15 Frequency of recurring median parameter configuration values of final
core populations on CEC 2015 and 2017. (The unique overstep = 2.25m the
parameter value was in CEC 2015 Function 5 in 100 dimensions.)
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Fig. 7.16 Mean values of the core population’s overstep parameter throughout
the optimization process on the IEEE CEC 2015 benchmark testbed in 100
dimensions.
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Fig. 7.17 Mean values of the core population’s EG and SG parameters throughout
the optimization process on the IEEE CEC 2015 benchmark testbed in 100
dimensions.
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Fig. 7.18 All mean values of the overstep, swarm group size and elite group size
parameters.
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Fig. 7.19 Distribution of the leading population of the Self-Adaptive Bison Algo-
rithm solving the CEC 2015 problem testbed across all dimensions and iterations.
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8 Meaning For Applied Science

This section contemplates the meaning of the work for science and practice.
The first part questions whether developing a novel metaheuristic algorithm was
beneficial or merely intensified the stereotype of prejudice.

The main goal of Bison Algorithm development was not to disprove the No Free
Lunch Theorem and create an algorithm with superior performance over all of
the known optimizers but to show and direct further metaheuristic engineering
towards meaningful development.

Furthermore, Section 8.2 explains how Bison Algorithm development followed
the proposed recommendations and highlights its contribution. Section 8.3 ex-
amines the practical impact on applied science, that is, the applications. It
describes how and where the algorithm was used. Finally, Section 8.4 explores
how the work fulfilled its dissertation goals.

8.1 Does the World Need Yet Another Swarm Algorithm?

The excess of metaphor-based algorithms has been clearly stated as a major risk
factor of current metaheuristics. More than 320 algorithms escalated into various
troubles like the duality of algorithms, scepticism of any “novel” technique, or
open disdain for metaheuristics. How could creating a new algorithm help?

It is important to acknowledge that even reviewers’ scowls cannot ultimately end
the development of new algorithms; very likely, new metaheuristics would arise
despite generic opposition. Nevertheless, to prevent substandard production, it
is vital to find a way of avoiding the recurrent mistakes that are often connected
to new metaheuristic proposals. That is the goal of this thesis.

For meaningful development, the Author proposed rules for future design of
novel swarm and metaheuristic algorithms. The Bison Algorithm was created
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as a proof of concept of the guidelines. Following the recommendations, the
development was aimed at a common yet poignant problem of local optimum
containment. As a result, an algorithm was born with interesting results for
solving problems with many local optima.

One without the other would not make any difference. Suggesting a set of rec-
ommendations without their application would be just another invitation to im-
prove metaheuristic practice with minimal impact. Developing a new algorithm
without good scientific practice would, in fact, only reinforce the inappropriate
“substandard” label on novel metaheuristics. But together, these two concepts
may benefit new metaheuristics that are yet to be created.

Based on the Author’s observations, metaheuristics development is at a cross-
road. It can either continue in complete ignorance, leading to the total deteriora-
tion of metaheuristics or potential recommendations to ban future development.
Or, it can reflect reservations and try to avoid common mistakes. Many contem-
porary scientists ([93, 27, 84, 123, 217, 218, 232]), the Author included, hope for
the latter, and that was the content of this work. Ultimately, to answer the title
question, the latter is what the world certainly needs.

8.2 Following the Recommendation Guidelines

This section evaluates how the development process followed the guidelines and
recommendations from Section 3.3.

Guidelines for Algorithm Design

X Name motivation (not metaphor-based)
X Use standard vocabulary
X Share the source code of novel algorithms
X Describe algorithms with flowcharts for a better understanding
X Analyze components of the proposed algorithm individually
X Keep it simple
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The guidelines for algorithm design instruct researchers to start development by
naming the motivation. The motivation for the Bison Algorithm was the develop-
ment of an escape tool from local optima containment, and this was stated in Sec-
tion 5.1. The algorithm uses standard vocabulary for objective function, popula-
tion, and solutions. Occasionally, it substitutes “solution of the exploration run-
ning group or exploitation swarming group” for “runner” or “swarmer” for a better
comprehension of the methodology. The algorithm’s source code is available at
the Tomas Bata University Artificial Intelligence Laboratory’s GitHub repos-
itory: https://github.com/TBU-AILab/Bison-Algorithm. The Self-Adaptive
Bison Algorithm modification is available at: https://github.com/TBU-AILab/
Bison-Algorithm-OOP. Both the standard version and all the modifications were
described with Flowcharts (Figures 5.1, 6.3, 6.6, 6.4, and 6.10). The exploitation
and exploration components were described separately in Sections 5.4, and 5.5.

Guidelines for Selection of Algorithms to be Compared and Benchmark

X Select algorithms to be compared with respect to the goal of the experiment

For performance-oriented comparison, compare algorithms with:

X Original version of the algorithm (first proposal)
X Reference version of the algorithm (the one that is modified)
X Best algorithms so far on the benchmark being examined (competition

winner)
X Other algorithms operating on a similar principle

Select benchmark problems:

X Of broad characteristics without bias
X Prefer standard benchmark test sets

The selection of algorithms to be compared is connected to the goal of each
experiment. In this case, two experiments were in place: a general comparison
with other metaheuristics and an analysis of individual modifications. For the

https://github.com/TBU-AILab/Bison-Algorithm
https://github.com/TBU-AILab/Bison-Algorithm-OOP
https://github.com/TBU-AILab/Bison-Algorithm-OOP
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general metaheuristic comparison, the competing optimizers of the swarm al-
gorithm family were selected from the top 10 most popular swarm optimizers
from Section 3.1. These should fall into the class of other algorithms operating
on a similar principle, although there are apparent differences. Furthermore,
the algorithms selection also included the competition winners of the examined
benchmark testbeds in Section 7.1.6. Since the development goal was tackling
the local optimum problem, rather than winning the CEC competition, these
results were complementary yet important. Comparison with what is currently
state-of-the-art provides vital information for potential users. The Bison modi-
fications were mainly compared to the standard Bison Algorithm as a reference
version of the algorithm. The original proposal was included in an example of
mean solution error comparison in Figure 7.13.

The experiments were carried out on standard benchmarks with broad charac-
teristics. Moreover, the Bison Algorithm was also examined on problems liable
to local optimum containment, to explore the initial motivation. Section 6.5
illustrates how the Bison modifications dealt with this problem in practice. The
IEEE CEC 2017 benchmark included six problems characterized by a vast num-
ber of local optima. The Bison Algorithm was particularly successful in half of
the tested cases (see Figure 7.5 b) in Section 7.1.2).

Guidelines for Experimental Setup

X Prefer own implementation over literature-based results
X Provide the same conditions for all the experiments
X Share the source codes of all the algorithms
X Tune the parameters of all the algorithms for the problem at hand with

statistical tests
X Combine multiple performance measures

When examining the CPU execution time, all algorithms should:

X Be coded by the same programmer
X Be coded in the same programming language
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X Share most functions
X Be examined on the same computer

There were no literature-based results. The competition winners’ implemen-
tations were taken from the official IEEE CEC competition repository1); others
were derived from the EvoloPy library [129]. The open-source code of all the algo-
rithms is available at https://github.com/TBU-AILab/Bison-Algorithm-OOP.
All the experiments followed the CEC Evaluation guide and met the same objec-
tive function evaluation budget. The parameters of the swarm-based algorithms
were tuned in the Parameter Tuning Experiment (Section 7.1.1) except for the
competition winners, whose parameters were already tuned for the examined
testbed.

The only experiment with CPU execution time was the Complexity Computation
in Section 7.1.5. These experiments were carried out on the same computer,
shared most of the functions, and were programmed by the Author to fit the
same template in Python.

Guidelines for Results’ Analysis

X Use statistical tests for significance
X Allow negative results
X Show results in context, provide interpretation
X Be cautious with generalization
X Depict the results in both graphs and tables
X Advocate assets and contribution of the algorithm (novelty/performance/

methodology/challenge particular problem)

The result’s analysis included the Wilcoxon Rank-Sum and Friedman Rank tests
for significance and allowed for negative results. The results examined the whole
set of 45 problems, but also multiple problem classes. Examination based on the
character of the problems (in Section 7.1.2) provided extra context.

1)https://github.com/P-N-Suganthan/CEC2017-BoundContrained and https://github.
com/P-N-Suganthan/CEC2015-Learning-Based, accessed 08/2021

https://github.com/TBU-AILab/Bison-Algorithm-OOP
https://github.com/P-N-Suganthan/CEC2017-BoundContrained
https://github.com/P-N-Suganthan/CEC2015-Learning-Based
https://github.com/P-N-Suganthan/CEC2015-Learning-Based
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Finally, it remains to advocate the asset and contribution of the algorithm, to
which the Section 8 was dedicated. Based on the justification criteria mentioned
in Section 3.3, novel algorithm development may be justified by at least one of
the following:

? Novelty
X Superior performance
X Methodology
X Orientation towards a particular problem

So far, there is no tool to identify the similarity between a new optimizer and the
rest of 320 metaheuristics. That is why this criterion is evaluated with a question
mark. Nevertheless, to the Author’s knowledge, there is no algorithm with the
exploration and exploitation features similar to the Bison Algorithm. The nov-
elty aspect, therefore, might as well benefit one of the contribution aspects. On
the other hand, the algorithm did not meet the superior performance criterion
since it did not outperform the competition winners. However, neither novelty
nor superior performance was the main goal of the algorithm’s development.

The advocacy of the proposed algorithm’s development stands on 1) contribu-
tion to methodology and 2) building a tool to tackle a known optimization issue.
The contribution to methodology lies in unique exploration and exploitation
techniques. Moreover, the exploration method and utilization of found solu-
tions stand as an independent block, which may be easily transferable to other
optimizers, helping them escape local optima.

A secondary motivation for Bison Algorithm development was the introduc-
tion and advocacy of the last argument for the justification of novel algorithms
development, that is, development aimed at fighting a particular optimization
problem. The Bison Algorithm was developed with a mechanism to escape lo-
cal optimum and was ultimately successful with this type of problem on the
examined test set.
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8.3 Applications of the Bison Algorithm

The most valuable contribution of swarm algorithms lies in quick solutions to
complex real-life problems, including transportation, energy, logistics, or so-
cial networks [100]. Real-life problems need efficient real-time solutions. Al-
though the metaheuristic approach does not guarantee finding the exact opti-
mum, "good" solutions are often sufficient.

Because of the metaheuristics avalanche, many criticize both the quality and
quantity of novel bio-inspired metaheuristics. But metaheuristics, even the novel
ones, usually have their advocate in applications. Hence, the Author would like
to highlight some implementations of the proposed algorithm.

The Bison Algorithm was successfully used to optimize 3 PID controllers – the
water tank test, mass spring damper, DC motor, and their cascade versions in
(Eqs. 8.1-8.3) [215]. The problems are defined as follows:

Water Tank Test

Goal: To maintain the desired water level ḣ in the tank by changing the water
inflow.

ḣ =
1

A

(
qin + qex − qem − s ·

√
2gh

)
, (8.1)

Where:
– ḣ is the water level in the tank,
– A is the surface area,
– qin is a controllable water inflow,
– qex is the external water outflow,
– s is emergency water outflow,
– and g = 9.81m/s2 is the gravitational acceleration.
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Mass Spring Damper

Goal: To maintain the desired position s∗ of mass m1 by managing the control
force F .{

s1 = v1 · t+ 1
2a1 · t

2 v1 = a1 · t a1 = 1
m1

(k · (s2 − s1)− v1 · y)

s2 = v2 · t+ 1
2a2 · t

2 v2 = a2 · t a2 = 1
m2

(k · (F − s2)− v2 · y)
(8.2)

Where:
– s1, s2 are the positions of masses, which are connected via spring,
– y is a constant point connected to the masses by another spring,
– and k is the stiffness constant.

Fig. 8.1 Simulated mass spring damper.

DC Motor

Goal: to maintain the desired motor speed ω∗ by managing input voltage F .

{
ω̇ = 1

J (Kt · i− b · ω)

i̇ = 1
L (−R · i+ V −Ke · ω)

(8.3)

Where:
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– ω is the speed,
– J is the rotor’s moment of inertia,
– b is viscous friction constant,
– Kt is motor torque constant,
– i is armature current,
– R is electric resistance,
– L is electric inductance,
– and Ke is the electromotive force constant.

The performance measurement included the current error, overshoot, oscilla-
tions, and suit (see Eq. 8.4). The simulations carried out 100 repetitions of
25, 000 objective function evaluations budget.

fitness = error · ωe + over · ωv + oscs · ωo + suit · ωs (8.4)

The experiment compared five optimizers: the Genetic Algorithm, Differential
Evolution, Particle Swarm Optimization, the Cuckoo Search, and the Bison Al-
gorithm, and examined the differences between standard versus cascade PID
controllers. Figure 8.2 depicts the average results of the algorithms using both
standard and cascade PID controllers. The engineering issues examined were
minimization problems; thus, a lower bar indicates better results. Figure 8.3
summarizes the time consumption of each algorithm, and the best and worst
result statistics of the optimizers: on how many of the six examined problem
scenarios one algorithm deliver superior or inferior results to all the others. The
paper concluded that the Bison Algorithm delivered top results (in a 5% range
from the best-found results) in the majority of the tested problems.

The Bison Seeker Algorithm was applied as a hybrid method of symbolic re-
gression in [258]. The algorithm outclassed basic symbolic regression even with
a non-standard parameter setting of very few iterations and small populations.
Figure 8.4 shows the percentual success rate of various instances of hybrid Bison
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Fig. 8.2 Average fitness results of the Genetic Algorithm, Differential Evolution,
Particle Swarm Optimization, the Cuckoo Search, and the Bison Algorithm de-
signing standard and cascade PID controllers for three engineering problems.
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Seeker Algorithm Symbolic Regression compared to standard Symbolic Regres-
sion.
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Fig. 8.4 Percentual success rate of finding the solution for y = sin(x) comparing
basic symbolic regression and various parameter variations of hybrid Bison Seeker
Algorithm Symbolic Regression.

Dziwiński and Bartczuk [114] compared the Bison Algorithm with the Genetic
Algorithm, Evolutionary Strategies, the Gravitational Search Algorithm, Differ-
ential Evolution, the Artificial Bee Colony, and the hybrid PSO and GA methods
with fuzzy logic. They ranked the Bison Algorithm to the third overall place.
Tolabi et al. [393] compared the Bison Algorithm on CEC 2017 with PSO, CS,
and the Thief and Police Algorithm. In accordance with the No Free Lunch
theorem, the Bison Algorithm kept the superiority of Functions 9 and 22 on the
benchmark testbed.
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8.4 Dissertation Goal Fulfillment

This section describes the steps taken to fulfill the dissertation goals, which were
set as follows:

X Map the current scene of modern swarm algorithms, its trends, and
challenges.

X Investigate the methods addressing the weaknesses of swarm algorithms.
X Propose a set of recommendations for new metaheuristics creation.
X Proof of concept testing: Implement the proposed recommendations

and methods in a new swarm algorithm.
X Evaluate the benefits of the proposed algorithm for applied sciences.

There are multiple challenges in the development and modification of bio-inspired
swarm algorithms. Mapping the current scene of modern metaheuristics and
current trends revealed a variety of both optimization and existential problems
(see Sections 2.3 and 3.2). To answer the former, Section 2.3.5 investigated
the methods addressing the optimization problems, while Section 3.3. proposed
guidelines to avoid the existential ones. Furthermore, the recommendations for
novel metaheuristics development were applied to prove the concept, as a new
swarm-based algorithm was proposed and tested. Section 6 introduced several
algorithm modifications, including a self-adaptive variant, as a modern modi-
fication trend representative. Finally, Section 8 evaluated the benefits of the
proposed algorithm and its applications.
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9 Conclusion

Nowadays, most new metaheuristics go round in circles repeating the same mis-
takes and facing prejudicial disrespect regardless of the actual quality of the pre-
sented method. Many researchers, scientists, and practitioners stand up against
common malpractice and try to influence future metaheuristics towards a better
standard. Most recently, at the turn of 2020/2021, a great number of publications
dedicated to benchmarking issues and fairness in comparison, were published.
However, advising a better approach, or pointing out others’ mistakes, is not as
powerful as applying the change proposed.

This thesis describes the current scene of the swarm algorithms, the state-of-
the-art optimization techniques, modification trends, and reservations about the
pitfalls of novel metaheuristic development. Detecting two types of struggles:
optimization problems like stagnation or premature convergence, and existential
problems connected to the criticism mentioned above, the Author proposes a
new standard for developing future metaheuristics. But most importantly, these
recommendations are applied to a showcase development project of a new swarm-
based algorithm.

Following the recommendations led to the creation of an algorithm designed to
tackle local optimum containment. The Bison Algorithm proposes a systematical
scanning of the search space independently of the exploitation process. The
suggested technique offers a way out of stagnation caused by local optimum
confinement. Yet, it should be easy to implement for all kinds of problems from
discrete, continuous, to large-scale, or other optimizations.

The algorithm was thoroughly examined, tested, and compared to other swarm
optimization methods on the sum of 45 functions of IEEE CEC 2015 and 2017.
The results show that the proposed algorithm is exceptionally competent when
solving problems with many local optima. The engagement of modern modifi-
cation methods, including boosted exploration and the self-adaptive parameter
approach, led to a deeper understanding of the inner dynamics of the algorithm.
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Solving the recurrent problems of metaheuristic optimization may open the way
for new challenges. The future might hold exciting discoveries like algorithm
similarity detection systems, automatically assembled AI-based optimizers, neu-
roevolution, or new unexplored methods to tackle ubiquitous optimization prob-
lems.

This work did not aim to disclaim the No Free Lunch Theorem. It did not
attempt to create a superlative optimizer that would solve every known possible
problem. In fact, it aimed even higher. By setting preliminary rules and leading
the way, this work presents one of many steps towards a meaningful development
of metaheuristics yet to be created.
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APPENDIX A: LIST OF METAHEURISTICS

Tab. A.1 List of all metaheuristics from [275] sorted by number of citations
of their original proposal publications in the Scopus Database 30/1/2020-
1/11/2021.

Algorithm Acronym Year Reference H Scopus H Classification
Paper Citations

1 Genetic Algorithms GA 1975 [166] 34159 Breeding based
2 Simulated Annealing SA.1 1983 [220] 26959 Chemistry based
3 Differential Evolution DE 1997 [370] 14769 Breeding based
4 Particle Swarm Optimization PSO 1995 [115] 10938 Swarm based
5 Ant Colony Optimization ACO 1996 [107] 8075 Swarm based
6 Self-Driven Particles SPP 1995 [401] 4195 Physics based
7 Cuckoo Search CS 2009 [439] 3702 Swarm based
8 Grey Wolf Optimizer GWO 2014 [269] 3433 Swarm based
9 Artificial Bee Colony ABC 2005 [200] 3423 Swarm based
10 Gravitational Search Algorithm GSA 2009 [335] 3237 Physics based
11 Bat Inspired Algorithm BAT 2010 [436] 2468 Swarm based
12 Bacterial Foraging Optimization BFOA 2002 [307] 2183 Swarm based
13 Evolution Strategies ES 1973 [339] 2093 Breeding based
14 Biogeography based Optimization BBO 2008 [365] 2082 Breeding based
15 Firefly Algorithm FA 2009 [430] 2081 Swarm based
16 Whale Optimization Algorithm WOA 2016 [265] 1962 Swarm based
17 Teaching-Learning based TLBO 2011 [334] 1688 Human based

Optimization Algorithm
18 Imperialist Competitive Algorithm ICA 2007 [24] 1458 Human based
19 Harmony Search HS 2005 [233] 1281 Physics based
20 Moth Flame Optimization Algorithm MFO 2015 [262] 1002 Swarm based
21 Ant Lion Optimizer ALO 2015 [268] 970 Swarm based
22 Flower Pollination Algorithm FPA 2012 [431] 951 Plant based
23 Krill Herd KH 2012 [143] 950 Swarm based
24 Sine Cosine Algorithm SCA.2 2016 [264] 893 Swarm based
25 Fruit Fly Optimization Algorithm FOA 2012 [305] 874 Swarm based
26 Weed Colonization Optimization IWO 2006 [252] 835 Breeding based
27 Salp Swarm Algorithm SSA.2 2017 [267] 810 Swarm based
28 Big Bang Big Crunch BBBC 2006 [124] 745 Physics based
29 Clonal Selection Algorithm CSA.1 2000 [94] 738 Miscellaneous
30 Dragonfly Algorithm DA 2016 [263] 708 Swarm based
31 Shuffled Frog-Leaping Algorithm SFLA 2006 [126] 683 Swarm based
32 Bees Algorithm BA 2006 [310] 682 Swarm based
33 Charged Systems Search CSS 2010 [208] 669 Physics based
34 Grasshopper Optimisation Algorithm GOA 2017 [352] 606 Swarm based
35 Cuckoo Optimization Algorithm COA 2011 [328] 594 Swarm based
36 Symbiosis Organisms Search SOS 2014 [67] 586 Swarm based
37 Electromagnetism Mechanism Optimization EMO 2003 [40] 571 Physics based
38 Crow Search Algorithm CSA 2016 [23] 569 Swarm based
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39 Backtracking Search Optimization BSO.3 2013 [79] 562 Miscellaneous
40 Fireworks Algorithm Optimization FAO 2010 [384] 541 Miscellaneous
41 Multi-Verse Optimizer MVO 2016 [266] 523 Physics based
42 Group Search Optimizer GSO.1 2009 [163] 517 Swarm based
43 The Great Deluge Algorithm TGD 1993 [112] 497 Miscellaneous
44 Water Cycle Algorithm WCA.2 2012 [125] 494 Physics based
45 Black Hole Optimization BH 2013 [159] 457 Physics based
46 Modified Cuckoo Search MCS 2011 [404] 415 Swarm based
47 Chemical Reaction Optimization Algorithm CRO.1 2010 [230] 365 Chemistry based
48 Cat Swarm Optimization CSO 2006 [71] 339 Swarm based
49 Brain Storm Optimization Algorithm BSO.2 2011 [364] 324 Human based
50 Mine Blast Algorithm MBA 2013 [346] 322 Miscellaneous
51 Ray Optimization RO 2012 [206] 319 Physics based
52 Social Behavior Optimization Algorithm SBO.1 2003 [336] 310 Human based
53 Self-Organizing Migrating Algorithm SOMA 2004 [443] 295 Breeding based
54 Harry’s Hawk Optimization Algorithm HHO 2019 [165] 295 Swarm based
55 Marriage In Honey Bees Optimization MHBO 2001 [1] 290 Breeding based
56 Colliding Bodies Optimization CBO 2014 [207] 284 Physics based
57 Bacterial Chemotaxis Optimization BCO.2 2002 [287] 281 Swarm based
58 Social Spider Optimization SSO.2 2013 [86] 279 Swarm based
59 Bee Colony Optimization BCO 2005 [389] 278 Swarm based
60 Differential Search Algorithm DSA 2012 [77] 270 Miscellaneous
61 Intelligence Water Drops Algorithm IWD 2009 [357] 269 Physics based
62 Glowworm Swarm Optimization GSO 2005 [224] 250 Swarm based
63 Chicken Swarm Optimization CSO.1 2014 [255] 247 Swarm based
64 Dolphin Echolocation DE.1 2013 [204] 239 Swarm based
65 Pigeon Inspired Optimization PIO 2014 [111] 227 Swarm based
66 Virtual Bees Algorithm VBA 2005 [429] 225 Swarm based
67 Water Wave Optimization Algorithm WWA 2015 [455] 224 Physics based
68 Chaos Optimization Algorithm COA.4 1998 [235] 213 Miscellaneous
69 Stochastic Fractal Search SFS.1 2015 [350] 204 Miscellaneous
70 Interior Search Algorithm ISA 2014 [142] 201 Miscellaneous
71 Dendritic Cells Algorithm DCA 2005 [151] 197 Breeding based
72 Spider Monkey Optimization SMO 2014 [26] 196 Swarm based
73 Lion Optimization Algorithm LOA 2014 [330] 188 Swarm based
74 Eagle Strategy ES.1 2010 [432] 171 Swarm based
75 Lightning Search Algorithm LSA 2015 [360] 165 Physics based
76 Social Spider Algorithm SSA 2015 [441] 164 Swarm based
77 Artificial Chemical Reaction Optimization ACROA 2011 [9] 158 Chemistry based

Algorithm
78 Extremal Optimization EO 1999 [47] 155 Miscellaneous
79 BeeHive Algorithm BHA 2004 [411] 153 Swarm based
80 Cuttlefish Algorithm CFA 2015 [118] 153 Swarm based
81 Hunting Search HuS 2010 [300] 152 Swarm based
82 Catfish Optimization Algorithm CAO 2011 [75] 150 Swarm based
83 Regular Butterfly Optimization Algorithm RBOA 2019 [18] 150 Swarm based
84 Monkey Search MS 2007 [282] 144 Swarm based
85 Spotted Hyena Optimizer SHO 2017 [103] 142 Swarm based
86 Bird Swarm Algorithm BSA 2016 [256] 141 Swarm based
87 Galaxy based Search Algorithm GBSA 2011 [358] 136 Physics based
88 Elephant Herding Optimization EHO 2016 [405] 136 Swarm based
89 Monarch Butterfly Optimization MBO.1 2019 [407] 136 Swarm based
90 Migrating Birds Optimization MBO.2 2012 [113] 135 Swarm based
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91 Cultural Algorithms CA 1999 [192] 132 Human based
92 Squirrel Search Algorithm SSA.1 2019 [186] 129 Swarm based
93 Vortex Search Algorithm VS 2015 [104] 127 Physics based
94 Shark Search Algorithm SA 1998 [181] 127 Swarm based
95 Wolf Search Algorithm WSA.1 2012 [386] 125 Swarm based
96 Fish School Search FSS 2008 [136] 116 Swarm based
97 Artificial Reaction Algorithm ARA 2013 [253] 108 Chemistry based
98 Wasp Colonies Algorithm WCA 1991 [259] 108 Swarm based
99 Bee Swarm Optimization BSO 2010 [8] 107 Swarm based
100 Virus Colony Search VCS 2016 [237] 107 Swarm based
101 Thermal Exchange Optimization TEO 2017 [203] 106 Chemistry based
102 League Championship Algorithm LCA.1 2014 [174] 103 Human based
103 Water Evaporation Optimization WEO 2016 [202] 102 Physics based
104 Wolf Pack Search WPS 2007 [424] 97 Swarm based
105 Bees Swarm Optimization Algorithm BSOA 2005 [109] 95 Swarm based
106 Search Group Algorithm SGA.2 2015 [149] 93 Miscellaneous
107 Grenade Explosion Method GEM 2010 [7] 88 Miscellaneous
108 Fish Swarm Algorithm FSA 2011 [397] 88 Swarm based
109 Artificial Cooperative Search ACS 2013 [78] 87 Miscellaneous
110 Bee System BS.1 2002 [245] 87 Swarm based
111 Shark Smell Optimization SSO 2016 [4] 86 Swarm based
112 States Matter Optimization Algorithm SMS 2014 [87] 85 Physics based
113 Artificial Algae Algorithm AAA 2015 [400] 85 Swarm based
114 Wind Driven Optimization WDO 2010 [30] 84 Miscellaneous
115 Rain-Fall Optimization Algorithm RFOA 2017 [6] 83 Physics based
116 Exchange Market Algorithm EMA 2014 [147] 83 Miscellaneous
117 Bird Mating Optimization BMO 2014 [22] 82 Breeding based
118 Water Flow Algorithm WFA.1 2007 [29] 82 Physics based
119 Ions Motion Optimization Algoirthm IMO 2015 [189] 82 Chemistry based
120 Queen-Bee Evolution QBE 2003 [195] 81 Breeding based
121 River Formation Dynamics RFD 2007 [325] 80 Physics based
122 FIFA World Cup Competitions FIFAAO 2016 [337] 80 Human based
123 Flocking Base Algorithms FBA 2006 [88] 80 Swarm based
124 Forest Optimization Algorithm FOA.1 2014 [145] 77 Plant based
125 Central Force Optimization CFO 2008 [141] 76 Physics based
126 Coyote Optimization Algorithm CCOA 2018 [313] 76 Swarm based
127 Seeker Optimization Algorithm SOA 2007 [90] 76 Swarm based
128 Spiral Dynamics Optimization SO 2011 [383] 75 Physics based
129 Coral Reefs Optimization CRO 2014 [347] 73 Breeding based
130 Electromagnetic Field Optimization EFO 2016 [5] 70 Physics based
131 Small World Optimization SWO 2006 [110] 70 Miscellaneous
132 Optics Inspired Optimization OIO 2015 [175] 69 Physics based
133 African Buffalo Optimization ABO 2015 [299] 69 Swarm based
134 Human Evolutionary Model HEM 2007 [277] 68 Human based
135 Lion Algorithm LA 2012 [329] 67 Swarm based
136 Soccer League Competition SLC 2014 [278] 63 Human based
137 Magnetic Optimization Algorithm MFO.2 2008 [388] 62 Physics based
138 Passing Vehicle Search PVS 2016 [354] 59 Miscellaneous
139 Fast Bacterial Swarming Algorithm FBSA 2008 [73] 59 Swarm based
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140 Social Engineering Optimization SEO 2018 [130] 58 Miscellaneous
141 Runner Root Algorithm RRA 2015 [257] 55 Plant based
142 Bees Life Algorithm BLA 2018 [42] 55 Swarm based
143 Snap-Drift Cuckoo Search SDCS 2017 [332] 55 Swarm based
144 Galactic Swarm Optimization GSO.2 2016 [285] 54 Physics based
145 Roach Infestation Problem RIO 2008 [160] 54 Swarm based
146 Gases Brownian Motion Optimization GBMO 2013 [2] 53 Chemistry based
147 Earthworm Optimization Algorithm EOA 2018 [406] 51 Breeding based
148 Global-Best Brain Storm Optimization GBSO 2017 [121] 51 Human based

Algorithm
149 Satin Bowerbird Optimizer SBO 2017 [351] 51 Swarm based
150 Ecogeography-Based Optimization EBO 2014 [456] 50 Breeding based
151 PopMusic Algorithm PopMusic 2002 [381] 50 Physics based
152 Vibrating Particle Systems Algorithm VPO 2017 [205] 50 Physics based
153 Bee System BS 1997 [353] 50 Swarm based
154 Water Flow-Like Algorithms WFA 2007 [425] 49 Physics based
155 Old Bachelor Acceptance OBA 1995 [170] 49 Human based
156 Gravitational Clustering Algorithm GCA 1999 [227] 48 Physics based
157 Hysteresis for Optimization HO 2002 [442] 48 Physics based
158 Wolf Colony Algorithm WCA.1 2011 [238] 47 Swarm based
159 Ying-Yang Pair Optimization YYOP 2016 [319] 46 Miscellaneous
160 Dolphin Partner Optimization DPO 2009 [427] 45 Swarm based
161 Golden Ball Algorithm GBA 2014 [303] 44 Human based
162 Artificial Chemical Process ACP 2005 [179] 40 Chemistry based
163 Social Emotional Optimization Algorithm SEA 2010 [420] 40 Human based
164 Volleyball Premier League Algorithm VPL 2018 [274] 40 Human based
165 Collective Animal Behavior CAB 2012 [85] 40 Swarm based
166 Swallow Swarm Optimization SSO.1 2013 [291] 40 Swarm based
167 Termite Hill Algorithm TA 2012 [459] 40 Swarm based
168 Sperm Whale Algorithm SWA 2016 [116] 39 Swarm based
169 Anarchic Society Optimization ASO 2012 [362] 38 Human based
170 Across Neighbourhood Search ANS 2016 [416] 38 Miscellaneous
171 Keshtel Algorithm KA 2014 [154] 38 Miscellaneous
172 Radial Movement Optimization RMO 2014 [326] 37 Physics based
173 Space Gravitational Algorithm SGA 2005 [169] 37 Physics based
174 Tree Growth Algorithm TGA 2018 [69] 37 Plant based
175 Membrane Algorithms MA 2006 [295] 37 Miscellaneous
176 Artificial Physics Optimization APO 2009 [418] 36 Physics based
177 Penguins Search Optimization Algorithm PSOA 2013 [146] 36 Swarm based
178 Paddy Field Algorithm PFA 2009 [317] 35 Plant based
179 Chaotic Dragonfly Algorithm CDA 2019 [355] 35 Swarm based
180 Elephant Search Algorithm ESA 2016 [97] 34 Swarm based
181 Artificial Electric Field Algorithm AEFA 2019 [14] 32 Physics based
182 Egyptian Vulture Optimization Algorithm EV 2013 [378] 32 Swarm based
183 Goose Team Optimization GTO 2008 [409] 32 Swarm based
184 The Great Salmon Run Algorithm TGSR 2012 [281] 30 Swarm based
185 Kaizen Programming KP 2014 [95] 30 Miscellaneous
186 Kinetic Gas Molecules Optimization KGMO 2014 [272] 29 Chemistry based
187 Social Cognitive Optimization Algorithm SCOA 2010 [412] 29 Human based
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188 Viral Systems Optimization VSO 2008 [82] 29 Swarm based
189 Queuing Search Algorithm QSA.1 2018 [445] 28 Human based
190 Plant Propagation Algorithm PPA.1 2014 [377] 28 Plant based
191 Honeybee Social Foraging HSF 2010 [324] 28 Swarm based
192 Termite Colony Optimization TCO 2010 [164] 28 Swarm based
193 Wisdom of Artificial Crowds WAC 2011 [422] 27 Human based
194 Natural Aggregation Algorithm NAA 2016 [244] 27 Swarm based
195 Gravitational Field Algorithm GFA 2010 [454] 26 Physics based
196 Tug Of War Optimization TWO 2016 [209] 26 Human based
197 Variable Mesh Optimization VMO 2012 [320] 24 Breeding based
198 Cognitive Behavior Optimization Algorithm COA.3 2016 [236] 24 Human based
199 Group Counseling Optimization GCO 2014 [120] 24 Human based
200 Simulated Bee Colony SBC 2009 [251] 24 Swarm based
201 Raven Roosting Optimization Algorithm RRO 2016 [49] 24 Swarm based
202 Eco-Inspired Evolutionary Algorithm EEA 2011 [306] 23 Breeding based
203 Melody Search MS.1 2011 [20] 23 Physics based
204 Integrated Radiation Optimization IRO 2007 [74] 23 Chemistry based
205 Group Leaders Optimization Algorithm GLOA 2011 [92] 23 Human based
206 Bacterial-GA Foraging BGAF 2007 [64] 23 Swarm based
207 Pity Beetle Algorithm PBA 2018 [198] 23 Swarm based
208 Gene Expression GE 2002 [135] 22 Breeding based
209 Sheep Flock Heredity Model SFHM 1999 [289] 22 Breeding based
210 Swine Influenza Models based Optimization SIMBO 2013 [308] 22 Breeding based
211 Killer Whale Algorithm KWA 2017 [44] 21 Swarm based
212 Method of Musical Composition MMC 2014 [279] 20 Physics based
213 Water-Flow Algorithm Optimization WFO 2011 [396] 20 Physics based
214 Collective Decision Optimization Algorithm CDOA 2017 [447] 20 Human based
215 Hierarchical Swarm Model HSM 2010 [62] 20 Swarm based
216 Red Deer Algorithm RDA 2020 [131] 20 Swarm based
217 Slime Mould Algorithm SMA 2008 [276] 20 Swarm based
218 Cricket Behavior-Based Algorithm CBBE 2016 [56] 19 Swarm based
219 Invasive Tumor Optimization Algorith ITGO 2015 [385] 19 Swarm based
220 Mouth Breeding Fish Algorithm MBF 2018 [185] 19 Swarm based
221 Swarm Inspired Projection Algorithm SIP 2009 [373] 19 Swarm based
222 Photosynthetic Algorithm PA 2000 [283] 18 Chemistry based
223 Competitive Optimization Algorithm COOA 2016 [359] 18 Human based
224 Simple Optimization SOPT 2012 [157] 18 Miscellaneous
225 Binary Whale Optimization Algorithm BWOA 2019 [341] 18 Swarm based
226 Optimal Foraging Algorithm OFA 2017 [458] 18 Swarm based
227 Prey Predator Algorithm PPA 2013 [155] 18 Swarm based
228 Human-Inspired Algorithms HIA 2009 [446] 17 Human based
229 Parliamentary Optimization Algorithm POA 2009 [48] 17 Human based
230 Heart Optimization HO.1 2014 [158] 17 Miscellaneous
231 Bumblebees BB 2009 [81] 17 Swarm based
232 Cultural Coyote Optimization Algorithm CCOA 2019 [312] 17 Swarm based
233 Magnetotactic Bacteria Optimization Algorithm MBO 2013 [270] 17 Swarm based
234 Naked Moled Rat NMR 2019 [348] 17 Swarm based
235 Ideology Algorithm IA 2017 [171] 16 Human based
236 Saplings Growing Up Algorithm SGA.1 2007 [201] 16 Plant based
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237 Bee Colony-Inspired Algorithm BCIA 2009 [176] 16 Swarm based
238 Football Game Inspired Algorithms FCA.1 2016 [127] 15 Human based
239 Human Group Formation HGF 2010 [390] 15 Human based
240 Self-Defense Mechanism Of The Plants SDMA 2018 [57] 15 Plant based

Algorithm
241 Cheetah Based Algorithm CBA 2018 [222] 15 Swarm based
242 Weightless Swarm Algorithm WSA 2012 [391] 15 Swarm based
243 Gravitational Interactions Algorithm GIO 2011 [140] 14 Physics based
244 Duelist Optimization Algorithm DOA 2016 [43] 14 Human based
245 Pearl Hunting Algorithm PHA 2012 [59] 14 Miscellaneous
246 Wasp Swarm Optimization WSO 2005 [314] 14 Swarm based
247 Meerkats Inspired Algorithm MIA 2018 [221] 14 Swarm based
248 Asexual Reproduction Optimization ARO 2011 [250] 13 Breeding based
249 Bean Optimization Algorithm BOA 2010 [451] 13 Breeding based
250 SuperBug Algorithm SuA 2012 [13] 13 Breeding based
251 Leaders and Followers Algorithm LFA 2015 [150] 13 Human based
252 Artificial Plants Optimization Algorithm APO.1 2011 [453] 13 Plant based
253 Golden Sine Algorithm GSA.1 2017 [387] 13 Miscellaneous
254 Blind, Naked Mole-Rats Algorithm BNMR 2013 [380] 13 Swarm based
255 Modified Cockroach Swarm Optimization MCSO 2014 [297] 13 Swarm based
256 Artificial Raindrop Algorithm RDA.1 2014 [190] 12 Miscellaneous
257 Laying Chicken Algorithm LCA 2017 [168] 12 Swarm based
258 Bat Intelligence BI 2012 [249] 12 Swarm based
259 Stem Cells Algorithm SCA 2011 [379] 11 Breeding based
260 Virulence Optimization Algorithm VOA 2016 [183] 11 Breeding based
261 Hurricane based Optimization Algorithm HO.2 2014 [338] 11 Physics based
262 Oriented Search Algorithm OSA 2008 [450] 11 Human based
263 Consultant Guide Search CGS 2010 [417] 11 Swarm based
264 Frog Call Inspired Algorithm FCA 2009 [284] 11 Swarm based
265 Virtual Ants Algorithm VAA 2006 [433] 11 Swarm based
266 Gravitational Emulation Local Search GELS 2009 [28] 10 Physics based
267 Synergistic Fibroblast Optimization SFO 2017 [375] 10 Chemistry based
268 Bar Systems BS.2 2008 [99] 10 Miscellaneous
269 Cloud Model-Based Algorithm CMBDE 2012 [457] 10 Miscellaneous
270 Animal Behavior Hunting ABH 2014 [288] 10 Swarm based
271 Flock by Leader FL 2012 [32] 10 Swarm based
272 Good Lattice Swarm Optimization GLSO 2007 [374] 10 Swarm based
273 Locust Swarms Optimization LSO 2009 [63] 10 Swarm based
274 The Great Salmon Run Algorithm TGSR 2013 [280] 10 Swarm based
275 Sonar Inspired Optimization SIO 2017 [398] 9 Physics based
276 Unconscious Search US 2012 [16] 9 Human based
277 Artificial Beehive Algorithm ABA 2009 [286] 9 Swarm based
278 Biology Migration Algorithm BMA 2019 [448] 9 Swarm based
279 Butterfly Optimizer BO 2016 [225] 9 Swarm based
280 Seven-Spot Labybird Optimization LBO 2013 [410] 9 Swarm based
281 General Relativity Search Algorithm GRSA 2015 [31] 8 Physics based
282 Scientifics Algoritmhs SA.2 2014 [133] 8 Miscellaneous
283 Group Escape Behavior GEB 2011 [260] 8 Swarm based
284 Bioluminiscent Swarm Optimization Algorithm BSO.1 2011 [96] 8 Swarm based
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285 Improved Genetic Immune Algorithm IGIA 2017 [33] 7 Breeding based
286 Virus Optimization Algorithm VOA.1 2009 [194] 7 Swarm based
287 Mox Optimization Algorithm MOX 2011 [261] 7 Swarm based
288 Population Migration Algorithm PMA 2009 [449] 7 Swarm based
289 Light Ray Optimization LRO 2010 [363] 6 Physics based
290 Spiral Optimization Algorithm SPOA 2010 [191] 6 Physics based
291 Camel Travelling Behavior COA.1 2016 [177] 6 Swarm based
292 Artificial Tribe Algorithm ATA 2012 [66] 6 Swarm based
293 Bison Algorithm BIA 2019 [214] 6 Swarm based
294 Nomadic People Optimizer NPO 2020 [349] 6 Swarm based
295 Surface-Simplex Swarm Evolution Algorithm SSSE 2017 [322] 6 Swarm based
296 Quantum Superposition Algorithm QSA 2016 [70] 5 Physics based
297 Neuronal Communication Algorithm NCA 2017 [21] 5 Miscellaneous
298 Andean Condor Algorithm ACA 2019 [11] 5 Swarm based
299 African Wild Dog Algorithm AWDA 2013 [376] 5 Swarm based
300 Jaguar Algorithm JA 2016 [60] 5 Swarm based
301 Mosquito Flying Optimization MFO.1 2016 [10] 5 Swarm based
302 Reincarnation Concept Optimization Algorithm ROA 2010 [361] 5 Swarm based
303 Bus Transportation Behavior BTA 2019 [46] 4 Human based
304 Greedy Politics Optimization Algorithm GPO 2014 [234] 4 Human based
305 Soccer Game Optimization SGO 2014 [321] 4 Human based
306 Natural Forest Regeneration Algorithm NFR 2016 [273] 4 Plant based
307 Artificial Searching Swarm Algorithm ASSA 2009 [65] 4 Swarm based
308 Bacterial Colony Optimization BCO.1 2012 [296] 4 Swarm based
309 Worm Optimization WO 2014 [17] 4 Swarm based
310 Immune-Inspired Computational Intelligence ICI 2008 [83] 3 Breeding based
311 Crystal Energy Optimization Algorithm CEO 2016 [134] 3 Physics based
312 Particle Collision Algorithm PCA 2007 [345] 3 Physics based
313 Rhino Herd Behavior RHB 2018 [144] 3 Swarm based
314 OptBees OB 2013 [248] 3 Swarm based
315 Hoopoe Heuristic Optimization HHO.1 2012 [122] 3 Swarm based
316 Zombie Survival Optimization ZSO 2012 [292] 3 Swarm based
317 Artificial Infections Disease Optimization AIDO 2016 [173] 2 Breeding based
318 Harmony Elements Algorithm HEA 2008 [89] 2 Physics based
319 Stochastic Focusing Search SFS 2008 [413] 2 Human based
320 Bald Eagle Search BES 2020 [12] 2 Swarm based
321 See-See Partridge Chicks Optimization SSPCO 2016 [302] 2 Swarm based
322 Atmosphere Clouds Model ACM 2013 [423] 1 Miscellaneous
323 Hypercube Natural Aggregation Algorithm HYNAA 2020 [247] 0 Swarm based
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want to publish in this journal

M arco Dorigo
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Starting with Volume 11 the following actions will be implemented:

– Submission letter. At submission time, all theauthorswill beasked todeclare
that themanuscript is not submitted to another journal/conference, that it is
free from plagiarism, that it was edited for language, and that a spell checker
was used. Papers whose linguistic quality is too low will be rejected without
being sent to referees. In the submission letter, the authors are also asked
to state in one or two paragraphs what are the main contributions of their
manuscript and to suggest at least three possible referees with whom they
haveno publications or projects in common and with whom they do not share
their af liations.

– “Natural metaphor articles” . There is a relatively recent trend that consists
in taking a natural system/process and use it as a metaphor to generate an
algorithmwhose components have names taken from the natural system/pro-
cess used as metaphor. This algorithm is often advertised as a “new natural
metaphor algorithm” and used to solvea specif c problem(most of the timean
optimization problem). Unfortunately, this approach has become so common
that there are now hundreds of so-called “new” algorithms that are submit-
ted (and unfortunately often also published) to journals and conferences every
year. The problem is that it often takes a lot of work and ef ort for editors,
and sometime referees, to understand why the authors are using the proposed
metaphor, what is really new and what is the same as the old with just a
new name, and whether the proposed algorithm is just a small incremental
improvement of a known algorithm or a radically new idea. The number of
such manuscripts submitted to Swarm Intelligencehas greatly increased in the
last few years. I have therefore asked the associate editors to pay particular
attention to these “natural metaphor” inspired manuscripts and to send them
to referees only if the manuscript seems to be of very high quality. In other
words, I haveasked theassociateeditors to increasethenumber of manuscripts
that they reject directly so as to decrease the work load on referees, who are
a precious resource that we need to protect. However, this is not enough and
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we have therefore recently decided that manuscripts submitted to Swarm In-
telligence should refrain from “abusing” the natural metaphor approach. For
example, optimization algorithms inspired by a natural phenomenon should
explain what the natural phenomenon is optimizing and how. The natural
phenomenon should be, therefore, a process that is already scientif cally un-
derstood. Analogies (and nature-based inspiration) need to be matched to a
clear, mathematically formal, explanation in terms of computational concepts,
such as solutions, objective functions, neighborhoods, perturbations, and so
on. It is the responsibility of the authors, and not of the referees, to explain
how new nature-inspired proposals dif er from already existing methods [1].
Being inspired by a dif erent metaphor is not enough. In particular, it is not
acceptable that the motivation for writing an article is the “new metaphor”
[2]. Any manuscript that does not follow these guidelines will be rejected with
a simple reference to this document asmotivation.

– Experimental methodology. Most of swarm intelligence research is empirical
in nature. Whenever this is the case, it is required that the evaluation of the
proposed solution isdonefollowinga strict experimental protocol that includes
(i) making data sets and the implementation of the used algorithms available
to the readers, and (ii) using an appropriate number of experiment repetitions
and appropriate statistical procedures to compare results. The performance
of swarm intelligence algorithms, especially when used to solve continuous or
combinatorial optimization problems, is often strongly dependent on thevalue
of the algorithm parameters. Such values should be set using either sound
statistical procedures as those from statistical design [3] or automatic param-
eter tuning procedures [4, 5, 6]; in all cases the data sets used for the tuning
and evaluation phases should be clearly identif ed and the procedures used for
setting the parameters must be reproducible.1

Another important point is that authors should design their experiments to
be as fair as possible. It is not acceptable to simply quote results published
from other articles, to compare your new algorithm’s results to these and say
that your algorithm is better if the algorithms are not evaluated under the
sameexperimental conditions. Finally, experimental comparisonsshould not be
devoted solely to show that theauthors’ new algorithm is thebest performing.
In fact, way more interesting is to understand and explain why algorithms
performbetter (or worse). Competitive testingwithout new insights about the
reasons behind the performance of algorithms is of little value and should be
avoided [7].

November 2016 Marco Dorigo
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APPENDIX C: JOURNAL OF HEURISTIC POLICIES ONHEURIS-
TIC SEARCH RESEARCH
The instructions for heuristic research for the Journal of Heuristics are avail-
able at: https://www.springer.com/journal/10732/updates/17199246, accessed
01/11/2021.

Journal of Heuristic Policies on Heuristic Search Research

These general policies apply to manuscripts submitted to the Journal of Heuristics and that belong to the 

general areas of heuristic search for optimization, including but not limited to metaheuristics, 

hyperheuristics, and matheuristics.

Metaphor-based methodologies

1. The optimization literature is rich with heuristic search methodologies for both discrete and 

continuous spaces. Proposing new paradigms is only acceptable if they contain innovative basic 

ideas, such as those that are embedded in classical frameworks like genetic algorithms, tabu search, 

and simulated annealing. The Journal of Heuristics avoids the publication of articles that repackage

and embed old ideas in methods that are claimed to be based on metaphors of natural or man-

made systems and processes. These so-called “novel” methods employ analogies that range from 

intelligent water drops, musicians playing jazz, imperialist societies, leapfrogs, kangaroos, all types 

of swarms and insects and even mine blast processes (Sörensen, 2013). If a researcher uses a 

metaphor to stimulate his or her own ideas about a new method, the method must nevertheless be 

translated into metaphor-free language, so that the strategies employed can be clearly understood, 

and their novelty is made clearly visible. (See items 2 and 3 below.) Metaphors are cheap and easy 

to come by. Their use to “window dress” a method is not acceptable.

2. The Journal of Heuristics is interested in advancing the area of heuristic search by publishing articles 

that, as mentioned by Sörensen (2013), adequately frame the methodology being applied within the 

existing optimization literature. Adequately framing a method entails deconstructing it and 

describing its components, measuring their contribution, and making connections to other

procedures where these and/or similar components appear. Contributions must provide a clear 

explanation on how the components were adapted to the specific problem that is being solved. 

Implementations should be explained by employing standard optimization terminology, where a 

solution is called a “solution” and not something else related to some obscure metaphor (e.g., 

harmony, flies, bats, countries, etc.). In short, the journal embraces a component-based view of 

heuristic search. 

3. The Journal of Heuristics fully endorses Sörensen’s view that metaphor-based “novel” methods

should not be published if they cannot demonstrate a contribution to their field. Renaming existing 

concepts does not count as a contribution. Even though these methods are often called “novel”, 

many present no new ideas, except for the occasional marginal variant of an already existing 

methodology. These methods should not take the journal space of truly innovative ideas and 

research. Since they do not use the standard optimization vocabulary, they are unnecessarily 

difficult to understand.

4. The Journal of Heuristics considers new methodologies only if they are scientifically tested by 

following the principles outlined by Hooker (1995). Scientific testing entails the construction of 

controlled experiments to isolate the effects of algorithmic components as well as to investigate 

how problem characteristics influence the behavior of those components. The journal considers that 

there is little gain for the scientific community for yet another search method whose polished 

implementation is narrowly tested on benchmark instances of a single problem class.

https://www.springer.com/journal/10732/updates/17199246


Competitive testing and up-the-wall game

5. The Journal of Heuristics does not endorse the up-the-wall-game (Burke, et al. 2009). The idea of the

up-the-wall game is to develop and apply a proposed search procedure to existing benchmark 

problems in order to compare it with other players. The goal is to get further “up the wall” than the 

other players. Although some competition among researchers or research groups could stimulate 

innovation, the ultimate goal of science is to understand (Burke, et al. 2009). True innovation in 

heuristic-search research is not achieved from yet another method that performs better than its 

competitors if there is no understanding as to why the method performs well (Sörensen, 2013).

6. The Journal of Heuristics favors the publication of meaningful insights over procedures that are 

tuned to perform better than others on a set of benchmark instances. In other words, the journal 

finds no value in conclusions stating that procedure X outperformed procedure Y if there is no 

insight related as to why this happened (Sörensen, 2013). Competitive testing fails to yield insight in 

the performance of algorithms (Hooker, 1995). The journal strives to assess the value of 

experimental results by their contribution to our understanding of heuristic search instead of 

whether they show that the polished implementation of a proposed method is able to win a race 

against the state of the art.

Development of customized solutions

7. The need for developing a customized solution to a problem must be justified. General-purpose 

solvers based on exact and heuristic methodologies should be tried first if the goal of the project is 

to solve a specific problem that requires a search procedure. If these general-purpose optimizers 

perform adequately for the application being considered, there is no need for a specialized 

procedure.

8. When the contribution is centered on developing a customized solution for a particular problem 

(e.g., those submitted to the area of Real-World Applications), considerable effort must be made to 

assess solution quality. Acceptable practices include but are not limited to measuring optimality 

gaps with lower or upper bounds and comparing solutions against known results or against results 

found with general-purpose optimizers. It is not acceptable to simply compare several versions of 

the same proposed solution method.

Statistically valid experiments and parameter tuning

9. The Journal of Heuristics requires that the authors conduct statistically valid computational 

experiments in order to support their statements about the performance of proposed procedures. 

Statistical validity refers to both the design of experiments and the analysis of the data. Barr, et al. 

(1995) present guidelines on how to design and perform statistically valid experiments.

10. For procedures that require parameter tuning, the available data must be partitioned into a training 

and a test set. Tuning should be performed in the training set only. Procedures that are tuned to 

solve a particular set of problems and that are not able to demonstrate their merit outside the 

chosen set of instances are of little interest.
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APPENDIX D: COMPLETE RESULTS OF ALL THE ALGORITHMS
TESTED

Tab. D.1 Complexity computation of examined swarm algorithms.

10 dimensions
Algorithm T0 T1 Mean T2 Complexity
BIA 2.68 1.07 4.75 1.37
CS 2.68 1.13 2.76 0.61
PSO 2.68 1.15 6.24 1.90
BAT 2.68 1.13 5.33 1.57
FFA 2.68 1.19 75.19 27.64

30 dimensions
Algorithm T0 T1 Mean T2 Complexity
BIA 2.63 1.26 9.93 3.30
CS 2.63 1.34 3.16 0.69
PSO 2.63 1.34 15.06 5.22
BAT 2.63 1.37 8.85 2.84
FFA 2.63 1.35 76.76 28.66

50 dimensions
Algorithm T0 T1 Mean T2 Complexity
BIA 2.63 1.66 16.02 5.45
CS 2.63 1.74 3.88 0.81
PSO 2.63 1.74 23.81 8.38
BAT 2.63 1.74 12.58 4.12
FFA 2.63 1.71 76.18 28.27

100 dimensions
Algorithm T0 T1 Mean T2 Complexity
BIA 2.84 3.47 31.00 9.70
CS 2.84 3.38 6.10 0.96
PSO 2.84 3.40 46.53 15.20
BAT 2.84 3.39 22.61 6.78
FFA 2.84 3.21 77.22 26.09

In Tables D.2-D.9 were highlighted algorithms, which performed significantly
better according to the Wilcoxon Rank-Sum test (p=0.05) when compared to
all the remaining swarm algorithms.



Tab. D.2 Complete statistics of all examined swarm algorithms on CEC 2015 in
10 dimensions.

BIA CS PSO BAT FFA
avg std avg std avg std avg std avg std

f1 4.07E + 04 3.60E + 04 2.88E + 02 3.25E + 02 9.12E + 04 3.99E + 05 8.58E + 06 7.19E + 06 8.56E + 05 8.51E + 05
f2 5.71E + 03 5.91E + 03 1.64E + 02 1.97E + 02 7.56E + 03 6.91E + 03 1.35E + 09 6.45E + 08 3.03E + 04 4.71E + 04
f3 2.04E + 01 6.57E − 02 2.02E + 01 5.56E − 02 2.01E + 01 1.17E − 01 2.00E + 01 5.15E − 04 2.00E + 01 1.80E − 04
f4 7.25E + 00 5.45E + 00 1.51E + 01 4.93E + 00 2.34E + 01 8.26E + 00 3.13E + 01 1.26E + 01 1.24E + 01 5.35E + 00
f5 1.07E + 03 3.12E + 02 5.73E + 02 1.55E + 02 6.17E + 02 2.06E + 02 8.79E + 02 2.58E + 02 5.93E + 02 2.50E + 02
f6 8.35E + 02 1.09E + 03 8.66E + 01 5.08E + 01 1.65E + 03 1.98E + 03 1.74E + 04 2.54E + 04 1.17E + 04 1.67E + 04
f7 6.06E − 01 6.15E − 01 1.33E + 00 2.61E − 01 2.80E + 00 1.24E + 00 8.39E + 00 1.56E + 00 1.79E + 00 4.58E − 01
f8 5.62E + 02 5.39E + 02 1.78E + 01 1.43E + 01 1.41E + 03 1.41E + 03 4.15E + 03 3.42E + 03 3.70E + 03 6.32E + 03
f9 1.00E + 02 4.96E − 02 1.00E + 02 7.12E − 02 1.00E + 02 1.77E − 01 1.09E + 02 4.20E + 00 1.00E + 02 5.39E − 02
f10 5.73E + 02 3.89E + 02 2.35E + 02 1.90E + 01 9.04E + 02 8.29E + 02 6.82E + 03 6.25E + 03 3.97E + 03 3.54E + 03
f11 2.22E + 02 1.30E + 02 2.08E + 02 1.36E + 02 2.83E + 02 7.09E + 01 1.94E + 02 7.45E + 01 3.06E + 02 1.01E + 02
f12 1.02E + 02 5.45E − 01 1.03E + 02 6.34E − 01 1.02E + 02 8.94E − 01 1.15E + 02 4.96E + 00 1.02E + 02 5.79E − 01
f13 3.32E + 01 2.88E + 00 3.32E + 01 2.27E + 00 4.00E + 01 3.61E + 00 4.52E + 01 2.80E + 00 3.42E + 01 3.61E + 00
f14 4.72E + 03 2.95E + 03 2.44E + 03 1.09E + 03 3.07E + 03 3.50E + 03 7.47E + 03 1.34E + 03 1.68E + 03 2.28E + 03
f15 1.00E + 02 0.00E + 00 1.00E + 02 0.00E + 00 1.01E + 02 4.20E + 00 1.60E + 02 1.69E + 01 1.00E + 02 1.45E − 03

Tab. D.3 Complete statistics of all examined swarm algorithms on CEC 2015 in
30 dimensions.

BIA CS PSO BAT FFA
avg std avg std avg std avg std avg std

f1 2.66E + 05 1.91E + 05 4.70E + 05 3.35E + 05 2.89E + 06 7.71E + 06 3.10E + 08 1.93E + 08 6.94E + 06 3.75E + 06
f2 1.53E + 03 1.64E + 03 1.42E + 03 1.27E + 03 3.21E + 08 7.54E + 08 3.61E + 10 1.12E + 10 2.94E + 04 3.71E + 04
f3 2.10E + 01 4.33E − 02 2.09E + 01 5.74E − 02 2.05E + 01 3.17E − 01 2.00E + 01 3.09E − 04 2.00E + 01 4.03E − 04
f4 7.13E + 01 5.71E + 01 1.44E + 02 2.68E + 01 1.41E + 02 2.81E + 01 2.45E + 02 5.66E + 01 6.40E + 01 1.65E + 01
f5 6.74E + 03 2.96E + 02 3.53E + 03 2.73E + 02 3.17E + 03 6.46E + 02 4.65E + 03 1.00E + 03 2.79E + 03 5.70E + 02
f6 5.25E + 04 2.99E + 04 5.78E + 03 3.43E + 03 1.12E + 05 8.70E + 04 5.20E + 06 5.16E + 06 3.53E + 05 2.88E + 05
f7 9.53E + 00 2.45E + 00 1.14E + 01 1.39E + 00 1.49E + 01 1.45E + 01 2.27E + 02 5.09E + 01 1.07E + 01 1.78E + 00
f8 2.88E + 04 1.74E + 04 2.04E + 03 1.32E + 03 3.60E + 04 2.66E + 04 5.06E + 05 7.71E + 05 2.17E + 05 1.47E + 05
f9 1.05E + 02 1.84E + 01 1.04E + 02 3.26E − 01 1.50E + 02 9.74E + 01 2.69E + 02 4.00E + 01 1.24E + 02 5.56E + 01
f10 7.73E + 04 5.70E + 04 2.06E + 03 5.78E + 02 1.15E + 05 4.54E + 05 2.94E + 06 3.08E + 06 5.26E + 05 4.92E + 05
f11 4.50E + 02 1.22E + 02 3.38E + 02 1.24E + 02 5.97E + 02 3.25E + 02 8.69E + 02 2.49E + 02 4.36E + 02 2.34E + 01
f12 1.05E + 02 5.93E − 01 1.08E + 02 1.00E + 00 1.16E + 02 1.06E + 01 1.67E + 02 8.26E + 00 1.07E + 02 8.59E − 01
f13 1.16E + 02 3.20E + 00 1.24E + 02 2.84E + 00 1.31E + 02 5.85E + 00 1.66E + 02 1.45E + 01 1.26E + 02 4.62E + 00
f14 3.30E + 04 9.27E + 02 3.26E + 04 1.10E + 03 3.80E + 04 4.51E + 03 6.83E + 04 7.15E + 03 1.08E + 04 1.01E + 04
f15 1.00E + 02 0.00E + 00 1.00E + 02 0.00E + 00 1.10E + 02 8.53E + 00 4.05E + 03 4.51E + 03 1.00E + 02 1.09E − 03

Tab. D.4 Complete statistics of all examined swarm algorithms on CEC 2015 in
50 dimensions.

BIA CS PSO BAT FFA
avg std avg std avg std avg std avg std

f1 4.27E + 05 2.17E + 05 4.33E + 06 1.39E + 06 6.34E + 06 1.14E + 07 1.24E + 09 6.72E + 08 2.60E + 07 1.11E + 07
f2 4.74E + 03 3.37E + 03 8.74E + 02 1.61E + 03 2.15E + 09 1.48E + 09 7.50E + 10 2.50E + 10 8.23E + 04 9.54E + 04
f3 2.11E + 01 3.10E − 02 2.11E + 01 5.79E − 02 2.09E + 01 2.41E − 01 2.00E + 01 3.42E − 02 2.00E + 01 4.93E − 04
f4 1.48E + 02 1.28E + 02 3.33E + 02 5.64E + 01 3.01E + 02 2.79E + 01 4.95E + 02 7.45E + 01 1.32E + 02 2.87E + 01
f5 1.26E + 04 3.79E + 02 6.67E + 03 3.61E + 02 5.34E + 03 8.32E + 02 8.96E + 03 1.99E + 03 5.03E + 03 7.76E + 02
f6 1.83E + 05 1.66E + 05 1.50E + 05 8.66E + 04 4.87E + 05 6.64E + 05 1.59E + 07 1.89E + 07 1.25E + 06 7.03E + 05
f7 5.50E + 01 3.28E + 01 3.54E + 01 2.00E + 01 3.48E + 01 2.26E + 01 6.87E + 02 1.43E + 02 2.39E + 01 2.42E + 00
f8 1.11E + 05 7.31E + 04 2.48E + 04 1.36E + 04 1.93E + 05 2.29E + 05 4.85E + 06 4.90E + 06 7.63E + 05 4.85E + 05
f9 1.23E + 02 8.05E + 01 1.07E + 02 5.16E − 01 2.51E + 02 1.64E + 02 5.75E + 02 9.29E + 01 1.19E + 02 5.78E + 01
f10 2.04E + 04 1.83E + 04 2.82E + 03 4.40E + 02 1.73E + 05 5.19E + 05 7.18E + 06 1.22E + 07 1.27E + 06 6.69E + 05
f11 6.70E + 02 6.13E + 01 9.90E + 02 6.12E + 02 1.16E + 03 4.07E + 02 2.35E + 03 4.29E + 02 5.27E + 02 5.73E + 01
f12 1.08E + 02 8.29E − 01 1.12E + 02 1.27E + 00 1.73E + 02 2.12E + 01 2.35E + 02 1.64E + 01 1.11E + 02 1.35E + 00
f13 2.17E + 02 4.09E + 00 2.22E + 02 4.39E + 00 2.34E + 02 7.07E + 00 4.21E + 02 7.40E + 01 2.23E + 02 4.79E + 00
f14 5.42E + 04 1.01E + 04 6.23E + 04 8.35E + 03 9.15E + 04 1.98E + 04 1.75E + 05 1.51E + 04 2.72E + 04 2.92E + 04
f15 1.00E + 02 0.00E + 00 1.00E + 02 1.25E − 01 1.08E + 02 6.66E + 00 9.33E + 03 1.08E + 04 1.00E + 02 1.07E − 03



Tab. D.5 Complete statistics of all examined swarm algorithms on CEC 2015 in
100 dimensions.

BIA CS PSO BAT FFA
avg std avg std avg std avg std avg std

f1 1.34E + 06 4.70E + 05 5.35E + 06 1.70E + 06 8.49E + 06 4.60E + 06 3.14E + 09 2.42E + 09 4.73E + 07 1.22E + 07
f2 1.04E + 03 1.76E + 03 1.28E + 03 2.01E + 03 9.63E + 09 6.14E + 09 1.01E + 11 8.09E + 10 6.65E + 04 8.26E + 04
f3 2.13E + 01 2.06E − 02 2.13E + 01 3.47E − 02 2.12E + 01 1.09E − 01 2.00E + 01 7.61E − 03 2.00E + 01 7.08E − 04
f4 5.11E + 02 3.18E + 02 8.81E + 02 7.60E + 01 7.08E + 02 6.05E + 01 1.14E + 03 1.18E + 02 3.53E + 02 5.45E + 01
f5 2.94E + 04 4.93E + 02 1.69E + 04 5.51E + 02 1.24E + 04 1.41E + 03 2.24E + 04 3.87E + 03 1.15E + 04 1.29E + 03
f6 4.15E + 05 1.07E + 05 2.81E + 06 7.34E + 05 2.05E + 06 8.57E + 05 2.87E + 08 2.32E + 08 4.81E + 06 2.02E + 06
f7 1.47E + 02 3.32E + 01 1.47E + 02 3.33E + 01 1.61E + 02 5.49E + 01 2.49E + 03 1.03E + 03 5.98E + 01 1.26E + 01
f8 2.01E + 05 1.08E + 05 1.06E + 06 4.18E + 05 7.46E + 05 4.98E + 05 6.41E + 07 8.18E + 07 3.41E + 06 1.29E + 06
f9 1.08E + 02 5.71E − 01 1.13E + 02 8.35E − 01 7.18E + 02 2.64E + 02 1.77E + 03 2.11E + 02 1.56E + 02 1.49E + 02
f10 4.56E + 04 1.61E + 05 8.74E + 03 4.30E + 03 2.12E + 06 3.62E + 06 1.26E + 08 1.91E + 08 6.00E + 06 2.38E + 06
f11 1.24E + 03 4.64E + 02 2.59E + 03 1.11E + 03 1.86E + 03 1.16E + 03 5.43E + 03 2.99E + 02 9.79E + 02 1.38E + 02
f12 1.19E + 02 8.88E − 01 1.19E + 02 1.24E + 00 2.54E + 02 2.62E + 01 3.89E + 02 2.60E + 01 1.21E + 02 1.36E + 00
f13 4.60E + 02 5.41E + 00 4.62E + 02 5.92E + 00 4.89E + 02 1.37E + 01 1.50E + 03 3.16E + 02 4.69E + 02 5.39E + 00
f14 1.45E + 05 5.02E + 04 1.11E + 05 8.98E + 03 2.51E + 05 4.98E + 04 6.08E + 05 6.78E + 04 3.23E + 04 4.77E + 04
f15 1.04E + 02 6.29E + 00 1.16E + 02 5.26E + 00 1.16E + 02 8.00E + 00 5.09E + 04 1.60E + 05 1.00E + 02 1.50E − 03

Tab. D.6 Complete statistics of all examined swarm algorithms on CEC 2017 in
10 dimensions.

BIA CS PSO BAT FFA
avg std avg std avg std avg std avg std

f1 4.78E + 02 6.57E + 02 7.78E + 00 1.24E + 01 1.84E + 03 2.41E + 03 1.36E + 09 6.72E + 08 2.18E + 04 3.07E + 04
f2 9.51E − 06 1.25E − 05 5.97E − 07 5.61E − 07 1.45E − 05 1.67E − 05 2.47E + 08 4.19E + 08 4.98E + 01 8.18E + 01
f3 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 1.34E − 14 2.44E − 14 7.80E + 03 2.57E + 03 2.44E − 04 1.09E − 04
f4 3.29E − 01 2.76E − 01 8.99E − 02 2.40E − 01 7.01E + 00 1.63E + 01 1.01E + 02 6.30E + 01 1.78E + 00 8.76E − 01
f5 7.27E + 00 6.28E + 00 1.50E + 01 5.27E + 00 2.85E + 01 9.05E + 00 3.22E + 01 1.20E + 01 1.10E + 01 5.48E + 00
f6 1.39E − 05 5.92E − 05 4.59E − 02 6.00E − 02 4.31E + 00 5.69E + 00 2.92E + 01 5.28E + 00 2.70E − 02 2.54E − 02
f7 2.43E + 01 8.37E + 00 2.70E + 01 5.13E + 00 2.02E + 01 5.26E + 00 1.17E + 02 3.75E + 01 2.11E + 01 6.14E + 00
f8 7.89E + 00 7.25E + 00 1.56E + 01 5.50E + 00 1.58E + 01 7.40E + 00 3.34E + 01 1.27E + 01 1.23E + 01 5.47E + 00
f9 1.41E − 01 3.79E − 01 1.09E + 00 6.01E + 00 8.92E − 15 3.09E − 14 4.75E + 02 2.03E + 02 3.56E − 03 1.76E − 02
f10 1.08E + 03 3.42E + 02 6.04E + 02 1.48E + 02 7.15E + 02 2.64E + 02 8.93E + 02 2.96E + 02 6.03E + 02 2.84E + 02
f11 2.89E + 00 2.62E + 00 2.75E + 00 1.18E + 00 2.71E + 01 1.37E + 01 1.62E + 02 7.63E + 01 5.21E + 01 4.26E + 01
f12 1.05E + 04 8.57E + 03 2.16E + 03 1.57E + 03 1.43E + 04 1.19E + 04 3.66E + 06 6.04E + 06 1.32E + 05 1.09E + 05
f13 2.98E + 03 2.64E + 03 1.27E + 01 5.79E + 00 6.15E + 03 4.71E + 03 1.30E + 04 1.07E + 04 4.94E + 04 6.61E + 04
f14 3.32E + 01 7.77E + 00 9.03E + 00 4.93E + 00 5.68E + 01 3.94E + 01 2.41E + 02 1.85E + 02 2.61E + 02 1.75E + 02
f15 2.92E + 01 1.90E + 01 2.35E + 00 1.02E + 00 1.24E + 02 1.68E + 02 2.25E + 03 1.60E + 03 1.04E + 03 9.68E + 02
f16 2.31E + 01 4.81E + 01 5.53E + 00 8.08E + 00 2.13E + 02 1.27E + 02 1.49E + 02 1.02E + 02 5.95E + 01 6.38E + 01
f17 3.59E + 01 2.08E + 01 2.75E + 01 6.52E + 00 5.23E + 01 2.55E + 01 1.11E + 02 2.64E + 01 4.95E + 01 2.89E + 01
f18 3.82E + 03 4.03E + 03 2.73E + 01 6.33E + 00 1.04E + 04 1.03E + 04 1.66E + 04 2.23E + 04 6.63E + 04 6.77E + 04
f19 2.36E + 01 2.39E + 01 2.59E + 00 7.53E − 01 3.84E + 02 6.65E + 02 2.68E + 03 2.93E + 03 2.95E + 02 3.51E + 02
f20 5.45E + 00 1.09E + 01 1.65E + 01 7.53E + 00 9.81E + 01 6.12E + 01 1.16E + 02 2.71E + 01 4.72E + 01 2.64E + 01
f21 1.21E + 02 4.12E + 01 1.22E + 02 4.55E + 01 2.22E + 02 3.79E + 01 1.23E + 02 1.14E + 01 2.10E + 02 2.33E + 01
f22 1.02E + 02 1.15E + 01 8.32E + 01 3.01E + 01 1.36E + 02 2.08E + 02 2.09E + 02 1.15E + 02 1.01E + 02 7.48E − 01
f23 1.02E + 02 1.15E + 01 8.32E + 01 3.01E + 01 1.36E + 02 2.08E + 02 2.09E + 02 1.15E + 02 1.01E + 02 7.48E − 01
f24 3.09E + 02 5.36E + 00 3.17E + 02 5.06E + 00 3.67E + 02 2.81E + 01 3.43E + 02 3.38E + 01 3.16E + 02 6.44E + 00
f25 3.23E + 02 4.21E + 01 1.74E + 02 9.76E + 01 3.25E + 02 1.13E + 02 2.52E + 02 5.15E + 01 3.38E + 02 3.49E + 01
f26 4.36E + 02 1.96E + 01 3.50E + 02 1.10E + 02 4.17E + 02 5.04E + 01 5.21E + 02 4.32E + 01 4.30E + 02 2.18E + 01
f27 2.83E + 02 5.89E + 01 2.21E + 02 9.48E + 01 3.29E + 02 1.84E + 02 5.60E + 02 7.85E + 01 3.65E + 02 1.05E + 02
f28 3.99E + 02 5.29E + 00 3.89E + 02 9.20E − 01 4.32E + 02 3.19E + 01 4.31E + 02 1.29E + 01 3.77E + 02 2.52E + 01
f29 4.54E + 02 1.48E + 02 2.97E + 02 3.52E + 01 5.22E + 02 1.40E + 02 4.85E + 02 5.45E + 01 4.51E + 02 3.66E + 01
f30 2.77E + 02 2.13E + 01 2.80E + 02 2.16E + 01 3.15E + 02 4.77E + 01 4.08E + 02 4.28E + 01 2.79E + 02 4.73E + 01



Tab. D.7 Complete statistics of all examined swarm algorithms on CEC 2017 in
30 dimensions.

BIA CS PSO BAT FFA
avg std avg std avg std avg std avg std

f1 2.15E + 03 2.16E + 03 1.00E − 01 2.58E − 01 4.71E + 07 2.38E + 08 2.41E + 10 9.39E + 09 2.91E + 04 2.22E + 04
f2 1.04E + 11 5.38E + 11 1.20E + 11 5.41E + 11 5.42E + 23 3.87E + 24 2.29E + 38 1.40E + 39 7.16E + 05 4.14E + 06
f3 7.54E + 01 6.99E + 01 1.46E + 03 9.14E + 02 2.77E − 04 3.56E − 04 7.37E + 04 1.95E + 04 7.80E − 03 2.10E − 03
f4 1.11E + 01 2.13E + 01 4.43E + 01 3.59E + 01 8.30E + 01 2.54E + 01 3.74E + 03 1.39E + 03 2.65E + 01 1.35E + 01
f5 7.50E + 01 6.12E + 01 1.43E + 02 2.95E + 01 1.45E + 02 2.80E + 01 2.41E + 02 4.53E + 01 6.56E + 01 1.93E + 01
f6 1.16E − 03 6.20E − 03 2.60E + 01 1.09E + 01 3.14E + 01 1.09E + 01 5.69E + 01 7.26E + 00 2.48E − 01 2.12E − 01
f7 1.83E + 02 3.31E + 01 2.22E + 02 3.87E + 01 1.06E + 02 2.51E + 01 9.13E + 02 2.03E + 02 9.77E + 01 1.93E + 01
f8 4.70E + 01 4.79E + 01 1.38E + 02 2.52E + 01 1.09E + 02 2.12E + 01 1.94E + 02 4.10E + 01 6.18E + 01 2.00E + 01
f9 6.56E + 00 7.44E + 00 3.36E + 03 1.38E + 03 2.30E + 03 8.13E + 02 5.25E + 03 1.53E + 03 2.35E − 01 4.23E − 01
f10 6.97E + 03 2.67E + 02 3.78E + 03 2.36E + 02 3.18E + 03 6.18E + 02 5.32E + 03 9.52E + 02 2.79E + 03 5.74E + 02
f11 3.20E + 01 2.57E + 01 8.34E + 01 2.50E + 01 1.09E + 02 3.66E + 01 2.53E + 03 1.33E + 03 7.13E + 02 3.67E + 02
f12 2.61E + 04 1.42E + 04 6.66E + 04 5.21E + 04 2.94E + 05 1.36E + 06 1.71E + 09 1.05E + 09 1.09E + 07 8.78E + 06
f13 1.28E + 04 9.36E + 03 3.64E + 03 3.73E + 03 1.88E + 05 8.68E + 05 6.15E + 07 2.17E + 08 3.06E + 06 3.56E + 06
f14 4.89E + 03 4.70E + 03 9.92E + 01 2.37E + 01 5.05E + 03 5.18E + 03 7.56E + 04 1.20E + 05 1.64E + 04 2.09E + 04
f15 4.05E + 03 4.63E + 03 2.45E + 02 1.25E + 02 7.10E + 03 9.35E + 03 5.71E + 06 2.31E + 07 1.59E + 06 1.60E + 06
f16 9.35E + 02 4.53E + 02 8.68E + 02 2.05E + 02 9.36E + 02 2.68E + 02 1.82E + 03 5.58E + 02 6.84E + 02 2.56E + 02
f17 1.25E + 02 1.07E + 02 2.58E + 02 1.07E + 02 5.73E + 02 1.87E + 02 1.01E + 03 2.60E + 02 5.27E + 02 2.08E + 02
f18 1.75E + 05 1.49E + 05 2.83E + 04 1.40E + 04 1.22E + 05 1.01E + 05 1.08E + 06 1.27E + 06 6.98E + 05 5.12E + 05
f19 6.22E + 03 6.72E + 03 1.64E + 02 1.53E + 02 7.91E + 03 9.42E + 03 4.73E + 06 8.41E + 06 2.89E + 05 1.45E + 05
f20 1.99E + 02 1.35E + 02 3.63E + 02 1.19E + 02 4.82E + 02 1.79E + 02 6.84E + 02 1.22E + 02 4.47E + 02 1.54E + 02
f21 2.69E + 02 5.80E + 01 3.18E + 02 4.62E + 01 3.36E + 02 3.04E + 01 4.09E + 02 5.18E + 01 2.61E + 02 1.40E + 01
f22 1.00E + 02 5.84E − 01 2.74E + 03 1.98E + 03 1.10E + 03 1.65E + 03 4.51E + 03 1.03E + 03 2.90E + 03 7.55E + 02
f23 3.81E + 02 1.35E + 01 4.91E + 02 2.92E + 01 6.62E + 02 8.07E + 01 8.40E + 02 7.31E + 01 4.24E + 02 2.32E + 01
f24 4.48E + 02 1.85E + 01 5.56E + 02 2.83E + 01 7.02E + 02 6.64E + 01 8.75E + 02 1.11E + 02 4.96E + 02 1.79E + 01
f25 3.88E + 02 2.07E + 00 3.87E + 02 5.69E + 00 3.92E + 02 1.10E + 01 1.43E + 03 7.61E + 02 3.80E + 02 3.44E + 00
f26 1.18E + 03 7.39E + 02 1.65E + 03 1.05E + 03 1.14E + 03 1.35E + 03 5.49E + 03 9.17E + 02 1.69E + 03 2.29E + 02
f27 5.32E + 02 1.15E + 01 5.22E + 02 1.02E + 01 6.02E + 02 8.58E + 01 1.02E + 03 1.04E + 02 5.00E + 02 2.27E − 04
f28 3.29E + 02 4.76E + 01 3.50E + 02 5.58E + 01 4.22E + 02 4.17E + 01 1.97E + 03 5.67E + 02 5.00E + 02 2.17E − 04
f29 5.85E + 02 1.74E + 02 8.90E + 02 1.10E + 02 9.93E + 02 2.35E + 02 2.27E + 03 3.75E + 02 9.40E + 02 1.77E + 02
f30 4.53E + 03 1.65E + 03 6.49E + 03 3.28E + 03 5.96E + 03 3.51E + 03 4.13E + 07 6.05E + 07 7.64E + 05 3.89E + 05



Tab. D.8 Complete statistics of all examined swarm algorithms on CEC 2017 in
50 dimensions.

BIA CS PSO BAT FFA
avg std avg std avg std avg std avg std

f1 2.35E + 03 2.52E + 03 4.24E + 03 6.36E + 03 5.48E + 08 1.06E + 09 5.16E + 10 2.25E + 10 8.23E + 04 1.06E + 05
f2 3.65E + 26 2.61E + 27 6.96E + 36 4.97E + 37 3.80E + 47 2.71E + 48 3.63E + 71 2.58E + 72 1.10E + 15 7.85E + 15
f3 1.16E + 04 3.16E + 03 2.72E + 04 5.91E + 03 7.59E + 00 4.40E + 00 1.37E + 05 3.50E + 04 3.04E − 02 6.55E − 03
f4 6.50E + 01 5.03E + 01 7.80E + 01 4.83E + 01 1.65E + 02 1.07E + 02 1.17E + 04 5.56E + 03 4.94E + 01 1.70E + 01
f5 1.42E + 02 1.19E + 02 3.15E + 02 4.04E + 01 2.52E + 02 3.18E + 01 4.46E + 02 5.70E + 01 1.33E + 02 3.33E + 01
f6 2.32E − 03 4.30E − 03 4.64E + 01 9.61E + 00 4.28E + 01 6.44E + 00 6.67E + 01 8.40E + 00 6.16E − 01 5.56E − 01
f7 3.54E + 02 7.21E + 01 5.49E + 02 7.60E + 01 2.04E + 02 4.08E + 01 1.87E + 03 3.33E + 02 1.86E + 02 3.40E + 01
f8 1.52E + 02 1.25E + 02 3.22E + 02 3.85E + 01 2.57E + 02 3.50E + 01 4.61E + 02 6.33E + 01 1.23E + 02 2.65E + 01
f9 3.08E + 01 3.81E + 01 1.31E + 04 3.78E + 03 8.47E + 03 1.44E + 03 1.55E + 04 3.73E + 03 2.89E + 02 2.04E + 03
f10 1.29E + 04 4.59E + 02 6.93E + 03 3.88E + 02 5.67E + 03 8.69E + 02 9.20E + 03 1.98E + 03 5.19E + 03 1.03E + 03
f11 5.40E + 01 2.93E + 01 1.88E + 02 3.77E + 01 1.64E + 02 3.55E + 01 7.43E + 03 3.81E + 03 1.62E + 03 5.35E + 02
f12 4.15E + 05 2.78E + 05 6.58E + 05 6.63E + 05 9.27E + 07 3.53E + 08 1.04E + 10 6.53E + 09 5.23E + 07 3.43E + 07
f13 1.93E + 03 2.99E + 03 7.51E + 03 6.44E + 03 1.88E + 05 1.30E + 06 1.41E + 09 3.36E + 09 4.30E + 06 4.31E + 06
f14 3.05E + 04 2.25E + 04 3.28E + 02 8.58E + 01 5.00E + 04 6.81E + 04 1.65E + 06 2.54E + 06 1.27E + 05 1.06E + 05
f15 4.34E + 03 4.03E + 03 1.46E + 03 9.94E + 02 7.27E + 03 6.32E + 03 1.78E + 08 5.74E + 08 3.42E + 06 3.79E + 06
f16 8.86E + 02 5.30E + 02 1.83E + 03 2.16E + 02 1.46E + 03 3.23E + 02 3.74E + 03 1.11E + 03 1.43E + 03 4.06E + 02
f17 1.25E + 03 5.12E + 02 1.24E + 03 1.80E + 02 1.20E + 03 3.06E + 02 4.01E + 03 1.03E + 03 2.02E + 03 6.38E + 02
f18 1.15E + 06 5.83E + 05 1.02E + 05 4.47E + 04 2.58E + 05 1.85E + 05 1.06E + 07 1.49E + 07 1.24E + 06 8.32E + 05
f19 1.49E + 04 5.68E + 03 2.41E + 03 2.09E + 03 1.44E + 04 9.25E + 03 2.18E + 06 3.50E + 06 8.54E + 05 1.97E + 05
f20 1.07E + 03 5.28E + 02 1.12E + 03 2.27E + 02 9.38E + 02 3.17E + 02 1.57E + 03 2.98E + 02 1.10E + 03 2.60E + 02
f21 3.34E + 02 1.23E + 02 4.78E + 02 3.76E + 01 4.82E + 02 4.74E + 01 6.95E + 02 1.01E + 02 3.32E + 02 2.45E + 01
f22 7.49E + 03 6.51E + 03 7.53E + 03 4.27E + 02 6.68E + 03 8.09E + 02 9.98E + 03 2.14E + 03 5.26E + 03 9.38E + 02
f23 4.88E + 02 1.89E + 01 7.75E + 02 5.34E + 01 1.02E + 03 1.28E + 02 1.52E + 03 1.49E + 02 5.70E + 02 2.85E + 01
f24 5.66E + 02 4.38E + 01 8.44E + 02 6.21E + 01 1.06E + 03 1.26E + 02 1.62E + 03 2.02E + 02 6.51E + 02 4.16E + 01
f25 5.50E + 02 2.80E + 01 5.32E + 02 5.01E + 01 5.50E + 02 3.34E + 01 5.99E + 03 4.40E + 03 4.33E + 02 1.11E + 01
f26 1.86E + 03 6.58E + 02 4.74E + 03 8.96E + 02 3.08E + 03 2.86E + 03 1.26E + 04 1.69E + 03 2.80E + 03 3.55E + 02
f27 6.50E + 02 4.17E + 01 7.22E + 02 9.16E + 01 8.83E + 02 1.74E + 02 2.53E + 03 2.66E + 02 5.00E + 02 2.89E − 04
f28 4.90E + 02 2.68E + 01 4.92E + 02 2.66E + 01 5.84E + 02 1.87E + 02 5.05E + 03 2.16E + 03 5.00E + 02 2.71E − 04
f29 6.59E + 02 1.80E + 02 1.50E + 03 2.09E + 02 1.64E + 03 3.69E + 02 7.38E + 03 1.49E + 03 1.94E + 03 4.79E + 02
f30 1.10E + 06 2.14E + 05 6.61E + 05 9.03E + 04 8.86E + 05 3.85E + 05 3.34E + 08 4.90E + 08 3.04E + 06 2.05E + 06



Tab. D.9 Complete statistics of all examined swarm algorithms on CEC 2017 in
100 dimensions.

BIA CS PSO BAT FFA
avg std avg std avg std avg std avg std

f1 4.34E + 03 4.93E + 03 6.95E + 03 7.81E + 03 3.62E + 09 3.22E + 09 7.77E + 10 6.34E + 10 9.38E + 04 1.14E + 05
f2 2.25E + 81 1.59E + 82 2.04E + 66 9.38E + 66 1.18E + 95 6.17E + 95 4.60E + 164 2.34E + 165 6.32E + 40 4.51E + 41
f3 1.18E + 05 1.67E + 04 1.84E + 05 2.00E + 04 2.03E + 03 7.16E + 02 3.77E + 05 1.24E + 05 9.70E + 02 4.18E + 03
f4 1.29E + 02 5.15E + 01 2.28E + 02 6.49E + 01 4.69E + 02 2.09E + 02 3.01E + 04 2.35E + 04 1.02E + 02 2.25E + 01
f5 6.19E + 02 2.89E + 02 8.23E + 02 7.68E + 01 6.44E + 02 6.27E + 01 1.05E + 03 1.60E + 02 3.47E + 02 4.89E + 01
f6 2.37E − 02 2.09E − 02 5.79E + 01 8.14E + 00 5.02E + 01 3.99E + 00 6.98E + 01 5.43E + 00 9.49E + 00 1.21E + 01
f7 9.28E + 02 1.15E + 02 1.83E + 03 1.90E + 02 5.12E + 02 1.16E + 02 4.46E + 03 5.70E + 02 4.42E + 02 6.25E + 01
f8 5.54E + 02 3.05E + 02 8.54E + 02 7.36E + 01 6.99E + 02 7.43E + 01 1.20E + 03 1.41E + 02 3.57E + 02 6.11E + 01
f9 1.87E + 02 3.02E + 02 4.18E + 04 7.07E + 03 1.92E + 04 2.17E + 03 3.06E + 04 4.44E + 03 4.49E + 03 7.47E + 03
f10 2.93E + 04 4.46E + 02 1.68E + 04 6.02E + 02 1.22E + 04 1.20E + 03 2.23E + 04 4.91E + 03 1.12E + 04 1.07E + 03
f11 5.23E + 02 2.15E + 02 1.30E + 03 4.76E + 02 9.72E + 02 1.61E + 02 8.93E + 04 5.95E + 04 7.60E + 03 2.26E + 03
f12 6.77E + 05 2.42E + 05 8.24E + 05 3.29E + 05 1.66E + 09 2.37E + 09 5.08E + 10 3.97E + 10 1.52E + 08 7.28E + 07
f13 3.63E + 03 2.66E + 03 6.68E + 03 5.62E + 03 5.13E + 07 1.55E + 08 1.41E + 09 5.87E + 09 3.56E + 06 2.15E + 06
f14 1.08E + 05 3.54E + 04 9.24E + 04 4.93E + 04 2.55E + 05 1.06E + 05 9.10E + 06 1.42E + 07 6.84E + 05 5.09E + 05
f15 9.06E + 02 1.16E + 03 3.89E + 03 3.78E + 03 2.88E + 03 2.93E + 03 1.22E + 09 3.05E + 09 2.70E + 06 1.57E + 06
f16 4.34E + 03 2.20E + 03 4.50E + 03 3.03E + 02 3.27E + 03 6.82E + 02 1.25E + 04 3.01E + 03 3.95E + 03 8.28E + 02
f17 3.86E + 03 1.04E + 03 3.25E + 03 3.10E + 02 2.99E + 03 5.27E + 02 4.04E + 04 1.19E + 05 7.15E + 03 1.63E + 03
f18 1.52E + 06 7.71E + 05 7.81E + 05 2.50E + 05 8.03E + 05 4.04E + 05 1.57E + 07 2.96E + 07 1.95E + 06 8.29E + 05
f19 1.49E + 03 2.23E + 03 3.24E + 03 3.69E + 03 1.00E + 04 1.37E + 04 4.98E + 08 1.97E + 09 2.89E + 06 4.19E + 05
f20 4.35E + 03 6.19E + 02 3.52E + 03 2.18E + 02 2.74E + 03 5.30E + 02 4.24E + 03 6.10E + 02 2.84E + 03 5.26E + 02
f21 6.68E + 02 3.26E + 02 1.03E + 03 8.18E + 01 1.15E + 03 1.31E + 02 1.72E + 03 2.00E + 02 6.11E + 02 6.37E + 01
f22 2.99E + 04 4.29E + 03 1.84E + 04 6.56E + 02 1.52E + 04 1.60E + 03 2.40E + 04 4.28E + 03 1.16E + 04 1.05E + 03
f23 7.22E + 02 3.05E + 01 1.23E + 03 8.88E + 01 2.07E + 03 2.53E + 02 3.25E + 03 2.66E + 02 9.45E + 02 6.42E + 01
f24 1.07E + 03 4.15E + 01 1.84E + 03 1.02E + 02 3.14E + 03 4.87E + 02 6.21E + 03 4.63E + 02 1.24E + 03 5.67E + 01
f25 7.65E + 02 6.05E + 01 8.04E + 02 7.83E + 01 7.80E + 02 9.01E + 01 6.73E + 03 6.02E + 03 7.15E + 02 4.64E + 01
f26 5.72E + 03 2.22E + 03 1.41E + 04 1.35E + 03 9.20E + 03 6.37E + 03 4.30E + 04 5.51E + 03 7.63E + 03 5.68E + 02
f27 7.65E + 02 2.98E + 01 9.65E + 02 8.95E + 01 1.03E + 03 1.46E + 02 6.36E + 03 8.06E + 02 5.00E + 02 2.81E − 04
f28 5.74E + 02 9.71E + 01 5.71E + 02 2.98E + 01 8.18E + 02 3.22E + 02 1.30E + 04 7.80E + 03 5.00E + 02 2.50E − 04
f29 2.04E + 03 6.94E + 02 4.38E + 03 2.49E + 02 3.86E + 03 5.30E + 02 3.95E + 04 2.52E + 04 5.86E + 03 1.18E + 03
f30 1.19E + 04 7.59E + 03 7.00E + 03 4.25E + 03 8.68E + 07 2.28E + 08 2.45E + 09 3.99E + 09 7.15E + 06 4.58E + 06



APPENDIX E: STATISTIC OUTPUT OF THE STANDARD BISON
ALGORITHM

Tab. E.1 Statistics of the Bison Algorithm on CEC 2015 in 10 dimensions.

min max mean median std
f1 1.75E + 03 1.44E + 05 4.07E + 04 2.75E + 04 3.60E + 04
f2 1.95E − 02 2.40E + 04 5.71E + 03 3.88E + 03 5.91E + 03
f3 2.02E + 01 2.05E + 01 2.04E + 01 2.04E + 01 6.57E − 02
f4 9.95E − 01 2.34E + 01 7.25E + 00 5.97E + 00 5.45E + 00
f5 3.73E + 00 1.52E + 03 1.07E + 03 1.10E + 03 3.12E + 02
f6 1.01E + 01 4.71E + 03 8.35E + 02 3.55E + 02 1.09E + 03
f7 1.94E − 02 2.67E + 00 6.06E − 01 3.78E − 01 6.15E − 01
f8 8.50E + 00 2.21E + 03 5.62E + 02 3.81E + 02 5.39E + 02
f9 1.00E + 02 1.00E + 02 1.00E + 02 1.00E + 02 4.96E − 02
f10 2.37E + 02 2.25E + 03 5.73E + 02 4.64E + 02 3.89E + 02
f11 7.99E − 01 3.00E + 02 2.22E + 02 3.00E + 02 1.30E + 02
f12 1.01E + 02 1.03E + 02 1.02E + 02 1.02E + 02 5.45E − 01
f13 2.88E + 01 4.08E + 01 3.32E + 01 3.27E + 01 2.88E + 00
f14 1.00E + 02 1.16E + 04 4.72E + 03 5.56E + 03 2.95E + 03
f15 1.00E + 02 1.00E + 02 1.00E + 02 1.00E + 02 0.00E + 00



Tab. E.2 Statistics of the Bison Algorithm on CEC 2015 in 30 dimensions.

min max mean median std
f1 5.79E + 04 9.19E + 05 2.66E + 05 1.99E + 05 1.91E + 05
f2 2.24E − 01 5.95E + 03 1.53E + 03 1.09E + 03 1.64E + 03
f3 2.09E + 01 2.11E + 01 2.10E + 01 2.10E + 01 4.33E − 02
f4 1.79E + 01 1.76E + 02 7.13E + 01 3.38E + 01 5.71E + 01
f5 5.85E + 03 7.30E + 03 6.74E + 03 6.73E + 03 2.96E + 02
f6 8.53E + 03 1.47E + 05 5.25E + 04 4.45E + 04 2.99E + 04
f7 3.86E + 00 1.39E + 01 9.53E + 00 1.00E + 01 2.45E + 00
f8 4.89E + 03 8.51E + 04 2.88E + 04 2.40E + 04 1.74E + 04
f9 1.02E + 02 2.34E + 02 1.05E + 02 1.03E + 02 1.84E + 01
f10 8.64E + 03 2.90E + 05 7.73E + 04 6.27E + 04 5.70E + 04
f11 3.01E + 02 6.64E + 02 4.50E + 02 4.95E + 02 1.22E + 02
f12 1.04E + 02 1.07E + 02 1.05E + 02 1.05E + 02 5.93E − 01
f13 1.09E + 02 1.24E + 02 1.16E + 02 1.16E + 02 3.20E + 00
f14 3.14E + 04 3.68E + 04 3.30E + 04 3.30E + 04 9.27E + 02
f15 1.00E + 02 1.00E + 02 1.00E + 02 1.00E + 02 0.00E + 00

Tab. E.3 Statistics of the Bison Algorithm on CEC 2015 in 50 dimensions.

min max mean median std
f1 1.38E + 05 1.08E + 06 4.27E + 05 3.72E + 05 2.17E + 05
f2 3.65E + 01 1.38E + 04 4.74E + 03 4.43E + 03 3.37E + 03
f3 2.11E + 01 2.12E + 01 2.11E + 01 2.11E + 01 3.10E − 02
f4 3.58E + 01 3.93E + 02 1.48E + 02 7.36E + 01 1.28E + 02
f5 1.15E + 04 1.33E + 04 1.26E + 04 1.26E + 04 3.79E + 02
f6 2.05E + 04 1.21E + 06 1.83E + 05 1.50E + 05 1.66E + 05
f7 7.41E + 00 9.31E + 01 5.50E + 01 7.62E + 01 3.28E + 01
f8 1.15E + 04 3.53E + 05 1.11E + 05 9.14E + 04 7.31E + 04
f9 1.04E + 02 6.29E + 02 1.23E + 02 1.04E + 02 8.05E + 01
f10 5.16E + 03 1.00E + 05 2.04E + 04 1.35E + 04 1.83E + 04
f11 5.56E + 02 8.46E + 02 6.70E + 02 6.77E + 02 6.13E + 01
f12 1.06E + 02 1.10E + 02 1.08E + 02 1.09E + 02 8.29E − 01
f13 2.00E + 02 2.24E + 02 2.17E + 02 2.17E + 02 4.09E + 00
f14 4.95E + 04 7.84E + 04 5.42E + 04 4.95E + 04 1.01E + 04
f15 1.00E + 02 1.00E + 02 1.00E + 02 1.00E + 02 0.00E + 00



Tab. E.4 Statistics of the Bison Algorithm on CEC 2015 in 100 dimensions.

min max mean median std
f1 7.88E + 05 3.06E + 06 1.34E + 06 1.23E + 06 4.70E + 05
f2 2.13E − 01 1.08E + 04 1.04E + 03 3.91E + 02 1.76E + 03
f3 2.13E + 01 2.14E + 01 2.13E + 01 2.13E + 01 2.06E − 02
f4 1.28E + 02 9.16E + 02 5.11E + 02 6.35E + 02 3.18E + 02
f5 2.78E + 04 3.02E + 04 2.94E + 04 2.95E + 04 4.93E + 02
f6 1.94E + 05 7.68E + 05 4.15E + 05 3.96E + 05 1.07E + 05
f7 1.85E + 01 1.66E + 02 1.47E + 02 1.59E + 02 3.32E + 01
f8 6.05E + 04 6.59E + 05 2.01E + 05 1.88E + 05 1.08E + 05
f9 1.07E + 02 1.10E + 02 1.08E + 02 1.08E + 02 5.71E − 01
f10 3.92E + 03 7.48E + 05 4.56E + 04 6.02E + 03 1.61E + 05
f11 3.02E + 02 1.87E + 03 1.24E + 03 1.40E + 03 4.64E + 02
f12 1.16E + 02 1.21E + 02 1.19E + 02 1.19E + 02 8.88E − 01
f13 4.47E + 02 4.69E + 02 4.60E + 02 4.61E + 02 5.41E + 00
f14 1.00E + 02 1.80E + 05 1.45E + 05 1.68E + 05 5.02E + 04
f15 1.00E + 02 1.21E + 02 1.04E + 02 1.00E + 02 6.29E + 00



Tab. E.5 Statistics of the Bison Algorithm on CEC 2017 in 10 dimensions.

min max mean median std
f1 2.51E − 02 2.28E + 03 4.78E + 02 1.36E + 02 6.57E + 02
f2 1.42E − 07 8.14E − 05 9.51E − 06 7.16E − 06 1.25E − 05
f3 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
f4 1.29E − 01 1.30E + 00 3.29E − 01 2.33E − 01 2.76E − 01
f5 0.00E + 00 2.89E + 01 7.27E + 00 4.97E + 00 6.28E + 00
f6 0.00E + 00 3.94E − 04 1.39E − 05 0.00E + 00 5.92E − 05
f7 1.14E + 01 3.93E + 01 2.43E + 01 2.72E + 01 8.37E + 00
f8 9.95E − 01 3.05E + 01 7.89E + 00 5.97E + 00 7.25E + 00
f9 0.00E + 00 1.74E + 00 1.41E − 01 0.00E + 00 3.79E − 01
f10 6.95E + 00 1.47E + 03 1.08E + 03 1.13E + 03 3.42E + 02
f11 2.81E − 03 9.67E + 00 2.89E + 00 2.00E + 00 2.62E + 00
f12 6.71E + 02 3.24E + 04 1.05E + 04 9.01E + 03 8.57E + 03
f13 8.09E + 01 9.94E + 03 2.98E + 03 2.41E + 03 2.64E + 03
f14 1.62E + 01 4.97E + 01 3.32E + 01 3.35E + 01 7.77E + 00
f15 5.08E + 00 1.08E + 02 2.92E + 01 2.68E + 01 1.90E + 01
f16 3.98E − 02 1.98E + 02 2.31E + 01 7.28E − 01 4.81E + 01
f17 2.84E + 00 8.27E + 01 3.59E + 01 2.88E + 01 2.08E + 01
f18 2.75E + 01 1.43E + 04 3.82E + 03 2.41E + 03 4.03E + 03
f19 5.81E + 00 1.74E + 02 2.36E + 01 2.08E + 01 2.39E + 01
f20 0.00E + 00 4.46E + 01 5.45E + 00 1.31E + 00 1.09E + 01
f21 1.00E + 02 2.28E + 02 1.21E + 02 1.00E + 02 4.12E + 01
f22 1.00E + 02 1.82E + 02 1.02E + 02 1.01E + 02 1.15E + 01
f23 3.00E + 02 3.31E + 02 3.09E + 02 3.09E + 02 5.36E + 00
f24 1.00E + 02 3.90E + 02 3.23E + 02 3.34E + 02 4.21E + 01
f25 3.98E + 02 4.50E + 02 4.36E + 02 4.45E + 02 1.96E + 01
f26 0.00E + 00 3.93E + 02 2.83E + 02 3.00E + 02 5.89E + 01
f27 3.92E + 02 4.19E + 02 3.99E + 02 3.99E + 02 5.29E + 00
f28 3.00E + 02 6.46E + 02 4.54E + 02 5.05E + 02 1.48E + 02
f29 2.35E + 02 3.39E + 02 2.77E + 02 2.73E + 02 2.13E + 01
f30 9.57E + 02 9.77E + 05 1.28E + 05 3.52E + 03 3.13E + 05



Tab. E.6 Statistics of the Bison Algorithm on CEC 2017 in 30 dimensions.

min max mean median std
f1 2.86E + 00 1.04E + 04 2.15E + 03 1.56E + 03 2.16E + 03
f2 6.82E − 02 3.77E + 12 1.04E + 11 2.82E + 05 5.38E + 11
f3 4.09E + 00 2.77E + 02 7.54E + 01 6.08E + 01 6.99E + 01
f4 2.47E − 04 6.79E + 01 1.11E + 01 4.00E + 00 2.13E + 01
f5 1.89E + 01 1.78E + 02 7.50E + 01 3.68E + 01 6.12E + 01
f6 1.14E − 13 4.44E − 02 1.16E − 03 4.32E − 05 6.20E − 03
f7 4.60E + 01 2.30E + 02 1.83E + 02 1.90E + 02 3.31E + 01
f8 1.09E + 01 1.79E + 02 4.70E + 01 2.69E + 01 4.79E + 01
f9 0.00E + 00 4.01E + 01 6.56E + 00 3.82E + 00 7.44E + 00
f10 6.27E + 03 7.44E + 03 6.97E + 03 6.97E + 03 2.67E + 02
f11 6.09E + 00 8.88E + 01 3.20E + 01 2.10E + 01 2.57E + 01
f12 5.51E + 03 7.59E + 04 2.61E + 04 2.60E + 04 1.42E + 04
f13 2.29E + 02 3.45E + 04 1.28E + 04 1.15E + 04 9.36E + 03
f14 9.22E + 01 1.73E + 04 4.89E + 03 3.17E + 03 4.70E + 03
f15 6.51E + 00 1.87E + 04 4.05E + 03 2.47E + 03 4.63E + 03
f16 1.91E + 01 1.69E + 03 9.35E + 02 1.06E + 03 4.53E + 02
f17 1.42E + 01 5.12E + 02 1.25E + 02 7.31E + 01 1.07E + 02
f18 2.22E + 04 7.32E + 05 1.75E + 05 1.57E + 05 1.49E + 05
f19 4.67E + 01 2.61E + 04 6.22E + 03 4.34E + 03 6.72E + 03
f20 2.68E + 01 7.70E + 02 1.99E + 02 1.55E + 02 1.35E + 02
f21 2.13E + 02 3.75E + 02 2.69E + 02 2.32E + 02 5.80E + 01
f22 1.00E + 02 1.02E + 02 1.00E + 02 1.00E + 02 5.84E − 01
f23 3.51E + 02 4.26E + 02 3.81E + 02 3.79E + 02 1.35E + 01
f24 4.22E + 02 5.43E + 02 4.48E + 02 4.47E + 02 1.85E + 01
f25 3.84E + 02 3.98E + 02 3.88E + 02 3.87E + 02 2.07E + 00
f26 2.00E + 02 3.11E + 03 1.18E + 03 1.33E + 03 7.39E + 02
f27 5.12E + 02 5.61E + 02 5.32E + 02 5.32E + 02 1.15E + 01
f28 3.00E + 02 4.14E + 02 3.29E + 02 3.00E + 02 4.76E + 01
f29 4.18E + 02 1.10E + 03 5.85E + 02 5.60E + 02 1.74E + 02
f30 2.49E + 03 1.04E + 04 4.53E + 03 4.14E + 03 1.65E + 03



Tab. E.7 Statistics of the Bison Algorithm on CEC 2017 in 50 dimensions.

min max mean median std
f1 2.45E + 00 9.37E + 03 2.35E + 03 1.70E + 03 2.52E + 03
f2 6.76E + 13 1.86E + 28 3.65E + 26 3.51E + 19 2.61E + 27
f3 5.38E + 03 2.07E + 04 1.16E + 04 1.15E + 04 3.16E + 03
f4 4.40E − 03 1.48E + 02 6.50E + 01 6.66E + 01 5.03E + 01
f5 3.68E + 01 3.78E + 02 1.42E + 02 7.16E + 01 1.19E + 02
f6 6.06E − 06 2.00E − 02 2.32E − 03 5.10E − 04 4.30E − 03
f7 7.92E + 01 4.47E + 02 3.54E + 02 3.70E + 02 7.21E + 01
f8 3.78E + 01 3.65E + 02 1.52E + 02 7.46E + 01 1.25E + 02
f9 7.23E − 01 1.53E + 02 3.08E + 01 1.49E + 01 3.81E + 01
f10 1.18E + 04 1.37E + 04 1.29E + 04 1.29E + 04 4.59E + 02
f11 2.72E + 01 1.80E + 02 5.40E + 01 4.61E + 01 2.93E + 01
f12 8.81E + 04 1.35E + 06 4.15E + 05 3.26E + 05 2.78E + 05
f13 2.96E + 01 1.77E + 04 1.93E + 03 7.26E + 02 2.99E + 03
f14 1.93E + 03 9.87E + 04 3.05E + 04 2.62E + 04 2.25E + 04
f15 3.66E + 01 1.50E + 04 4.34E + 03 3.26E + 03 4.03E + 03
f16 3.67E + 02 2.53E + 03 8.86E + 02 7.24E + 02 5.30E + 02
f17 2.55E + 02 1.91E + 03 1.25E + 03 1.38E + 03 5.12E + 02
f18 2.44E + 04 2.58E + 06 1.15E + 06 1.07E + 06 5.83E + 05
f19 2.58E + 03 2.65E + 04 1.49E + 04 1.51E + 04 5.68E + 03
f20 4.08E + 01 1.95E + 03 1.07E + 03 1.29E + 03 5.28E + 02
f21 2.42E + 02 5.68E + 02 3.34E + 02 2.57E + 02 1.23E + 02
f22 1.00E + 02 1.41E + 04 7.49E + 03 1.26E + 04 6.51E + 03
f23 4.55E + 02 5.28E + 02 4.88E + 02 4.87E + 02 1.89E + 01
f24 5.04E + 02 8.48E + 02 5.66E + 02 5.59E + 02 4.38E + 01
f25 4.61E + 02 6.15E + 02 5.50E + 02 5.61E + 02 2.80E + 01
f26 3.00E + 02 2.96E + 03 1.86E + 03 1.99E + 03 6.58E + 02
f27 5.78E + 02 7.46E + 02 6.50E + 02 6.43E + 02 4.17E + 01
f28 4.59E + 02 5.94E + 02 4.90E + 02 4.97E + 02 2.68E + 01
f29 3.59E + 02 1.11E + 03 6.59E + 02 6.23E + 02 1.80E + 02
f30 7.73E + 05 1.60E + 06 1.10E + 06 1.05E + 06 2.14E + 05



Tab. E.8 Statistics of the Bison Algorithm on CEC 2017 in 100 dimensions.

min max mean median std
f1 1.07E + 01 2.55E + 04 4.34E + 03 2.76E + 03 4.93E + 03
f2 2.90E + 47 1.13E + 83 2.25E + 81 1.47E + 65 1.59E + 82
f3 9.01E + 04 1.58E + 05 1.18E + 05 1.17E + 05 1.67E + 04
f4 8.29E + 00 2.35E + 02 1.29E + 02 1.45E + 02 5.15E + 01
f5 1.38E + 02 9.42E + 02 6.19E + 02 7.65E + 02 2.89E + 02
f6 9.30E − 04 8.78E − 02 2.37E − 02 1.90E − 02 2.09E − 02
f7 2.65E + 02 1.05E + 03 9.28E + 02 9.48E + 02 1.15E + 02
f8 1.17E + 02 8.92E + 02 5.54E + 02 7.14E + 02 3.05E + 02
f9 2.27E + 01 2.12E + 03 1.87E + 02 1.08E + 02 3.02E + 02
f10 2.82E + 04 3.00E + 04 2.93E + 04 2.93E + 04 4.46E + 02
f11 1.64E + 02 8.26E + 02 5.23E + 02 6.17E + 02 2.15E + 02
f12 2.14E + 05 1.16E + 06 6.77E + 05 6.41E + 05 2.42E + 05
f13 5.50E + 01 1.17E + 04 3.63E + 03 2.87E + 03 2.66E + 03
f14 6.23E + 04 2.68E + 05 1.08E + 05 1.00E + 05 3.54E + 04
f15 3.73E + 01 5.18E + 03 9.06E + 02 4.52E + 02 1.16E + 03
f16 1.17E + 03 7.41E + 03 4.34E + 03 4.30E + 03 2.20E + 03
f17 8.67E + 02 4.80E + 03 3.86E + 03 4.26E + 03 1.04E + 03
f18 3.67E + 05 4.18E + 06 1.52E + 06 1.54E + 06 7.71E + 05
f19 4.59E + 01 1.08E + 04 1.49E + 03 4.47E + 02 2.23E + 03
f20 2.14E + 03 5.03E + 03 4.35E + 03 4.51E + 03 6.19E + 02
f21 3.23E + 02 1.12E + 03 6.68E + 02 4.26E + 02 3.26E + 02
f22 1.00E + 02 3.13E + 04 2.99E + 04 3.06E + 04 4.29E + 03
f23 6.60E + 02 7.98E + 02 7.22E + 02 7.20E + 02 3.05E + 01
f24 9.89E + 02 1.18E + 03 1.07E + 03 1.06E + 03 4.15E + 01
f25 6.39E + 02 8.96E + 02 7.65E + 02 7.67E + 02 6.05E + 01
f26 3.00E + 02 1.21E + 04 5.72E + 03 5.95E + 03 2.22E + 03
f27 6.89E + 02 8.20E + 02 7.65E + 02 7.69E + 02 2.98E + 01
f28 4.89E + 02 9.82E + 02 5.74E + 02 5.50E + 02 9.71E + 01
f29 1.06E + 03 5.53E + 03 2.04E + 03 1.86E + 03 6.94E + 02
f30 4.89E + 03 4.99E + 04 1.19E + 04 9.06E + 03 7.59E + 03
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