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ABSTRAKT 
 

V předkládané disertační práci jsou představeny návrhy nových způsobů 

odhadů složitosti projektů založených na metodě Use Case Points, která se 

používá v raných fázích vývoje softwaru. Navržené metody jsou vyvinuty tak, 

aby zvládaly nepřesnosti při odhadování a zahrnovaly expertní posudky pro 

vytvoření přesných a spolehlivých odhadů úsilí. Každý přístup má své výhody a 

vzájemně se doplňují. Cílem je, aby jednotlivé metody vytvořily kompletní proces 

a podporovaly efektivitu odhadu úsilí, tj. aby se ve všech situacích účinněji 

minimalizovala chyba v odhadu. Výsledky ukazují, že navržené metody Software 

Development Effort Estimation (SDEE) jsou konkurenceschopné ve srovnání s 

jinými alternativami, na základě sedmi hodnotících kritérií a statistických 

párových srovnání t-testů. 

 

 

  



 

 

ABSTRACT 
 

In the presented doctoral thesis, proposals for new methods of estimating the 

complexity of projects based on the Use Case Points method, which is used in the 

early stages of software development, are presented. The proposed methods are 

developed to handle estimation inaccuracies and incorporate expert judgments to 

produce accurate and reliable effort estimates. Each approach has its advantages, 

and they complement each other. The goal is for them to create a complete process 

and support the efficiency of effort estimation, i.e., to minimize estimation error 

more effectively in all situations. The results show that the proposed Software 

Development Effort Estimation (SDEE) methods are competitive compared to 

other alternatives, based on seven evaluation criteria and statistical pairwise t-test 

comparisons. 
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1 CURRENT STATE OF THE ART 

Software Project Development has evolved into a dynamic and competitive 

industry requiring high-level human resources. Software products are becoming 

more complicated, unpredictable, and challenging to control. Many research 

projects in the software field have been conducted in recent decades with the goal 

of steering software development processes into more regulated, manageable, and 

predictable paths. Project managers must estimate the cost of the software product 

as well as the resources, effort, and time required to complete a project on time 

and within budget [1]. Software measurement problems, such as project duration 

prediction or defect density, receive special attention. These issues demonstrate 

that the project management role has significantly increased. 

Software Development Effort Estimation (SDEE) is critical to the overall 

success of solution delivery. Early SDEE in the first phase of the software 

development lifecycle is essential to avoiding project failures. The project 

manager's role is to look at software products to help with budgeting, scheduling, 

planning, project bidding, human resource allocation, and risk mitigation. The 

SDEE is vital for some reasons [2]. First, it is beneficial to make informed 

decisions about resource management before the project begins. The project plan 

is then used to make informed decisions about managing and planning the project. 

It is critical to allocate appropriate effort to the various activities in managing 

project development. As a result, this has led many researchers to study software 

estimation to obtain a more accurate SDEE [3], [4], [5]. However, based on the 

requirement specifications, the SDEE cannot be expected to produce correct 

results [6]. The issue of accurate effort estimation remains unresolved. An effort 

estimation method is used to reduce the risk of surprises during the project to the 

lowest possible value. It provides project managers with good control decisions 

to ensure that reasonable effort is allocated to the various activities throughout the 

project's development life cycle. When inaccurate models are used, such 

estimation decisions can have disastrous consequences. The most visible example 

of problems in managing complex, distributed software systems is the failure of 

many software projects [7]. The results show that actual effort and schedule are 

exceeded for most projects compared to estimates. If the software cost is 

underestimated, the project will be inefficient, and the actual price will 

undoubtedly be surpassed. Finally, even if completed on time, these 

overestimated projects usually become more extensive and costly than planned. 

In contrast, the functionality and quality of these underestimated projects are 

reduced to meet the plan's requirements. This can result in losing the bid or 

wasting time, money, personnel, and other resources, resulting in financial loss or 

even bankruptcy. 

Use Cases can be helpful to measure the estimated effort at an early stage of a 

software project before the essential information is obtained during the 

requirements phase of the software lifecycle [8]. Neil et al. [9] surveyed the 
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techniques used in the requirements elicitation, description, and modeling phases 

and found that the use cases were used in the early stages by more than half of the 

software projects. This has sparked the interest of numerous researchers in using 

use cases-based SDEE approaches and their initial applicability for greater 

accuracy. Karner [10] introduced the Use Case Points (UCP) method as a metric 

for sizing object-oriented software projects based on a structured scenario and 

actor analysis of the Use Case Model (UCM). Most studies focus on evaluating 

UCP as a potential early SDEE method that could be used to estimate software 

development effort and show its suitability for the software industry [11], [12], 

[13], [14]. The UCP is a promising method for effort estimation in the early stages 

of software development that offers numerous benefits to the software industry 

[15], [16], [17]. Using machine learning to build SDEE models based on the 

original UCP formula could be a solution to improve its accuracy. Some 

approaches [18], [19], [20], [21], [22], [23] have also addressed variant models, 

especially regression models, to improve estimation accuracy based on historical 

data. The main drawback of the methods described above is that none of them is 

comprehensive or provides better accuracy in estimating software effort in all 

situations. There are still known problems in using UCP methods. 

• The first problem is a particular uncertainty in evaluating technical complexity 

factors (TCF) and environmental complexity factors (ECF), as it depends on 

the experience of experts [24], [25], [26], [27], [28]. In particular, assigning an 

appropriate value to an ECF is difficult due to the lack of relevant information. 

This is because an ECF is associated with the level of information and 

experience of a particular software development team. Similar problems exist 

in assigning a value to a TCF. These correction factors affect the estimation 

accuracy of UCP, so they need to be refined [29], [30]. Therefore, we will 

examine the close relationship between technical and environmental factors 

and prediction error to identify the best factors that significantly affect the 

estimation accuracy of the UCP method. This issue will be discussed in 

Chapter 3.1, as we have proposed a new formula for calculating the correction 

factors in the UCP method. 

• The second problem is that potentially unsuitable variables are not considered 

in the UCP equation. In particular, use cases are written in natural language, 

and there is no rigorous process for assessing the quality or fragmentation of 

use cases. As a result, the number of steps in a use case may vary, affecting 

the estimate's accuracy. In addition, the estimate's accuracy may suffer if a use 

case contains multiple scenarios. Almost all previous methods for estimating 

software effort based on UCP have focused on developing the method by 

evaluating the complexity of the use case model and complexity weights [31], 

[32], [33], [34], [35], [36], [37]. However, we believe the regression approach 

based on UCP elements can solve this problem. Specifically, we will explore 

the implementation of multiple linear regression (MLR) models to select new 

formulas and regression coefficient values to reduce the impact of human error 
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in evaluating actors or use cases. As shown in Chapter 3.2, this new formula 

outperforms the estimation accuracy of UCP.  

• Moreover, given the complexity of today's software development projects, 

effort estimation requires the support of statistics and machine learning (ML). 

According to Kumar et al. [38], the overall estimation accuracies of SDEE 

methods based on statistical and machine learning techniques are almost 

acceptable as they are within 25% of the percent error (PRED (0.25)). The 

techniques are used to model the relationship between effort and software 

variables, which is particularly useful when the relationship is non-linear. 

However, one question is how to select unbiased approaches and appropriate 

algorithms. We note that single statistical and machine learning methods are 

unreliable, and the accuracy of a single method depends on its parameter 

configurations [39]. According to Thiago et al. [40], using a single model does 

not lead to optimal SDEE results. Priya et al. [41] also found that combining 

multiple models improves reliability. For all datasets, almost all ensemble 

SDEE approaches use the same learning parameter settings. With the above 

analysis, the thesis aims to reduce the bias and variability errors of the single 

models. In Chapter 3.3, we present the ensemble approach, which integrates 

seven well-known statistical and machine learning methods and fine-tunes the 

parameters of all the single methods to create a new and more comprehensive 

method in the early stages of software development. 

• The fourth focus is the difficulty of converting software size into the 

corresponding effort. Many researchers consider the software productivity 

factor, or the amount of software produced per effort, critical to estimating 

effort [42], [43], [44], [45]. This term also refers to the ratio of effort to size, 

also known as the productivity factor (PF). Most accepted values for the 

productivity factor have been suggested by project managers or use 

predetermined values for software productivity [46], [47]. However, we 

believe each software project takes place in a unique environment. Therefore, 

the question of whether to impose a fixed PF on all software projects has not 

been adequately addressed. This issue was discussed in Chapter 3.4 when we 

developed the software productivity model using the ensemble approach with 

historical correction factors. According to the findings, learning productivity 

values for each project is more useful and efficient than using predetermined 

values for all projects. 
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2 AIMS OF THE THESIS 

The thesis focuses on developing SDEE methods for estimating software size 

and effort from UCM. Our methods can be used during the requirements phase of 

the software lifecycle. We aim to develop methods to handle imprecision and 

incorporate expert opinions to produce accurate and reliable effort estimates. With 

this objective, the thesis analyzes and proposes SDEE methods to reduce the 

impact of human error in UCM analysis and simplify the original principles of 

UCP. Each approach has its advantages, and they complement each other to form 

a complete process and promote significant efficiency to minimize the estimation 

error more efficiently in all situations.  

With each problem statement presented in Chapter 1, we have made the 

following objectives: 

• Determining software complexity factors that significantly affect estimation 

accuracy and proposing a new formula for the calculating of the correction 

factors.  

• Designing a comprehensive approach for determining software size in the 

early stages of software development. 

• Validation of the proposed methods and procedures using various evaluation 

criteria and their comparison with the UCP reference method and other 

approaches. 
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3 THE PROPOSED METHODS 

First, a proposal for increasing the estimation accuracy of the existing UCP 

method was called Optimization Correction Factors (OCF) [48]. We analyze 

correction factors to identify the best technical and environmental complexity 

factors that significantly affect the estimation accuracy of the UCP method in 

regression analysis. To put this idea into practice, we propose a new formula to 

calculate the correction factors in the UCP method. Then, to obtain more accurate 

estimates, we aim to apply the MLR models to improve the ability of the OCF 

method to estimate the software size and minimize the prediction error. This is 

referred to as the Extension of Optimizing Correction Factors (ExOCF) [49]. The 

OCF variables are used in this method to determine the software size. The MLR 

formulation was created to estimate the software size values. Following the 

proposed ExOCF is another alternative framework for effort prediction to 

improve the overall performance of the regression. A novel Stacked SVR-MLR-

MLP-DT-RF-KNN-GB on the OCF (SOCF) model is proposed to improve the 

overall performance of the regression. The model includes seven statistical and 

ML techniques: MLR, KNN, SVR, MLP, RF, GB, and DT. Finally, the 

calculations of the effective productivity factor (PFCFE) are proposed in 

conjunction with the OCF as predictors of effort  [50]. The summary of the four 

proposed methods is shown in Figure 3-1. 

 

 

Figure 3-1. The proposed methods 

 

3.1 The proposed Optimization Correction Factors method  

A detailed illustration of the OCF method is shown in Figure 3-2. The LASSO-

based Selection Phase (Phase I), applies the LASSO regression with the 

determined regularisation parameter λ to extract a selected variable set; as shown 

in Eq. (3.1).  

Actor Use Case

UAW UUCW

UUCP

Complexity Weight

TCF

ECF

Complexity Factors

UCP

Size
Effort

PF = 20

OCF

Size

LaTF

LaEF

Correction Factors

Applying the feature selection (LASSO) 

approach to determine the best technical 

and environmental complexity factors 

PFCFE
Proposing software productivity 

model based on correction factors 

through an ensemble construction 

mechanism of three machine 

learning models   

Effort

PF = 20

ExOCF

Size

Proposing a parametric software 

effort estimation model based on 

the OCF method and MLR 

PF = 20

SOCF

Size

Proposing a novel Stacked SVR-

MLR-MLP-DT-RF-KNN-GB

PF = 20
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β̂(λ) =  argmin

β
(

∥ Y − Xβ ∥2
2

n
+ λ ∥ β ∥1)    

subject to ∑ |βj| < t
k

j=1
 

(3.1) 

where  

 
∥ Y − Xβ ∥2

2 =  ∑ (Yi − (Xβ)i)
2

n

i=0
 

(3.2) 

 
∥ β ∥1 =  ∑ |βj| 

k

j=1
 

(3.3) 

where λ ≥ 0 is the lasso parameter that controls the strength of the penalty determined 

by the Leave One Out Cross-Validation (LOOCV) method. The choice of the lasso 

parameter is adjusted based on the lowest possible estimation error and a lack of bias 

against the correction factors of the observations in the training set. The lasso 

parameter relates directly to the number of correction factors selected via non-zero β. 

LASSO regression is used to obtain the TCF and ECF correction coefficients - 

as described in Eq. (3.4) and Eq. (3.5), respectively. 

 
y_TCFi =  α0 + ∑ αi  × ti × fwi

13

i=1
 

(3.4) 

 
y_ECFi =  β0 + ∑ βi  × ei × ewi

8

i=1
 

(3.5) 

where, y_TCFi be (
Real_P20

(UAW+UUCW)× ECF
− 0.6) × 

1

0.01
 , y_ECFi be 

(
Real_P20

(UAW+UUCW)× TCF
− 1.4) × 

−1

0.03
 , and α0, αi β0, βi are the regression coefficient 

parameters obtained from the LASSO regression; Real_P20 is the real size of 

software projects from historical datasets. The LASSO-based selected variables 

in TCF and ECF are designated as LaTF and LaEF respectively. 

Then, Least Squares Regression (LSR) is used to obtain the coefficients for 

LaTF and LaEF in Eq. (3.6) and Eq. (3.7), respectively. LaTF and LaEF values 

represent the final technical and environmental complexity factors - (correction 

factors), in the OCF method. 

 
y_LaTFi =  α0 + ∑ αi  × LaTi × WLti

n

i=1
 

(3.6) 

 
y_LaEFi =  β0 + ∑ βi  × LaEi × WLei

m

i=1
 

(3.7) 

where, let y_LaTFi and y_LaEFi be the TCF and ECF from the historical dataset; 

n is the number of LaTF; m is the number of LaEF; and α0, αi β0, βi are regression 

coefficient parameters obtained from LSR.  

LaTF and LaEF are obtained according to Eq. (3.8) and Eq. (3.9). 
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LaTF =  α0 + ∑ αi  × LaTi × WLti

n

i=1
 

(3.8) 

 
LaEF =  β0 + ∑ βi  × LaEi × WLei

m

i=1
 

(3.9) 

The model fitting phase - (Phase II) is determined. The effort estimation final 

result of the proposed OCF method is described by Eq. (3.10).  

 UCPOCF = (UAW + UUCW) ×  LaTF ×  LaEF (3.10) 

 

 

Figure 3-2. The proposed Optimizing Correction Factors method 

 

3.2 The proposed approach based on Optimization 

Correction Factors and Multiple Linear Regression 

The OCF approach can help project managers reduce the risks associated with 

evaluating correction factors. The results show that the method improves the 

average SSE by more than 53.6% compared to the UCP method. The detailed 

results are presented in Chapter 5.1. We further develop the OCF method and 

propose an extension of OCF (ExOCF) that applies MLR models to the OCF 

elements to reduce the estimation error and the influence of the unsystematic noise 

of the OCF technique. A detailed illustration of the ExOCF method is shown in 

Figure 3-3. 

The proposed model is built using MLR as follows: 
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UCPExOCF = γ1(UAW ×  LaTF ×  LaEF)

+ γ2(UUCW ×  LaTF ×  LaEF) 
(3.11) 

where γ1, γ2 are obtained according to two steps. First, the historical data points 

(P1, … , P2) are collected. The UAW, UUAW, LaTF, and LaEF elements for each 

project are identified. The result of this step is the collection of values 

(xi1, xi2, yi), i = 1 … n̅̅ ̅̅ ̅̅ ̅ , where yi is the actual size (Real_P20 values) of the 

software project from a historical dataset.  

 xi1 = (UAWi × LaTFi × ECFi) (3.12) 

 xi2 = (UUCWi × LaEFi × ECFi) (3.13) 

The LSR model is then used for obtaining the regression coefficients γ1, γ2 as 

followings. 

 
(

y1

⋮
yn

) = (
γ1

γ2
) × (

X11

⋮
Xn1

X12

⋮
Xn2

) 
(3.14) 

 (
γ1

γ2
) = (XTX)−1XTy (3.15) 

Because yi is a real value from a historical dataset, the regression coefficient 

values of γ1, γ2 can vary from each dataset. This means that when a historical 

dataset changes, this phase needs to be performed again to obtain new regression 

coefficient values. The second step of this phase will calculate the UAW, UUCW, 

LaTF, and LaEF of the current project, and Eq. (3.11) is applied with values γ1, γ2 

to estimate the UCPExOCF. 
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Figure 3-3. Detailed illustration of the proposed ExOCF method 

 

3.3 The proposed Stacking ensemble model based on 

Optimizing Correction Factors 

Based on the literature review, we believe the ensemble approach can provide 

an unbiased estimate of the effort required for a new software project. The 

ensemble approach combines at least two different single models through a unique 

aggregation mechanism and generates the final solution through weighted voting 

on their solutions [51]. As a result, this section aims to investigate the effect of 

the ensemble approach in predicting the software size early in the project 

development using the OCF method. The SOCF model is proposed that 

incorporating seven statistical and ML techniques MLR, KNN, SVR, MLP, RF, 

GB, and DT.  

The detailed SOCF architecture is shown in Figure 3-4, which consists of 

cleaning the data, dividing it into training and test sets, and applying the stacking 

model to estimate the OCF-based size. 

The following methodology was used: 

1. LASSO regression is used to determine the best correction factors.  

2. The input and output vectors are determined.  

3. The data is split into a training set S(−j) and a test set Sj. S
(−j) is used to 

create the level 0 models (regressors) via seven ML techniques, SVM, 

KNN, DT, MLP, MLR, GB, and RF.  
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4. The configuration parameters for the seven regression models (level 0 

models) SVM, KNN, DT, MLP, MLR, GB, and RF are tuned on the 

validation set (30% of the training set) to produce their optimal settings. 

5. Create an ensemble model with the stacking approach. The estimator's 

predictions are stacked and fed into a final estimator, which computes the 

final estimation. More precisely, each of the level 0 models in the first stage 

undergo five-fold cross-validation in S(−j) to output its prediction and 

generate a prediction for Sj by taking the average of the seven estimation 

results generated by the five CV models in the training phase. Then these 

level 0 models create a vector of predictions to input into the level 1 model 

(in the second stage). RF was selected as the meta-regressor to train a new 

model for the final project size estimation. 

 

 

Figure 3-4. The architecture of the proposed SOCF model 

 

3.4 The proposed software productivity model based on 

ensemble approach 

Our primary goal is to research and confirm the role of software productivity 

in generating early effort estimates from UCP. To address the fourth problem in 

Chapter 1, we proposed effective productivity factor calculations in conjunction 

with UCP as predictors for effort. The approach employs an ensemble 

construction mechanism from ML techniques (OCF(PFCFE)) such as Support 

Data cleaning
Feature selection on 
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Historical data points (P1, …, Pn). Parameter received by UCP

For each project:

Real_P20, UAW, UUCW
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Results of feature engineering
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Vector Regression (SVR), Multiple Linear Regression (MLR), and Decision Tree 

(DT). The voting ensemble is used as an ensemble model ML. 

Figure 3-5 shows the proposed software productivity mode. The methodology 

was used: (1) Correction factors from OCF are used as input. (2) Built the voting 

regressor algorithm [52] consisting of three base estimators, such as Support 

Vector Regression (sklearn.svm.SVR), Multiple Linear Regression 

(sklearn.linear_model.LinearRegression), and Decision Tree Regression 

(sklearn.tree.DecisionTreeRegressor).  

 

 

Figure 3-5. The proposed software productivity model 

 

Estimated effort is obtained by multiplying OCF by PFCFE, as follows Eq. 

(3.21). 

 EffortOCF(PFCFE)
= OCF × PFCFE (3.21) 

 

4 RESEARCH METHODOLOGY  

4.1 Experiment 1 (EX1) 

EX1 is performed to evaluate the proposed OCF method with other related 

methods, such as the baseline UCP [10] and OTF - a variant of the UCP model 

that omits the technical factors [53]. These methods are summarized in Table 4-1. 

 

Table 4-1. Methods implemented for EX1 

No. SDEE methods Summary Notation 

1 Use Case Points - Size is measured by UCP variables 

(UAW, UUCW, TCF, and ECF). 

UCP 

2 UCP (omitting 

technical factors) 

- Size is measured from UCP 

variables (UAW, UUAW, and ECF) 

except for the technical factors. 

OTF  
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3 Optimization 

Correction Factors 

(proposed in 

Chapter 3.1)  

- Correction factors are determined 

in regression analysis by the LASSO 

regression model. 

- Size is measured in UCP variables 

(UAW and UUCW) and correction 

factors (LaTF and LaEF). 

OCF  

 

The statistical hypothesis was tested to determine whether the proposed OCF 

approach provides a better estimate. 

• H0: μthe proposed OCF method = μthe other tested methods. The estimation ability 

of the proposed OCF method is not significantly different from the estimation 

abilities of the other tested methods. 

• H1: μthe proposed OCF method > μthe other tested methods. The estimation ability 

of the proposed OCF method is significantly different from the estimation 

abilities of the other tested methods. 

 

4.2 Experiment 2 (EX2) 

EX2 is performed to evaluate the proposed ExOCF method with the related 

software size estimation models from the literature. The selected models are the 

baseline UCP model [10], the OCF model, and the AOM model [23]. We also 

developed two models that establish a linear relationship between software and 

UCP factors (UAW, UUC, TCF, and EF). These models are SVR, and DT. All 

methods are summarized in Table 4-2. 

 

Table 4-2. Methods implemented for EX2 

No. SDEE method Summary Notation 

1 Use Case Points - Size is measured by UCP variables 

(UAW, UUCW, TCF, and ECF). 

UCP  

2 Optimization 

Correction Factors 

(proposed in 

Chapter 2.1)  

- Correction factors are determined in 

regression analysis by the LASSO 

regression model. 

- Size is measured in UCP size 

variables (UAW and UUCW) and 

correction factors (LaTF and LaEF). 

OCF  
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3 Algorithmic 

Optimization 

Method  

- Size is measured based on linear 

regression on UCP variables (UAW, 

UUC, TCF, and EF). 

AOM 

4 Use Case Points 

using SVR 

- SVR is used to estimate the software 

size based on UCP variables (UAW, 

UUCW, TCF, and ECF). 

UCP&SVR 

5 Use Case Points 

using DT 

- DT is used to estimate the software 

size based on UCP variables (UAW, 

UUCW, TCF, and ECF). 

UCP&DT 

6 Extension of 

Optimization 

Correction Factors 

(proposed in 

Chapter 3.2) 

- Correction factors are determined in 

regression analysis by the LASSO 

regression model. 

- Size is based on linear regression on 

OCF variables (UAW, UUCW, 

LaTF, and LaEF). 

ExOCF  

 

The statistical hypothesis was tested to determine whether the proposed ExOCF 

approach provides a better estimate. 

• H0: μthe proposed ExOCF method = μthe other tested methods. The estimation 

ability of the proposed ExOCF method is not significantly different from the 

estimation abilities of the other tested methods. 

• H1: μthe proposed ExOCF method > μthe other tested methods. The estimation 

ability of the proposed ExOCF method is significantly different from the 

estimation abilities of the other tested methods. 

 

4.3 Experiment 3 (EX3) 

EX3 is conducted to compare the proposed SOCF method with the related 

SDEE methods, such as UCP-based single methods (described in Table 4-3), 

OCF-based single methods (described in Table 4-4), and ensemble methods 

(described in Table 4-5). In addition, we experimented with baseline SDEE 

methods (UCP and OCF). 
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Table 4-3. UCP-based single methods implemented for EX3 

No. ML technique Summary Notation 

1 SVR - SVR is used to estimate the software 

size based on UCP variables (UAW, 

UUCW, TCF, and ECF). 

UCP&SVR 

2 KNN - KNN is used to estimate the software 

size based on UCP variables (UAW, 

UUCW, TCF, and ECF). 

UCP&KNN 

3 DT - DT is used to estimate the software size 

based on UCP variables (UAW, UUCW, 

TCF, and ECF). 

UCP&DT 

4 GRNN - GRNN is used to estimate the software 

size based on UCP variables (UAW, 

UUCW, TCF, and ECF). 

UCP&GRNN 

5 MLP - MLP is used to estimate the software 

size based on UCP variables (UAW, 

UUCW, TCF, and ECF). 

UCP&MLP 

6 RF - RF is used to estimate the software size 

based on UCP variables (UAW, UUCW, 

TCF, and ECF). 

UCP&RF 

 

 

Table 4-4. OCF-based single methods implemented for EX3 

No. ML technique Summary Notation 

1 SVR - SVR is used to estimate the software size 

based on OCF variables (UAW, UUCW, 

LaTF, and LaEF). 

OCF&SVR 

2 MLP - MLP is used to estimate the software size 

based on OCF variables (UAW, UUCW, 

LaTF, and LaEF). 

OCF&MLP 

3 GB - GB is used to estimate the software size 

based on OCF variables (UAW, UUCW, 

LaTF, and LaEF). 

OCF&GB 
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4 MLR - MLR is used to estimate the software size 

based on OCF variables (UAW, UUCW, 

LaTF, and LaEF). 

OCF&MLR 

5 KNN - KNN is used to estimate the software size 

based on OCF variables (UAW, UUCW, 

LaTF, and LaEF). 

OCF&KNN 

6 DT - DT is used to estimate the software size 

based on OCF variables (UAW, UUCW, 

LaTF, and LaEF). 

OCF&DT 

7 RF - RF is used to estimate the software size 

based on OCF variables (UAW, UUCW, 

LaTF, and LaEF). 

OCF&RF 

 

 

Table 4-5. Ensemble methods implemented for EX3 

No. ML technique Summary Notation 

1 

  

Majority voting 

ensemble 

- Majority voting ensemble with 

MLR, SVR, MLP models to 

estimate the software size based on 

UCP variables (UAW, UUCW, 

TCF, and ECF). 

VUCP 

2 Stacked 

Generalization 

Ensemble 

- Stacked generalization ensemble 

with SVM, KNN, DT, MLP, MLR, 

GB, RF models to estimate the 

software size based on OCF 

variables (UAW, UUCW, LaTF, 

and LaEF). 

SOCF 

(proposed in 

Chapter 3.3) 

 

The statistical hypothesis was tested to determine whether the proposed SOCF 

approach provides a better estimate. 

• H0: μthe proposed SOCF method = μthe other tested methods. The estimation 

ability of the proposed SOCF method is not significantly different from the 

estimation abilities of the other tested methods. 

• H1: μthe proposed SOCF method > μthe other tested methods. The estimation ability 

of the proposed SOCF method is significantly different from the estimation 

abilities of the other tested methods. 
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4.4 Experiment 4 (EX4) 

EX4 is conducted to compare the proposed OCF(PFCFE) method with the 

previous SDEE methods (UCP, SW [54], OCF), as summarized in Table 4-6.  

 

Table 4-6. Methods implemented for EX4 

No. SDEE method Summary Notation 

1 Use Case Points - Size is measured by UCP variables 

(UAW, UUCW, TCF, and ECF). 

- 20 person-hours to develop each UCP 

(PF=20). 

- The effort is computed by multiplying 

Size by the PF. 

UCP 

2 Schneider and 

Winter (SW) 

- Size is measured by UCP variables 

(UAW, UUCW, TCF, and ECF). 

- PF is computed from the UCP 

environmental complexity factors. 

- The effort is computed by multiplying 

Size by the PF. 

SW 

3 Optimization 

Correction 

Factors  

- Correction factors are determined in 

regression analysis by the LASSO 

regression model. 

- Size is measured in UCP size variables 

(UAW and UUCW) and correction 

factors (LaTF and LaEF). 

- 20 person-hours to develop each UCP 

(PF=20). 

- The effort is computed by multiplying 

Size by the PF. 

OCF 

4 Software 

Productivity 

Model based on 

Ensemble 

Construction 

Mechanism 

(proposed in 

Chapter 3.4) 

- Size is measured in UCP size variables 

(UAW and UUCW) and correction 

factors (LaTF and LaEF). 

- A proposed PFCFE model is constructed 

based on correction factors through an 

ensemble construction mechanism of 

three ML models (SVR, MLR, and DT). 

OCF(PFCFE)  
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- The effort is computed by multiplying 

Size by the PFCFE. 

 

The statistical hypothesis was tested to determine whether the proposed 

OCF(PFCFE) approach provides a better estimate. 

• H0: μthe proposed OCF(PFCFE) method = μthe other tested methods. The estimation 

ability of the proposed SOCF method is not significantly different from the 

estimation abilities of the other tested methods. 

• H1: μthe proposed OCF(PFCFE) method > μthe other tested methods. The estimation 

ability of the proposed SOCF method is significantly different from the 

estimation abilities of the other tested methods. 

 

5 MAIN RESULTS 

This section presents the solutions to the four problem statements given above. 

The purpose of the results is to minimize the SSE, MdMRE, MAE, MBRE, 

MIBRE, and RMSE and maximize the PRED (0.25). Specifically, low values for 

the SSE, MdMRE, MAE, MBRE, MIBRE, and RMSE show good results. In 

contrast, high values for the PRED (0.25) show good results. Besides that, the 

results of SSE, MAE, MdMRE, MBRE, MIBRE, and RMSE in the four 

experimental datasets were used for the paired t-test statistical comparisons. After 

five runs on different random training- testing had split, we obtained the average 

p-value of the t-test. 

 

5.1 EX1 

In the EX1, we will compare the proposed OCF method as well as the UCP and 

OTF methods based on the four experimental datasets. Figure 5-1 shows the 

average estimation results of the proposed OCF and other methods.  

The percentage improvements of the proposed OCF over the UCP and OTF 

methods averaged on all datasets in Table 5-1. These results show that the 

proposed OCF method outperformed the UCP and OTF methods when the SSE, 

MAE, MBRE, MIBRE, MdMRE, and RMSE criteria were used. The OCF method 

also gave good results when PRED (0.25) was used.  

 

Table 5-1. The percentage improvements of the OCF over the UCP and OTF 

methods averaged on all datasets 

Methods SSE PRED MAE MdMRE MBRE MIBRE RMSE 

OCF vs.UCP 53.6% 33.6% 35.4% 42.9% 36.7% 30.2% 34.1% 

OCF vs.OTF 37.7% 21.1% 19.2% 36.4% 20.8% 17.8% 23.3% 
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Figure 5-1. The average estimation results of the proposed OCF 

method and other methods on all datasets 

 

Moreover, we use the SSE, MAE, and RMSE results for all the experimental 

methods for statistical comparisons, i.e., to draw the most accurate conclusions 

by comparing estimation methods. The t-test, a parametric statistical comparison 

test, is used in this study. For a  less than, the two statistical methods involved in 

the comparison are significantly different. As shown in Table 5-2, our proposed 

OCF method is statistically superior to the baseline UCP method and the OTF 

method. A>> B means that A is statistically superior to B. Therefore, we accept 

the alternative hypothesis H1. 

 

Table 5-2. The t-test results for five different runs of the proposed OCF method in 

comparison with the other methods.  

Pairs of methods OCF vs. UCP OCF vs. OTF 

SSE  

 

Avg. SSE 
24,086.736 vs. 

51978.747 

24,086.736 vs. 

38660.720 

Avg. p-value 0.00000 0.00000 

Statistical conclusion >> >> 

MAE  Avg. MAE 
68.432 vs.           

106.009 

68.432 vs.             

84.790 
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Avg. p-value 0.00000 0.00001 

Statistical conclusion >> >> 

RMSE  

Avg. RMSE 
78.207 vs.           

118.707 

78.207 vs.           

102.091 

Avg. p-value 0.00000 0.00000 

Statistical conclusion >> >> 

 

5.2 EX2 

In this section, we will evaluate the proposed ExOCF method and five other 

methods across the four experiment datasets. The average estimation results of 

methods are shown in Figure 5-2. 

The first observation from these results is that the proposed ExOCF method 

produces the best SSE, MdMRE, MAE, MBRE, MIBRE, RMSE, and PRED 

(0.25) values, suggesting that it is possible to modify the OCF method to improve 

its estimation accuracy. From the results obtained, we believe that applying the 

MLR model to the OCF variables has proven its effectiveness. 

The second observation from these results is that the proposed ExOCF method 

improved accuracy over the baseline UCP method and other tested methods such 

as AOM, UCP&DT, and UCP&SVR. Table 5-3 presents the percentage 

improvement of the proposed ExOCF over the AOM, UCP&DT, and UCP&SVR 

methods averaged on all datasets. Based on this comparison, we can confidently 

confirm that the proposed method outperforms all other methods with superior 

accuracy in the evaluation criteria.  

 

Table 5-3. The percentage improvements of the ExOCF over the other methods 

averaged on all datasets 

Methods SSE MAE RMSE MdMRE MBRE MIBRE 

ExOCF  

vs. UCP&DT 
46.16% 31.13% 32.17% 32.35% 30.08% 29.97% 

ExOCF  

vs. UCP&SVR 
44.11% 31.35% 40.71% 32.28% 31.32% 23.17% 

ExOCF  

vs. AOM 
16.73% 13.39% 18.10% 13.06% 12.89% 7.84% 
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Figure 5-2. The average estimation results of the proposed ExOCF 

method and other methods on all datasets 

 

Furthermore, the results confirm that the ExOCF method is statistically 

significant at the 95% confidence level compared to the other five methods, as 

shown in Table 5-4. As a result, we are inclined to accept the alternative 

hypothesis (H1), which is also consistent with the results presented above. A>>B 

means that A is statistically superior to B. 
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Table 5-4. The t-test results for five different runs of the proposed ExOCF method 

in comparison with the other methods 

Pairs of  

methods 

ExOCF  

vs.  

UCP 

ExOCF  

vs.  

OCF 

ExOCF  

vs.  

UCP&DT 

ExOCF  

vs.  

UCP&SVR 

ExOCF  

vs.  

AOM 

SSE  

 

Avg. 

SSE 

1902.4 vs. 

51,978.7 

1902.4 vs. 

24,086.7 

1902.4 vs. 

3533.4 

1902.4 vs. 

3403.9 

1902.4 vs. 

2284.6 

Avg. p-

value 
0.00000 0.00001 0.00267 0.00316 0.00388 

St. conc. >> >> >> >> >> 

MAE  

Avg. 

MAE 

10.058 vs. 

106.009 

10.058 vs. 

68.432 

10.058 vs. 

14.605 

10.058 vs. 

14.651 

10.058 vs. 

11.613 

Avg. p-

value 
0.00000 0.00000 0.00001 0.00000 0.00005 

St. conc. >> >> >> >> >> 

RMSE  

Avg. 

RMSE 

13.348 vs. 

118.707 

13.348 vs. 

78.207 

13.348 vs. 

19.060 

13.348 vs. 

17.372 

13.348 vs. 

14.484 

Avg. p-

value 
0.00000 0.00000 0.00000 0.00001 0.00007 

St. conc. >> >> >> >> >> 

 

5.3 EX3 

The comparison between the OCF-based and UCP-based single methods is 

illustrated in Figure 5-3. The first finding from these results is that the 

experimental results suggest that OCF-based methods reduce estimation errors 

more effectively than UCP model-based methods. Table 5-5 show the percentage 

improvements of OCF&SVR, OCF&MLP, OCF&KNN, OCF&DT, and 

OCF&RF over UCP&SVR, UCP &MLP, UCP &KNN, UCP &DT, and UCP 

&RF. Based on this finding, we can conclude that approaches that use OCF 

variables outperform those that use UCP variables. 
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Table 5-5. The percentage improvements of the OCF-based single methods 

averaged on all datasets 

 Methods SSE MAE RMSE MdMRE MBRE MIBRE 

OCF&SVR  

vs. UCP&SVR 
35.80% 19.43% 28.17% 20.23% 19.18% 15.82% 

OCF&MLP  

vs. UCP&MLP 
39.25% 19.53% 18.50% 19.83% 18.21% 15.80% 

OCF&KNN  

vs. UCP&KNN 
44.62% 33.65% 40.18% 34.06% 32.00% 27.47% 

OCF&DT  

vs. UCP&DT 
6.63% 6.49% 9.28% 7.23% 6.52% 7.70% 

OCF&RF  

vs. UCP&RF 
52.22% 26.56% 25.50% 27.71% 25.30% 24.08% 

 

 

Figure 5-3. The average estimation results of the UCP-based and 

OCF-based single methods 
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The comparison between between the ensemble methods and their single 

approaches is shown in Figure 5-4 and Figure 5-5. Based on these results, we can 

conclude that the ensemble methods outperform their single methods, and the 

proposed SOCF approach surpasses the VUCP method. Moreover, the results 

confirm that the SOCF method is statistically significant at the 95% confidence 

level compared to the other methods, as shown in Table 5-6, Table 5-7, and Table 

5-8. A>> B means that A is statistically superior to B. Therefore, we accept the 

alternative hypothesis H1. 

 

Figure 5-4. The comparison between the ensemble method VUCP and 

its single approaches 
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Figure 5-5. The comparison between the ensemble method SOCF and 

its single approaches 
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Table 5-6. The t-test results for five different runs of the proposed SOCF method 

in comparison with the other methods 

Pairs of  

methods 

SOCF  

vs.  

UCP 

SOCF  

vs.  

OCF&MLP 

SOCF  

vs.  

OCF&DT 

SOCF  

vs.  

OCF&SVR 

SOCF  

vs.  

OCF&MLR 

SSE  

 

Avg.  

SSE 

1217.7 vs. 

54838.9 

1217.71 vs. 

2279.44 

1217.71 vs. 

3028.31 

1217.71 vs. 

2184.80 

1217.71 vs. 

2117.07 

Avg. p-

value 
0.00000 0.00076 0.00440 0.00190 0.00514 

St. conc. >> >> >> >> >> 

MAE  

Avg.  

MAE 

6.980 vs.  

95.615 

6.980 vs.  

11.762 

6.980 vs.  

12.373 

6.980 vs.  

11.200 

6.980 vs. 

10.874 

Avg. p-

value 

0.00000 0.00000 0.00005 0.00000 0.00001 

St. conc. >> >> >> >> >> 

RMSE  

Avg.  

RMSE 

9.096 vs.  

104.339 

9.096 vs. 

14.639 

9.096 vs.  

14.482 

9.096 vs. 

13.977  

9.096 vs. 

13.197 

Avg. p-

value 

0.00000 0.00002 0.00006 0.00005 0.00000 

St. conc. >> >> >> >> >> 

 

 

Table 5-7. The t-test results for five different runs of the proposed SOCF method 

in comparison with the other methods 

Pairs of  

methods 

SOCF  

vs.  

OCF&GB 

SOCF  

vs.  

OCF&RF 

SOCF  

vs.  

UCP&KNN 

SOCF  

vs.  

UCP&SVR 

SOCF  

vs.  

UCP&MLP 

SSE  

 

Avg.  

SSE 

1217.7 vs. 

3069.7 

1217.7 vs. 

1847.0 

1217.71 vs. 

1899.03 

1217.71 vs. 

3402.95 

1217.7 vs. 

2117.07 

Avg. p-

value 
0.00460 0.00583 0.01199 0.00195 

0.00514 

St. conc. >> >> >> >> >> 

MAE  

Avg.  

MAE 

6.980 vs.  

12.441 

6.980 vs.  

9.499 

6.980 vs.  

9.293 

6.980 vs. 

13.902  

6.980 vs.  

10.874 

Avg. p-

value 

0.00005 0.00000 0.00005 0.00005 0.00001 

St. conc. >> >> >> >> >> 
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RMSE  

Avg.  

RMSE 

9.096 vs. 

14.530 

9.096 vs.  

12.032 

9.096 vs. 

11.993  

9.096 vs. 

16.604 

9.096 vs.  

Avg. p-

value 

0.00006 0.00005 0.00010 0.00000 13.197 

St. conc. >> >> >> >> >> 

 

 

Table 5-8. The t-test results for five different runs of the proposed SOCF method 

in comparison with the other methods 

Pairs of  

methods 

SOCF  

vs.  

UCP&GB 

SOCF  

vs.  

OCF&KNN 

SOCF  

vs.  

UCP&DT 

SOCF  

vs.  

UCP&RF 

SOCF 

vs. 

VUCP 

SSE  

 

Avg.  

SSE 

1217.7 vs. 

3069.7 

1217.7 vs. 

1847.0 

1217.71 vs. 

1899.03 

1217.71 vs. 

3402.95 

1217.71 vs. 

2397.77 

Avg. p-

value 
0.00460 0.00583 0.01199 0.00195 

0.00764 

St. conc. >> >> >> >> >> 

MAE  

Avg.  

MAE 

6.980 vs.  

12.441 

6.980 vs.  

9.499 

6.980 vs.  

9.293 

6.980 vs. 

13.902  

6.980 vs. 

10.899 

Avg. p-

value 

0.00005 0.00000 0.00005 0.00005 0.00003 

St. conc. >> >> >> >> >> 

RMSE  

Avg.  

RMSE 

9.096 vs. 

14.530 

9.096 vs.  

12.032 

9.096 vs. 

11.993  

9.096 vs. 

16.604 

9.096 vs. 

13.169 

Avg. p-

value 

0.00006 0.00005 0.00010 0.00000 0.00007 

St. conc. >> >> >> >> >> 

 

5.4 EX4 

In the EX4, we will compare the proposed OCF(PFCFE) method as well as the 

previous related methods (UCP, SW, and OCF) based on the four experimental 

datasets. The comparison between the OCF(PFCFE) method and three related 

methods is illustrated in Figure 5-6. The obtained results allow us to confidently 

conclude that the OCF(PFCFE) using the proposed software productivity approach 

achieves better improvements than the previous related methods using fixed 

productivity metrics, concerning all accuracy measures.  
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(3) The percentage improvements of the proposed OCF(PFCFE) over the other 

methods are presented in Table 5-9. This conclusion is confirmed by 

statistical t-test comparisons for each corresponding method (see  

Table 5-10). A>>B refers to A statistical superiority to B. The OCF(PFCFE) 

using the proposed software productivity approach is statistically better than other 

methods, as the obtained p-values are all below 0.05.  

 

Table 5-9. The percentage improvements of the proposed OCF(PFCFE) method 

averaged on all datasets 

 Methods SSE PRED MAE RMSE MdMRE MBRE MIBRE 

OCF(PFCFE)  

vs. UCP 
58.6% 43.4% 43.7% 40.7% 51.7% 51.1% 41.6% 

OCF(PFCFE)  

vs. SW 
62.2% 37.1% 45.2% 43.5% 54.8% 47.0% 39.4% 

OCF(PFCFE)  

vs. OCF 
31.3% 30.1% 31.1% 23.2% 44.0% 41.9% 35.0% 

OCF(PFCFE)  

vs. AOM 
58.6% 43.4% 43.7% 40.7% 51.7% 51.1% 41.6% 

OCF(PFCFE)  

vs. UCP 
62.2% 37.1% 45.2% 43.5% 54.8% 47.0% 39.4% 

 

Table 5-10  The t-test results of five different runs for statistical comparison of our 

proposed OCF(PFCFE) methods with other tested methods 

Pairs of methods 
OCF(PFCFE) 

vs. UCP 

OCF(PFCFE) 

vs. SW 

OCF(PFCFE) 

vs. OCF 

OCF(PFCFE) 

vs. AOM 

SSE 

 

Avg.  

SSE 

2.16E+07 

vs. 

5.21E+07 

2.16E+07 

vs. 

5.72E+07 

2.16E+07 

vs. 

3.15E+07 

2.16E+07 

vs. 

3.75E+07 

Avg.  

p-value 
0.00000 0.00000 0.00000 0.00011 

St. conc. >> >> >> >> 

MAE 

 

Avg.  

MAE 

1194.141 

vs. 

2171.213 

1194.141 

vs. 

2228.636 

1194.141 

vs. 

1773.276 

1194.141 

vs. 

1756.148 

Avg.  

p-value 
0.00000 0.00000 0.00000 0.00000 
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St. conc. >> >> >> >> 

RMSE 

 

Avg.  

RMSE 

1554.136 

vs. 

2620.587 

1554.136 

vs. 

2748.516 

1554.136 

vs. 

2024.497 

1554.136 

vs. 

2126.666 

Avg.  

p-value 
0.00000 0.00000 0.00000 0.00000 

St. conc. >> >> >> >> 

 

 

Figure 5-6. The average estimation results of the proposed 

OCF(PFCFE) method and other methods on all dataset 
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6 CONTRIBUTIONS OF THE THESIS TO SCIENCE 

AND PRACTICE 

The main benefit of this work is the introduction of a new approach to complex 

algorithms based on engineering requirements research for a more accurate 

estimation of software effort. The new algorithms are inspired by the possibilities 

of using a standardized estimation procedure to address the impact of human error 

in UCM analysis and to simplify the original UCP principles. 

The main benefits of this work can be summarized as follows: 

• Proposed procedures can help project managers reduce risks in evaluating 

correction factors and obtain effort estimates. 

• An algorithm for calculating productivity based on correction factors has been 

proposed through a voting set approach consisting of three ML techniques. 

• Proposed a comprehensive approach to improve estimation accuracy and 

minimize project risks in the early stages of software development. 

• Experiments have shown that the use of the proposed new algorithms 

minimizes the estimation error compared to the selected methods. 

In summary, the results obtained can be considered beneficial for industrial 

applications, as they show that the proposed algorithms lead to more accurate 

estimates of the size and complexity of the software. 

 

7 CONCLUSIONS 

The presented doctoral thesis is proposed UCP-based estimation methods in the 

early stages of software development. Our methods can help project managers 

estimate costs early and efficiently, avoiding project overestimation and late 

delivery, among other issues. Each approach has its advantages, and they 

complement each other to form a complete process and promote significant 

efficiency to minimize estimation error more efficiently in all situations. The 

results show that our proposed SDEE method outperforms other related methods. 

One of our future works is to calibrate the weighting values of the correction 

factors to reflect the latest trend in the software development industry and improve 

the accuracy of the proposed methods. Therefore, an approach to calibrate the 

weights of the correction factors using an artificial neural network will be 

performed in the future. Another concern relates to a key aspect of the 

heterogeneity of the historical data. This could lead to an increase in the 

estimation error for SDEE. The use of clustering approaches is considered 

a solution to improve the method's estimation accuracy in our future work.  
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