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ABSTRAKT

Pokročilé technologie aditivní výroby umožňují zpracování polymerů do komp-

likovaných struktur s různými geometriemi, porozitou a mechanickými vlastnos-

tmi. S využitím elektrického pole lze dosáhnout vetších detailů. Aditivní charakter

zpracování v kombinaci s multimateriálovou výrobou umožňuje optimalizovat ge-

ometrii kompozitů a vysokou přesností na několika úrovních. Tento způsob výroby

se využívá v mnoha oborech, například v biomedicíně a tkáňovém inženýrství pro

výrobu tkáňových nosičů s chemickými, mechanickými a strukturními vlastnos-

tmi upravenými na míru dané tkáni, čímž je umožněna úspěšná kultivace buněk.

Cílem této práce je prozkoumat možnosti zpracování přírodních polymerů pomocí

pokročilých technologií 3D tisku a elektrostatického zvlákňování. K tomuto účelu

jsou vybrány polymery pro výrobu hydrogelových matric jako inkoustů vhodných

pro mikroextruzní 3D tisk. Dále jsou roztoky těchto polymerů zvlákňovány v elek-

trickém poli. Tyto procesy jsou optimalizovány na základě vlivu různých parametrů,

aby bylo dosaženo požadovaných výsledků. Při kombinaci obou technologií lze

výsledky této práce využít pro vytvoření tkáňových nosičů obsahující nanostruk-

tury, které poskytnou věrný analog přirozeného prostředí pro kultivaci buněk.

ABSTRACT

Advanced additive manufacturing technologies provide means to precisely fabricate

elaborate structures with various geometries, porosity and mechanical performance.

Additionally, electric field assisted polymer processing can be used to fabricate fine

structures with nanotopographical features. The additive manufacturing processes

- specifically 3D printing and electrospinning, which are the central focus of the

current thesis - are increasingly popular in medical fields, such as tissue engineering,

due to their versatility. They present a powerful tool to optimize the scaffolds from

chemical, mechanical and structural points of view to mimic specific tissue types

for cell cultivation. This thesis examines the possibilities of processing of natural

polymers by the advanced technologies of 3D printing and electrospinning. To this

end, the selected polymers are used as hydrogel matrices fabrication for preparation

of inks suitable for microextrusion 3D printing. Alternatively, polymer solutions



are spun into nanofibres in an electric field. The specific criteria of each process are

followed to allow tuning of the process. Ultimately, the results of both technologies

could be combined to achieve fabrication of scaffold containing nanostructures, and

thus provide precise tissue analogue for cell cultivation.
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1 INTRODUCTION

Advanced manufacturing is an overarching terms for innovative processes and tech-

niques utilizing technologies such as additive manufacturing, nanotechnology, or

advanced materials manufacturing [1]. These technologies are designed to reduce

waste and thus enable more efficient product manufacturing. Contrary to subtrac-

tive manufacturing, additive manufacturing employs a bottom-up approach that can

revolutionize the creation of complex shapes and structures.

3D printing and electrospinning employ the bottom-up approach to create 3D struc-

tures from various materials. 3D printing uses a computer-controlled printer to

deposit layers of a material to construct a 3D structure, producing structures with

a resolution of thousands to hundreds of micrometers [2, 3]. Electrospinning uti-

lizes an electric field to produce a fine fibres of hundreds to tens of nanometers

in thickness, although it typically leads to random nanofibrous meshes and thus is

considered less precise than 3D printing [4].

Both 3D printing and electrospinning are used in tissue engineering, providing scaf-

folds for cell culture and tissue repair [5]. 3D printing provides control over macro-

scopic geometry, while electrospinning is faster and produces fibres with smaller

diameters. The materials research has provided a large number of compositions

utilizable in both technologies respectively. Each technology contributes distinct

qualities to achieve cell guidance through the presence of signal functional groups

and topographical cues which influence cell behavior [6, 7]. Thus, combining 3D

printing and electrospinning can be seen as a biomimetic approach to creating struc-

tures suitable for tissue engineering or pharmaceutical applications.

2 STATE OF THE ART

Processing of polymer systems using advanced technologies offers remarkable op-

portunities in various areas of research, including medical fields such as drug deliv-

ery, wound healing, tissue engineering, and cell scaffold fabrication [8, 9, 10, 11,

12]. Polymer systems intended for medical applications must adhere to specific re-
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quirements involving the in vivo interactions. Particularly in tissue engineering, the

polymer systems should imitate native tissue properties for optimal cell adhesion

and proliferation [13].

The requirements include for example providing support and allowing communi-

cation among cells [14], which is facilitated by the extracellular matrix (ECM) in

native tissue. These requirements are fulfilled by high water content and poros-

ity, making hydrogel materials popular [6]. Nanoscale structures play a significant

role in cell cultivation, influencing cell division, morphology, and tissue formation

[15, 16, 17, 7, 18]. Mechanical properties of a tissue vary according to their func-

tion. For example, Young‘s modulus can range from tens of GPa for cancellous

bone [19] through units of MPa found for muscles [20] to hundreds of kPa in case

of adipose tissue types [21]. Some tissues also display anisotropy, providing a dif-

ferent response based on the direction of impulse. Engineering of such tissue types

benefits from introducing a gradient of the desired quality to the scaffold structure

[22].

An emergent approach to cell scaffold fabrication is the use of smart materials,

which respond instantly and reversibly to external stimuli, including temperature,

electric or magnetic field, light, or humidity [23]. Smart materials have been used to

induce chondrogenesis in cells [24], stimulate fibroblasts proliferation [25] or create

magneto-responsive cell scaffolds [26, 27] or thermally controlled drug delivery

systems [28]. The combination of smart materials and advanced manufacturing

offers the potential to achieve 4D printing - 3D printing of structures that change

over time [29].

Cell cultivation on artificial scaffolds depends on surface properties, which influ-

ence cell attachment, migration, proliferation, and differentiation [30, 31, 32, 33,

34]. Additionally, 3D cell culture has proven more effective than 2D in creating

viable tissue analogues, making it a bridge between cell culture and living tissue

[14, 35]. The essence of 3D cell cultivation is in the cell-ECM and cell-cell interac-

tions [36]. It can be achieved through bioinstructive cues in 3D cell culture guiding

cell growth, proliferation, and differentiation [37].

In a recent study, Fornetti et al., 2023 observed the alignment provided by 3D print-

ing also leads to better orientation of muscle cells [38]. Aligned electrospun nanofi-
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bres, on the other hand, have also shown the capacity to guide cell proliferation and

differentiation in the reconstruction of myocytes and neural cells [39, 40, 41, 7].

Furthermore, the use of nanofibres as fillers for hydrogel matrices has been shown

to induce cell alignment [42]. It is apparent that combining 3D printing and electro-

spinning technologies is a promising approach for fabricating cell-instructive scaf-

folds for tissue engineering applications [5, 43, 44].

3 AIMS OF THE DOCTORAL THESIS

The main focus of the doctoral thesis is the development of natural polymer based

systems suitable for processing via 3D printing and electrospinning technologies

in order to obtain constructs distinctly structured on macro-, micro- and nanolevel.

This is achieved through thorough examination and fine tuning of key parameters

for the respective techniques. Furthermore, the possibility to utilize composite ma-

terials and enhance the polymer matrix performance will be studied. The research

objective is directed towards fabrication of scaffolds for cell cultivation. Therefore,

it is necessary to be mindful of biocompatibility in each step of the process.

4 THEORETICAL BACKGROUND

4.1 Polymers and polymer systems

Polymers present a group of materials consisting of macromolecules (several mil-

lions grams per mol), which are built from repeating units conceptually derived

from low-molecular-mass molecules. Polymers can be divided into several groups

based on their origin (natural or synthetic), primary structure (homopolymers or

copolymers, which can be further divided into subgroups - statistical, alternating,

block or graft copolymers), or secondary structure (linear, branched or cross-linked)

[45]. Structural characteristics of a polymer chain, such as Mw, polydispersity, lin-

earity etc. directly influence polymers mechanical [46, 47], rheological [48], or

thermal properties [49].

9



Polymer systems comprise mixtures of polymers with other substances - solvents,

fillers (either passive or active), cross-linking agents, other polymers etc. [50].

These additives influences the behaviour of the polymer chains through physical or

chemical interaction. The variety of possible effects leads to almost infinite range

of possible polymer systems. For the purposes of the thesis, only specific groups of

polymer systems essential to the research will be described.

4.1.1 Polymer based scaffolds in tissue engineering

Tissue engineering involves three main elements: a scaffold, cells, and signaling

pathways [51]. The scaffold provides a framework for cell attachment and me-

chanical, thus mimicking the functions of the ECM — a composite of proteins and

glycosaminoglycans that plays a vital role in cellular adhesion and growth [1].

A scaffold’s core feature is its high porosity, enabling cell growth within the pores

and facilitating fluid flow. As such, hydrogels are extremely promising candidates

in scaffold fabrication and ECM environment simulation, as the porosity and high

water content are inherently present in their structure [6]. Furthermore, their relative

ease of processing allows precise control over the shape of the scaffold [1].

Materials for tissue engineering must meet certain criteria, including biodegradabil-

ity, biocompatibility and non-toxicity. Additionally, the presence of biologically

active chemical cues, hydrophilicity, and overall chemical composition is also im-

portant [52]. Hydrogel matrices for scaffold fabrication can be in general obtained

from both natural and synthetic polymers. While synthetic polymers offer high

reproducibility, they lack cellular adhesive sites and present the risk of cytotoxic-

ity [53]. Hence, their use for cell growth requires functionalization with signaling

molecules [54]. Natural polymers, on the other hand, are non-toxic and include

bioinstructive chemical cues in their structure [53], but they also lack predictability

and thermal stability, making the complex shape processing challenging [52].
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4.1.2 Polymer composites in tissue engineering

Single-component hydrogels properties are often insufficient for tissue engineering

applications [55]. Thus, composite materials, which combine multiple materials in

synergy for enhanced properties or additional functionality, are being developed.

Precise structuring of composites introduces anisotropy to the material [56]. Cer-

tain types of composite filler provide platforms for stimuli-responsiveness and on-

demand modulation, forming smart materials [57].

There are some significant types of fillers with distinct effect on the matrix be-

haviour, including fibres introducing directional anisotropy and reinforcement [58,

42]. Another form of composite fillers is the particles, or significantly nanoparticles

(NPs). The growing popularity of nanosized fillers is due to the enhanced inter-

facial effects resulting from their increased specific surface [59]. Carbon-based

NPs or bioceramics are among the most common nanofillers, providing conductiv-

ity or mechanical reinforcement [60]. Surface charged disc-like nanoclays, such as

Laponite®, can provide intrinsic structural support to the polymer matrix, enhancing

extrudability and recovery after shear. Thus, these fillers can serve as rheological

modifiers for 3D printable hydrogels [61].

Certain kinds of nanoparticulate filler can also facilitate stimuli-responsiveness,

thus providing smart hydrogels. As an example, magnetic particles can trigger

certain behaviour upon application of a magnetic field. Commonly, the response

is mechanical, as the presence of an external magnetic field induces ordering of

the filler particles along the magnetic field, leading to increase of mechanical per-

formance, also denoted as magneto-rheological efect (MRE) [62]. Biocompatible

magneto-rheological hydrogels can be used e.g. as embolization agents [63], or to

impose dynamic mechano-modulation on cells [64].

In a different application of magnetic particles, magneto-thermal responsiveness

can be acheived. The principle of magneto-thermally responsive hydrogels is based

on rapid periodical changes of magnetic moment direction induced by an alternat-

ing magnetic field, which leads to generation of heat. The heating is provided by

hysteresis loss [65], Brown relaxation referring to the physical change of particles

orientation [66], and Néel relaxation which describes the change of magnetic mo-
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ment within the particle [67]. The particle size determines the dominant heating

mechanism of a magneto-thermally responsive hydrogel. The produced heat can

be used for various medical applications, including hyperthermia cancer treatment

[67], thermal neurostimulation [68], or targeted drug delivery in combination with

thermoresponsive polymer networks [69].

4.2 3D printing

3D printing as a layer-by-layer fabrication offers a great versatility in design of the

product. Naturally, the technology provides great opportunities also in terms of

pharmaceutical research such as temporally programmed drug release and targeted

drug delivery [70]. Furthermore, its possibilities in medical use, especially wound

treatment [71] and tissue engineering [72] are abundant.

3D printing in medical applications and especially bioprinting - i.e. printing of cell-

laden biomaterials - draws attention of researchers, as it allows preparing complex

structures as well as controlled distribution of cells [73]. This ability could diminish

the shortage of transplantable organs supply [51], as well as allow cruelty-free phar-

maceutical research [74, 75]. There are three basic options suitable for 3D printing

of hydrogels: inkjet printing, extrusion-based printing and laser assisted printing

[76].

Inkjet printing technology places the ink material dropwise on the predefined loca-

tion using for example piezoelectric pulses [77], or thermal generation of vapour to

pressurize the printhead [78]. In this case, high surface tension is crucial for high

printing precision, as it increases the materials tendency to form droplets [79]. This

method required low viscosity inks, thus the stability of the constructs needs to be

ensured by in situ cross-linking [80].

In contrast to inkjet printing, extrusion printing technology generally produces strands

of materials, which is placed on the substrate, which leads to lower resolution [81].

On the other hand, the variety of driving systems in this method (pneumatic, piston

or screw) extends the range of usable inks to highly viscous materials, as long as

they are shear thinning to ensure extrudability [80].
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The basic principle of laser assisted printing can be likened to inkjet printing, as it

also uses placing of small droplets of material to desired position. Conversely to the

above listed techniques, laser assisted printing does not use nozzle based printheads,

but the printing is realized through a plate composed of donor ribbon (i.e. the print-

ing material), and absorbing layer. The absorbing layer is locally evaporated by a

focused laser beam, creating a high-pressure bubble which forces a small droplet of

printing material out of the donor ribbon [82]. The high resolution printing is only

achieved for materials with rapid gelation, which ensures low spreading [83].

Table 4.1 shows that while the best results in terms of resolution and cell viabil-

ity can be achieved by laser assisted bioprinting, the high costs prevent its use to

expand. Additionally, like inkjet printing, it is unsuitable for high viscosity materi-

als. As per Table 4.1, the generally highly viscous hydrogel can only be printed by

extrusion based technologies.

Printing

technology
Advantages Disadvantages Ink material

Inkjet
High resolution

> 85% cell viability

Low material viscosities
(3.5-12 mPa·s)

Poor vertical structure
Low cell density

Alginate
PEGDMA
Collagen

Extrusion

Wide range of viscosities
(30 mPa·s - 104 Pa·s)

High cell density
Good vertical structure

Moderate resolution
40%-80% cell viability

Alginate
GelMA

Collagen

Laser assisted

High resolution
> 95% cell viability

Good vertical structure
Fair cell density

Low viscosity materials
(1-300 mPa·s)

High cost

Collagen
Matrigel

Tab. 4.1 Comparison of basic 3D printing technologies for tissue engineering [73]

4.2.1 Hydrogels for bioprinting

Polymeric hydrogels are one of the most useful materials for constructing 3D printed

porous scaffolds due to their ECM-like qualities and ability to modulate cell be-
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haviour, while retaining acceptable shape fidelity during printing process [84, 85].

Both synthetic and natural polymers are utilized, leveraging mechanical and chemi-

cal robustness of synthetic polymers, and bioadhesiveness of natural polymers[86].

Hydrogels based bioinks are constrained by three essential parameters: printability,

cross-linkability, and biocompatibility. Printability is described as the capacity to

accurately control the positioning of the bioink, and it is dictated by the bioink’s rhe-

ological characteristics [87]. Cross-linkability ensures scaffold stability during cell

cultivation [73] through inducing the formation of a 3D polymer network. Common

cross-linking strategies include photo- [88, 89], chemical [3], or thermal [90] cross-

linking. Biocompatibility, which extends beyond immunogenicity to encompass

adhesiveness, proliferation support, and even stem cell differentiation, represents

the third key characteristic [87, 91, 92, 93, 35].

Fig. 4.1 Schematic representation of key characteristics of hydrogels for 3D

printing in biological applications; Created with BioRender.com

These three specifications are interlinked and require considering factors such as

rheological behavior, chemistry, mechanical stability, and morphology. However,

there is an inverse relationship between printability and cell viability due to shear
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stress-induced cell mortality [94], and harmfull effects of conventional UV cross-

linking on cells [95], leading to the necessity of trade-offs in bioink development.

Despite these and other challenges, like inadequate mechanical performance, the

use of hydrogels as matrices for bioinks is promising.

Fig. 4.2 (A) Typical example of the influence of shear stress on printing precision

and cell viability in microextrusion 3D printing with marked cell viability (75%)

and printing precision (95%) thresholds (inspired by [96]); (B) Schematic

representation of shear stress distribution in cylindrical and conical flow channel

(adapted from [97]); Created with BioRender.com

4.2.2 Cross-linking strategies

Hydrogel cross-linking can be generally done by the way of non-covalent (physi-

cal), or covalent (chemical) bonds. Non-covalent bonds are advantageous due to

their reversibility, but generally show lower mechanical performance compared to

non-reversible chemical cross-linking, although both types are widely utilized in

3D printable hydrogels [80].

Hydrogen bonds are prevalent in physical cross-linking in polymers like polyvinyl

alcohol (PVA), gelatin, and agarose [98, 99, 100]. These bonds are thermally re-

versible with material dependent transition temperature. Another common non-

covalent cross-linking strategy is metal ion complexation, which is useful espe-

cially for the cross-linking of anionic polymers (such as polysaccharides), where

the addition of multivalent metal cations causes immediate gelation. In particular,
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sodium alginate’s cross-linking with calcium cations has been extensively studied

[101, 102, 103, 104, 105]. Recent trends in non-covalently cross-linked hydrogels

suggest supramolecular host-guest systems as promising for 3D printing in biomed-

ical applications due to their dynamic, self-healing nature and swift response to

external mechanical stimuli [106, 107].

Chemical cross-linking, on the other hand, typically involves low-molecular cross-

linking agents. The most frequently used reactions take place at -OH, -NH2, or

-COOH groups. Hydroxyl groups, found in many natural and synthetic biocom-

patible polymers, can react with dialdehyde cross-linkers, e.g. glutaraldehyde or

glyoxal [108, 109]. However, these low-molecular dialdehydes are known to in-

duce oxidative stress in cells [110, 111], leading to efforts to find replacement in the

form of naturally derived polyaldehydes [112].

Peptides and proteins, a large and diverse group of natural polymers, is rich in -

NH2 groups, which can form Schiff bases when exposed to aldehydes, leading to

the so-called dynamic covalent bonds [113]. These bonds provide self-healing and

shear-thinning hydrogels [114, 115], although they can be unstable in certain en-

vironments and require stabilization [116]. Acid anhydrides are another common

reaction partner, particularly in methacrylation, a popular method for introducing

photocross-linkability to natural polymers [117]. Although cross-linking via reac-

tions of -NH2 is especially convenient in case of proteins, many researchers intro-

duce these functional groups to other polymer chains via carbodiimide chemistry in

order to allow analogous cross-linking [118, 119].

Cross-linking based on carboxyl groups, foung e.g. in hyaluronan (HA) or chon-

droitin sulfate, requires activation of the reactive sites. The carbodiimide activating

system, employing 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide (EDC) and N-

hydroxysuccinimide (NHS) or 1-hydroxybenzotriazole (HOBt) is often used. The

reason is its versatility, which is demonstrated by the wide variety of outcomes

provided by this reaction, including direct cross-linking via esterification of HA

[120] or amidation [121], which can be used for functionalization with other reac-

tive groups, including thiols [122, 123], or dienes and alkynes to enable Diels-Alder

cycloaddition [124, 125]. Additionally, these reactions can allow for grafting poly-

mers with cell adhesive molecules [126]. Despite the effectiveness of the EDC/NHS
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(HOBt) system, the potential cytotoxicity due to the formation of stable N-acylurea

has led to the exploration of alternatives, such as 4-(4,6-Dimethoxy-1,3,5-triazin-

2-yl)-4-methylmorpholinium chloride, which is highly efficient, water soluble, and

lacks pH dependency [119].

4.3 Electrofluidodynamics

Electrofluidodynamics comprise phenomena occurring when a fluid is placed in an

external electric field. In general, the external electric field causes imbalance of

charges in the bulk and on the surface of the liquid, leading to electric pressure

[127]. Once the pressure overcomes the capillary forces (i.e. surface tension), the

repulsive electrostatic force induces formation of a Taylor cone [128] and subse-

quently liquid jet opposite to the direction of electric field gradient is formed. The

electric pressure causing the initial instability of the liquid droplet arises from elec-

tric force, which can be found as:

Fe =
∫

(
1

2
εE2) ds, (4.1)

where ε is the permittivity of the environment, and E is the electric field intensity.

The electric field needs to be strong enough to overcome the capillary forces:

Fc = 2πrγcosθ, (4.2)

where γ denotes the surface tension and θ is the contact angle between the liquid

and the surface [4].

There are three major manufacturing technologies based on the electrofluidody-

namic phenomena (Figure 4.4). First, it is the electrospraying technology, which is

connected to the early observations of Rayleigh instability, or disintegration of the

fluid jet into droplets [129]. This behaviour is driven by minimum energy principle,
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Fig. 4.3 Schematic representation of liquid droplet shape evolution with the

increase of electric field intensity and Taylor cone formation (adapted from [4]);

Created with BioRender.com

and depends on the balance of surface tension and electrostatic stabilization [130].

Electrowriting technology combines electrofluidodynamics and 3D printing princi-

ples, and takes place in the early jet path during stable phase, where viscoelastic

forces dominate inertia [131]. Characterized by low elongation rates and a Trou-

ton ratio (elongation to shear viscosity ratio) of 3, the technology capitalizes on a

controlled spinneret move to position an electrically elongated jet [132]. The jet’s

stability is enhanced by strain hardening due to polymer chain entanglements, which

makes branched or highly polydisperse polymers more advantageous in this sense

[133].

Electrospinning, the main technique for nanofibre fabrication, begins once the poly-

mer jet exceeds the stable region. The charged jet, constantly moving in an external

electric field, develops a charge imbalance that bends the jet into an expanding coil,

a phenomenon known as whipping instability [131]. This elongation significantly

extends the jet path, as shown in Figure 4.4, reducing jet diameter and increasing its

specific surface area, prompting swift solvent evaporation and fiber solidification in

solution spinning [134].
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Fig. 4.4 Technologies based on electrofluidodynamic phenomena; Created with

BioRender.com

4.3.1 Parameters influencing electrospinning

The electrospinning process as well as other electrofluidodynamic phenomena is

influenced by number of parameters. These are usually divided into material, pro-

cessing and ambient parameters - see Figure 4.5.

Fig. 4.5 Parameters influencing electrospinning; Created with BioRender.com

There are multiple solution parameters, which need to be taken into account with

regards to electrospinning. The most outstanding role can be found for polymer

chain entanglement, which involves multiple influences:
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• polymer chain rigidity,

• polymer Mw,

• polymer-solvent interactions,

• polymer coil diameter.

Each of these parameters can be used to influence the outcome of the electrofluido-

dynamic fabrication. Shenoy et al., 2005 suggested 2,5 entanglements per chain as

the minimum for overcoming initial Rayleigh instability [135]. This was contra-

dicted by the findings of Malkin et al., 2017, who achieved stable jet spinning at

lower entanglements due to stabilization effect of gradual solidification [134]. The

interactions of the parameters are complex and lead to multiple effects on electro-

spinning process. The used solvent influences the polymer chain due to polymer-

solvent interactions [136], surface tension [137], and evaporation rate, as well as

polymer coil diameter [138]. Another means to change the conformation, espe-

cially in case of polar polymers, is addition of salts [139], which at the same time

increases the conductivity of the solution. Higher conductivity leads to polymer

jet stabilization against formation of beaded structure [140], and also possibility to

form Taylor cones on the surface of emerging fibre, leading to branching [131].

The electric field intensity is directly proportional to the applied voltage, and in-

versely proportional to electrode - collector distance. Therefore, it is the central

characteristic dictated by the processing parameters. However, short distance causes

short jet path and limits the elongation zone and evaporation time. I may cause bead-

on-string instabilities, or branching of the electrospun fibres [137, 141, 131, 142].

On the other hand, short jet path is essential for maintaining stable jet path, and al-

low electrowriting [132]. The electric field polarity is also reported as an important

parameter influencing the surface energy of the electrospun fibres [143, 144]. While

DC positive voltage remains the most popular option, DC negative or AC voltage

can facilitate electrospinning as well [145, 146].

The straightforward understanding of humidity and temperature effects on elec-

trofluidodynamic phenomena lies in their effects on evaporation rate, influencing

the fibre diameter [147]. The specific results are highly dependent on the poly-
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mer material, as increased humidity can increase [148] the fiber diameter, or cause

the formation of bead-on string instability [149] in some cases. Furthermore, elec-

trospinning of water-insoluble polymers in high humidity environment has been

used to generate porous fibres via vapor-induced phase separation or breath figures

method [150].

4.3.2 Core-shell electrospinning

Core-shell electrospun fibers are composites consisting of an inner fiber (core) en-

veloped by an outer material (shell). These structures can be exploited to tune var-

ious fibers properties and encapsulate low-molecular substances in the core [151].

Generally, core-shell fibers can be obtained either by co-axial or emulsion electro-

spinning [152]. Co-axial spinning employs a dual-channel spinneret for separate

core and shell material flow [153], but shear stress generated at the core-shell in-

terface can disrupt fiber integrity [154]. Thus, interfacial tension, arising from fluid

miscibility and viscosity difference be taken into account. Conversely, emulsion

electrospinning uses a single spinneret and immiscible liquid emulsion, creating

core-shell fibers via rapid polymer jet stretching [152], where the continuous core

is formed by electric field induced phase separation [155] or viscosity-driven en-

veloping [156].

4.3.3 Electric field assisted fabrication of scaffolds

Electrofluidodynamic processes result in constructs with large surface area, high

porosity, and adjustable pore size [1]. Electrospraying dominates in drug deliv-

ery applications due to the particle-like structure and lack of spatial orientation

[157, 158]. The spatial orientation imposes limitations also on electrospinning ap-

plications. While electrospinning can theoretically produce highly oriented struc-

tures, the whipping instability often disrupts fiber orientation, resulting in random fi-

brous mesh [159]. This is mitigated using specialized collectors [160, 161]. Nanofi-

brous scaffolds provide similarities to ECM, such as tunable porosity and mechani-

cal characteristics, and aid in cell guidance through the presence of nanotopograph-

ical features [162]. Oriented nanofibrous structures lead to more aligned stem cell
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cytoskeleton and enhanced adhesion [7, 39, 163, 164]. The superb control over po-

sitioning of thin strands in electrowriting, on the other hand, produces larger fibers

that lack nanotopographical features [165]. Therefore, each technology can benefit

certain medical applications in a unique way.

5 MAIN RESULTS OF THE THESIS

The results presented in the thesis can be divided into three subgroups:

1. printability of hydrogels achieved by dynamic covalent cross-linking,

2. printability of polymer solutions achieved by disc-like nanoparticulate rheo-

logical modifiers,

3. electrospinning of biopolymers into defectless fibres.

Dynamic covalent bonds, specifically Schiff bases, and the self-healing and shear-

thinning hydrogels produced thereof, are outlined in PAPER I, PAPER II, and PA-

PER III. In research described in PAPER I, the utility of Schiff-base cross-linking

was demonstrated by preparing hydrogels based on gelatin, with polysaccharide-

based polyaldehyde used ass a less toxic alternative to bi-functional aldehydes. The

study identified the source of gelatin and concentration of oxidized dextran as sig-

nificant parameters influencing reaction rate, and importantly rheological proper-

ties.

Building upon this concept, the Schiff-base cross-linked HA hydrogel (Figure 5.2

(A) documents the shear thinning of the matrix) was considered a biocompatible

matrix for encapsulating magnetic particles, thus providing magneto-responsive

smart hydrogels. PAPER II describes the use of carbonyl iron particles (CIPs),

which when present, led to considerable stiffening of the material in an external

magnetic field through the MRE, as demonstrated in Figure 5.1 (B) - (D). PAPER

III on the other hand focused on the use of iron oxide multicore particles (MCPs)

consisting of superparamagnetic iron oxide. In this case, the MRE is negligible.
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However, when exposed to alternating magnetic field, these particles efficiently pro-

duce heat. By extension, the hydrogels filled with MCPs can serve as biocompatible

heat mediators (see Figure 5.2 (A)). Furthermore, the hydrogel matrices were used

to encapsulate mouse fibroblast and subject them to microextrusion. The process

yielded over 80% cell viability, thus proving the capacity of the described hydrogel

to provide a bioink, as can be seen in 5.2 (C) and (D).

Fig. 5.1 Magneto-responsive HA hydrogels with CIPs as a filler; gel A - HA-ADH

DS 22% + HA-OX DO 35, gel B - HA-ADH DS 22% + HA-OX DO 62, gel C -

HA-ADH DS 22% + DEX-OX DO 49, gel D - HA-ADH DS 12% + HA-OX DO 35,

gel E - HA-ADH DS 12% + HA-OX DO 62, gel F - HA-ADH DS 12% + DEX-OX

DO 49; (A) Dependence of viscosity on shear rate, (B) Storage modulus averaged

over the stable region of shear rate - 0.01 s−1-0.1 s−1 in an increasing magnetic

field; (C) Magnitude of a storage modulus increase due to MRE relative to the

initial value; (D) Magnitude of a storage modulus increase due to MRE relative to

the initial value after hydrogels’ stabilization with Fe3+ ions [166]

However, an adverse effect of cross-linking via Schiff base formation in biocom-

patible hydrogels was observed, as their stability decreased significantly when ex-

posed to standard cell cultivation conditions. The working hypothesis for this phe-
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nomenon is the occurrence of a competitive reaction between the free amino-acids,

which are a part of the cultivation medium, and aldehyde groups present on the ox-

idized polysaccharide chains, as opposed to the desired Schiff base formation with

the -NH2 containing polymers. Interestingly, the hydrogel decay was suppressed

in hydrogels containing FeOx MCPs and Al2O3 NPs, as shown in Figure 5.2 (B).

This observation was assumed to be connected to the the possible partial disso-

ciation of Fe3+ and Al3+ cations, which have the capacity to form complexes with

the polyanionic HA. Based on this assumption, the MRE displaying hydrogels were

successfully stabilized with Fe3+ in PAPER II, while retaining a part of the original

MRE.

Fig. 5.2 Magneto-responsive HA hydrogels with FeOx MCPs and Al2O3 NPs as a

filler; (A) Heating efficiency of the hydrogels expressed as the dependence of

specific loss power (SLP) on alternating magnetic field amplitude; (B) Stability of

hydrogels in water at 25◦C and cultivation medium at 37◦C; (C) Confocal

fluorescence microscopy imaging of mouse fibroblasts distribution in 3D printed

grid model; (D) live/dead assay of mouse fibroblasts encapsulated in the hydrogel

and subjected to microextrusion, reaching over 80% cell viability
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In a different approach, organic-inorganic disc-like NPs were used as a rheological

modifier for 3 wt.% sodium alginate (NaAlg) solutions. The rheological modifica-

tion is based on the electrostatic repulsion of the charged NPs, leading to formation

of random structure within the polymer matrix, so-called "house of cards" [61]. Due

to the physical essence of the phenomenon, the "house of cards" is liable to shear

stress. Thus, this phenomenon generally leads to increase of viscosity in steady

state, while in shear flow the viscosity decreases, and the materials displays shear

thinning behaviour. PAPER IV demonstrated that the obtained rheological pro-

file enhances 3D printability via microextrusion in low-viscosity polymer solutions

(Figure 5.3 (A)). The random orientation of the particles was observed by AFM,

see Figure 5.3 (B), which is in agreement with the "house-of-cards" formation hy-

pothesis. Additionally, it was proved that the hydrogels can serve as bioinks by

encapsulating of mouse fibroblasts in the material, followed by 3D printing and

live/dead assay shown in Figure 5.3 (D).

25



Fig. 5.3 (A) Dependence of viscosity on angular frequency as measured for NaAlg

solution in pure state and with various fillers: exfoliated layered CaPhP and

Ca3.1, spherical NanoAp, free Ca2+ ions in the form of CaCl2 ethylene glycol

solution; (B) atomic force microscopy micrographs of randomly oriented layered

particles in the NaAlg; (C) example of 3D printing of layered NPs filled NaAlg

solution via microextrusion; (D) live/dead assay of mouse fibroblasts encapsulated

in the layered NPs containing NaAlg and subjected to microextrusion, reaching at

least 75% cell viability [167]

PAPER V addressed the preparation of HA-based nanofibrous structures using

electrospinning. In order to achieve this, two strategies were applied - co-electrospinning

with biocompatible PVA or polyethylene oxide (PEO), and the use of intermediate

solvent. While both strategies facilitated fibre formation, polymer co-electrospinning

resulted in beads-on-string structured fibers. Conversely, the choice of an appropri-

ate intermediate solvent - a mixture of water and alcohols - facilitated the elec-

trospinning of smooth, defectless fibres, as evidenced by scanning electron mi-

croscopy micrographs in Figure 5.4 (A) and (B). The research of electrospun fibers

was extended towards core-shell fibers, with biocompatible water-insoluble poly-ε-
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caprolactone (PCL) used as the shell material, and natural polymers - collagen or

HA - as the core. An example of a successful core-shell structured fibre is presented

in Figure 5.4 (C). Nevertheless, further research is necessary to fully understand and

tune these processes.

Fig. 5.4 Scanning electron microscopy micrographs of (A) HA-PEO blend

electrospun bead-on-string structured fibres; (B) HA nanofibres spun from

intermediate solvent (H2O:EtOH:MeOH 5:5:1 mixture) [168]; (C) polarized light

optical microscopy micrograph of collagen-PCL core-shell electrospun fibre
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6 CONTRIBUTION TO RESEARCH AND PRAC-

TICE

This study aims to enhance the usability of biopolymers in advanced processing

technologies - 3D printing and electrospinning. There are fundamental differences

in the technologies. Notably, 3D printing mainly involves shear stress, while elec-

trospinning produces elongation flow. In terms of materials, both natural and syn-

thetic polymers can be employed in these applications. However, overall the work

aims towards materials use in medical applications, thus, non-cytotoxicity is essen-

tial.

The primary characteristic for 3D printing is the rheological profile, requiring shear-

thinning materials and fast recovery upon lifting of the shear stress. Such behaviour

can be achieved with dynamic polymer networks, e.g. Schiff base cross-linking, or

electrostatically driven layered NPs formed "house-of-cards" structure.

Electrospinning in general relies on multiple intrinsic and extrinsic factors, with

specific peculiarities taking place in core-shell electrospinning. The complex rela-

tionships are examined in order to achieve better understanding of the electrofluido-

dynamic phenomena and allow the transfer of the acquired knowledge to practice.

The thesis gives the foundation for preparing advanced cell culture scaffolds by

combining the precise 3D printed structures with electrospinning-provided nanofea-

tures. These can be structured in many different forms with specific advantages,

such as nanofibres decorated 3D printed structures [169, 170], layered 3D printed-

electrospun sandwich structured scaffolds [171], and nanofibres-reinforced 3D print-

ing inks [172] designed to enhance cell adhesion, proliferation, and potentially mor-

phogenesis.

7 CONCLUSION

The thesis focuses on enhancing the usability of biopolymers in advanced process-

ing technologies - 3D printing and electrospinning, to obtain precisely structured
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scaffolds with distinct macro-, micro- and nanostructures. The work emphasises

potential advantages for medical applications. In terms of 3D printing, the hy-

drogel needs to provide shear-thinning rheological profile. The thesis described

the rheological modification by employing dynamic polymer networks, either dy-

namic covalent cross-linking via Schiff base formation, or electrostatically driven

layered NPs "house of cards" supportive structure. Both approaches provided shear-

thinning inks suitable for 3D printing via microextrusion with satisfactory shape fi-

delity. Moreover, the hydrogels allow encapsulation of living cells and their subse-

quent microextrusion based 3D printing with sufficient cell viability >75%. There-

fore, the developed materials have the capacity to form bioinks. Additionally, the

Schiff base cross-linked hydrogels were tested as matrices for magneto-responsive

particles, making them promising candidates in preparation of smart hydrogels for

bioapplications. Furthermore, the document discusses successful strategies for elec-

trospinning biopolymers into defectless fibers. The electrospinning of HA via the

use of intermediate solvent was found superior to the conventional strategy of poly-

mer co-electrospinning, as it allows fabrication of smooth fibers of 50-20 nm in

diameter. To widen the usability of the natural polymer based fibers, core-shell

fibers enveloping natural polymer (HA or Gel) in biocompatible PCL were pre-

pared. Combining the precision layer-by-layer fabrication with nanofeatures pro-

vided by electrospun fibers outlined in the thesis provides tools for developing ad-

vanced cell culture scaffolds.
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