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ABSTRAKT 

Tato diplomová práce se zaměřuje na srovnání různých systémů rentgenové inspekce, s dů-

razem na modely s umělou inteligencí (AI), pro inspekci pneumatik ve společnosti Conti-

nental AG. Práce zkoumá ekonomické a operativní dopady implementace plně automatizo-

vaných systémů rentgenové inspekce a analyzuje dvě hlavní technologická řešení: interně 

vyvinutý AI model a software Micropoise ADR. Výsledky ukazují, že zatímco AI model 

vyžaduje více počátečního vývoje a integrace, nabízí větší flexibilitu a přizpůsobení pro spe-

cifické výrobní potřeby Continentalu. Na druhé straně, Micropoise ADR poskytuje robustní 

možnosti rozpoznání vad a je vysoce efektivní pro plně automatizační prostředí. 

Klíčová slova: X-ray, rentgenové inspekční systémy, model s umělou inteligencí, In-house 

AI, inspekce pneumatik, Continental AG, ekonomický dopad, ADR software, automatizace 

ve výrobě, pneumatika.

 

 

 

ABSTRACT 

This master's thesis focuses on comparing various X-ray inspection systems, with an empha-

sis on artificial intelligence (AI) models, for tire inspection at Continental AG. The work 

examines the economic and operational impacts of implementing fully automated X-ray in-

spection systems and analyzes two main technological solutions: an internally developed AI 

model and Micropoise ADR software. The results indicate that while the AI model requires 

more initial development and integration, it offers greater flexibility and customization for 

Continental's specific manufacturing needs. On the other hand, Micropoise ADR provides 

robust defect recognition capabilities and is highly effective for fully automated environ-

ments. 

Keywords: X-ray, X-ray inspection systems, artificial intelligence model, In-house AI, tire 

inspection, Continental AG, economic impact, ADR software, automation in manufacturing, 

tire.
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INTRODUCTION 

This master thesis is dedicated to advancing the Automation of X-ray Tire Classification, a 

critical aspect of the Conti Tires production process that demands an efficient and precise 

tire classification system. The contemporary industrial landscape necessitates a robust solu-

tion capable of managing the 100% X-ray check, ensuring unwavering adherence to quality 

and safety standards. This master thesis undertakes a comprehensive exploration, evaluating 

existing technologies and proposing enhancements for an in-house AI model (Artificial In-

telligence mode). Additionally, it aspires to formulate a global rollout structure based on 

analyses. 

 

X-ray technology offers a detailed examination of tire internal structures, detecting con-

cealed defects or structural issues that may compromise overall tire performance and safety. 

Given the automotive industry's rigorous quality standards, X-ray inspection stands as a de-

pendable method for quality assurance. It facilitates the identification of manufacturing de-

fects, foreign objects, or inconsistencies that might have arisen during production, acting as 

a preemptive measure against potential tire failures. Detecting issues early in the production 

process allows manufacturers to take corrective actions, minimizing the risk of product fail-

ures in the market. An example of an X-ray machine can be seen in Figure 1. 

 

Figure 1: X-ray machine from company Yxlon [1] 
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The foundation of this thesis lies in a thorough exploration of state-of-the-art technologies, 

encompassing an in-depth review of X-ray measurements from major suppliers like Mi-

cropoise (MP)1, Yxlon2, Cyxplus3, and others. The thesis covers classification technologies, 

spanning from conventional methods to advanced AI models, with a specific focus on 

ADAMS Software, Micropoise ADR, and in-house AI software. Furthermore, the analysis 

extends to the X-ray technology itself, providing a holistic understanding of existing solu-

tions. 

 

The objective of this master thesis is to investigate the current AI model and find possible 

space for improvements utilized in X-ray tire classification. This involves a meticulous ex-

amination of picture segmentation techniques and a comprehensive evaluation of proposed 

improvements. The research employs cutting-edge methodologies, leveraging the expertise 

of the research team to address the intricacies of tire classification through X-ray technology. 

The concluding section consolidates the findings, offering a succinct summary of key im-

provements in X-ray tire classification. Additionally, the thesis provides insights into poten-

tial areas for future research, contributing to the ongoing advancement of X-ray tire classifi-

cation systems. 

 

1 MicroPoise website: https://www.micropoise.com 

2 Yxlon website: https://yxlon.comet.tech 

3 CyXplus website: https://www.cyxplus.fr 

https://www.micropoise.com/
https://yxlon.comet.tech/
https://www.cyxplus.fr/
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I.  THEORY 
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1 INTRODUCTION 

Chapter 1 provides an introduction to Continental AG, outlining its history, core areas of 

expertise, and a short description of the role of manufacturing steps in tire technology.  

1.1 Introduction of company Continental AG 

Established in 1871 in Hanover, Germany, Continental AG has grown from a modest rubber 

manufacturer into a prominent player in the global automotive supply and tire manufacturing 

industries. Today, it stands as a pillar of innovation and success, employing over 240,000 

individuals worldwide. Continental is renowned for its contributions to tire technology, au-

tomotive safety systems, and other advanced automotive components, continuously pushing 

the boundaries of innovation and sustainability in the automotive sector. [2] [3] 

1.2 Tire components 

Modern passenger car tires are the product of over a century of development and innovation. 

Continental has been a pivotal player in the evolution of today's steel-belted radial tires, 

significantly enhancing tire design and functionality. Here we explore the intricate architec-

ture of modern tires, dissecting the components from the outer layers to the core.  

Structural Elements of Tires 

Tire components are fundamentally categorized into two main structural elements: the tread 

and belt assembly, and the casing. Each of these elements comprises multiple layers that 

work synergistically to provide durability, stability, and performance. [4] 

 

Figure 2 Tire components which are described below [4] 
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1. Tread: 

• Composition: Comprised of both synthetic and natural rubber. 

• Functionality: The tread is the tire's primary contact point with the road, designed 

to ensure high mileage, effective water expulsion, and secure grip under various driv-

ing conditions, thereby ensuring safety. It consists of: 

o Cap: Directly contacts the road, engineered for grip, wear resistance, and di-

rectional stability. 

o Base: Positioned beneath the cap, it reduces rolling resistance and protects 

the tire’s internal structure or the casing. 

o Shoulder: Links the tread to the sidewall, facilitating a smooth transition and 

enhancing the tire's edge performance on roads. 

Continental’s Contribution: Introduced in 1904, Continental was the first to implement 

tread patterns, significantly enhancing road grip. 

 

2. Jointless Cap Plies: 

• Structure: Made from a continuous nylon cord, embedded in rubber, spirally wound 

from one tire side to the other without overlapping. 

• Benefits: Allows high-speed travel and enhanced tire lifespan by preventing inter-

thread friction. 

Continental’s Innovation: In 1923, Continental replaced the traditional woven linen 

fabric with a new cord fabric arrangement, which aligned cords in one direction, sup-

ported by interwoven threads. This innovation extended tire durability significantly. 

 

3. Steel Cord Belt Plies: 

• Composition: Comprised of robust steel cords. 

• Advantages: Provides rigidity, enhances shape retention, improves directional sta-

bility, reduces rolling resistance, and increases mileage performance. 

 

4. Textile Cord Ply: 

• Material: Rubberized rayon or polyester. 

• Function: Controls internal pressure and maintains the shape of the tire. 
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5. Inner Liner: 

• Material: Airtight butyl rubber. 

• Function: Acts like an inner tube in tubeless tires, sealing the air within and main-

taining tire pressure. 

 

6. Sidewall: 

• Material: Primarily natural rubber. 

• Role: Protects the casing from external damage and environmental conditions, con-

necting to the tread through the shoulder area. 

 

7. Bead Reinforcement: 

• Material: Nylon or aramid (a heat-resistant synthetic fiber). 

• Purpose: Enhances directional stability and facilitates precise steering response. 

 

8. Bead Apex: 

• Material: Synthetic rubber wedge. 

• Function: Works alongside bead reinforcement to stabilize steering and enhance 

driving comfort. 

 

9. Bead Core: 

• Material: Steel wire embedded in rubber. 

• Role: Crucial for ensuring the tire firmly grips the wheel rim. 

These components collectively contribute to the tire's performance, longevity, and safety, 

showcasing the intricate engineering behind modern tire manufacturing. Understanding 

these elements offers insights into how tires are tailored to meet diverse vehicular demands 

and driving conditions. [4] 

1.3 From Raw Materials to X-ray: The Tire Production Process at Conti-

nental AG 

Raw Material Preparation 

The production of tires at Continental begins with the careful selection and preparation of 

raw materials, which include natural and synthetic rubber, carbon black, sulfur, and various 
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chemical additives. Each material plays a crucial role in defining the properties of the final 

tire: 

• Natural Rubber: Harvested from the latex of rubber trees, it undergoes a series of 

processes including acid coagulation to separate the solid rubber, which is essential 

for the base structure of the tire. 

• Synthetic Rubber: Created through the polymerization of monomers such as buta-

diene and styrene, synthetic rubber varieties are selected for specific characteristics 

like abrasion resistance and thermal stability. 

• Carbon Black: This material, derived from the controlled combustion of petroleum 

products, acts as a reinforcing agent, lending strength and durability to the tire. 

• Sulfur and Vulcanizing Agents: Vulcanization agents are critical for cross-linking 

rubber molecules to improve the elasticity and mechanical properties of the final 

product. 

• Chemical Additives: Additives enhance the performance of the tire by improving 

the mixability of the compound, increasing resistance to oxidative aging, and enhanc-

ing the overall durability of the tire. [5] 

 

Figure 3 Quality ingredients for making essential compounds [5] 

Mixing Process 

The initial phase in the production line involves the mixing of these raw materials. Conti-

nental utilizes advanced mixing technology to ensure that all ingredients are blended to pre-

cise specifications. This process is critical as it affects the uniformity and quality of the rub-

ber compound, which in turn influences the performance characteristics of the tire. 

• Loading and Dosing: Precision in the proportioning of ingredients ensures the rub-

ber compound meets the desired chemical and physical properties. 
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• Mixing and Temperature Control: The materials are combined in large industrial 

mixers where temperature and mixing speed are tightly controlled to prevent prema-

ture vulcanization, which could adversely affect the material properties. [5] 

Component Manufacturing 

Following the mixing process, the rubber compound is fashioned into various tire compo-

nents: 

• Tread and Sidewall Extrusion: Rubber compound is extruded to form the tread and 

sidewall sections. The tread is responsible for road grip and wear resistance, while 

the sidewall contributes to the tire's structural integrity and aesthetics. 

• Cord and Fabric Layers: Steel and textile cords are embedded within the rubber to 

form the carcass and belt layers, providing the tire with the necessary tensile strength 

and stability. 

• Bead Assembly: Beads are produced to ensure the tire maintains a secure fit with 

the wheel rim, involving the precise placement of steel wires coated in rubber. [5] 

 

Figure 4 Manufacturing of components [5] 

 

Assembling the tire 

In the tire building phase, the various components are assembled into what is known as the 

"green tire." This assembly is performed on sophisticated machinery designed to precisely 

layer and position each component: 

• Layering: Components like the inner liner, carcass layers, belts, and beads are me-

ticulously assembled, ensuring each tire conforms to specific design parameters. 
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• Green Tire Formation: The assembly machine constructs the green tire by system-

atically adding each component, adhering to strict alignment and positioning guide-

lines to guarantee the tire's structural integrity and performance capabilities. [5] 

 

Figure 5 Building the tire [5] 

Vulcanization 

The green tire undergoes vulcanization, a heating process that uses sulfur to chemically bond 

the rubber compounds and reinforce the structure: 

• Mold and Press: Each tire is placed in a mold that shapes the tire and imparts the 

tread pattern and sidewall branding during the vulcanization process. 

• Curing: The tire is heated under controlled conditions to initiate the chemical reac-

tions necessary for vulcanization, enhancing the material properties such as elasticity 

and resilience. [5] 

 

Figure 6 Vulcanization [5] 
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Quality Control 

Quality control is a critical aspect of the tire manufacturing process at Continental, where 

every stage from raw material intake to the dispatch of final products undergoes a stringent 

multi-level quality control process. This system ensures that all tires meet the highest stand-

ards of quality and safety. 

Multi-Level Quality Control Process: 

• Visual Inspection: After vulcanization, each tire undergoes a visual inspection 

where inspectors look for surface defects such as cracks, bubbles, irregularities in the 

tread pattern, and incorrect sidewall markings. This initial check is fundamental for 

identifying and eliminating apparent defects. 

• X-ray Inspection: X-ray inspection is a key component of the quality control pro-

cess, providing a detailed view of the internal structure of the tire. Specialized X-ray 

equipment scans the tire to detect internal defects like air pockets, insufficiently vul-

canized areas, and uneven distribution of materials. This step is crucial for ensuring 

structural integrity and long-term functionality of the tire. 

• Uniformity Testing: Uniformity testing assesses the tire’s balance and geometric 

properties. Machines evaluate the weight distribution around the tire’s circumference 

and check its dimensions and shape, which is essential for ensuring a smooth and 

quiet ride. Tires must pass these tests to minimize vibrations and ensure optimal in-

teraction with the road. 

Dispatch 

Once the tires successfully pass all checks and inspections, they are ready for dispatch. Fin-

ished tires are packaged and sent to distribution warehouses, from where they are distributed 

to the sales network worldwide. Every step in the dispatch process is carefully planned and 

monitored to ensure that the tires reach their customers in optimal condition and on time. 

This comprehensive and multi-level quality control process illustrates Continental's commit-

ment to adhering to the highest standards of quality and safety. Innovative technologies such 

as X-ray inspections and thorough uniformity tests are key to maintaining customer trust and 

satisfaction while enabling the company to maintain its leading position in the tire market. 
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2 STATE OF THE ART: X-RAY MEASUREMENT IN TIRES 

Detailed description and comparison of technologies and devices, their specifications, and 

applications in industry. 

2.1 Introduction to Artificial Intelligence and Classification 

2.1.1 Definition and Basic Terms in Artificial Intelligence 

Artificial Intelligence (AI): Overview and Functionality AI replicates human intellectual 

functions through machines, particularly in computer systems. Its applications include natu-

ral language processing, machine vision, expert systems, , and speech recognition. 

AI operates by processing vast amounts of data to identify patterns and correlations, which 

are then used to make predictions. For instance, AI can enhance chatbots for realistic con-

versations or improve image recognition tools. AI programming enhances cognitive abilities 

such as learning from data, selecting appropriate problem-solving algorithms, self-correction 

for accuracy, and generating creative outputs like new images or text. [6] 

Classification of AI:  

• Weak AI (Narrow AI): Engineered for specific tasks, such as industrial robots and 

virtual assistants like Apple's Siri. These systems are limited to specific contexts 

without broader cognitive capabilities. 

• Strong AI (Artificial General Intelligence, AGI): Designed to mimic human cog-

nitive abilities comprehensively. Strong AI can perform unprogrammed tasks using 

fuzzy logic to apply knowledge across various domains autonomously. Ideally, it 

would pass both the Turing test and the Chinese Room argument, showing human-

like adaptability and understanding. [6] [7] 

The Four Types of Artificial Intelligence: 

• Type 1: Reactive Machines: These AI systems operate without memory, designed 

solely for specific tasks. A prominent example is IBM’s Deep Blue, the chess pro-

gram that won opposite Garry Kasparov in the 1990s. Deep Blue can analyze the 

chessboard and make strategic decisions, yet it cannot to learn from past games. 

• Type 2: Limited Memory: These AI models possess the ability to remember past 

data and use it to proceed with future decisions. An example is the technology used 
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in autonomous vehicles that remembers encountered situations to improve driving 

decisions. 

• Type 3: Theory of Mind: This category extends AI into the psychological realm, 

proposing systems that could understand human emotions and social interactions. 

Such AI would possess the social intelligence necessary to discern human intention 

and adapt its behavior accordingly, making it suitable for collaborative roles along-

side humans. 

• Type 4: Self-awareness: This is the most advanced form of AI, which remains the-

oretical at this point. These systems would have self-awareness and consciousness, 

recognizing their state and existence independently. Such AI would understand its 

capacities and self-improvement autonomously. [6] 

Augmented Intelligence vs. Artificial Intelligence  

"Augmented intelligence" is proposed to emphasize AI's role in enhancing human decision-

making, rather than acting autonomously like the fictional examples Hal 9000 (from movie 

A Space Odyssey – year 2001) or The Terminator (movie from year 1984). This term helps 

clarify that most current AI implementations improve functionalities within specific con-

texts, such as business analytics or legal document review. [6] 

 

Machine learning 

Machine learning (short for ML) is a foundational approach in artificial intelligence (AI) 

where computers learn from data. ML algorithms identify patterns and relationships within 

large datasets and improve their performance on tasks over time without any another explicit 

programming. These algorithms use historical data to make predictions about new data. Ma-

chine learning can be sort into two main types: 

• Supervised Learning: The model learns from labeled data, where both the inputs 

and the desired outputs are provided. 

• Unsupervised Learning: The model uses unlabeled data to identify patterns and 

structures on its own. [6] [7] 

Neural Networks 

Neural networks are a common ML technique, structured similarly to the human brain with 

interconnected layers of nodes, or neurons. These networks adjust connections between 
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neurons to recognize patterns and improve their task performance. This adaptability makes 

neural networks particularly effective for tasks such as image recognition, speech under-

standing, and language translation. [7] 

 

Deep Learning 

Deep learning, a subset of ML, utilizes deep neural networks with many layers of pro-

cessing—often called hidden layers—to analyze complex data inputs. These networks are 

capable of discovering intricate structures in large data sets, which is why deep learning 

excels at challenging AI tasks like image and speech recognition, as well as natural language 

processing (NLP). [7] 

 

Natural Language Processing (NLP) 

NLP combines computational linguistics—rooted in ML and deep learning—with text anal-

ysis to enable computers to understand and manipulate human language. NLP technologies 

are behind applications such as speech recognition systems, chatbots, and automated trans-

lation services. [7] 

 

Computer Vision 

Computer vision employs ML and deep learning, particularly through convolutional neural 

networks, to interpret and understand visual information from the world. Applications in-

clude image and video analysis, enabling tasks such as facial recognition in security systems, 

object detection for autonomous vehicles, and various types of environmental perception in 

robotics. [7] 

 

Advantages and Disadvantages of AI : 

Advantages: 

• AI excels in detail-oriented tasks like cancer diagnosis. 

• It processes large data sets efficiently, useful in sectors like finance and insurance. 

• AI automates tasks, enhancing productivity, such as in warehouse automation. 
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• It delivers consistent results in applications like translation. 

• AI personalizes customer interactions, improving satisfaction. 

Disadvantages: 

• High implementation costs. 

• Requires deep technical expertise. 

• Limited availability of skilled AI professionals. 

• Potential to replicate inherent biases in data. 

• Difficulty in generalizing across different tasks. 

• Risk of job displacement due to automation. [6] 

2.1.2 History and Development of AI 

Ancient and Medieval Origins: The notion of imbuing inanimate objects with intelligence 

dates back to ancient times. Greek mythology describes Hephaestus creating robotic serv-

ants, and in ancient Egypt, statues believed to be animated represented gods. Philosophers 

like Aristotle and theologians like Ramon Llull, along with later thinkers such as René Des-

cartes and Thomas Bayes, utilized the logic of their eras to frame human cognition in sym-

bolic terms, setting the groundwork for AI concepts like knowledge representation. [6] 

 

Early 20th Century Foundations: The modern foundation for computers, crucial for AI, 

began in the 19th century with Charles Babbage and Ada Lovelace, who conceptualized 

programmable machines. By the 1940s, advancements like John Von Neumann’s architec-

ture for stored-program computers and the foundational theories for neural networks by War-

ren McCulloch and Walter Pitts were established. [6] 

 

Mid-20th Century: The 1950s marked the formal beginning of AI as a field during a con-

ference at Dartmouth College, led by figures like Marvin Minsky and John McCarthy, who 

coined the term "artificial intelligence." This era saw the development of the Turing Test by 

Alan Turing and early AI programs like the Logic Theorist by Newell and Simon. [6] 

 

Late 20th Century Growth and Stagnation: Despite early optimism, achieving artificial 

general intelligence proved challenging, leading to periods of reduced interest and funding 
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known as "AI Winters" in the 1970s and 1980s. However, the 1990s witnessed a resurgence 

in AI, propelled by increased computational power and significant data availability, exem-

plified by IBM's Deep Blue defeating chess champion Garry Kasparov. [6] 

 

21st Century Advances: The 2000s and 2010s saw rapid advancements in AI, driven by 

improvements in machine learning, deep learning, and natural language processing. Notable 

developments included Google's search algorithms, Amazon's recommendation systems, 

and breakthroughs in voice recognition and autonomous vehicles. The decade culminated 

with achievements like IBM Watson winning Jeopardy and Google DeepMind's AlphaGo 

defeating the world Go champion. [6] 

 

Current Decade: The 2024s are defined by the rise of generative AI, which creates new 

content from various prompts.  

2.1.3 Basics of classification techniques 

Classification is a core task in natural language processing. It relies on machine learning 

algorithms to categorize data. This task varies widely, with sentiment analysis being one of 

the most commonly implemented forms. Each classification problem may require a distinct 

algorithm tailored to its specific demands. [8] 

 

Classification involves identifying and categorizing data into predefined groups or classes 

based on their features. Machine learning models are trained on datasets where the categories 

are known (labeled data) to learn how to classify new, unseen datasets accurately. Common 

applications of classification include filtering emails and analyzing sentiment in text. [8] 

 

Selecting the Suitable Algorithm 

As noted by computer scientist David Wolpert, selecting the appropriate algorithm is crucial 

and depends on the specific problem, available computational resources, and the method for 

estimating and comparing algorithm performance. This often involves experimenting with 

various algorithms and configurations to determine the most effective approach. [8] 
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Key Classification Algorithms: 

1) Logistic Regression 

Logistic regression is employed to forecast binary outcomes, such as Yes/No, Pass/Fail, or 

Alive/Dead. This method analyzes independent variables to predict a binary outcome, cate-

gorizing results into one of two possible states. These variables may be either categorical or 

numerical, but the outcome variable is always categorical. [8] 

The formula ( 1 ) for logistic regression is represented as: 

 𝑃(𝑌 = 1|𝑋) 𝑜𝑟 𝑃(𝑌 = 0|𝑋) 

( 1 ) 

 which calculates the probability of the outcome variable Y given the predictors X. 

 

For instance, logistic regression might be used to determine the sentiment of a word, as-

sessing whether it carries a positive or negative meaning, or to identify objects in images, 

assigning a probability to each potential category such as tree, flower, or grass. [8] 

 

2) Naive Bayes 

The Naive Bayes algorithm estimates whether a data point likely belongs to a particular 

category or not. This technique is particularly useful in text analysis for classifying words or 

phrases into specific categories. [8] 

 

To use Naive Bayes for determining a category, you would calculate the conditional proba-

bilities associated with each category. For example, to decide whether a phrase pertains to 

"sports," the formula used involves the likelihood of the phrase given the category 'sports,' 

multiplied by the probability of observing the category 'sports,' all divided by the likelihood 

of the phrase. This formula helps in assessing the probability of different categories given 

the data. [8] 
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These rephrased descriptions provide a clearer understanding of how logistic regression and 

Naive Bayes are applied in predicting and categorizing data, which should fit well into an 

academic context. [8] 

 

Figure 7 Example of Naive Bayes [8] 

3) K-Nearest Neighbors (k-NN):  

The K-Nearest Neighbors (k-NN) algorithm is a widely used method for pattern recognition 

that classifies data points based on the closest examples in the training dataset. This method 

operates by identifying the 'k' instances that are nearest to an unknown data point and assigns 

it to the category most common among these neighbors. [8] 

 

Functionality of operation in k-NN: 

In the application of k-NN to classification tasks, the algorithm assigns a data point to the 

class of its nearest neighbors based on a simple majority vote. For example, if 'k' is set to 1, 

the data point is classified directly into the category of its single nearest neighbor. The num-

ber 'k' is a user-defined parameter and plays a crucial role in the classification accuracy of 

the algorithm, affecting how closely the nearest neighbors reflect the classification of the 

new example. [8] 

 

4) Decision Trees:  

Decision trees are a type of supervised learning algorithm. Ideally they are suited for ad-

dressing classification challenges. They function analogously to a flow chart, methodically 

dividing data points into increasingly specific categories, beginning broadly at the "tree 

trunk" and branching out into finer subdivisions. [8] 
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Functionality of Decision Trees: 

 

Figure 8 Decision tree example [8] 

In operation, decision trees segregate datasets step-by-step into two closely related groups. 

This bifurcation continues from the trunk through the branches and further into the leaves of 

the tree, where each leaf represents a highly specific category. This hierarchical structure 

facilitates nuanced differentiation within the data, enabling precise classification levels with 

minimal need for human intervention. [8] 

 

Random Forest 

In practice, the random forest algorithm does not simply use a single tree but averages the 

predictions of all the trees it has created. This averaging process helps align the new data 

points to the most appropriate tree within this ensemble, effectively determining the data's 

classification. One of the major strengths of random forests is their capacity to prevent over-

fitting—a common limitation in single decision trees—where data points might be forced 

into overly specific categories. By utilizing a collective decision-making process across var-

ious trees, random forests ensure a more generalized and robust classification. [8] 

 

5) Support Vector Machines (SVM):  

The Support Vector Machine (short for SVM) algorithm is a sophisticated tool in machine 

learning that leverages complex algorithms to facilitate the training and classification of data 

points across multiple dimensions. Unlike simple X/Y prediction models, SVM operates 

within a multidimensional space, allowing for more nuanced classification. [8] 
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Mechanism and Functionality of SVM: 

To illustrate its functionality, consider a scenario where data points are represented by two 

distinct tags: red and blue, based on two features, X and Y. Through training, the SVM 

algorithm learns to categorize these data points into their respective tags by determining an 

optimal hyperplane that effectively separates them. In a two-dimensional space, this hyper-

plane corresponds to a line, with data points falling on either side being classified as red or 

blue. [8] 

 

Complexity and Accuracy: 

As data sets grow more complex, a single linear hyperplane may not be sufficient for accu-

rate classification. In such cases, SVM adapts by extending its capabilities into higher di-

mensions, allowing for the creation of curved or nonlinear hyperplanes. This increased di-

mensionality enables SVM to accurately classify data points even in scenarios where a linear 

separation is not feasible. [8] 

 

Applications of Classification: 

• Sentiment Analysis: Determining the emotional tone behind a body of text. 

• Email Spam Detection: Filtering out spam emails based on their content. 

• Document Classification: Organizing documents into categories automatically. 

• Image Classification: Assigning categories to images based on their content. 

Understanding and applying the right classification algorithms can significantly help en-

hance the accuracy and efficiency of machine learning tasks, driving advancements in nu-

merous AI applications. [8] 

2.2 Data-Driven Techniques and Datasets 

2.2.1 The importance of data-driven approaches 

Data-centric approaches in artificial intelligence (AI) involve creating AI models that utilize 

extensive data sets to make predictions, decisions, or suggestions. In contrast to traditional 

systems that rely on explicitly programmed rules, data-driven AI models harness data to 
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uncover patterns, connections, and behaviors. This method is gaining traction because of its 

proficiency in managing intricate and evolving data scenarios.  [9] 

 

Core Concepts of Data-Driven AI 

Is fundamentally about learning from data. It involves training models using vast datasets to 

recognize and generalize patterns without human intervention. This process allows AI sys-

tems to adapt to new information and also really much improve over time. The techniques 

underpinning data-driven AI include parts as neural networks, machine learning and deep 

learning, all of which rely heavily on data to function effectively. For instance, recommen-

dation engines such as those used by Netflix analyze users' viewing habits along with the 

habits of millions of other users to suggest content. These engines process enormous datasets 

to tailor recommendations to individual preferences, enhancing user experience signifi-

cantly. [9] 

 

Risks and Mitigations 

While data-driven AI offers numerous advantages, it also presents several risks. Privacy 

concerns are paramount, particularly as AI systems often require access to sensitive personal 

data. Ensuring transparency and implementing robust privacy measures are essential to mit-

igate these risks. Data quality is another critical issue. AI models trained on biased or incom-

plete data can perpetuate these biases or produce inaccurate results. Regular auditing and 

ensuring the diversity and representativeness of training data are crucial steps to address this 

problem. Moreover, ethical considerations are increasingly important as AI systems can sig-

nificantly impact areas like hiring processes and medical diagnoses. It is crucial to guarantee 

fairness and accountability in AI decision-making to avoid negative consequences. [9] 

 

Examples of Data-Driven AI 

Data-driven AI is pervasive across various industries. In healthcare, AI enhances disease 

diagnosis and drug discovery by analyzing medical data. In finance, algorithms assess stock 

market trends to provide trading insights. Agriculture benefits from AI through precision 

farming, which optimizes crop yields based on soil, weather and all kind of historical data. 
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A widely recognized example is voice recognition technology. Assistants like Alexa and Siri 

continuously analyze user interactions to improve their understanding and responsiveness, 

demonstrating the adaptive capabilities of data-driven AI. [9] 

 

Model-Driven AI vs. Data-Driven AI 

Relies on rules which are predefined and human-crafted models, which encode specific 

knowledge needed for tasks. These systems do not require large datasets to function and are 

typically less adaptable than data-driven models. Traditional expert systems in finance, 

which follow set rules for decision-making, are an example of model-driven AI. The choice 

between model-driven and data-driven AI really depends on the data availability itself and 

also on use case.  Data-driven AI excels when sample data is available to uncover complex 

patterns, whereas model-driven AI is suitable for tasks requiring specific, well-defined rules. 

[9] 

 

Advantages: 

• Unparalleled Insights: Data-driven AI can analyze extensive datasets to uncover 

trends and patterns beyond human capability, providing valuable insights into cus-

tomer behavior and market dynamics. 

• Personalization: AI can tailor recommendations and content to individual users, 

significantly enhancing user experience in e-commerce, entertainment, and content 

delivery. 

• Scalability: These models can scale with increasing data volumes, continuously 

learning and adapting to new information. 

• Real-Time Decision Making: Systems with AI can make immediate decisions 

based on live data streams, which is crucial in applications like fraud detection and 

autonomous vehicles. 

• Consistency: AI models perform repetitive tasks consistently without fatigue, en-

suring precision and reliability. [9] 

Disadvantages : 

• Data Quality Dependency: The effectiveness of AI models is highly dependent on 

the quality of the training data. Poor data can lead to flawed outcomes. 
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• Privacy Concerns: The extensive use of personal data raises significant privacy is-

sues. Balancing data utility and privacy is essential. 

• Ethical Issues: It can perpetuate biases present in training data, raising ethical con-

cerns. Addressing these biases is critical. 

• Black Box Problem: Many AI models operate as "black boxes," making their deci-

sion-making processes opaque and difficult to understand. 

• Data Quantity and Cost: Training data-driven AI models requires massive datasets, 

which can be expensive and time-consuming to acquire and process. 

• Human Oversight: AI systems often require human oversight for tasks like data 

cleaning and model validation, which adds to the labor costs. [9] 

Data-driven AI has transformative potential across various industries, offering unprece-

dented insights and capabilities. However, the challenges it presents, such as privacy con-

cerns, data quality, and ethical considerations, must be carefully managed. Responsible and 

ethical development is crucial, ensuring that privacy is protected, data quality is kept in loop, 

and biases are actively listed. As we continue to harness the power of data-driven AI, striking 

a balance between its immense potential and ethical responsibilities will be increasingly im-

portant. [9] 

2.2.2 Data processing and analysis techniques used in AI 

Data analysis is a critical component of decision-making processes across various industries. 

With the advent of artificial intelligence (AI), the techniques used for data analysis have 

become more sophisticated, enabling the extraction of valuable insights from both structured 

and unstructured data. This chapter delves into the methods and tools employed in AI for 

data analysis, illustrating how these technologies enhance data processing and decision-mak-

ing. [10] 

1. Data Collection 

The initial step in any data analysis process is data collection. This involves gathering da-

tasets from reliable sources based on the specific objectives of the analysis. In an AI context, 

the data collected can come from a multitude of sources, including databases, sensors, social 

media, and other digital platforms. The quality and relevance of the data collected are para-

mount as they significantly impact the outcomes of the analysis. [10] 
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2. Data Cleaning 

Once data is collected, the next crucial step is data cleaning. This process involves identify-

ing and correcting errors, removing irrelevant information, and dealing with missing values. 

AI can significantly streamline data cleaning by using machine learning algorithms to detect 

anomalies and inconsistencies within large datasets. This automation not only saves time but 

also enhances the accuracy of the data used for further analysis. [10] 

3.  Data Analysis 

Data analysis encompasses inspecting, cleaning, and modeling data to extract meaningful 

insights. AI employs several advanced techniques in this phase, including: [10] 

4. Data Interpretation 

After analyzing the data, the next step is to interpret the results. This involves understanding 

the trends and patterns identified during the analysis phase and making informed decisions 

based on these insights. AI enhances data interpretation by providing predictive analytics 

and visualization tools that help stakeholders grasp complex data trends quickly and accu-

rately. [10] 

 

Applications of AI in Data Analysis 

AI-powered data analysis is transforming various sectors by providing deeper insights and 

enabling more informed decision-making. Some notable applications include: 

• Sentiment Analysis - AI systems analyze online content to gauge public sentiment 

toward a brand or product. For example, Netflix uses AI to analyze viewer feed-

back and improve user experience by addressing identified pain points. 

• Predictive Analytics and Forecasting - AI can predict future trends based on his-

torical data. Financial institutions, like Bank of America, use predictive analytics to 

understand market trends and make investment decisions. 

• Anomaly Detection and Fraud Prevention - AI systems can detect unusual pat-

terns in data that may indicate fraudulent activities. Spotify, for example, employs 

AI to identify and mitigate fraudulent streaming behavior. 

• Image and Video Analysis - AI's ability to analyze visual data has applications in 

various fields, from healthcare (e.g., diagnosing diseases through medical imaging) 

to retail (e.g., managing inventory). [10] 
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AI has revolutionized data analysis by automating complex processes, enhancing accuracy, 

and providing deeper insights. As AI technologies continue to advance, their applications in 

data analysis will expand, offering even greater capabilities and transforming how busi-

nesses and organizations make data-driven decisions. [10] 

2.2.3 Overview of Commonly Used Datasets and Their Role in Training AI Models 

In the realm of AI, various datasets serve as foundational tools for training and evaluating 

models. These datasets are critical for developing algorithms capable of performing specific 

tasks accurately. Below are some of the most used datasets in AI and their significance: [11] 

 

ImageNet 

ImageNet is one of the largest visual databases designed for visual object recognition re-

search. It contains millions of images labeled with descriptive tags. This dataset is pivotal in 

training models for object detection, image classification and segmentation tasks. The annual 

ImageNet Large Scale Visual Recognition Challenge (short for ILSVRC) has driven signif-

icant advancements in deep learning and computer vision. [11] 

 

MNIST 

The MNIST (Modified National Institute of Standards and Technology) dataset consists of 

a large collection of handwritten digits. It includes about 60,000 training images and 10,000 

testing images, each representing digits from 0 to 9. MNIST is widely used for benchmarking 

and evaluating image processing algorithms, especially in the initial phases of research and 

development. [11] 

2.3 Classification technology for image analysis and quality control 

2.3.1 Classification Technologies for Image Analysis 

Image classification in the field of computer vision is pivotal for a wide array of applications, 

from medical diagnostics to autonomous driving. This chapter delves into machine learning 

techniques for image classification, with a particular focus on Convolutional Neural Net-

works (CNNs), as well as supervised and unsupervised classification methods. [12] 



TBU in Zlín, Faculty of Applied Informatics  33 

 

 

Figure 9 Image classification: The deep learning model returns classes along with 

the detection probability (confidence) [12] 

 

1) Convolutional Neural Networks (CNNs) in Deep Learning: 

CNN Architecture and Functionality: 

CNNs are specialized kinds of neural networks for processing data that have a grid-like to-

pology as images have. An image is treated as an input matrix, and various filters are applied 

to create feature maps that abstract higher-level features: 

• Convolutional Layer: Extracts features by applying filters that capture spatial hi-

erarchies between pixels. 

• Activation Layer (ReLU): Introduces non-linear properties to the system, helping 

the network to learn complex patterns. 

• Pooling Layer: Reduces dimensionality and computational complexity; provides 

translation invariance. 

• Fully Connected Layer: Each neuron receives input from all neurons in the previ-

ous layer, integrating features globally. 

• Output Layer: Produces the classification output based on the features recognized 

by the network. [12] 
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Training CNNs 

Training involves optimizing the filter weights to minimize the prediction error, typically 

using backpropagation and a large number of labeled training examples. 

 

Figure 10 Concept of Convolutional Neural Networks (CNNs) [12] 

2) Supervised Image Classification 

Techniques in Supervised Classification: 

• Maximum Likelihood Classification (MLC): This method assumes a normal dis-

tribution for class features, estimating the likelihood of each pixel's classification 

into predefined categories using statistical metrics such as mean and variance. 

• Minimum Distance Classification: Classifies pixels based on the proximity of 

their feature set to the mean feature set of pre-defined classes. 

Advantages and Limitations 

Supervised classification typically achieves high levels of accuracy; however, its success is 

heavily dependent on the quality of the training data. Performance can substantially decline 

with poorly labeled data or inadequate sample sizes. [12] 
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3) Unsupervised Image Classification 

Common Algorithms: 

• K-means Clustering: Partitions pixels into K clusters by minimizing intra-cluster 

variance. It's widely used for its simplicity and effectiveness. 

• ISODATA Algorithm: Allows for dynamic cluster adjustment, which can merge 

or split clusters based on the dataset's complexity. [12] 

Applications and Challenges: 

Unsupervised classification is ideal for exploring data structures when labels are not availa-

ble. However, the success largely depends on choosing suitable features and the number of 

clusters, which can sometimes be subjective. [12] 

 

4) Comparing Supervised and Unsupervised Classification 

Supervised methods are preferable for tasks with available annotated data, offering precision 

and learning from previous annotations. Unsupervised methods, however, are valuable in 

scenarios where such data is unavailable, providing initial insights and pattern recognitions 

that can be crucial for further analysis or subsequent supervised learning. [12]  

 

Recent advancements include deep learning architectures like ResNet and Inception, which 

provide refined frameworks for handling more complex image classification tasks with bet-

ter accuracy and efficiency. [12] 

 

Image classification technologies have evolved significantly, driven by both theoretical ad-

vancements in machine learning and practical applications that demand increasingly sophis-

ticated tools. The choice of classification technique—whether a deep learning approach like 

CNNs or traditional methods like MLC — which depends on the characteristic requirements 

and constraints of the task at hand. [12] 

2.3.2 Image Processing – methods and techniques:  

In the digital era, images play a pivotal role across diverse fields, including social media and 

medical diagnostics. The field of computer vision is dedicated to deriving significant 
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information from images. Image processing, an essential aspect of computer vision, entails 

the manipulation and analysis of images to improve their quality, identify important ele-

ments, and facilitate automated interpretation. [13] 

1) Importance of Image Processing  

Images are rich sources of data across multiple applications. Image processing allows us to 

derive meaningful information from images and videos, which is crucial for enhancing com-

puter vision capabilities. 

• Enhancement and Restoration – Techniques in image processing improve image 

quality by removing noise and enhancing visual clarity, particularly in challenging 

conditions like low light or high noise environments. Restoration methods enhance 

interpretability by reducing noise and clarifying details. 

• Feature Extraction and Object Recognition – Detecting and identifying patterns 

and specific objects within images is a common application in computer vision. 

Techniques in image processing enable the extraction of important features, such as 

edges and textures, which are critical for subsequent object recognition tasks, al-

lowing machines to recognize and classify objects accurately. 

• Image Segmentation – This technique divides images into segments based on vis-

ual characteristics, separating foreground from background, which is essential for 

applications such as object tracking, medical imaging, and autonomous navigation. 

Segmentation allows for focused analysis on particular regions within of image. 

• Classification and Pattern Recognition – Image processing is fundamental to 

classification and pattern recognition, enabling algorithms to analyze images’ sta-

tistical characteristics and visual patterns to distinguish between various classes or 

categories, such as different objects, scenes, or emotional expressions. 

• Medical Imaging and Diagnosis – In healthcare, image processing is crucial for 

diagnosing diseases, allowing for the detection of abnormalities and monitoring 

treatment progression through techniques like segmentation and feature extraction, 

thereby aiding in precise diagnoses and less invasive treatments. [13] 

 

2) Common Image Processing Techniques: 

These techniques are vital for achieving the objectives outlined above. Here are some fun-

damental methods: 
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• Filtering and Convolution - These techniques enhance image quality by applying 

filters that alter characteristics such as blur, sharpness, and noise. Convolution in-

volves sliding a filter over the image and applying mathematical operations to each 

pixel to modify these attributes. 

• Histogram Equalization - This technique boosts the contrast of images by modify-

ing the distribution of pixel intensities. It is particularly useful for enhancing details 

in images that are underexposed or lack contrast. 

• Edge Detection - Tools like the Canny edge detector and Sobel operator are used to 

detect significant changes in image brightness, which help in outlining boundaries 

and important features. These are crucial for tasks like object detection, shape analy-

sis, and feature extraction. 

• Image Transformation - Methods that change the geometry of images, such as ro-

tation, scaling, and translation, help in aligning images, correcting perspectives, and 

modifying spatial relationships to improve analysis and interpretation. 

• Feature Detection and Extraction - This involves pinpointing and pulling out spe-

cific visual patterns or structures, such as corners, edges, or textures. These are rep-

resented numerically and are vital for enhancing technologies in image fusion, ob-

ject recognition, and localization. 

• Advanced Segmentation - Segmenting an image into distinct regions based on vis-

ual properties allows for the isolation of important areas for more detailed analysis. 

This segmentation can be achieved through methods like thresholding, clustering, 

and graph-based algorithms, which support tasks such as object detection and gain-

ing semantic insight. 

• Object Detection and Recognition - This process involves spotting and categoriz-

ing objects or patterns in images through machine learning models trained to recog-

nize specific visual features. Advances in deep learning, particularly with Convolu-

tional Neural Networks (CNNs), have greatly enhanced the effectiveness and accu-

racy of object detection in various fields. [13] 

2.3.3 Autoencoders and their Applications 

Autoencoders are a class of artificial neural networks employed to learn efficient encodings 

of data in an unsupervised manner. They are fundamentally used for tasks like 
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dimensionality reduction and feature learning but have expanded into a variety of applica-

tions across fields. [14] 

 

Figure 11 Convolutional encoder-decoder [14] 

Understanding Autoencoders: 

An autoencoder's primary function is to learn a compressed, encoded representation of data. 

It consists of these main parts: 

• Encoder: This component compresses the input data into a smaller encoded repre-

sentation. 

• Bottleneck: This is the layer that contains the compressed knowledge of the input 

data. 

• Decoder: This part reconstructs the input data from the compressed code to be as 

close as possible to the original input. [14] 

 

Figure 12 Architecture of Autoencoders [14] 

Training Autoencoders: 
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• Setting Hyperparameters: This involves selecting parameters such as the size of 

the bottleneck (code size), the number of layers in the network, and the number of 

nodes within each layer to optimize model performance. 

• Loss Functions: Typical loss functions used in these models include Mean Squared 

Error (MSE) for continuous data, and Binary Cross-Entropy for binary data, to 

quantify the difference between the predicted and actual outputs. 

• Backpropagation: This technique is utilized to reduce the loss function by adjust-

ing the network’s weights, aiming to improve the model's ability to reconstruct the 

input data accurately.  

Types of Autoencoders: 

• Undercomplete Autoencoders: Focus on learning a compressed representation of 

the input, mainly used for dimensionality reduction. 

• Sparse Autoencoders: Utilize regularization techniques to impose sparsity on the 

hidden layers, enhancing feature selection. 

• Contractive Autoencoders: Introduce a regularization term that encourages the 

model to be insensitive to slight variations in input data. 

• Denoising Autoencoders: Aim to reconstruct a clean input from a corrupted ver-

sion, effectively learning to ignore the "noise" in the inputs. 

• Variational Autoencoders (VAEs): Learn a probabilistic latent space of the in-

puts, which allows them to generate new instances that are similar to the input data. 

[14] 

Applications of Autoencoders: 

• Dimensionality Reduction: Autoencoders can reduce data dimensions without los-

ing critical information, aiding in tasks like data visualization and compression. 

• Image Denoising: They are effective in removing noise from images, surpassing 

traditional methods by learning optimal filters. 

• Generative Models: Variational autoencoders can generate new data points with 

similar properties as the input data, useful in domains like synthetic data genera-

tion. 

• Anomaly Detection: Autoencoders can be trained to reconstruct normal data effi-

ciently; hence, anomalies can be detected through poor reconstruction. [14] 
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Autoencoders serve as powerful tools for understanding and compressing data in an unsu-

pervised manner. While the concept may seem straightforward, the practical applications 

and the depth of learning the models can achieve are profound. These networks not only 

enhance our ability to process large volumes of data but also open avenues for innovative 

applications across various industries. [14] 

2.3.4 PyTorch vs TensorFlow 

In the rapidly evolving field of deep learning, selecting the right framework is crucial for 

both academic research and industrial applications. PyTorch and TensorFlow are two of the 

leading libraries that have dominated this space, each with its own strengths and user base. 

[15] 

 

Overview of PyTorch and TensorFlow: 

• PyTorch: Developed by Facebook’s AI Research lab, famous for its ease of use, 

flexibility, and dynamic computation graph. It allows for on-the-fly adjustments 

during model training, which is particularly valuable for research and development. 

• TensorFlow: Created by Google. Is known for its robust scalability and compre-

hensive ecosystem supporting large-scale deployment and production. It employs a 

static computation graph that optimizes the computational efficiency of large mod-

els. [15] 

Ease of Learning and Use: 

• PyTorch is often praised for its straightforward, "Pythonic" interface, making it an 

ideal choice for beginners and researchers focused on innovation and fast prototyp-

ing. 

• TensorFlow, while offering a steep learning curve, provides a structured environ-

ment that is highly optimized for performance and large-scale model training. Ten-

sorFlow 2.0 has introduced Eager Execution to incorporate more dynamic graph ca-

pabilities, somewhat narrowing the usability gap between itself and PyTorch. [15] 
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Performance and Scalability 

• TensorFlow excels in handling distributed training and massive datasets, making it 

suitable for enterprise-level applications where performance and scalability are crit-

ical. 

• PyTorch has been making significant strides in enhancing its capabilities for dis-

tributed training and scalability, with updates that support multi-GPU and multi-

machine training environments. [15] 

Community and Support 

• TensorFlow has a more established community given its longer presence in the in-

dustry. It boasts extensive resources such as tutorials, courses, and community sup-

port that can be invaluable for solving complex issues. 

• PyTorch has seen rapid growth in its community, especially among researchers and 

academics, due to its user-friendly nature and adaptability in experimental settings. 

[15] 

Flexibility and Innovation 

• PyTorch offers greater flexibility due to its dynamic computation graph, facilitating 

more innovative and complex model architectures. This has made it particularly 

popular in academic research where experimentation is more frequent. 

• TensorFlow has been traditionally less flexible, but ongoing updates aim to en-

hance its capability for innovation, striving to balance its robustness with versatil-

ity. [15] 

Industry Adoption 

• TensorFlow is widely used in industry and is known for its robustness, making it a 

preferred choice for large-scale applications in production environments. 

• PyTorch is gaining traction rapidly, not only in the academic sphere but also among 

industry practitioners, driven by its ease of use and flexible nature. The release of 

production-grade features and models like ChatGPT has further solidified its posi-

tion. [15] 
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1) TensorFlow Applications: 

• Google Search and Recommendations: Enhancing search algorithms and personal-

izing user recommendations. 

• NVIDIA Deep Learning Accelerator (NVDLA): Optimizing deep learning applica-

tions on NVIDIA's hardware accelerators. 

• Uber’s Michelangelo: Supporting machine learning pipelines for predictions, fraud 

detection, and pricing. [15] 

2) PyTorch Applications: 

• Facebook: Various AI-driven features like content recommendation and language 

translation. 

• Tesla Autopilot: Core deep learning tasks such as object detection for autonomous 

driving. 

• OpenAI GPT Models: Natural language processing tasks including text generation 

and language translation. [15] 

The choice between PyTorch and TensorFlow largely depends on specific project needs, 

preferences for ease of use versus scalability, and whether the deployment environment fa-

vors experimentation or robust deployment. Both frameworks continue to evolve, with each 

new update potentially shifting the balance in their ongoing rivalry. The decision on which 

framework to adopt should be guided by the specific requirements and context of the in-

tended application, rather than a one-size-fits-all approach. [15] 

2.4 X-ray inspection solutions in Tires 

In this chapter, we will explore the advanced X-ray inspection technologies that are crucial 

for ensuring quality in the manufacturing of tires. These systems provide detailed insights 

into the internal structure of tires, enhancing defect detection and improving overall product 

reliability. We will discuss various specialized machines and software developed by leading 

companies in the field, highlighting their unique features and the significant benefits they 

bring to tire manufacturing processes. 
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2.4.1 Micropoise ADR 

2.4.1.1 Machine from Micropoise 

The CTXS Plus is an X-ray inspection system specifically engineered to address quality 

control in the manufacturing of Passenger Car Radial (PCR) and Truck and Bus Radial 

(TBR) tires. So Micropoise is strongly focusing on both parts of tires – PCR and TBR which 

is not 100% common. What can be highlighted is also the robotic tire handling mechanism 

which distinguishes it from conventional systems typically used at Continental and other 

similar environments. [16] 

Multi-axis Robot Tire Handling 

Unlike traditional tire X-ray inspection systems, the CTXS Plus integrates a multi-axis robot 

for tire handling. This robotic system precisely manipulates and positions tires, maintaining 

them in a vertical orientation during the X-ray process. This method as supplier present re-

duces the risk of structural deformation that can occur with manual or less sophisticated 

handling methods, ensuring the tire retains its integrity for accurate imaging. [16] 

 

Vertical X-ray Positioning 

The vertical setup for X-ray imaging is critical for preventing the tire from deforming under 

its weight, a challenge commonly encountered in horizontal X-ray arrangements. This ori-

entation aids in achieving clearer, more accurate X-ray images, which are essential for de-

tailed inspections. [16] 

 

Coll-Tech Automatic Defect Recognition Software: 

 The CTXS Plus is equipped with sophisticated software that automates the detection of ab-

normalities across all tire areas. The integration of artificial intelligence and classical algo-

rithms enhances the system’s capability to identify a wide range of defect types efficiently 

and accurately. This will be described more in the chapter below. [16] 
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Operational Advantages 

• The system's compact design minimizes space requirements, an essential feature for 

facilities with limited operational areas. Its ability to fit within standard shipping 

containers also simplifies logistics, reducing costs and complexities associated with 

transportation and installation. 

• Designed for low maintenance and ease of use, the CTXS Plus offers a lower total 

life cycle cost. Quick start-up capabilities and reduced maintenance requirements 

contribute significantly to operational efficiency, making it an economically viable 

option for high-throughput manufacturing settings. 

• The CTXS Plus's ADR software is adept at detecting both generic and high-risk de-

fects. The precise rotation and stable vertical positioning of the tire during the X-ray 

process ensure high-quality imaging, which is crucial for detecting minute anoma-

lies. 

• The X-ray tube of the CTXS Plus operates at up to 100 kV and 6 mA, with an emis-

sion angle optimized for comprehensive tire coverage. The high-resolution C-shape 

detector enhances image quality, providing detailed insights into the tire's internal 

structure. [16] 

 

Figure 13 Micropoise X-ray machine solution [16] 
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2.4.1.2 ADR software 

The Coll-Tech X-Ray ADR software is a component of the Micro-Poise suite of tools for X-

ray inspection and Automatic Defect Recognition (ADR) designed for tire manufacturing. It 

plays a crucial role in ensuring the quality and reliability of tires through sophisticated X-

ray imaging analysis. [17] 

 

ADR software system can recognize multiple layers within a tire, handling up to three 

breaker layers in addition to the ply. It is designed to detect, track, and differentiate each 

wire in any tire layer and provides three-dimensional metric calculations. Recognized for its 

rapid processing capabilities, the system automatically identifies anomalies from X-ray im-

ages across all tire areas without dependence on the tire type. [17] 

 

Key Features: 

• Tire Viewer Module: Enables operators to quickly locate specific anomalies identi-

fied by the software. 

• Communication Capabilities: Interfaces with all Micro-Poise X-ray machines and 

can be adapted to work with third-party X-ray systems through its communication 

module. 

• User Configuration Options: Allows operators to adjust tolerances and appearances 

to suit specific operational requirements. 

• Database and Recipe Management: Supports the management and storage of tire 

specifications and manufacturing data. 

• Data Analysis: Incorporates tools for historical data collection and statistical analy-

sis, aiding in informed decision-making. [17] 

Detection Features 

The software is engineered to detect a variety of defects and anomalies: 

• Bead Disorders: Identifies issues related to bead structure and alignment [17] 
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Figure 14 Bead disorder detected by ADR from Micropoise [17] 

• Off-center Breakers: Detects misalignments within the breaker layers 

 

Figure 15 Findings in breaker by ADR from Micropoise [17] 

• Body Ply Arrangements: Identifies issues such as opening or touching wires 
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Figure 16 Body Ply findings with ADR from Micropoise [17]  

 

Figure 17 Ply automatically detected with ADR from Micropoise [17] 

• Foreign Objects: Locates unwanted materials embedded within the tire 

• Air Bubbles: Detects blisters both in the sidewall and underneath the chafer 
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Figure 18: Air bubble detected by ADR from Micropoise [17] 

 

Figure 19 Chafer automatic detection with ADR from Micropoise [17] 

• RFID Detection Under Chafer: Checks for the correct placement and characteristics 

of RFID tags 
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Figure 20: RFID detected by ADR from Micropoise [17] 

• Comprehensive Ply and Bead Analysis: Evaluates ply-turn-up distances, bead width 

disorders, and other related metrics 

 

Figure 21 Ply-Turn-Up detected by ADR from Micropoise [17] 

 

Micro-Poise's software capabilities mark a significant advancement in the field of tire in-

spection, offering a highly automated solution that minimizes the need for human interven-

tion. The software is capable of running entirely autonomously, governed by sophisticated 

algorithms that control the inspection process. The advanced automation enabled by Micro-

Poise's software significantly reduces the human resources required for tire inspection. On 

average, the necessity for a human grader is reduced to half a grader per shift for up to three 

X-ray devices. Facilities operating more than three X-ray devices require a full-time grader 
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present throughout the shift to oversee the operations and ensure the optimal functioning of 

the inspection systems. Micro-Poise employs a four-layer AI system within its inspection 

software, enhancing the precision and scope of tire anomaly detection and classification: 

E.g. one layer is responsible for identifying imperfections in the tire, utilizing advanced im-

aging and pattern recognition technologies. The next layer, used after the detection of anom-

alies is for classifying according to their types and characteristics, aiding in determining the 

appropriate response or correction required. Utilizing pixel-to-millimeter (px-mm) technol-

ogy, the software can also calculate the actual size of detected features in millimeters. This 

capability is crucial for assessing whether an anomaly falls within acceptable manufacturing 

tolerances or constitutes a genuine defect. By analyzing data collected over periods, such as 

three weeks, the system can automatically generate production recipes. This feature is par-

ticularly useful for rapid deployment and operational scaling in new manufacturing facilities, 

enabling swift roll-outs and adjustments based on real-time data insights. [16] [17] 

By reducing the dependency on manual grading and enhancing the precision of defect de-

tection and classification, Micro-Poise systems not only streamline the production process 

but also ensure higher quality standards. These innovations contribute significantly to oper-

ational efficiency, cost reduction, and product reliability in tire manufacturing industries, 

supporting the ongoing evolution toward fully automated manufacturing solutions. By auto-

mating tire inspections, the Coll-Tech X-Ray ADR software reduces the reliance on manual 

checks, thus decreasing operational costs and enhancing the efficiency of the production 

cycle. This system ensures a consistent and thorough inspection process, reducing the like-

lihood of human error and enhancing product reliability. The system's adaptability allows it 

to be integrated with a variety of X-ray machines, making it a flexible option for different 

manufacturing environments. It is suitable for inspecting radial tires across passenger vehi-

cles, trucks, and buses, offering broad usability. [16] [17] 

 

Micro-Poise also offers support for its products, including technical services, spare parts, 

machine upgrades, and preventative maintenance. This ensures that the systems continue to 

operate efficiently and remain up to date with technological advancements. [16] 
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2.4.2 Yxlon 

2.4.2.1 Yxlon machine 

The YXLON MTIS X-ray inspection system is engineered to fulfill the demands of quality 

assurance in radial tire manufacturing for both passenger cars and trucks. This system offers 

seamless integration into production lines, supporting continuous operational demands with 

an uptime exceeding 95% (supplier number), which ensures reliability in high-volume man-

ufacturing environments. [1] 

 

The MTIS system features a mechanical setup with four synchronously driven spindles and 

a precise linear axis system powered by servo motors. This configuration allows for the gen-

tle and accurate handling of tires, ensuring that they are rotated without slipping or defor-

mation, which is critical for consistent inspection results. The integration of a shielded X-

ray source, optimized for stability, and the UScan3 line detector ensures superior image 

quality. The UScan3 detector, specifically designed for tire inspection, delivers images with 

high contrast and clarity at a 16-bit dynamic resolution, facilitating the detection of minute 

anomalies within the tire structure. The system adheres to the stringent safety standards set 

by radiation laws and is fully compliant with the European machinery directive. Optional 

adaptations to meet local standards, such as OHSA/UL, are also available, ensuring the sys-

tem’s versatility and safety across different operational jurisdictions. [1] 

 

Technical Specifications 

• The system can work with tires with widths ranging from 100 to 508 mm and inner 

diameters from 13 to 26 inches, supporting a maximum tire weight of 160 kg. This 

allows the MTIS system to handle a broad spectrum of tire sizes used in both pas-

senger and commercial vehicles. 

• Occupying a physical space of approximately 5,400 mm x 5,100 mm x 2,700 mm, 

the system incorporates a 100 kV / 300 W X-ray tube, ensuring deep penetration and 

clear imaging across dense tire components. [1] 
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Figure 22 X-ray inspection system MTIS [1] 

Description: 

1. Loading arm 

2. Conveyor 

3. Tire ID station 

4. X-ray cabinet 

5. Operator console 

6. Result Statistics Station 

 

Figure 23 Tire manipulator for loading tires into MTIS system from conveying system [1] 



TBU in Zlín, Faculty of Applied Informatics  53 

 

 

Figure 24 UScan3 line detector and 4-spindle tire manipulator [1] 

2.4.2.2 Inspection Software - Y.TireAXIS 

This software forms the core of the MTIS system’s operational intelligence, offering tools 

for both fully automated and supervised inspection processes. It analyzes the entire tire in 

one scan, assessing the alignment, and consistency of components, and identifying any 

anomalies. [1] 

 

Defect Detection and Analysis: Y.TireAXIS excels in examinations such as: 

• Belt alignment and positioning: Ensuring the belts are centered and correctly an-

gled. 

• Turnup and chafer inspection: Verifying the correct position and height. 

• Steel cord analysis: Checking for spacing issues, including crossed or touching 

cords, and identifying wavy cords. 

• Foreign material detection: Locating any unwanted materials or air voids within 

the tire structure. [1] 
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Figure 25 Y.TireAXIS recognizes of the individual components of the tire and 

analyzes the structure, position, and dimensions. [1] 

 

The software not only supports the detection of anomalies but also collects data sets for each 

tire inspected. This data is crucial for statistical process control, helping manufacturers to 

monitor, adjust, and enhance their production processes.  

 

Y.TireAXIS is designed to integrate smoothly into existing production lines with features 

that support easy setup and operation. The interface provides a live view mode, reducing 

strain on operators and enhancing the ability to spot defects in real time. Service Engine 4.0: 

YXLON´s commitment to service includes Service Engine 4.0, offering a modular approach 

to system maintenance and upgrades. This service framework ensures operational safety, 

maximizes system availability, and extends the product lifetime while providing fast and 

reliable support through remote access and on-site service. With a worldwide network of 

service centers, YXLON ensures that support and expertise are readily available, helping to 

maintain the system’s performance and adapt to evolving industry requirements. [1] 



TBU in Zlín, Faculty of Applied Informatics  55 

 

2.4.3 CyXplus 

2.4.3.1 CyXplus machine 

CyXplus offers a range of X-ray inspection systems designed for radial tires, including mod-

els such as PCR12-25 for passenger car radial (PCR) tires and TBR15-27 for truck and bus 

radial (TBR) tires. These systems are engineered to handle tires within specific inner diam-

eter ranges, enhancing the precision and effectiveness of internal structure inspections. [18] 

 

System Design and Functionality 

• Horizontal Handling: Both PCR and TBR machines utilize a horizontal tire han-

dling approach throughout the inspection process. This orientation is critical for sev-

eral reasons: 

o Optimized Cycle Time: Horizontal handling streamlines the inspection pro-

cess, allowing for quicker transitions and reducing overall cycle times. 

o Reduced Shape Distortion: Maintaining the tire in a horizontal position 

minimizes distortions during the X-ray scanning, ensuring the accuracy and 

reliability of the captured images. 

o Lower Maintenance Costs: The horizontal system requires fewer mechani-

cal adjustments and manipulations, decreasing the frequency and cost of 

maintenance. 

o Space Efficiency: The design of the lead cabin is compact, making it suitable 

for environments where space conservation is crucial. 

• OTRX Range for Larger Tires: The OTRX series is specifically developed for Off-

The-Road (OTR) tire inspection, catering to a wide range of tire sizes from 20'' ID to 

63'' ID. This series stands out by offering high image quality, automated cycles, and 

optimized processing times, making it a unique solution in the market. [18] 



TBU in Zlín, Faculty of Applied Informatics  56 

 

 

Figure 26 CyXplus machine solution 

2.4.3.2 CyXplus Software Solutions 

CyXmark Software: 

This component focuses on the inspection of tire markings, including regulatory, commer-

cial, and production marks. It utilizes optical character recognition (OCR), pattern matching, 

and logo identification techniques to ensure that all markings meet quality standards. [18] 

CyXpert Software: 

Known as the Automatic Defect Recognition (ADR) software in the tire industry, CyXpert 

enhances the functionality of CyXplus inspection systems. It analyzes tire X-ray images to 

detect a variety of defects with high accuracy, significantly optimizing the X-ray inspection 

process. The software operates efficiently in both automatic and semi-automatic modes, 

maintaining the inspection cycle time under 22 seconds in automatic settings. [18] 

CyXscan Cross Section Scanning System: 

The CyXscan system consists of a scanning system, a dedicated workstation, and CyXscan 

software with an embedded license. This setup is primarily used by Engineering or Quality 

Assurance departments for detailed examination of tire cross-sections sampled from produc-

tion. The system facilitates millimetric measurements of tire cross-sections without physical 

contact, preserving the integrity of the samples. It is particularly valuable for tire manufac-

turers for its precision and the ability to quickly analyze cut cross-sections. [18] 
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Building on its expertise in X-ray inspection, CyXplus has also developed a 2D computed 

tomography solution that can generate cross-sectional images of tires in seconds without 

destroying them. This innovation significantly reduces the time required for cross-sectional 

analysis from hours to under three minutes, enabling its integration directly on production 

lines. [18] 

 

Figure 27 Example from CyXscan software environment [18] 

Benefits and Application of CyXplus Systems: 

o Enhanced Inspection Accuracy: With a resolution accuracy of 0.4 mm, 

CyXpert software can identify defects in critical tire areas such as the tread, 

sidewall, and bead. The system's capability to detect intricate details like cord 

integrity, belt extraction, and air traps makes it invaluable for maintaining 

high-quality standards. 

o Data-Driven Quality Control: CyXplus systems not only perform inspec-

tions but also collect comprehensive data that can be used for statistical anal-

ysis and quality control. This data helps tire manufacturers monitor and refine 

their production processes, ensuring consistent product quality. 

o Adaptability and Customization: The modular design of CyXplus systems 

allows for easy adaptation to specific production requirements. The availa-

bility of both automatic and manual operation modes provides flexibility in 

how inspections are conducted, accommodating varying operational needs. 

[18]  



TBU in Zlín, Faculty of Applied Informatics  58 

 

2.4.4 Other companies on the market 

Other companies in the X-ray equipment market do not have accessible documents or 

presentations and generally do not provide detailed information about their systems. There-

fore, only their names and the machine look are mentioned. 

5. Alfamation 

 

Figure 28 Solution from company Alfamation [19] 

6. Mayer 

 

Figure 29 Solution from company Mayer [20] 
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II.  ANALYSIS 
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3 AIM OF THESIS AND METHODOLOGY 

In the subsequent chapters of this thesis, specifically Chapters 4 through 6, the focus will be 

on a comprehensive exploration and enhancement of in-house artificial intelligence models 

for tire inspection, juxtaposed with the integration and evaluation of external solutions. This 

examination will include a detailed analysis of operational costs, the benefits of various tech-

nologies, and the strategic implementation of selected solutions within Continental's manu-

facturing processes. 

 

Chapter 4 delves into the development of an in-house AI model initially proposed by author 

Dominik Arend. The chapter begins with a detailed assessment of the raw data available 

from Continental's X-ray devices, including image resolution specifics and the categoriza-

tion of tire quality based on operator input. It will elaborate on the methodologies used to 

preprocess this data, ensuring that it aligns with the operational needs of AI algorithms, 

which involves the standardization of image dimensions and the innovative use of overlap-

ping image segments for enhanced defect detection. Further, this chapter will explore the 

implementation strategies of the AI model within the production environment, detailing the 

segmentation techniques and the training of the model using defect-free images to optimize 

its anomaly detection capabilities.  

 

In Chapter 5, the narrative shifts to a comparative analysis between the in-house AI solution 

and external technologies, notably the Micropoise ADR system. This chapter will outline 

the criteria for evaluating both systems, including their ability to integrate within existing 

infrastructure, cost implications, operational efficiencies, and the quality of inspection. The 

analysis will draw on data-driven metrics to establish the strengths and limitations of each 

solution. 

 

Chapter 6 details the strategic rollout of the Micropoise ADR solution, selected based on the 

comprehensive evaluations discussed in Chapter 5. This chapter will provide a roadmap for 

the deployment of the automated X-ray inspection system, addressing the logistical, tech-

nical, and operational aspects necessary for successful implementation across Continental's 

designated facilities. 
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4 IN-HOUSE AI MODEL 

One solution with the potential to advance tire inspection automation is the internally devel-

oped AI model initially created by Dominik Arend [21]. In his thesis, he explored the intri-

cacies and possibilities of deploying such a model in a production environment. He devel-

oped a foundational model, defined its capabilities, outlined the necessary steps for its im-

plementation and conducted initial tests. Further testing and development of this model are 

now part of my work at Continental, specifically within the scope of a project designed for 

this purpose. The following description will frequently reference his work. [21] 

4.1 Description 

4.1.1 Working with raw data 

To implement different types of algorithms, test various architectures, and train and process 

data for our internal AI model we had to identify the available data and understand the com-

munication between the complex X-ray device and the communication infrastructure at Con-

tinental's manufacturing plants. 

 

The X-ray device provides several types of data. Firstly, it outputs images in JPG format 

with specific resolutions based on the article and the calibration of the X-ray machine. The 

height (more precisely the length of the image) varies from 7,600 pixels to 18,000 pixels, 

while the width is constant at 2,469 px due to the machine's design. Another set of data 

available for our algorithm consists of operator decisions. Operators (sometimes with the 

assistance of software running on certain X-ray machines) examine the machine's results to 

determine whether a product can be labeled as O (Original Equipment Manufacturer Qual-

ity), indicating that the item can proceed to the final processing department and then be re-

leased to the market. If not, the operator enters an S (Suspicious) tag into the system. Such 

tires are then forwarded to a higher-level grader for further inspection, who decides whether 

the tire can be reworked (marked as R – Replacement or Rework) or must be scrapped. The 

grader can assign final labels: O for good tires, R for reworkable tires, or X for tires to be 

scrapped. Additional data includes the description and location of any detected defects and 

measured tolerances (or more precisely intolerances). [21] 
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All this information is processed by the MCAT (Material Flow Control and Tracking System) 

- a specific Continental decision system containing data such as barcodes, operator/grader 

decisions, detected intolerances, dates, and times.  

 

For context, nearly 92% of the images examined were marked with the O label, 3% with the 

X (Scrap), 1% with the S (Suspicious), and the remaining 7% with the R (Rework). For some 

X-ray images, no labels were available when querying data from the MCAT system, so they 

were excluded from further analysis. Also, 1% of tires marked with the S label were catego-

rized by the operator but not yet reviewed by a grader, leading to their exclusion from further 

analysis. The X label was assigned to some tires during various inspection phases, like uni-

formity measurement. Out of the 3% of tires labeled X, only some exhibited visible defects 

during X-ray inspection. [21] 

 

Additionally, 7% of the tires were marked with the R label. However, only a small fraction 

had defect codes based on X-ray analysis, while others were assessed by different methods. 

For 7% of tires marked R, the assessment method is unclear, as some may share defect codes 

with faulty tires, potentially due to rework. When a tire is marked for rework, it falls into the 

faulty category even if it is defect-free after rework. Other tires in the R category might have 

undergone significant rework and are defect-free but cannot be classified as O due to their 

previous rework status. These tires are sold as replacement tires with the R label.  

Also, some tires received the R label for further X-ray screening, regardless of whether they 

exhibited defects. Due to these ambiguities, only tires labeled O and X were used to develop 

the algorithm to avoid unclear data. As a result, the data set includes over 250,000 defect-

free X-ray images and nearly 500 images with identifiable defects. [21] 

 

4.1.2 Preparation of data 

To link the X-ray images with the corresponding labels from the MCAT data, it's essential 

to use a consistent naming convention that incorporates key identifiers. This method en-

hances data organization and retrieval. 

As already described the naming format for each JPG. JPG image includes the label, the 

article number, and the barcode derived from the MCAT system. The structure follows the 
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pattern l_Label_a_ArticleNumber_b_Barcode.jpg. An example of this would be 

l_O_a_0514090000_b_6146131587.jpg. Using lowercase letters to represent "label," "arti-

cle number," and "barcode" creates a straightforward way to categorize and sort files based 

on one or more of these criteria. [21] 

 

To ensure consistency among the X-ray images, it is necessary to standardize the image 

sizes, particularly since the image width remains constant, while the height can vary. Having 

uniform image dimensions simplifies the process of training an autoencoder, which typically 

requires consistent input sizes. One effective approach is to divide the images into overlap-

ping segments, which helps avoid information loss that might occur with compression or 

when splitting the images into directly adjacent sections.  

 

An expert in Continental's tire X-ray defect detection was consulted to determine the optimal 

way to subdivide the images. The expert suggested a horizontal subdivision of each image 

into sections approximately 128 pixels in height. This approach was chosen because it offers 

a practical way to detect potential defects without compromising the accuracy of the analy-

sis. The expert determined that this size was sufficient to capture critical details and that any 

defect running along the width of the tire could be identified through this subdivision strat-

egy. Given the round shape of tires and the varying distance between the X-ray source and 

the detector, the size of objects in the X-ray images might differ based on their location. To 

estimate the pixel-to-real-size conversion, a tire with a known circumference of 3 meters and 

an X-ray image length of 18,000 pixels was used to calculate a conversion ratio. This ratio 

indicated approximately 6 pixels per millimeter, but it's important to note that this is a gen-

eral estimate and may not be consistently applicable across all scenarios. The consultation 

with the expert also addressed the possibility of vertical subdivision, along the running di-

rection of the tire, to capture different regions like the tread or bead. However, it was con-

cluded that horizontal segmentation provided a reliable means of identifying defects, given 

that many anomalies would be evident within a 128-pixel-high section. While vertical seg-

mentation could offer additional insights, horizontal subdivision was deemed sufficient for 

the scope of this analysis. This method allows for capturing the necessary details and ad-

dressing any positional variations across the tire's length. [21] 
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Figure 30 Tire with asymmetric belt [21] 

In Figure 30, the defect is apparent throughout the entire circumference of the tire. This 

visibility extends to individual sections of the X-ray image, marked in red, where the belt 

appears misaligned or shifted away from the tire's center relative to the beads. 

 

To accurately detect certain defects, both edge areas of the belt layers must are visible within 

a single image, as these defects might not be as noticeable in all images of the same type. 

Similar issues can also occur near the tire beads, reinforcing the need for a comprehensive 

view within a single image. This is why horizontal subdivisions are effective, while vertical 

subdivisions may not be suitable for reliable defect detection. [21] 

 

Figure 31 Image section with scaling factors of 1, ½, and ¼ [21] 
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To examine whether image compression is feasible, tests were conducted using different 

compression factors. Figure 31 compares three identical image sections with compression 

factors of 1, ½, and ¼. The results indicate that at a compression factor of ½, the defect 

remains clearly visible. However, at ¼, the defect becomes obscured, suggesting that the 

compression factor shouldn't be less than ½ to maintain clarity. [21] 

 

Manual compression might not be necessary, as the autoencoder's convolutional layer can 

offer better compression while preserving more relevant image information. The convolu-

tional layer uses multiple filters per reduction step, providing a more controlled compression 

process than manual image compression. To reliably detect all potential defects, images are 

subdivided into sections of 256 pixels in height, with an overlap of 128 pixels between each 

segment. This method avoids loss of information while ensuring that different image heights 

don't pose a problem. Larger images simply generate more sections. To keep track of the 

subdivided images, the naming convention includes the original pixel position in the height 

of the image and the indication of the width. For example, the file name 

l_O_a_0514090000_b_6146131587_s_fullwidth_512.jpg provides information about the la-

bel, article number, barcode, and section position. This naming strategy helps in aligning the 

subdivided sections with the original X-ray images. [21] 

 

Overall, the subdivision and compression strategies are designed to maintain the integrity of 

the data, allowing for consistent analysis and reducing the impact of variable image heights 

or sizes on the detection of critical defects. [21] 

4.1.3 Training on anomaly dataset 

For the autoencoder training, only X-ray images without defects should be used to ensure 

optimal results. However, even tires labeled O often contain an anomaly known as a Splice 

marker, which indicates where the tire's ply ends overlap. This marker can be identified in 

the X-ray image and thus must be avoided during training because it represents an anomaly.  

 

Figure 32 X-ray image with Splice marker 
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To maintain a balanced training set, the number of X-ray images for each tire article should 

be as evenly distributed as possible, providing the autoencoder with a consistent learning 

environment. It is assumed that different X-ray images of tires with the same label from the 

same article exhibit minimal variations, given that they are captured on the same X-ray ma-

chine. Therefore, training with one X-ray image per article should be sufficient to avoid 

redundancy and keep the training set manageable in size. After manually removing segments 

containing splice markers, the training set comprises 28 918 image segments derived from 

one X-ray image per article from 304 different articles. The number of segments per article 

varies based on tire size; larger tires yield more segments due to their greater circumference. 

Even with some variance in the exact number of segments per article, the training set is 

consistent enough to allow for direct comparison between autoencoder architectures. [21] 

 

Once an autoencoder architecture has been trained, it must be evaluated to determine its 

effectiveness in distinguishing between normal and abnormal image data. This is accom-

plished by comparing the reconstruction error of abnormal image segments with that of de-

fect-free segments from the same article. A greater difference between these errors indicates 

a better-performing architecture. To conduct this evaluation, an anomaly set containing only 

image segments with defects is created. This set should have a balanced distribution of var-

ious defects to allow for a fair assessment of the architectures. For this purpose, one image 

segment is selected for each of the 39 X-ray defect codes. These segments are taken from a 

random selection of articles and tires based solely on their defect codes, without regard to 

the visibility or ease of detecting the defect. This approach ensures a comprehensive evalu-

ation of the architecture's ability to detect a wide range of anomalies, from those readily 

apparent to the human eye to those that are more challenging to identify. [21] 

4.1.4 “Postprocessing” 

Once the optimal autoencoder architecture for detecting anomalies is identified, the next step 

is to enhance it for classifying the detected anomalies. This requires defining the error classes 

to categorize the different types of defects. To classify defects, the existing X-ray defect 

codes are used, as each tire labeled with an "X" has corresponding defect codes. With splice 

markers removed from the training set, they are expected to be identified as anomalies during 

classification. To differentiate between splice markers and defects, a separate class for splice 

markers is created, resulting in a total of 40 classes for classification. Adjusting the 
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autoencoder architecture to accommodate new classes involves retraining, but only the mod-

ified layers need to be retrained, leaving the previously learned layers intact. [21] 

 

The X-ray images used in the training and evaluation process need to be standardized to 

ensure uniformity. Variability in X-ray machine settings across different plants can lead to 

differences in brightness and contrast. To address this, each image is processed to have a 

mean of 0 and a standard deviation of 1, allowing consistent gray value ranges. This stand-

ardization is crucial for machine learning algorithms like autoencoders, which require uni-

form input data. Standardization is achieved by subtracting the mean gray value from each 

pixel and then dividing by the standard deviation. This transformation, detailed in the equa-

tions below, ensures that all images have a consistent gray value distribution. [21] 

𝑥
𝑠𝑡𝑎𝑛𝑑= 

𝑥−𝑋̅

√ 1
𝑛−1

∑ (𝑥𝑖−𝑋̅)2𝑛
𝑖=1

 

( 2  ) 

 

In quotation ( 2  ) The variable xstand denotes the standardized gray value of a pixel, while x 

represents the original gray value of that pixel. The term n refers to the total number of pixels 

in an X-ray image, and 𝑋̅ is the mean of all pixel gray values in the image, as given in 

equation ( 3 ) below. [21] 

𝑋̅ =
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

  

( 3 ) 
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Figure 33: Normalization with the distribution of fitting the gray value [21] 

Figure 33 illustrates how this standardization aligns different distributions into alignment, 

enabling direct comparisons despite initial differences in brightness and contrast. 

 

However, standardized images cannot be displayed in their original form. To convert them 

back to a displayable format, the standardized values must be multiplied by the original im-

age's standard deviation and then added to the mean value. This process is known as reverse 

standardization, allowing the converted images to be viewed again. Overall, this approach 

standardizes X-ray images for consistent processing and provides a reliable method for train-

ing and evaluating autoencoders in the context of anomaly detection and classification. [21] 
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4.1.5 Training and Evaluation of Autoencoders Architectures 

To compare different autoencoder architectures, several key parameters are defined, includ-

ing the number of layers, the number of filters per layer, and the step size in the convolutional 

layers. The training process for these architectures requires significant computing power, 

which is efficiently managed using graphical processors due to their parallel processing ca-

pabilities.  

 

The training of these autoencoder architectures takes place in Continental Datalake, an in-

frastructure that uses Amazon Web Services (AWS) for data storage, processing, and visual-

ization. AWS provides preconfigured instances, such as p2.xlarge, with high-performance 

GPUs like NVIDIA K80, allowing scalable training with TensorFlow and other machine 

learning frameworks. This setup enables simultaneous training of multiple architectures, en-

hancing the efficiency of the process. Symmetry in autoencoder design allows for shared 

weights between encoder and decoder layers, reducing the number of parameters and mini-

mizing overfitting risks. To achieve this, custom layers are created in TensorFlow to facili-

tate weight sharing, considering factors like padding and varying step sizes. This approach 

leverages TensorFlow's efficient C++ backend, ensuring optimized performance. [21] 

 

Regarding convolutional layers, pooling operations are replaced with 2-stride convolution, 

simplifying the architecture. This method is used consistently across all trained networks, 

with configurations that alternate step sizes of 1 and 2, or exclusively use a twofold step size. 

The training metrics focus on evaluating the similarity between the input and output images, 

crucial for autoencoder performance. Metrics like Mean Absolute Error (MAE) and Mean 

Squared Error (MSE) assess the discrepancy between these images, with MSE emphasizing 

larger deviations. The chosen metric reflects the importance of maintaining accuracy while 

allowing for some image compression during the autoencoder process. [21] 

 

4.1.6 Performance Evaluation of Autoencoder Architectures 

Each autoencoder architecture has a training error that reflects its ability to reconstruct the 

input image. While the training error does not directly indicate the architecture's 
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effectiveness in identifying defects, a significant difference between the reconstruction error 

of defect-free images and that of defective ones suggests an ability to detect anomalies. 

To compare autoencoder architectures, X-ray images are categorized into two groups based 

on their labels: class "O" for defect-free images and class "X" for those with defects. Since 

defects typically occupy only a small portion of an X-ray image, an anomaly set is created 

to focus on segments with actual defects. The expected reconstruction error (E) is derived 

from the mean and standard deviation of the reconstruction error for 10 defect-free image 

segments. The expected error is calculated in equation ( 4 ) as follows: [21] 

𝐸 =
1

10
∑ 𝑀𝑆𝐸𝑛𝑜𝑟𝑚𝑎𝑙,𝑖 

10

𝑖=1

 

( 4 ) 

 

where 𝑀𝑆𝐸𝑛𝑜𝑟𝑚𝑎𝑙,𝑖 represents the Mean Squared Error for the i-th segment. The standard 

deviation (𝜎) is calculated from the expected error in equation ( 5 ): 

𝜎 =  √
1

9
∑(𝑀𝑆𝐸𝑛𝑜𝑟𝑚𝑎𝑙,𝑖 − 𝐸)2

10

𝑖=1

 

( 5 ) 

 

The threshold for distinguishing between normal and abnormal segments is given by equa-

tion ( 6 ): 

𝑇 = 𝐸 + 𝜎 

( 6 ) 

 

To assess each autoencoder architecture, the difference between the reconstruction error for 

defective segments and the threshold value is calculated. This difference MSEdiff is in equa-

tion ( 7 ) determined as: 

𝑀𝑆𝐸𝑑𝑖𝑓𝑓 = 𝑀𝑆𝐸𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙 − 𝑇 

( 7 ) 
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where MSEabnormal is the Mean Squared Error for the defective segment, and T is the threshold 

value. A larger difference indicates better differentiation between defective and defect-free 

images. [21] 

 

To compare different architectures, the median of the difference values across all 39 seg-

ments in the anomaly set is used. The median is less sensitive to extreme values or outliers, 

providing a more robust measure for comparison. A positive median indicates that at least 

half of the difference values are also positive, suggesting that the architecture can effectively 

distinguish between normal and defective segments. 

The architecture with the highest median across the difference values can be considered the 

best-performing. However, further analysis may be needed to address cases where the dif-

ference values are small or even negative. This requires examining individual segments to 

identify scenarios where the architecture might struggle to detect defects. [21] 

 

4.1.7 Comparison of Autoencoder Architectures 

This section presents a comparison of different autoencoder architectures, focusing on their 

ability to distinguish between defective and defect-free image segments. It provides a sum-

mary of the various architectures and their performance in terms of the median difference 

value, which indicates how well an architecture can differentiate between normal and abnor-

mal segments. [21] 

 

Chyba! Chybný odkaz na záložku. shows a list of autoencoder architectures along with their 

configurations and the corresponding difference values. The architectures vary in terms of 

the number of encoder layers, filter sizes, step sizes, and difference values (median). The 

best architecture has the highest difference value, indicating its ability to effectively differ-

entiate between defective and defect-free image segments. [21] 

Based on the table, architecture 14 with 11 encoder layers (22 layers in total) and a twofold 

step size has the highest median difference value, indicating that it is the best architecture 

for distinguishing between defective and defect-free image segments. Architectures with a 

median difference value greater than 1 are highlighted in green, showing that they can suc-

cessfully differentiate between normal and defective segments. [21] 
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Table 1 Comparison of Trained Autoencoder Architectures [21] 

 

 

However, some architectures exhibit negative difference values, suggesting that they have 

difficulty distinguishing between defective and defect-free segments. This can occur due to 

variations in the training data or the method used to calculate the threshold value. It's im-

portant to note that the threshold value can be adjusted for better differentiation, and the 

number of image segments used for training can be increased to ensure reliable differentia-

tion. [21] 

 

 

Figure 34 Input image with defect (top), reconstructed output image (center), and differ-

ence image (bottom) [21] 
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Figure 35 Input image without defect (top), reconstructed output image (center), and dif-

ference image (bottom) [21] 

 

Further, Figure 34 and Figure 35 illustrate how the reconstructed output images differ be-

tween defective and defect-free segments. The reconstructed image often appears blurry, but 

the different image reveals the location of the defect. The task of the autoencoder is not to 

reconstruct the input image with high accuracy but to differentiate between defective and 

defect-free segments as much as possible. [21] 

 

Figure 36 Training and testing errors of the autoencoder architecture [21] 

 

Finally, to evaluate the performance of the best autoencoder architecture, the training and 

testing errors are plotted over 50 training epochs. This shows how the error decreases as the 
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architecture learns and provides insight into the training process without using additional 

normalization techniques. [21] 

4.1.8 Possibility for converting an Autoencoder into a CNN for Defect Classification 

Following the subdivision of X-labeled X-ray images into segments based on error code, the 

selected autoencoder architecture categorizes them into defective and defect-free segments 

using the threshold defined earlier. The manual review ensures that the data set of defective 

segments contains no defect-free segments and eliminates anomalies that don't represent de-

fects, such as splice markers. The result is a data set with only defective segments, sorted by 

defect code. This "defect set" is used to train a Convolutional Neural Network (CNN) based 

on the autoencoder's encoder, with all encoder layer parameters frozen to remain unchanged 

during training. A dense layer is added at the end of the frozen layers, forming the CNN. To 

train and validate the CNN, the defect set is split into a training set and a validation set, with 

the training set comprising 90% of the data and the validation set comprising 10%. The 

sorting is random within each defect class to ensure a representative distribution. [21] 

 

The classification accuracy of the CNN is assessed using various methods, but the evaluation 

is limited by the uneven distribution of image segments across defect classes. Given the 

small number of segments for some defects, achieving a uniformly distributed training and 

validation set is challenging, resulting in potential inaccuracies in the evaluation. However, 

increasing the number of data segments as they become available can improve accuracy. 

After the addition of a dense layer with 12 neurons and a softmax activation function to the 

encoder, the CNN's accuracy is calculated using the validation set. The training set for clas-

sification contains 742 image segments, while the validation set contains 86. Given the large 

number of classes and the varying distribution of images, similar defect types are grouped 

into a single class, resulting in 12 classes used for classification—11 defect classes and one 

for splice markers. [21] 

 

The CNN achieved an accuracy of approximately 78%, with 67 out of 86 defects correctly 

classified. This is a promising result, especially considering the limited number of images 

for some defect classes and the variability among defects. To improve accuracy, more image 

data and further refinements to the training process are needed. [21] 
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Figure 37 Matching between predicted and actual defect classes. [21] 

 

Figure 37, a confusion matrix, illustrates the frequency of correct matches between pre-

dicted and actual defect classes. The green diagonal represents the correct classifications. 

The matrix shows that most defects were correctly assigned, but incorrect assignments oc-

curred in classes with fewer data points. Classes with a larger number of images, such as 

Class 11, had a higher accuracy rate, with all 24 segments correctly assigned in the validation 

set. This indicates that having more training data leads to better classification accuracy. [21] 

 

Overall, to increase the reliability of the classification, more labeled defective X-ray images 

are required, which would allow for more accurate and representative evaluation. Further 

iterations of training and validation can help refine the CNN's accuracy. [21] 

4.2 Improvement 

This chapter explores the current state and improves the application of artificial intelligence 

in detecting anomalies of tire X-ray images, beginning with a baseline process that employs 

a pre-trained AI model to analyze and compare image segments using the Structural Simi-

larity Index method. It then progresses to an enhanced approach with a new compare() func-

tion for detailed pixel-wise comparison, improving the accuracy of anomaly detection. The 

integration of image-processing libraries like OpenCV is discussed, focusing on optimizing 

the detection process to balance speed and precision effectively. 
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4.2.1 Current state 

The actual situation is that the code implements anomaly detection in tire X-ray images using 

artificial intelligence techniques. This process involves loading a pre-trained model, pro-

cessing the X-ray images, analyzing them for anomalies, and recording the results in a .CSV 

file. The algorithm starts by loading the AI model, which is then used to analyze the X-ray 

images of tires. Each image is segmented into smaller parts, which are then analyzed by the 

model. The analysis results are compared with the original image, and the structural similar-

ity is calculated using the Structural Similarity Index (SSIM) method. 

 

Figure 38 Comparing tested (actual tire) with template tire using small overlapping seg-

ments (not dimensionally accurate example) 

4.2.2 Enhanced approach - pixel-wise segmentation 

The addition of the compare() function facilitates pixel-by-pixel comparison of X-ray image 

segments. This function performs a structural similarity comparison between two image seg-

ments, returning a list of similarity scores. The pixel-wise comparison provides more de-

tailed insights into differences between image segments, potentially improving the accuracy 

of anomaly detection analysis. This helps to lead to more precise identification of anomalies 

and reduce false positives or false negatives. The advantage of this change lies in enhancing 

the accuracy of anomaly detection through more granular analysis at the pixel level. This 

contributes to greater reliability in the anomaly detection system and increases confidence 

in its results. 

 

The compare() function is defined with three parameters: img_segm_1, img_segm_2, and an 

optional window_size, which determines the size of the comparison window for pixels. In-

ternal loops iterate over the segments of both images in 5-pixel steps, ensuring overlap with 
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the previous and following segments. During each iteration, the function crops both images 

using the current loop position and the window_size. Structural similarity is calculated for 

each crop using the ssim() function from skimage.metrics. The similarity scores are stored 

in the sim_score_list, which is returned as the output of the function. 

 

This change was implemented by introducing the new compare() function and integrating it 

into the main find_anomalies() function. With this modification, detailed pixel-wise com-

parisons of X-ray image segments are now possible, leading to greater accuracy in anomaly 

detection and improved system outcomes. 

 

Figure 39 Comparing tested (actual tire) with template tire using small overlapping small 

pixel segments (not dimensionally accurate example) 

4.2.3 Enhanced approach - image-processing libraries, windows size optimization  

Optimizing the cycle for anomaly detection in X-ray images can be achieved through various 

approaches and image-processing libraries like OpenCV, PIL (Python Imaging Library), and 

NumPy. Another option is to adjust the pixel-wise comparison window size for finer control 

over detection accuracy.  

Here's an outline of these optimization methods, highlighting their advantages and disad-

vantages: 

1. OpenCV (cv2) 

Advantages: 

• Speed: OpenCV is renowned for its fast image processing, especially for tasks 

like segmentation and comparison. 
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• Parallel Processing: OpenCV takes advantage of multi-core processors, improv-

ing processing speed. 

Disadvantages: 

• Complex API: OpenCV's API can be more complex than other libraries, poten-

tially posing a learning curve for some users. 

 

2. PIL (Python Imaging Library) 

Advantages: 

• Ease of Use: PIL provides a simple interface for image processing, which can 

simplify development. 

• Wide Format Support: PIL supports a variety of common image formats. 

Disadvantages: 

• Slower Processing: PIL may be slower than OpenCV when handling large vol-

umes of images. 

 

3. NumPy 

Advantages: 

• Efficient Data Handling: NumPy offers efficient operations with multi-dimen-

sional arrays, speeding up image processing. 

• Easy Integration: As a widely used library for data processing in Python, NumPy 

integrates well with other libraries. 

Disadvantages: 

• Higher Level of Abstraction: NumPy is generally designed for numerical data and 

might be less flexible than specialized libraries like OpenCV and PIL. 

• Optimizing Window Size for Pixel-wise Comparison 

 

Given the need to optimize the anomaly detection cycle in X-ray images for both processing 

speed and detection accuracy, OpenCV (cv2) was selected for this task. The reasons for this 

choice include: 
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• Processing Speed: OpenCV is known for its fast image processing and efficient use 

of hardware resources, which is essential when handling large volumes of images. 

• Parallel Processing: OpenCV uses parallel processing on multi-core processors, 

providing a significant speed advantage compared to other libraries. 

• Broad Functionality: OpenCV offers a wide range of image-processing features, 

including segmentation, filtering, and image comparison, facilitating the implemen-

tation of advanced anomaly detection algorithms. 

While PIL (Python Imaging Library) is user-friendly and has good format support, and 

NumPy is efficient for data manipulation, OpenCV's performance and comprehensive im-

age-processing capabilities make it the ideal choice for our application. 

 

The optimal window size for pixel-wise comparison depends on the specific characteristics 

of the images and the desired accuracy for anomaly detection. Larger windows provide more 

information but increase the computational load, while smaller windows could be faster but 

less accurate. From experimental part was considered to keep the window size. 

4.3 Next possibilities with optimization 

To improve the efficiency and accuracy of the anomaly detection algorithm in tire X-ray 

images, consider these key areas for optimization: 

a) Threshold Optimization 

The choice of threshold significantly affects the results of anomaly detection. Currently, an 

improperly set threshold can lead to false positives or false negatives. 

Proposed Solution: Analyze and optimize the threshold using advanced techniques such as 

Otsu's method or adaptive thresholding. This should take into account variations in illumi-

nation and contrast across different parts of the images, enhancing the accuracy of anomaly 

identification. 

b) Performance Improvement (Evaluation/sec) 

Performance, measured as the number of evaluated images per second, can be enhanced 

through speed optimization and parallelization. 

Proposed Solutions: 
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• Parallelization: Leverage multi-core processors to increase processing speed 

through parallel operations. 

• Algorithm Optimization: Use more efficient AI architectures and data structures 

to boost performance. 

• Distributed Processing: Spread processing across multiple computers or servers 

for large-scale data handling. 

• Hyperparameter Optimization: Use automated tools like Optuna or Nevergrad 

for optimizing AI model hyperparameters. These systems can fine-tune learning 

rates, network architecture decisions, and other crucial parameters based on sys-

tematic trials and evaluation, significantly boosting model efficacy. 

 

c) Additional Optimizations 

Optimization can also focus on memory management, pre-processing, and reducing compu-

tational load through various methods. 

Proposed Solutions: 

• Memory Optimization: Minimize memory requirements by using efficient memory 

management and reducing memory-heavy operations. 

• Data Pre-processing: Apply data pre-processing techniques like noise filtering or 

image normalization to improve data quality and consistency before analysis. 

• Input Data Optimization: Reduce image dimensions or pre-process images to 

lower computational demands. 

• SSIM Algorithm Optimization: Consider alternative methods for image compari-

son or refine the existing implementation to enhance performance. 

Optimizing the anomaly detection algorithm for tire X-ray images is critical for achieving 

high accuracy and efficiency. Employing appropriate techniques and methods can signifi-

cantly enhance detection results and improve algorithm performance, contributing to suc-

cessful practical implementation. 
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5 COMPARISION OF IN-HOUSE AI WITH EXISTING SOLUTIONS 

Chapter 5 delves into the critical comparison of in-house AI model with existing market 

solutions for tire inspection. It begins by establishing rigorous criteria for evaluating soft-

ware features crucial to tire manufacturing quality control, including the localization and 

classification of anomalies, and the ability to manage diverse tire types efficiently. The chap-

ters provide a thorough examination of various systems, highlighting their capacity to en-

hance inspection precision, reduce manual labor, and ensure tire safety and compliance with 

industry standards.  

5.1 Feature comparison 

This section thoroughly evaluates how each system performs in key areas such as anomaly 

localization, classification accuracy, and operational flexibility with different tire types, em-

phasizing their significance in enhancing production efficiency and quality assurance in the 

industry. 

5.1.1 Criteria for software features evaluation/capabilities 

Localization of Anomalies 

The precise localization of anomalies in tire structures is a crucial aspect of quality control, 

as it allows for the immediate identification and classification of defects within the tire. This 

capability enables manufacturing facilities to implement quick corrective measures, thus 

minimizing the impact on production flow and reducing material waste. Accurate localiza-

tion helps maintain the structural integrity of tires by ensuring that any anomalies are caught 

early and addressed before the tires are distributed, thereby safeguarding both consumer 

safety and manufacturer reputation.  

 

Classification of Anomalies 

Classifying anomalies by type and severity is essential for determining the appropriate cor-

rective actions and for maintaining statistical records of tire quality. This process involves 

distinguishing between critical defects that may affect tire safety and minor imperfections 

that could be deemed acceptable depending on industry standards. By systematically classi-

fying anomalies, the system provides consistent quality assurance and helps in refining pro-

duction processes through the analysis of recurring defect patterns.  
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PCR and TBR Capability  

The flexibility to inspect both Passenger Car Radial (PCR) and Truck and Bus Radial (TBR) 

tires with a single system is highly beneficial for manufacturers that produce multiple types 

of tires. This capability not only streamlines the inspection process but also optimizes asset 

utilization within the facility. It ensures that the inspection system can adapt to different sizes 

and specifications of tires, facilitating a seamless transition between different production 

batches without the need for extensive reconfiguration or downtime.  

 

Identification of Individual Belts 

The identification of individual belts within tires is critical for assessing the assembly quality 

and ensuring that each belt is aligned and tensioned correctly. This detailed inspection helps 

prevent potential failures due to belt misalignment or defects, which could lead to cata-

strophic tire failures on the road. By closely monitoring belt placement and integrity, manu-

facturers can guarantee that their tires meet rigorous safety and performance standards.  

 

Identification of Individual Areas 

Focusing on specific areas within the tire allows for targeted inspections of high-stress or 

critical zones, such as sidewalls and tread areas. This detailed approach ensures that any 

defects in these crucial regions are identified and rectified, thereby enhancing the overall 

durability and safety of the tire. It also facilitates a more granular quality control process, 

where specific areas can be closely monitored for improvements or changes in production 

techniques.  

 

Identification of Individual Cords and Angles 

Accurately assessing the placement and orientation of cords is essential for evaluating the 

structural integrity of the tire. Cords are integral components that contribute to the tire's 

strength and flexibility. Incorrect cord angles or spacing can lead to uneven wear, reduced 

durability, and safety risks. Detailed examination of cords ensures that they are uniformly 

distributed and aligned according to design specifications, which is crucial for the tire's per-

formance and the safety of the end users.  
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Pix-mm Conversion 

The Pix-mm Conversion is a critical feature in tire inspection systems, providing a precise 

correlation between the pixel measurements obtained from X-ray images and their actual 

sizes in millimeters. This conversion is vital for accurate dimensional checks and quality 

control, allowing for exact measurements of tire components such as tread depth, sidewall 

thickness, and internal structures. By quantifying these elements accurately, manufacturers 

can ensure that each tire adheres to strict specifications and tolerances. The ability to convert 

pixel measurements to real-world metrics also enhances the system’s utility in a production 

environment by supporting detailed inspections and ensuring that the tires meet regulatory 

standards as well as customer expectations.  

 

Lower Slip-Through Rate Than Human Operator 

Implementing automated inspection systems significantly reduces the likelihood of defects 

passing through the inspection process unnoticed, compared to inspections conducted by 

human operators. Automated systems are designed to consistently apply the same criteria 

and perform checks with a high level of precision, without the variability introduced by hu-

man fatigue, subjective judgment, or other human factors. This consistency results in a lower 

slip-through rate of defects, which means fewer defective tires reach the market, enhancing 

product reliability and consumer trust. Moreover, reducing human error in tire inspections 

directly contributes to improved safety outcomes and can potentially decrease the likelihood 

of costly recalls and reputational damage.  

 

Supplier Independence 

The ability of an X-ray inspection system to operate independently of supplier-specific con-

straints offers significant advantages in terms of flexibility and integration. Being supplier-

independent means that the system can be integrated into various production lines without 

being tied to specific hardware or software provided by one supplier. This independence 

facilitates easier system updates, expansions, and maintenance, as manufacturers are not re-

stricted to a single supplier's protocols and can choose from a broader range of components 

that best meet their operational needs. It also empowers manufacturers to negotiate better 
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terms and prices with multiple suppliers, enhancing operational resilience and reducing the 

risk of supply chain disruptions. 

5.1.2 Benefit Comparison 

Description of the benefits of tire X-ray SW inspection systems: 

Workload Reduction of Operator and Grader 

The implementation of advanced X-ray software systems in tire manufacturing significantly 

reduces the workload for both groups - operators and graders. These systems are equipped 

with automated defect recognition software that accurately identifies and classifies defects 

without human intervention, thus minimizing the need for manual inspection. This automa-

tion allows operators and graders to focus on more critical tasks, enhancing their productivity 

and reducing fatigue. Moreover, the reduction in manual workload decreases the likelihood 

of human error, contributing to more consistent and reliable quality control. 

Detection of Article-specific Defects 

Advanced SW X-ray inspection systems are adept at identifying article-specific defects, such 

as missing belts or belt-specific imperfections, which might not be visible to the naked eye. 

These systems use high-resolution imaging and precise detection algorithms to scan every 

tire for unique, article-dependent defects, ensuring that each tire meets the specified quality 

standards. This capability is crucial for maintaining high levels of customer satisfaction and 

compliance with safety regulations, as it prevents defective tires from reaching the market. 

 

Classification of Area-specific Defects 

X-ray inspection systems not only detect defects but also classify them according to specific 

areas of the tire, such as the tread, sidewall, or bead. This classification helps in accurately 

pinpointing the location of defects, and facilitating targeted interventions and remedial ac-

tions. By systematically categorizing the defects, the systems provide valuable insights that 

can be used to refine manufacturing processes and reduce the occurrence of such defects in 

future production cycles. 
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Measurement of Cord-distances and Classification of Cord-specific Anomalies 

These systems measure the distances between cords and classify anomalies specific to the 

cord structure, such as crossed or touching cords, which are critical for the structural integrity 

of the tire. Accurate measurement and classification help in assessing the quality of the in-

ternal structure of the tire, ensuring its strength and durability. This is particularly important 

for high-performance and safety-critical applications where the precise alignment of cords 

is essential. 

 

Measurement of Anomaly/Defect Size 

The ability to measure the size of anomalies or defects is crucial for determining their sever-

ity and potential impact on tire performance and safety. X-ray systems provide exact meas-

urements of defect dimensions, allowing manufacturers to make informed decisions about 

whether a tire can be corrected or must be rejected. This precise measurement capability 

ensures that only tires that meet all quality criteria are approved for sale and use. 

Future-proof Solution, Implementation of Conti-specific Requirements Possible 

X-ray inspection systems are designed to be future-proof, accommodating upgrades and in-

tegrations with minimal adjustments. This adaptability makes it possible to implement Con-

tinental-specific requirements, allowing for customization according to the company's 

unique needs and standards. Such flexibility ensures that the systems can evolve in response 

to new technologies or changing industry standards, thereby protecting the investment over 

the long term. 

5.1.3 Table with software solutions features in X-ray  

Table 2 Comparing some of the chosen available SW solutions for X-ray inspection 

and their features  

 

Topic Own system MicroPoise ADR Yxlon TireAxis CyxPlus CyXpert 

Localization of anomalies y y y y

Classification of anomalies n y y y

PCR and TBR capability y y y n

Identification of individual belts (n) y y y

Identification of individual areas n y y y

Identification of individual cords and angles n y y y

Pix-mm conversion (y) y y y

Lower slip-through-rate than human operator y y y n

Supplier independant y n n n
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1. Own system 

In the present stage of system development, it can be affirmed that the system is adept at 

localizing anomalies and indicating the areas where these anomalies occur. However, clas-

sification issues are more problematic, as the current in-house model fails to classify indi-

vidual imperfections – development/programming is not done on the currently used AI 

model. There exists a similarly programmed model at Continental that could be integrated 

into the development phase to improve classification capabilities, a potential demonstrated 

in the discussion of the internal model (4.1.8). In terms of PCR and TBR capability, the 

model is trained on correct images, which does not encompass the problems associated with 

using it for both technologies. The identification of individual belts and areas, along with the 

cords and angles, is problematic with the current model. As for pixel-mm conversion, alt-

hough Continental has developments in another project, they are not yet available for full 

functionality in the current project. Nevertheless, one of the model's strengths is its inde-

pendence—all developmental oversight is conducted by the Continental team, and it also 

has a lower slip-through rate compared to operators without any assistance programs. 

2. Micropoise ADR 

In the case of Micropoise and its allied company Jo-Vision — which provides all develop-

ment and care of ADR software, the software is adept not only at localizing anomalies but 

also at classifying them, effectively identifying the specific type of defect. This capability is 

attributed to the fact that Jo-Vision utilizes multiple AI models within the program, unlike 

our development which relies on a single model. Micropoise runs approximately four differ-

ent AI models, each serving distinct purposes; one for anomaly detection, another for clas-

sification, and so on. The software also handles individual cords and angles, as well as the 

detection of different belts and areas. Thanks to the pixel-to-millimeter functionality, it en-

ables highly precise calculations of object sizes in X-ray images across all layers. Addition-

ally, Micropoise is one of the few in the market to offer the possibility of full automation of 

the system, using only a type of inspector—a grader—to evaluate X-ray images flagged as 

defective or suspicious. The challenge of such software is not necessarily whether the grader 

will have more or less work (reduce workload)—which is indeed an important parameter—

but the most critical requirement is that no imperfect tire escapes detection. The system must, 

therefore, possess a 100% defect detection capability. 
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3. Yxlon TireAxis 

Regarding the software provided by Yxlon, it can be noted that its capabilities are quite 

similar to those of the software from Micropoise. As indicated in Table 2, the Yxlon system 

can detect and classify various defects and also supports pixel-to-millimeter (px-mm) tech-

nology, along with handling belts, areas, and angles. However, a significant limitation of 

Yxlon software is the lack of substantial ongoing development. General advancements and 

necessary enhancements in the software are extremely challenging, and perhaps even im-

possible, due to the company's strategic direction. Although a certain level of automation is 

currently available, matching the operational level provided by Micropoise, there is no fur-

ther possibility to integrate advanced artificial intelligence capabilities—which are essential 

in the X-ray industry and currently, there are no alternatives on the market to replace such 

functionality. 

4. CyXplus 

Similarly to the previously mentioned companies, is a significant player in the X-ray market. 

Their market strategy has undergone several changes, and currently, their software focuses 

predominantly on PCR (Passenger Car Radial) tires, with an emerging trend towards TBR 

(Truck and Bus Radial) tires. Given the importance of TBR tire inspection, the incomplete 

functionality in this area could prove to be a decisive factor for the company. According to 

available knowledge, their detection software is capable of identifying individual defects and 

also offers classification capabilities. However, the pixel-to-millimeter (px-mm) technology 

and calibration accuracy may not be as precise as those offered by other companies. Further-

more, the capability for full automation is not currently fully available in their development; 

instead, it appears more as an adjunct to operator assistance through supplementary software.  

 

5.2 Conclusion 

This chapter synthesizes the evaluation of different X-ray inspection systems discussed pre-

viously, concluding that the focus of further development and research will be centered on 

the internal system and the ADR software provided by Micropoise. This decision is driven 

by several critical factors that differentiate these systems from competitors like Yxlon and 

CyXplus, particularly in terms of functionality, ongoing development, and update capabili-

ties. 



TBU in Zlín, Faculty of Applied Informatics  88 

 

The internal system at Continental shows promising capabilities in localizing anomalies and 

pinpointing problematic areas within tire structures. However, it faces challenges in classi-

fication due to its reliance on a singular AI model and lacks the broader developmental sup-

port seen in more advanced systems. Notwithstanding, it boasts significant strengths such as 

operational independence and a lower error pass-through rate as an operator, making it a 

valuable asset for in-depth study and enhancement. 

 

On the other hand, Micropoise ADR software, supported by Jo-Vision, stands out due to its 

comprehensive functionality and the integration of multiple AI models that facilitate not only 

the detection but also the precise classification of tire defects. The software's ability to handle 

complex measurements with its pixel-to-millimeter accuracy and to offer full automation 

with minimal human oversight positions it as a leader in the field with available features. 

The potential for a 100% defect detection capability underscores its critical role in ensuring 

quality and safety in tire manufacturing. 

In contrast, Yxlon and CyXplus, while comparable in some capabilities, fall short primarily 

due to their limited ongoing development and the challenges associated with enhancing their 

existing technologies to meet current and future demands. Yxlon strategic limitations and 

CyXplus´s focus on a niche market segment without fully developed automation capabilities 

restrict their suitability for comprehensive academic exploration and application. 

 

Therefore, the master thesis will concentrate on exploring and enhancing the internal system 

and ADR software from Micropoise. This focus is justified by their superior technological 

foundations, the breadth of capabilities, especially in anomaly detection and classification, 

and the ongoing commitment to development and updates. These attributes are essential for 

advancing the state of the art in tire inspection technology, ensuring that no defects slip 

through the inspection process, thereby enhancing both the reliability and safety of tire prod-

ucts in the market. 
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6 DETAILED COST-BENEFIT ANALYSIS 

This chapter undertakes a comprehensive examination of the economic implications associ-

ated with the implementation of automated X-ray inspection systems. By assessing both the 

direct and indirect costs, potential benefits, and accompanying risks of various deployment 

scenarios, this analysis aims to provide a robust framework for informed decision-making. 

6.1 Assumptions and facts (figures) – costs  

This section breaks down the investments required for material handling adaptations which 

are essential for facilitating the smooth operation of automated systems. The examination 

extends to estimating the expenses tied to integrating these systems within existing infra-

structures, which is critical for planning and budgeting. 

6.1.1 Common costs 

When discussing the financial aspects of implementing such a system, multiple factors must 

be considered. The introduction of full automation into an existing project entails significant 

investments in various areas. One of the critical elements is the adaptation of the material 

handling system, specifically the conveyor systems, which will require a buffer zone for tires 

awaiting assessment by the grader. Modifications to the layout of X-ray measuring stations 

may also be necessary. 

Moreover, integrating such software into an existing X-ray machine setup involves consid-

erable challenges. This includes PLC (Programmable Logic Controller) adaptations to en-

sure seamless interaction with the IT interface, and the incorporation of the new software 

into an already complex existing infrastructure. These modifications necessitate both physi-

cal and technical labor to implement the changes effectively in a real-world manufacturing 

environment. 

While the costs associated with these adaptations are somewhat consistent across different 

solutions—whether internal or those available in the market—the specific estimated costs 

for implementing these changes in a production plant like Otrokovice can be outlined as 

follows: 

• Integration/Adaptation Costs: This covers the cost of modifying existing PLC code, 

and establishing IT communications with the internal network, or conveyor systems, 

amounting to approximately ……………………………………………… 50 000 €. 
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• Conveyor System Modifications/Buffer Creation: The cost of altering the conveyor 

systems to create a buffer for tires that need to be graded is estimated at around 

…………………………………………………………………………… 100 000 €. 

• Technician Labor Costs (Service Cost): The expenses for the technical labor required 

to implement these changes are estimated ………..………………………  50 000 €. 

These estimates provide a preliminary financial framework for the implementation of a fully 

automated X-ray inspection system. It is essential to factor in these costs early in the project 

planning phase to ensure budget adequacy and feasibility. Additionally, considering the 

long-term benefits such as increased efficiency, reduced error rates, and enhanced quality 

control, these initial investments may be justified. Furthermore, continuous development and 

updates to the system can bring about operational efficiencies that reduce the overall lifecy-

cle costs associated with maintaining such advanced diagnostic equipment. 

 

6.1.2 Individual cost dependent on the selected system 

The implementation of advanced X-ray inspection systems, whether in-house or through a 

provider for example Micropoise, involves various costs and operational adjustments. Here, 

we delve into the financial and operational implications of these two distinct approaches, 

focusing on their cost structures and deployment metrics across a global scale with 19 ma-

chines operating over 4 shifts. 

 

1. In-house AI Solution 

The in-house AI solution involves a team of four developers with an average cost per devel-

oper, including travel and related expenses, totaling 130 000 € annually. The initial imple-

mentation cost for software on a single machine is estimated at 10 000 € with an additional 

5 000 € per machine for software implementation. This solution requires significant in-house 

support, costing 100 000 € yearly for 24/7 assistance. Interestingly, while the number of 

operators needed is halved, the requirement for graders remains unchanged at 100%. The 

development time for the in-house algorithm is 1,5 years, with a planned rollout in the third 

year. 
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Financial Breakdown: 

• Development Costs: 4 developers x 130 000 € = 520 000 € annually 

• Initial Setup: 10 000 € for one machine + 5 000 € per additional machine 

• Ongoing Support: 100 000 € for 24/7 in-house support 

Operational Impact: Reduced operator requirement by 50% does not decrease grader 

needs, suggesting a focus on maintaining quality control while optimizing labor costs. 

 

2) Micropoise (MP) solution: 

Micropoise offers a more streamlined time-to-market, with no initial investment or develop-

ment time required and a rollout starting in the first year. The cost of the first installation of 

the software is estimated to be up to 300 000 € per machine, which also applies to additional 

machines. While MP does not require ongoing in-house support costs, it incurs 50 000 € 

annually in additional costs for services, extensions, and operational hours. Notably, the MP 

solution eliminates the need for additional operators and reduces the grader requirement by 

50%. 

 

Financial Breakdown: 

• Software Costs: estimated from internet as €300,000 per machine 

• Yearly Additional Costs: €50,000 for extensions and services 

Operational Impact: 

Elimination of operator roles and reduction of grader involvement by 50% significantly re-

duce labor costs and potentially increase process efficiency. 

 

6.1.3 Comparative Analysis: 

Comparing these two systems, the in-house solution appears to be more labor-intensive and 

costly in terms of development and ongoing support, but it allows for a tailored approach 

that might better suit specific operational nuances. On the other hand, the Micropoise solu-

tion, while expensive per machine, offers a quicker deployment and less labor dependence, 

potentially providing a faster return on investment and lower long-term operational costs. 
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The choice between these systems should consider not only the direct costs but also the 

strategic implications on workforce management and long-term scalability. Each organiza-

tion's specific needs, existing infrastructure compatibility, and strategic goals will heavily 

influence the decision-making process. 

 

6.2 Implementation scenarios 

This section offers an in-depth exploration of the current implementation of X-ray inspection 

systems within an industrial context and also possible implementation scenarios for potential 

full-automatic inspection on X-ray devices.  

6.2.1 Current X-ray situation 

The Otrokovice plant provides a good example of the current implementation of X-ray in-

spection systems in an industrial setting. Here, three X-ray devices are actively utilized, each 

operated by a technician who has access to specialized support software. This software plays 

a crucial role in defect detection within tires, significantly aiding operators in identifying 

potential issues. 

 

Operational Workflow: 

Each operator is equipped with support software that enhances the detection of defects in the 

tires. This auxiliary software, not universally available across all global solutions, provides 

a critical advantage in operational efficiency. In some regions, similar operations may pro-

ceed without such software support, potentially affecting the consistency and effectiveness 

of defect detection. 

 

Upon detecting a defect, the operator uses both the X-ray analysis and the recommendations 

from the support software to make an informed decision about the tire's fate: 

• Release for Market: If the tire meets all quality standards. 

• Send to Grader: For a more thorough assessment to determine if the tire can be re-

paired or must be scrapped. 
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Figure 40 visually represents this process, illustrating the flow from inspection through de-

cision-making, highlighting the interplay between human oversight and software assistance. 

 

Analysis and Risks 

This system's reliance on human operators supported by diagnostic software underscores a 

hybrid approach to quality control, balancing technological assistance with human expertise. 

However, this setup also raises several points for consideration in the context of scaling or 

upgrading inspection systems: 

• Efficiency and Reliability: The support software enhances the efficiency of defect 

detection but also places significant responsibility on operators for final quality as-

surance decisions. This could vary the consistency of outcomes based on individual 

operator expertise and experience. 

• Scalability: The current setup with three devices and corresponding operators may 

pose scalability challenges. Increasing production demands may necessitate addi-

tional machines and operators unless more automated solutions are considered. 

• Cost Implications: While the support software reduces the likelihood of defects 

passing undetected, the costs associated with human operators and potential errors 

could be significant. Automated systems might offer long-term savings through re-

duced labor costs and lower error rates. 

• Adoption of Fully Automated Systems: Considering the advancements in artifi-

cial intelligence and machine learning, transitioning to a more automated system 

could minimize human error and increase throughput. This shift would require a 

careful cost-benefit analysis, considering both the initial investment in technology 

and the reduction in labor costs over time. 
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Figure 40 Current X-ray image analyze process 

 

6.2.2 Fully automatic scenario from market 

In the realm of industrial X-ray inspection, a significant shift is observable with the advent 

of fully automated systems utilizing AI and precise pixel-to-millimeter (px-mm) conver-

sions. Considering the Otrokovice facility as a case study, where three X-ray devices were 

(are) previously operated manually, we now explore a scenario where these are controlled 

by a computerized system, which can be implemented either through server-based solutions 

or directly on-site physical systems. 

 

Operational Details: 

In this fully automated setup, the software autonomously performs the inspection tasks. It 

leverages trained AI algorithms and px-mm conversion data to assess each tire. The decision-

making process is entirely data-driven, where the AI evaluates the integrity of the tire based 

on predefined quality metrics and decides: 

• Release for Market: If the tire meets the quality standards according to the learned 

data. 

• Send to Grader: For further evaluation to determine if the tire can be repaired, 

should be released to the market, or needs to be scrapped. 
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Figure 41 illustrates this automated process, showing the flow of operations from the initial 

X-ray scanning to the final decision-making phase, highlighting the reduced need for human 

intervention. 

 

Analysis: 

• Efficiency Gains: The transition to full automation is expected to enhance effi-

ciency significantly. AI-driven systems can process a higher volume of tires at a 

faster rate than human operators, reducing bottlenecks and increasing throughput. 

• Accuracy and Reliability: AI systems, with their capability to learn and adapt, can 

potentially offer higher accuracy in defect detection. The use of px-mm conversions 

allows for precise measurements and assessments, minimizing the probability of 

human error. 

• Cost-Effectiveness: Initially, setting up a fully automated system might involve 

substantial investment in hardware and software development. However, the long-

term savings from reduced labor costs and decreased error rates could justify the 

upfront expenditure. 

• Scalability and Flexibility: Automated systems are highly scalable, allowing for 

easy expansion or modification based on production needs without significant addi-

tional costs. They can also adapt more swiftly to changes in production types or 

quality standards. 

• Reduced Human Dependency: By reducing the reliance on human graders and 

operators, the system decreases the variability introduced by human judgment and 

fatigue. However, this also implies a shift in workforce requirements, with a poten-

tial reduction in traditional roles and an increase in more specialized IT and mainte-

nance roles. 

Risks:  

• Technological Dependence: Heavy reliance on AI and automated systems in-

creases vulnerability to software malfunctions or failures. Any bugs or system er-

rors could lead to significant disruptions in production and potential quality control 

issues. 
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• Initial Cost and ROI: The initial investment in fully automated systems can be 

substantial. Organizations must assess the return on investment, considering the 

cost of technology acquisition, integration, and potential downtime during the tran-

sition phase. 

• Loss of Human Expertise: By replacing human operators with AI, there is a risk 

of losing valuable human insights that come from years of experience. AI may not 

yet fully replicate the nuanced judgment of experienced graders, particularly in 

complex or borderline cases. 

• Cybersecurity Risks: As reliance on digital systems increases, so does the vulner-

ability to cyber-attacks. Ensuring the security of AI systems and data integrity be-

comes paramount to prevent malicious interventions that could affect production 

quality. 

• Regulatory and Compliance Issues: Compliance with industry standards and reg-

ulations might be challenging as these systems need to be continuously updated to 

meet evolving norms. Additionally, certifying AI decisions for critical safety com-

ponents like tires requires robust validation protocols. 

• Adaptability and Scalability: While AI systems are highly scalable, their adapta-

bility to unexpected changes in production or new types of tire defects could be 

limited. AI models require continuous training and updates to handle new scenarios 

effectively. 

• Ethical and Employment Concerns: Shifting to full automation could lead to sig-

nificant workforce reductions, raising ethical questions and potential backlash. 

Managing this transition sensitively and ethically is crucial to maintaining social 

responsibility. 
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Figure 41 Scenario - Fully automatic solution from the market  

6.2.3 In-house AI scenario 

The in-house AI scenario presents a strategic shift towards full automation using a proprie-

tary artificial intelligence solution and pixel-to-millimeter conversions. This scenario is 

highly regarded for its potential but is contingent on the successful completion of the ongo-

ing development of in-house technologies, including the integration of px-mm calculations, 

which are not yet fully operational. 

 

Operational Workflow: 

In this setup, the three X-ray devices previously managed by operators are now operated by 

computers, which can be either server-based or physically present at the facility. The in-

house AI software autonomously processes each tire, making decisions based on a database 

of trained data, artificial intelligence algorithms, and available px-mm conversions. The AI 

determines whether a tire is suitable for the market, needs further evaluation by a grader, or 

should be scrapped. This streamlined decision-making process is illustrated in Figure 42 

 

Analysis: 

• Customization and Control: An in-house AI system offers tailored solutions spe-

cific to the company's requirements and allows for greater control over the technol-

ogy's functionality and improvements. 
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• Data Security: Keeping the AI development and operations in-house enhances 

data security, as sensitive information does not need to be shared with external ven-

dors. 

• Integration with Existing Systems: The AI can be more seamlessly integrated 

with existing IT infrastructure and adapted to the specific operational nuances of 

the company. 

• Cost Efficiency in the Long Term: Although initial development costs might be 

high, over time, the in-house solution can become cost-efficient due to savings on 

licensing fees and external service costs. 

 

Risks: 

• Resource Intensive: Developing an AI solution in-house requires significant in-

vestment in skilled personnel, research and development, and ongoing training to 

maintain the system's efficacy. 

• Development Time: The timeline to develop a fully functional in-house AI system 

can be lengthy, risking delays in achieving operational efficiency and market re-

sponsiveness. 

• Scalability: Scaling an in-house system to handle increased production or addi-

tional facilities might require substantial additional investment in both hardware 

and software enhancements. 

• Technical Expertise: Maintaining an in-house team with sufficient AI and ma-

chine learning expertise is crucial, which can be challenging given the competitive 

market for such skills. 

• Risk of Obsolescence: Technology evolves rapidly, and in-house systems require 

continuous updates and upgrades to stay relevant, which can be a significant ongo-

ing commitment. 

 



TBU in Zlín, Faculty of Applied Informatics  99 

 

 

Figure 42 Scenario - Fully automatic in-house AI solution 

6.2.4 Combined scenario - In-house AI + solution from market 

The combined scenario merges the strengths of both in-house AI development and external 

market solutions. This scenario is implemented in facilities with three X-ray machines now 

operated by computers running an in-house AI model, which can be managed either server-

based or physically on-site. 

 

Operational Workflow: 

In this setup, the in-house AI initially processes each tire based on trained data sets to deter-

mine if the tire meets the quality standards for market release. When the in-house AI en-

counters complex cases or anomalies that do not match its training data, it triggers the inte-

gration of an external solution. This might involve purchasing a single license from an ex-

ternal provider, which then assesses and measures the tire using advanced px-mm technol-

ogy and other functionalities not available in the in-house system. After this enhanced eval-

uation, the tire may be forwarded to a grader for a thorough review to decide if it can be 

repaired, released to the market, or needs to be scrapped. This process is visually represented 

in Figure 43. 
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Analysis: 

• Enhanced Accuracy and Capabilities: By integrating both in-house and external 

technologies, the system can handle a wider variety of situations and provide more 

accurate assessments, especially in complex or ambiguous cases. 

• Cost-Effective Licensing: The need to purchase only a single license for advanced 

capabilities can be more cost-effective than fully transitioning to an external sys-

tem, maintaining budget control while enhancing functionality. 

• Customization and Flexibility: The in-house system can be tailored to meet most 

of the operational needs while the external system can be used to address specific 

challenges or limitations of the in-house AI. 

• Risk Management: This approach reduces the dependency on a single technology 

or provider, spreading the risk and potentially increasing system resilience. 

 

Risks: 

• Integration Complexity: Combining in-house and external systems requires robust 

integration, which can be technically complex and might lead to potential compati-

bility issues. 

• Operational Overhead: Managing two systems simultaneously can increase the 

operational complexity and require more sophisticated training and support struc-

tures. 

• Dependence on External Providers: While the dependency is reduced, there is 

still a significant reliance on external technology for critical assessments, which can 

pose challenges in terms of data security and operational continuity. 

• Cost Management: Although the licensing may be cost-effective, ongoing costs 

associated with updates, maintenance, and potential scaling need careful manage-

ment. 

• Performance Monitoring: The effectiveness of the combined system must be con-

tinuously monitored to ensure that the integration delivers the intended results with-

out degrading the overall system performance. 
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Figure 43 Scenario - In-house solution with external software support  

 

6.3 Cost evaluation 

Table 3 Cost-benefit calculation for In-house and Micropoise fully automatic so-

lution (without common costs) for all Continental plants roll-out 

Year Costs in-house Savings in-house Total in-house Costs MP Savings MP Total MP 

0 0 € 0 0 400 000 € 280 200 € -119 800 € 

1 520 000 € 0 -520 000 € 6 050 000 € 5 639 200 € -530 600 € 

2 420 000 € 46 700 € -893 300 € 50 000 € 5 639 200 € 5 058 600 € 

3 795 000 € 1 774 600 € 86 300 € 50 000 € 5 639 200 € 10 647 800 € 

4 100 000 € 1 774 600 € 1 760 900 € 50 000 € 5 639 200 € 16 237 000 € 

5 100 000 € 1 774 600 € 3 435 500 € 50 000 € 5 639 200 € 21 826 200 € 

6 100 000 € 1 774 600 € 5 110 100 € 50 000 € 5 639 200 € 27 415 400 € 

7 100 000 € 1 774 600 € 6 784 700 € 50 000 € 5 639 200 € 33 004 600 € 

8 100 000 € 1 774 600 € 8 459 300 € 50 000 € 5 639 200 € 38 593 800 € 

9 100 000 € 1 774 600 € 10 133 900 € 50 000 € 5 639 200 € 44 183 000 € 

10 100 000 € 1 774 600 € 11 808 500 € 50 000 € 5 639 200 € 49 772 200 € 
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Figure 44 Cost-saving comparison between In-house solution and Micropoise 

SW solution thru all plants on the for all Continental plants roll-out 

 

The cost evaluation presented in this section compares the financial implications of imple-

menting fully automated X-ray inspection systems using an In-house AI solution versus a 

Micropoise (MP) software solution across all Continental plants. This analysis is focused on 

direct costs associated with each solution, their respective savings, and the cumulative fi-

nancial impact over a ten-year rollout period. 

Table 3 illustrates a year-by-year breakdown of costs, savings, and net totals for both the In-

house and Micropoise solutions, excluding common costs such as infrastructure changes that 

would be necessary regardless of the chosen solution. The initial and ongoing costs, along-

side the savings generated through improved efficiency and reduced labor costs, are summa-

rized. This financial projection helps in understanding the long-term economic outcomes of 

each strategy. 

 

Cost Structure: 

• In-house Costs: Begin at 520 000 € in Year 1, primarily due to development and 

implementation expenses, then stabilize at 100 000 € annually from Year 4 on-

wards, reflecting maintenance and minor updates. 
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• MP Costs: Start with a higher initial investment of 400 000 € in Year 0 and 6 050 

000 € in Year 1, due to licensing fees and the cost of integrating the solution across 

multiple facilities. Ongoing costs remain low at 50 000 € annually for maintenance 

and update requirements. 

Savings: 

• In-house Savings: These start to accrue significantly from Year 3, reaching up to 1 

774 600 € annually, due to the reduction in operational costs and the elimination of 

manual inspection processes. 

• MP Savings: Demonstrates a robust start with 280 200 € in Year 0, escalating to 5 

639 200 € annually from Year 1 onwards, suggesting substantial operational effi-

ciencies and possibly a reduction in quality-related losses or rework. 

Total Net Impact: 

• In-house: Shows a net negative impact in the first two years, breaking even in Year 

3, and then showing increasing net positive totals, culminating in 11 808 500 € by 

Year 10. 

• MP: Displays a significant initial positive impact, which consistently grows, reach-

ing 49 772 200 € by Year 10. 

Chyba! Nenalezen zdroj odkazů. graphically represents the cost-saving comparison be-

tween the In-house and Micropoise solutions, illustrating a clear trend: while the In-house 

solution takes longer to become financially beneficial, it steadily increases in net savings 

after the initial investment period. In contrast, the MP solution offers immediate and sub-

stantial financial benefits from the first year, stabilizing at a high level of annual savings 

thereafter. 

6.4 Decision analysis 

This chapter outlines two key methodologies employed to quantify and compare the efficacy 

of different solutions based on a range of predefined criteria. Each method is used to derive 

insights that aid in making informed decisions regarding the selection of an optimal strategy 

or solution. 
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6.4.1 Evaluation criteria and rating - Pairwise comparison 

Table 4 represents a multi-criteria decision matrix utilized to evaluate nine different options 

across various predefined criteria. Each option represents a possible choice or alternative in 

a decision-making scenario. 

Criteria:  

• Initial Costs (first machine): This criterion evaluates the upfront investment re-

quired for the first machine. 

• Single Supplier Dependency: Assesses the risk or dependency on a single supplier 

for parts or services. 

• Flexibility/Scalability/Further Extensions Possible: Considers the ability of the 

system to be upgraded or expanded. 

• Service/Maintenance/Support Structures Availability, Experience Needed to 

Use Software: Focuses on the availability of service and support and the ease of 

use of the system. 

• Operational Costs: Pertains to the ongoing expenses associated with the operation 

of the machine. 

• Product Scope/Content/Quality Improvements: Evaluate the potential for prod-

uct improvements and quality enhancements. 

• Time to Market: Considers how quickly the product can be introduced to the mar-

ket. 

• Standard Components Used: Assesses the degree to which standard components 

are utilized in the system. 

• Level of Automation: Measures the automation level of the machine, which im-

pacts efficiency and labor costs. 

Scoring: Each criterion is scored for each option, with some cells marked with an x, indi-

cating the primary focus or characteristic of that option regarding the criterion. The scores 

range from 2 to 9, where a higher number might indicate better performance or higher im-

portance, depending on the specific criterion. 

 

Total and Weight: At the bottom of the matrix, Total scores sum the ratings for each option 

across all criteria. Weight assigns a relative importance to each option, calculated as a 
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proportion of the total score across all options. This decision matrix is a fundamental exam-

ple of quantitative decision-making tools in management and engineering. It facilitates a 

structured approach to decision-making, where multiple criteria are considered simultane-

ously to determine the best option among several possible alternatives. This method is par-

ticularly useful in fields like operations research, project management, and strategic plan-

ning. 

When applying such a matrix, it is crucial to ensure that the criteria selected are relevant to 

the decision context and that the scoring and weighting are accurately reflecting the priorities 

of the decision-making entity. Sensitivity analysis might also be performed to see how 

changes in weights or scores affect the preferred option, ensuring robustness in decision-

making. 

 

Table 4 Pairwise comparison 

 

6.4.2 Evaluation – criteria analysis 

After conducting a pairwise comparison, criteria analysis (Table 5) serves as a crucial step 

in decision-making, particularly when multiple alternatives must be evaluated against a set 

of performance indicators or criteria. This analysis involves a comprehensive review and 

scoring of each alternative against established criteria while considering the specific weights 

assigned based on their relative importance. 

 

Methodology 

The criteria analysis depicted in the table employs a weighted scoring model, wherein each 

criterion is assigned a factor of importance expressed as a percentage, collectively summing 

to 100%. In this instance, three distinct development strategies are evaluated: MicroPoise 

Criteria 1 2 3 4 5 6 7 8 9

1. Initial costs (first machine) x

2. Single supplier dependency 2 x

3. Flexibility/Scalability/Further extensions possible 3 3 x

4. Service/maintenance/support structures availability, experience needed to use software 4 4 4 x

5. Operational costs 5 5 5 5 x

6. Product scope/content/quality improvements 6 6 6 6 5 x

7. Time to market 7 7 3 4 5 6 x

8. Standard components used 8 2 3 4 5 6 7 x

9. Level of automation 9 9 9 4 5 6 9 9 x

Total 0 2 4 6 8 7 3 1 5

Weight 0,00 0,06 0,11 0,17 0,22 0,19 0,08 0,03 0,14
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ADR (supplier), in-house model development, and a combined in-house + ADR approach. 

Each strategy is rated on a predefined scale for each criterion. These ratings are multiplied 

by the respective importance factors to derive a weighted score for each criterion across all 

options. This method quantitatively measures each alternative’s performance relative to the 

defined criteria. 

 

Evaluation and Results 

The evaluation results are quantified as Value Benefit Sum and Percentage, which represent 

the overall score and its proportion relative to a perfect score, respectively: 

• MicroPoise ADR (supplier) achieved a score of 4,00 - translating to 39% of the to-

tal possible score. 

• In-house model development received a score of 2,94 - or 29% of the possible 

score. 

• Combined In-house + ADR attained a score of 3,33 - equating to 32% of the total 

possible score. 

 

Ensuring Accuracy in Weights and Ratings 

To ensure the accuracy of the weights and ratings, consultations were conducted with experts 

from Continental. These consultations aimed to accurately reflect true priorities and real-

world considerations, thereby enhancing the reliability of the decision-making process. 

 

This criteria analysis facilitates a structured and objective approach to comparing various 

strategic alternatives. By utilizing weighted scoring, decision-makers can prioritize each cri-

terion according to its strategic relevance, aligning the decision-making process with organ-

izational goals. This methodology is particularly useful in complex scenarios where balanc-

ing diverse factors is crucial, supporting a more rational and evidence-based decision-mak-

ing approach. 
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Table 5 Criteria analysis 

 

6.5 Roll-out plan of proposed solution  

Chapter 6.5 provides a detailed strategic blueprint for the deployment of the Micropoise 

ADR solution, selected as the optimal strategy through comprehensive decision analysis dis-

cussed in previous chapters. This chapter elaborates on the phased implementation of the 

automated X-ray inspection system by Micropoise across the designated production facili-

ties, focusing on the integration process, timeline, anticipated challenges, and mitigation 

strategies. 

 

Introduction 

Following a meticulous evaluation of various alternatives using criteria analysis and pairwise 

comparison, the Micropoise ADR solution emerged as the preferred choice due to its robust 

performance metrics, faster time-to-market, and lower dependency on extensive in-house 

development. This chapter outlines the practical steps and considerations necessary for the 

successful rollout of this solution, ensuring alignment with the operational goals and finan-

cial strategies of the organization. 

 

Roll-out Objectives 

The primary objectives of the rollout are to: 

• Minimize Disruption: Ensure the integration of the Micropoise system with mini-

mal disruption to existing operations. 

• Optimize Cost: Manage the rollout cost-effectively, aligning with the budgetary 

constraints and financial forecasts outlined in previous analyses. 

Rating Result Rating Result Rating Result

1. Initial costs (first machine) 0% 4 0,00 3 0,00 3 0,00

2. Single supplier dependency 6% 0 0,00 5 0,28 2 0,11

3. Flexibility/Scalability/Further extensions possible 11% 3 0,33 5 0,56 5 0,56

4. Service/maintenance/support structures availability, 

experience needed to use software
17% 4 0,67 2 0,33 2 0,33

5. Operational costs 22% 4 0,89 3 0,67 2 0,44

6. Product scope/content/quality improvements 19% 5 0,97 2 0,39 5 0,97

7. Time to market 8% 4 0,33 2 0,17 3 0,25

8. Standard components used 3% 4 0,11 5 0,14 4 0,11

9. Level of automation 14% 5 0,69 3 0,42 4 0,56

Value benefit sum 4,00 2,94 3,33

Percentage 100% 39% 29% 32%

Criteria Factor of importance
MicroPoise ADR (supplier)

In-house model 

development

Combined 

In-house + ADR
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• Achieve Timelines: Meet strategic deployment milestones, ensuring quick time-to-

market as highlighted as a key advantage of the Micropoise solution. 

• Ensure Quality and Compliance: Maintain or enhance product quality and com-

pliance with industry standards throughout the transition to the new system. 

Roll-out Strategy 

The rollout strategy is divided into several key phases, each designed to address specific 

aspects of the implementation process: 

 

1. Preparation and Initial Setup: 

• Infrastructure Adjustments: Modify existing conveyor systems and integrate nec-

essary hardware components as required by the Micropoise system. 

• Software Installation and Configuration: Deploy Micropoise software across tar-

geted machines, ensuring compatibility with current IT infrastructure. 

 

2. Training and Knowledge Transfer: 

• Operator Training: Conduct comprehensive training sessions for operators(grad-

ers) to familiarize them with the new system functionalities and interface. 

• Technical Support Training: Equip the technical support team with necessary 

troubleshooting skills and detailed knowledge of system maintenance. 

 

3. Pilot Testing: 

• Initial Testing: Implement the system in a controlled environment to test its func-

tionality and integration with existing operations. 

• Feedback Loop: Establish a feedback mechanism to collect insights from operators 

and technical staff, which will be crucial for adjusting the rollout process. 

 

4. Full-Scale Implementation: 

• Gradual Scale-up: Following successful pilot testing, gradually increase the num-

ber of machines and facilities running the Micropoise system. 

• Continuous Monitoring and Optimization: Monitor system performance continu-

ously, optimizing operational parameters to enhance efficiency and reduce down-

times. 
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5. Post-Implementation Review and Continuous Improvement: 

• Evaluation of System Performance: Assess the overall impact of the Micropoise 

system on production efficiency, cost savings, and product quality. 

• Iterative Improvements: Implement adjustments and software updates based on 

real-world performance and emerging technological advances. 

 

Risk Management 

Potential risks associated with the rollout include technical integration challenges, higher-

than-anticipated operational costs, and resistance to change among the workforce. Each risk 

will be addressed through proactive strategies, such as conducting extensive compatibility 

tests, maintaining a transparent communication policy with all stakeholders, and providing 

incentives for early adoption and continuous engagement. 

 

The rollout plan for the Micropoise ADR solution is designed to leverage the evaluated ben-

efits while mitigating associated risks. By adhering to a structured and phased approach, the 

organization aims to ensure a smooth transition to a more efficient and cost-effective opera-

tional model, aligning with long-term strategic objectives and enhancing competitive ad-

vantage in the marketplace. 
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7 CONCLUSION AND OUTLOOK 

The thesis presented an extensive examination of automated X-ray tire classification, a piv-

otal technology in enhancing the manufacturing process at Continental AG. The research 

systematically evaluated both existing solutions and an in-house artificial intelligence model, 

aiming to identify the most effective techniques for detecting and categorizing defects in tire 

manufacturing. 

 

The thesis commenced by outlining the significance of advanced X-ray techniques in tire 

manufacturing, providing a backdrop for the research and setting the stage for a detailed 

exploration of existing technologies and the potential for AI-enhanced solutions. Chapter 2 

reviewed the current landscape of X-ray tire inspection technologies. It detailed various ap-

proaches, focusing particularly on their application in industrial settings, and set the frame-

work for developing a more sophisticated AI-driven model. Chapter 3 helped to define the 

research objectives and methodologies employed in the thesis. It laid out the comparative 

approach used to assess the effectiveness of different X-ray inspection systems, including 

commercial solutions and the in-house AI model. Chapter 4 described the development of 

an innovative AI model tailored to meet the specific needs of Continental AG’s tire produc-

tion. The model's capabilities were explored, emphasizing its potential to adapt to diverse 

manufacturing scenarios and its ability to improve over time through machine learning tech-

niques. The analysis also examined how the newly optimized AI model stacked up against 

established commercial software. This comparison highlighted the strengths and weaknesses 

of each system, providing a clear picture of their operational and economic impacts. A com-

prehensive economic analysis of implementing each X-ray inspection system was also of-

fered. This analysis helped quantify the potential return on investment and operational sav-

ings, aiding decision-makers in choosing the most cost-effective solution. 

 

The thesis successfully demonstrated that the integration of AI technologies in X-ray tire 

inspection could significantly enhance defect detection accuracy and operational efficiency 

and help with fully automatic production. The Micropoise system, with its robust defect 

recognition capabilities, proved to be highly effective in a commercial setting. The in-house 

AI model, while requiring (and still requires) more initial development and integration effort, 
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showed potential for customization and flexibility, adapting well to the specific needs of the 

manufacturing process. 

 

Looking forward, the thesis suggests that continual advancements in AI and machine learn-

ing will be crucial in further refining the capabilities of X-ray inspection systems. Future 

research should focus on developing AI models that can process a broader array of data 

inputs, improving both the accuracy and efficiency of tire inspections. Moreover, the eco-

nomic analysis underscores the importance of evaluating the long-term cost implications of 

new technologies, ensuring that they provide not only technical but also financial benefits. 

 

In conclusion, this thesis contributes valuable insights into the application of advanced tech-

nologies in tire manufacturing, paving the way for future innovations that could revolution-

ize quality control processes in the automotive industry. The ongoing evolution of AI prom-

ises to bring even greater efficiencies, heralding a new era of industrial automation. 

 

Disclaimer: Artificial intelligence was predominantly used in this thesis as a tool for con-

trolling and correcting the translation from Czech to English. Its application was intended to 

enhance the accuracy and consistency of the translated materials, ensuring that the interpre-

tations remain true to the original meanings. 
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