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ABSTRACT

Chemical process control requires intelligent monitoring due to the
dynamic nature of the chemical reactions and the non-linear functional
relationship between the input and output variables involved. Chemical
reactors is one of the major processing unit in many chemical, pharmaceutical
and petroleum industries as well as in environmental and waste management
engineering. In spite of continuing advances in optimal solution techniques for
optimization and control problems, many of such problems remain too
complex to be solved by the known techniques.

The main aim of this thesis is to show that such a powerful optimizing tool
like evolutionary algorithms (EAs) can be in reality used for the optimization
and predictive control of chemical processes. Four algorithms from the field of
artificial intelligent - Differential evolution (DE), Self-organizing migrating
algorithm (SOMA), Genetic algorithm (GA) and Simulated annealing (SA)
are used in this investigation. In the first section EAs were used to
investigative and optimize of batch reactor to improve its parameters.
Consequently, EAs are used to model the technical requirements for chemical
reaction. The second section presents the optimizing of chemical engineering
processes, particularly those in which the evolutionary algorithm is used for
static optimization and control of Continuous stirred tank reactors (CSTRs).

The optimizations and control chemical reactors have been performed in
several ways, each one for a different set of reactor parameters or different
cost function. The optimized and predictive control chemical reactor processes
were used in simulations with optimization by evolutionary algorithms and the
results are presented in graphs. Finally, experimental results are reported,
followed by conclusion.

Keywords: Optimization, Simulation, Evolutionary Algorithms, Batch,
CSTR.



RESUME

Vzhledem k dynamice chemickych reakci a nelinearit¢ funkénich vztahi
mezi vstupy a vystupy proménnych, vyzaduje fizeni chemickych procesii
inteligentni kontrolu. ,,Chemicky reaktor* je jednou z hlavnich procesnich
jednotek v chemickém, farmaceutickém a petrochemickém pramyslu, stejné
jako v inZenyrstvi fizeni odpadu a Zivotniho prostfedi. Navzdory pokracujicim
pokrokiim v rozvoji technik optimalizace a problémtim fizeni, stale existuje
velka cast ptiliS komplexnich problémi, které se nedaji teSit klasickymi
metodami.

Hlavnim cilem této prace je demonstrovat fakt, Ze optimaliza¢ni néstroje,
jakymi jsou evolucni algoritmy (EA), mohou byt pouzity pro prediktivni fizeni
a optimalizaci chemickych procest. V praci jsou pouzity ctyii algoritmy:
Diferencialni evoluce (DE), Self organizing migrating algorithm (SOMA),
Geneticky algoritmus (GA) a Simulované zihani (SA). V prvni ¢asti prace
byly tyto evolucni algoritmy pouZity k optimalizaci parametri davkového
reaktoru (,,batch reactor”). Nasledné¢ jsou EA pouzity k modelovani
technickych parametri chemickych reaktorti. Druhd ¢ast demonstruje
optimalizaci chemickych procest, zvlasté téch, ve kterych je pouzit evolu¢ni
algoritmus pro optimalizaci a fizeni ,,Continuous stirred tank* reaktort.

Optimalizace a fizeni chemickych reaktord byla provedena nékolika
zplisoby, kazda pro jiny vektor parametri reaktoru nebo s rozdilnou tcelovou
funkci evolucniho algoritmu. Veskeré optimalizované procesy jsou
demonstrovany v grafech. Zavérem prace jsou prezentovany experimentalni
vysledky a jejich zhodnoceni.

Klicova slova: Optimalizace, Simulace, evolu¢ni algoritmy, Batch, CSTR.
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1 INTRODUCTION

The optimization of dynamic process has received growing attention in
recent years because it is essential for the process industry to strive for more
efficient and agile manufacturing in face of saturated market and global
competition (T. Backx, O. Bosgra 2000).

Evolutionary algorithms such as evolution strategies and genetic algorithms
have become the method of choice for optimization problems that are too
complex to be solved using deterministic techniques such as linear
programming or gradient (Jacobian) methods. The large number of
applications (Beasley (1997)) and the continuously growing interest in this
field are due to several advantages of EAs compared to gradient based
methods for complex problems (Ivo F. Sbalzarini, Sibylle Muller and Petros
Koumoutsakos 2000).

In chemical engineering, evolutionary optimization has been applied by the
author and others to system identification (Pham and Coulter, 1995; Moros,
1996); a model of a process is built and its numerical parameters are found by
error minimization against experimental data. Evolutionary optimization has
been widely applied to the evolution of neural networks models for use in
control applications (e.g. Li & Haubler, 1996).

The area of reactor network synthesis currently enjoys a proliferation of
contributions in which researchers from various perspectives are making
efforts to develop systematic optimization tools to improve the performance of
chemical reactors. The contributions reflect on the increasing awareness that
textbook knowledge and heuristics (Levenspiel, 1962), commonly employed
in the development of chemical reactors, are now deemed responsible for the
lack of innovation, quality, and efficiency that characterizes many industrial
designs.

The main aim of this participation is to show that evolutionary algorithms
(EAs) are capable of optimization on chemical engineering processes. The
ability of EAs to successfully work with at investigation on optimization and
predictive control of chemical reactors.
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Firstly, a non-linear mathematical model is required to describe the
dynamic behaviour of batch process; this justifies the use of evolutionary
method of the EAs to deal with this process, for static optimization of a
chemical batch reactor. Consequently, it is used to design geometry technique
equipments for chemical reaction. The method was used to optimize the
design of the growth chamber, and was found to be in good agreement with
the observed growth rate results. The second one was chosen for optimization
of a continuous stirred tank reactor (CSTR). On the next part, we have used
EAs to predictive control of chemical process of rectors too.

The following and the biggest part describes the results of optimization of
chemical process. The optimizations and control chemical reactors have been
performed in several ways, each one for a different set of reactor parameters or
different cost function. The optimized reactor and predictive control were used
in a simulation with optimization by evolutionary algorithms and the results
are presented in graphs.

This thesis is followed by a brief description of the chemical reactors and
used EAs. Evolutionary algorithms are then studied, and finally experimental
results are reported, followed by conclusion.
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2 THE AIMS OF DISSERTATION

This dissertation aims to show how methods of artificial intelligence--
mainly evolutionary computational techniques--can be used in dynamical
systems of chemical reactors, particularly for the complex tasks of analyses
and optimization of predictive control. The main focus here is on the
examples of evolution algorithms (EAs) implementation in methods for
achieving stable chemical reaction. The purpose is to obtain better results,
meaning efficiency in reaching the desired stable state and superior
stabilisation, through having robust and effective optimization of predictive
control.

EAs is used to determine the optimal settings for the adjustable parameters,
which are then used to achieve the desired state or behaviour of the chemical
reactors' process. As noted in the results and conclusion of the presented
project, EAs are able to find the optimal solution for the selected control
technique. Thus avoiding complicated mathematical analysis of chemical
process to find the settings for control method.

Research on this thesis is concerned with the field of optimization of
chemical engineering through EAs. The main purposes and goals of the
research can be summarised as thus:

1. Introduction of the chemical engineering process, formulation
of the mathematical problems, and the description and analysis
of the chosen dynamic systems--more concretely those in the
processes of a Batch reactor and a Continuous stirred-tank
reactor (CSTR);

2. Proposing a set of solving algorithms for the application of
stochastic optimization, which enhances confidence in the
optimization results, particularly in the chemical reaction;

3. Selecting and demonstrating EAs and practical method to
optimize the chemical process, especially of Batch and CSTR
reactors;
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4. Demonstrating the use of designed algorithms for global
optimization of the predictive control chemical processes and
comparison between each selected algorithms; and

5. Presenting conclusions and suggesting further research

perspective.
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3 CHEMICAL ENGINEERING PROCESS

3.1 General introduction

The chemical industry produces many products by using chemical reaction
and physical processes. To successfully realize these processes of chemical
technology, it is necessary to make quantitative and qualitative analyses,
especially in places where there is planned automated systems of technology
processes control. To make the modernization of present and future processes
purposeful, it is necessary to divide the modernization into periods.

The first and very important period is the analyzing of the industrial
producing system. It usually includes simulations based on real model of
chemical-physical processes for converting input sources into output products.
These simulations will show the important key points of the technological
process and where necessary changes to a new control system will be able to
significantly improve the technological process’s efficiency.

It is possible to say generally that the key technological points are the
chemical reactors. To design the optimal parameters of reactor and its control
system is one of the most difficult tasks of the process engineering. The
situation is very often complicated by the imprecise kinetic principles of
chemical reaction, which necessitates extensive measurements of
dependencies of input and output elements on time, temperature, pressure, and
etc. These quite complicated kinetic models (which are usually verified by
experimental measurements) can be simplified using different methods into
simpler models of which known methods of control already exist.

Notwithstanding the petrochemical industry, big attention must be paid to
materials used in the production of macromolecular substances, i.e. plastic
materials. Macromolecular substances are created from two kinds of reactions
— polymerization and polycondensation. Algorithms must be designed to
control these reactions, of which the majority comprises exothermic reactions
(they produce heat). From an economic point of view, it is expected to have
maximum efficiency of chemical reactor productivity with required quality.
The reactor productivity depends on reacting speed, and reacting speed usually
rises exponentially with temperature.
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Although it may seem that the exothermal kind of reaction is a big
advantage for us, it may not always be true due to security reasons and product
quality (rising temperature may decrease the output product quality). The
product quality may decrease especially in cases when the main reaction is
followed by side reactions, their speed exponentially raised with temperature
as well. As such, the most important parameter that has to be controlled during
exothermic reactions is the reaction compound temperature. For this reason,
the models presented in this work are based on enthalpy balances, with
relevant simulations.

Nowadays, the application domain of chemical reactions and reactors
constitutes one of the backbones for interdisciplinary collaboration. In fact, the
optimization of industrial chemical processes has drawn attention in recent
years. For experimental determination of the most important parameter - this
thesis is described and analysed process of a Batch and Continuous stirred
tank reactors. It is hoped that the examples presented here will provide some
appreciation of the creative process.

3.2 Batch reactor

The Batch reactor is the generic term for a type of vessel widely used
in the process industries. Its name is something of a misnomer since vessels of
this type are used for a variety of process operations such as solids dissolution,
product mixing, chemical reactions, batch distillation, crystallization,
liquid/liquid extraction and polymerization. In some cases, they are not
referred to as reactors but have a name which reflects the role they perform
(such as crystallizer, or bio reactor).

The advantages of the batch reactor lie with its versatility. A single
vessel can carry out a sequence of different operations without the need to
break containment. This is particularly useful when processing, toxic or highly
potent compounds.
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3.2.1 Characteristics of batch processes

The optimization of batch processes has attracted attention in recent years
(Aziz et al. 2000; Silva et al. 2003) because, in the face of growing
competition, it is a natural choice for reducing production costs, improving
product quality, meeting safety requirements and environmental regulations.
Batch and semi-batch processes are of considerable importance in the fine
chemicals industry. A wide variety of special chemicals, pharmaceutical
products, and certain types of polymers are manufactured in batch operations.
Batch processes are typically used when the production volumes are low,
when isolation is required for reasons of sterility or safety, and when the
materials involved are difficult to handle. In batch operations, all the reactants
are charged in a tank initially and processed according to a pre-determined
course of action during which no material is added or removed. In semi-batch
operations, a reactant may be added with no product removal, or a product
may be removed with no reactant addition, or a combination of both. From a
process systems point of view, the key feature that differentiates continuous
processes from batch and semi-batch processes is that continuous processes
have a steady state, whereas batch and semi-batch processes do not
(Srinisavan 2000 et al. 2002a and 2000b).

Reactor Configurations

In batch system all reactants are added to the tank at the given starting time.
During the course of reaction, the reactant concentrations decrease
continuously with time, and products are formed. On completion of the
reaction, the rector is emptied, cleaned and is made ready for another batch.

This type of operation provides great flexibility with very simple
equipment and allows differing reaction to be carried out in the same reactor.
The disadvantages are the downtime needed for loading and cleaning and
possibly the changing reaction conditions. Batch operation is often ideal for
small scale flexible production and high value, low output product production,
where the chemistry and reaction kinetics are not known exactly. In semi-
batch operation, one reactant may be charged to the vessel at the start of the
batch, and then the other fed to the reactor at perhaps varying rate and over
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differing time periods. When the vessel is full, feeding is stopped and the
contents allowed to discharge. Semi-batch operation allows one to vary the
reactant concentration to a desired level in a very flexible way, and thus to
control the reaction rates and the reactor temperature. It is, however, necessary
to develop an appropriate feeding strategy. Modelling and simulation allows
estimation of optimal feeding profiles. Sometimes it is necessary to adjust the
feeding rates using feedback control. The flexibility of operation is
generally similar to that of a batch reactor system. (J. Ingham, 1.J.Dunn,
E.Heinzle, J.E.P 2000).

Heat transfer to and from reactor

Heat transfer is usually affected by coils or jackets, but can also be
achieved with the use of external loop heat exchanger and, in certain case; heat
is transported out of the reactor. The treatment here mainly concerns jackets
and coils.

Fig. 1. Batch reactor with single external cooling jacket

3.3 Continuous stirred tank reactors (CSTR)

The continuous stirred-tank reactor (CSTR), also known as vat- or back
mix reactor is a common ideal reactor type in chemical engineering. A CSTR
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often refers to a model used to estimate the key unit operation variables when
using a continuous agitated-tank reactor to reach a specified output.

CSTR runs at steady state with continuous flow of reactants and products;
the feed assumes a uniform composition throughout the reactor, exit stream
has the same composition as in the tank.

F A — B
Cat
] _Q—Iin
E
Ca
Q T
Tt T F
Ca

Fig. 2. Scheme of Continuous Stirred Tank Reactor with Cooling Jacket

where A is the raw material, B is the desired product, and C is an undesired
by-product.

3.3.1 Characteristics of CSTR process

Continuous stirred tank reactors (CSTRs) belong to a class of nonlinear
systems where both steady-state and dynamic behaviour are nonlinear. Their
models are derived and described in e.g. (Ogunnaike and Ray, 1994),
(Schmidt, 2005) and (Corriou, 2004). verification can be found in (Stericker
and Sinha, 1993).

Chemical process control requires intelligent monitoring due to the
dynamic nature of the chemical reactions and the non-linear functional
relationship between he input and output variables involved. CSTR is one of
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the major processing unit in many chemical, pharmaceutical and petroleum
industries as well as in environmental and waste management engineering. In
spite of continuing advances in optimal solution techniques for optimization
and control problems, many of such problems remain too complex to be
solved by the known techniques (Emuoyibofarhe O.Justice, Reju A Sunday,
2008).
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4 METHODS AND EVOLUTIONARY
ALGORITHMS

4.1 Introduction and a brief survey to Evolutionary
Algorithms

As the history of the field suggests there are many different variants of
Evolutionary Algorithms. The common underlying idea behind all these
techniques is the same: given a population of individuals the environmental
pressure causes natural selection (survival of the fittest) and this causes a rise
in the fitness of the population. Given a quality function to be maximised we
can randomly create a set of candidate solutions, i.e., elements of the
function’s domain, and apply the quality function as an abstract fitness
measure — the higher the better. Based on this fitness, some of the better
candidates are chosen to seed the next generation by applying recombination
and/or mutation to them. Recombination is an operator applied to two or more
selected candidates (the so-called parents) and results one or more new
candidates (the children). Mutation is applied to one candidate and results in
one new candidate. Executing recombination and mutation leads to a set of
new candidates (the offspring) that compete — based on their fitness (and
possibly age)— with the old ones for a place in the next generation. This
process can be iterated until a candidate with sufficient quality (a solution) is
found or a previously set computational limit is reached. In this process there
are two fundamental forces that form the basis of evolutionary systems.

Variation operators (recombination and mutation) create the necessary
diversity and thereby facilitate novelty, while Selection acts as a force pushing
quality.

The combined application of variation and selection generally leads to
improving fitness values in consecutive populations. It is easy (although some-
what misleading) to see such a process as if the evolution is optimising, or at
least “approximising”, by approaching optimal values closer and closer over
its course. Alternatively, evolution it is often seen as a process of adaptation.
From this perspective, the fitness is not seen as an objective function to be
optimised, but as an expression of environmental requirements. Matching
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these requirements more closely implies an increased viability, reflected in a
higher number of offspring. The evolutionary process makes the population
adapt to the environment better and better.

Let us note that many components of such an evolutionary process are
stochastic. During selection fitter individuals have a higher chance to be
selected than less fit ones, but typically even the weak individuals have a
chance to become a parent or to survive. For recombination of individuals the
choice of which pieces will be recombined is random. Similarly for mutation,
the pieces that will be mutated within a candidate solution, and the new pieces
replacing them, are chosen randomly. The general scheme of an Evolutionary
Algorithm can is given in Fig. 3 in a pseudo-code fashion. (A.e. Eiben and j.e.
Smith, 2003).

BEGIN

INITIALISE population with random candidate
solutions;

EVALUATE each candidate;

REPEAT UNTIL ( TERMINATION CONDITION is satisfied )
DO

1 SELECT parents;
2 RECOMBINE pairs of parents;
3 MUTATE the resulting offspring;
4 EVALUATE new candidates;
5 SELECT individuals for the next generation;
OD
END

Fig. 3. The general scheme of an Evolutionary Algorithm in pseudo-code

Structure of a population evolutionary algorithm show in Fig. 4. & 5.
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Fig. 4. Structure of a single population evolutionary algorithm

Initialization
e Creation of are optimization yes best
initial population criteria met? individuals
e Evaluation of
individuals
no
Generate
new
population Fitness assfgnment
start competition selection
migration
g recombination
reinsertion l
mutation
Evaluation of < I
offspring

Fig. 5. Structure of an extended multipopulation evolutionary algorithm

Overview from source: http://www.geatbx.com/docu/algindex-01.html
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According to (Zelinka, 2008) that extremely simply said, EA is a numerical
process, during which N possible solutions of a given problem are processed
together. These solutions are called “individuals” and are usually represented
by a vector consisting of arguments of a defined cost function. A set of
individuals (their number is called population size, which is the above-
mentioned N) is called “population” and each individual is attached with a
“fitness” , which can be in the simplest case the value of the cost function
indicative of their suitability. For example, let us have a function Fcost (pl1,
p2, p3, p4, p5), then an individual is a set of parameters p, i.e. [={pl, p2, p3,
p4, p5}, the population consists of N individuals with numerical values instead
of x, like 11={2, 44, 51, -3.24, -22, 2}, 12, 13, ..., IN={0.22, 3.4, 44, 1, 0.001,
0} (see Fig. 6). Parameter values in the individuals are assigned randomly at
the beginning of the evolutionary process, i.e. the whole population is
randomly generated. The population is then used to create the so-called
offspring—new individuals, by means of selected individuals from a
population (also called parents). This is done by operations like crossover,
mutation, etc. A number of various variants of such operations are available
because of the presence of a rich family of EAs. However, in principle, these
operations are, in fact, arithmetical (or geometrical) operations, which
combine selected individuals from a parental population.

Simple scheme of evolution I, ... I, are randomly

initialized. Subsquently the population is iterated for a finite period
using operators like mutation, crossover, selection, etc. to improve
upon the current population.

initializati | 2 Iy
Fandom initialization 01.32 6 735 ?_r.DQE
33, 34 33.54

L30.4

One generation loop
o

o

mutation

selection

Crossover

Fig. 6. Population in the evolutionary algorithm
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Evolutionary process is thus an iterative process with the selection and
survival of the temporarily best solutions, which are used in the next
generation to create better solutions.

Finally, the best individual (i.e. problem solution) is selected from the last
population and is regarded like the best solution from the actually ended
evolution. The cost function used in the population should be defined so that
its minimization or maximization should lead to the optimal solution. From
this point of view, evolution can be also regarded like a mutually parallel
search of an N-dimensional, nonlinear and complicated surface, where each
point represent a possible solution. Example of the “cost function landscape”
of the individual with two parameters, [={x, y} is depicted in Fig. 7 (see also
Zelinka, 2004). Cost value is on the axis “z”.

Fig. 7. Cost function surface representation, called Rana's function.

Today, a rich set of various versions of EAs exists. They differ by
mathematical principles driving their evolutionary process as well as by the
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fundamentally unique terminology and algorithm philosophy employed.
Another difference is also that of individual representation, i.e. an individual
can consist of integer or/and real numbers like [={2, 44, 51, —3.24, =22, 2} or
can be based on binary string [={0010101101010101}, which is typical for
genetic algorithm (GA) in its canonical version.

For a closer and more detailed study of EAs, which is time-consuming, it is
recommended to use the literature like, for example, Holland (1975) and Davis
(1996) (GAs), (Price, 1994), (Price, 1996) and (Price, 1999) (differential
evolution (DE)), Kirkpatrick et al. (1983) and Cerny (1985) (simulated
annealing (SA)), Eberhart and Kennedy (1995) and Clerc (2006) (particle
swarm), Zelinka, (2004) (self-organizing migrating algorithm (SOMA)),
Beyer (2001) (evolutionary strategies (ES)), Dorigo and Stiitzle (2004) (ant
colony optimization), or in general Back et al. (1997).

4.2 A brief survey of Scoping and Screening chemical
reaction networks using stochastic optimization

Many methods were adapted for the so-called optimal chemical reactors.
The new methods focus on a systematic and thorough consideration of the
available options and employ technology in the form of superstructures,
optimization techniques, and a variety of graphical methods.

The importance of mathematical methods in optimizing reactors has been
exemplified early enough with the application of dynamic programming for
the estimation of optimal operating conditions in CSTR cascades (Aris, 1960)
and the development of graphical techniques for single reversible reactions in
PFRs (1961).

Around the same time, a set of brilliant contributions by Horn (1964)
provided the basis of material that later emerged as attainable-region (AR)
approaches. Dyson and Horn (1967) developed graphical tools for optimal
temperature control schemes, feed distribution profiles along a PFR and
catalyst minimization problems (Dyson and Horn, 1969). In these early days,
separate groups made attempts to consolidate options and alternatives within
comprehensive reactor structures (Ng and Rippin, 1965; Jackson, 1968;
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Ravimohan, 1971). Optimization approaches initially addressed fixed reactor
structures. Examples include the work of Paynter and Haskins (1970), and
Chitra and Govind (1981, 1985a,b). The first studies of comprehensive
structures should be attributed to Achenie and Biegler (1986, 1988, 1990),
who employed existing representations (Jackson, 1968; Ng and Rippin, 1965)
to launch optimization techniques in the form of NLP methods.

Kokossis and Floudas (1990, 1991, 1994) first introduced the idea of a
reactor network superstructure modeled and optimized as an MINLP
formulation. Though general and inclusive, their representation did not follow
previous developments, but made an effort to facilitate the functionalities of
the MINLP technology with the synthesis objectives. Mainly to scope,
optimize and analyze the reaction process, Kokossis and Floudas replaced
detailed models with simple though generic structures, enough to screen for
design options and estimate the limiting performance of the reaction system.
In the same vane, dynamic components have been replaced by CSTR
cascades. A superstructure of generic elements (ideal CSTRs and PFRs) was
postulated to account for all possible interconnections among the units. The
representation was modeled and optimized as a MINLP model.

Though fundamental limitations appear evident, persistent efforts to extend
the graphical methods have appeared in the literature (Hildebrandt et al., 1990;
Hildebrandt and Glasser, 1990; Glasser et al., 1992, 1994; Feinberg and
Hildebrandt, 1997; Price et al., 1997; Glasser and Hildebrandt, 1997; Hopley
et al., 1996; Nisoli et al., 1997; McGregor et al., 1999; Godorr et al., 1999.)

A more promising direction has been pursued by Biegler and coworkers.
The motivation has been to instill better guarantees in the optimization efforts
by exploiting ideas and rules established in the construction of the AR.
Applications presented in this area include the work by Balakrishna and
Biegler (1992a,b) and Lakshmanan and Biegler (1994, 1996, 1997), and
involved mathematical programming applications in the form of NLP and
MINLP formulations. Optimal control formulation has been presented by
Rojnuckarin et al. (1996) and Schweiger and Floudas (1999). Hildebrandt and
Biegler (1994) presented a review of the attainable region approaches and
suggested areas for future development of the concept. (Marcoulaki and
Kokossis, 2004).
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Especially in recent years, the methods of artificial intelligence, namely the
evolutionary algorithms were used to optimise successfully chemical
processes.

The optimization of non-linear constrained problems is relevant to
chemical engineering practice [Wong, (1990); Salcedo, (1992); Floudas,
(1995)]. Nonlinearities are introduced by process equipment design relations,
by equilibrium relations and by combined heat and mass balances. The design
variables may be floating points [non-linear programming (NLP) problems] or
some of them may be integers [mixed integer non-linear programming
(MINLP) problems].

In recent years, evolutionary algorithms (EAs) have been applied to the
solution of NLP in many engineering applications. The best-known algorithms
in this class include Genetic Algorithms (GA), Evolutionary Programming
(EP), Evolution Strategies (ES) and Genetic Programming (GP). There are
many hybrid systems, which incorporate various features of the above
paradigms and consequently are hard to classify, which can be referred just as
EC methods Dasgupta and Michalewicz, (1997). They differ from the
conventional algorithms since, in general, only the information regarding the
objective function is required. In recent years, EC methods have been applied
to a broad range of activities in process system engineering including
modeling, optimization and control. See for example real-time control of
plasma reactor (Nolle et al., 2001 and (Nolle et al., 2005); Zelinka and Nolle,
2006), Optimization and control of batch reactor by evolutionary algorithms
Senkerik, Zelinka, 2005], Optimization of reactive distillation processes using
Self-organizing Migrating Algorithm and Differential Evolution Strategies
(Tran, Zelinka, 2008), Using method of artificial intelligence to optimise and
control chemical reactor (Tran, Zelinka, 2009), Investigation on optimization
of Process Parameters and chemical reactor geometry by evolutionary
algorithms (Tran, Zelinka, 2009) or An optimum solution for a process control
problem (continuous stirred tank reactor) using a hybrid neural network
(Emuoyibofarhe O.Justice, Reju A Sunday, 2008)...
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4.3 Select Evolutionary Algorithms

For the experiments described here, stochastic optimisation algorithms,
such as Differential Evolution (DE) (Price, 1999), Self-Organizing Migrating
Algorithm (SOMA) (Zelinka, 2004), Genetic Algorithms (GA) (Holland,
1975) and Simulated Annealing (SA) (Kirkpatrick et al., 1983; Cerny, 1985)
were selected. Main reason why DE, SOMA, GA and SA have been seed
comes from contemporary state in chemical engineering and EAs use. Since
now has been done some research with attention on use of EAs in chemical
engineering optimization, including DE. This participation has to show that
applicability of relatively new algorithms is also positive and can lead to
applicable results, as was shown for example in Zelinka (2001), which has
been done under 5th EU project RESTORM (acronym of Radically
Environmentally Sustainable Tannery Operation by Resource Management)
and main aim was to use EAs in chemical engineering processes. True is also
that there is a plenty of other heuristic like particle swarm (Liu, Liu, Cartres,
2007), scatter search (Glover, Laguna, Marti, 2003), memetic algorithms,
simulated annealing (Kirkpatrick, Gelatt, Vecchi, 1983), etc. and according to
No Free Lunch teorem (Wolpert, Macready, 1997) is clear that each heuristic
would be less or more applicable on example presented here. SOMA is a
stochastic optimization algorithm that is modelled on the social behaviour of
co-operating individuals (Zelinka, 2004). It was chosen because it has been
proved that the algorithm has the ability to converge towards the global
optimum (Zelinka, 2004). GA is one of the most modern paradigms for
general problem solving. Genetic algorithms are more robust than existing
directed search methods. Another important property of GA based search
methods is that they maintain population of potential solutions — all other
methods process a single point of the search space like hill climbing method.
Hill climbing methods provide local optimum values and these values depend
on the selection of starting point. Also there is no information available on the
relative error with respect to global optimum. To increase the success rate in
hill climbing method, it is executed for large number of randomly selected
different starting points. On the other hand, GA is a multi-directional search
maintaining a population of potential solutions and encourages information
formation and exchange between these directions. Furthermore, SA is a
generic probabilistic meta-algorithm for the global optimization problem,
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namely locating a good approximation to the global optimum of a given
function in a large search space. SA has been used in various combinatorial
optimization problems and has been particularly successful in circuit design
problems (see Kirkpatrick et al. 1983).

4.3.1 Differential Evolution (DE)

Differential Evolution (Price, 1999) (see Fig. 9) is a population-based
optimization method that works on real-number coded individuals. For each
individual x; ¢ in the current generation G, DE generates a new trial individual
x’ic by adding the weighted difference between two randomly selected
individuals X, g and Xp to a third randomly selected individual x,3G. The
resulting individual x’; g is crossed-over with the original individual x;g. The
fitness of the resulting individual, referred to as perturbated vector uig+1, 1S
then compared with the fitness of X;g. If the fitness of u;gy; is greater than
the fitness of Xig, Xig is replaced with u; g+, otherwise X remains in the
population as x;g+. Deferential Evolution is robust, fast, and effective with
global optimization ability. It does not require that the objective function is
differentiable, and it works with noisy, epistatic and time-dependent objective
functions. Pseudocode of DE shows:
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1.Input : D,G,. ,NP >4,F € (0,1+),CR €[0,1], and initial bounds o) W),

Vi< NP AVJSD:x, ;0= x;."’) + rand j[O,l]o (x;hi) _x;’“))

i={1,2,., NP}, j={1,2,., D}, G =0,rand ,[0,1]€[0,1]
3.While G <G

max

2. Initialize : {

4. Mutate and recombine
41 n,r,rye{l,2,.., NP}, randomly selected, except :n #r, #r, #i
42 j,um €1L2,.., D}, randomly selected once each i

Xinct F .('xj‘rhG - xj‘,-z,c)

Vi< NP{43 Vj<Du,, ., = if (rand [0.11< CRV j = j,)
x,;,c otherwise
5. Select
. Upgn i fllg) < [(Xg)
XiGgel = = .
X6 otherwise

G=G+1

Fig. 8. Pseudo code of DE

There are some version for optimization by mean differential evolution and
two standard versions of DE, concretely DERand1Bin and DERand2Bin were
chosen for optimization and predictive control of chemical reactors.
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Cost value

Parameter 1
Parameter 2
Parameter 3
Parameter 4
Parameter 5
Parameter 6

cv

Parameter 1
Parameter 2
Parameter 3
Parameter 4
Parameter 5
Parameter 6

cv

Parameter 1
Parameter 2
Parameter 3
Parameter 4
Parameter 5
Parameter 6

Parameters for DE

Dimension D 6
Population size NP 7|
Mutation constant F 0.8
Crossover CR 0.5
Active individual Three randomly chosen individuals
Individual 1 Individual 2 Individual 3 Individual 4  Individual 5 Individual 6 Individual 7
3.6944074| 79.1015763| 57.453647| 3.16198009| 3.5514714| 12.432604 0.34?46?2|
8.0533106| 71.33544404| 17.111268| 4.145669546| 13.737595| 61.638486[ 57.332534
9.2498415| 5.490476456| 42.776854| 25.37297996| 65.47013| 10.231425[ 17.186136)
1.1239946P6.774170041| 16.048754| 46.02853565| 50.738214| 47.074762| 0.0349505
10.187627] 0.248633808| 10.342385| 29.32587859| 16.036278| 43.762838| 17.424359
9.7273059P2.316007685| 0.6998136| 33.5472858| 34.792886| 32.012036[ 71.870571
11.294207P*18.23324461] 76.247148] 3.247966688] 5.103281] 0.2021001] 17.475226
Differential Weighted Noisy vectgr
vector differential | v
vector +
-5.68428395 -4.54742716) — || 52.785107
-56.2202881 -44,9762305 — | -27.790094
-49.6142194 *F -39.6913755 -39.656425
-5.84865087 — -4.6789207 —» 12.745438
-25.0655804 -20.0524644 51.818106
6.19092626 4.952741008 22.427967
Trial vector
14.9451594
52.78510726] < Based on CR are parameters chosen from
-27.7900941 €— actual or noisy vector
—» || 6.774170041
12.74543793| +—
— || 2.316007685
— || 18.23324461
The best individual of both take place in new population
Individual 1 Individual 2  Individual 3 Individual 4  Individual 5 Individual 6 Individual 7
1.6147656| 14.9451594
5.9284987| 52.78510726
11.653044| -27.7900941
30.56767|6.774170041
67.605951]| 12.74543793
45.300423| 2.316007685
18.868377]18.23324461

Fig. 9. Differential evolution, an artificial example

(http://www.icsi.berkeley.edu/~storn/code. html).
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4.3.2 Self Organizing Migrating Algorithm (SOMA)

SOMA is a stochastic optimization algorithm that is modelled on the social
behaviour of co-operating individuals (Zelinka, 2004). It was chosen because
it has been proved that the algorithm has the ability to converge towards the
global optimum (Zelinka, 2004). SOMA works on a population of candidate
solutions in loops called migration loops. The population is initialized
randomly distributed over the search space at the beginning of the search. In
each loop, the population is evaluated and the solution with the highest fitness
becomes the leader L. Apart from the leader, in one migration loop, all
individuals will traverse the input space in the direction of the leader.
Mutation, the random perturbation of individuals, is an important operation for
evolutionary strategies (ES). It ensures the diversity amongst the individuals
and it also provides the means to restore lost information in a population.
Mutation is different in SOMA compared with other ES strategies. SOMA
uses a parameter called PRT to achieve perturbation. This parameter has the
same effect for SOMA as mutation has for GA. The PRT Vector defines the
final movement of an active individual in search space.

The randomly generated binary perturbation vector controls the allowed
dimensions for an individual. If an element of the perturbation vector is set to
zero, then the individual is not allowed to change its position in the
corresponding dimension. An individual will travel a certain distance (called
the path length) towards the leader in n steps of defined length. If the path
length is chosen to be greater than one, then the individual will overshoot the
leader. This path is perturbed randomly. For an exact description of use of the
algorithms see (Price, 1999) for DE and (Zelinka, 2004) for SOMA.
Pseudocode of SOMA shown in Fig. 10 and SOMA, an artificial example
show in Fig. 11:
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Input : N,Migrations ,PopSize >2,PRT € [0,1],Step € (0,1], MinDiv € (0,1],

PathLength e (0,5], Specimen with uper and lower bound X ;”i ), x‘(/")

Vi< PopSize AVj<N :x o) 4 rand j[O,l]-(x(j.”i)—x(j.lo))

i, j Migrations =0 — X j

Inicialization : i, j.Migrat 0 j
i ={1,2,..., Migrations }, j={1,2,..,N}, Migrations =0, rand ;[0,1] € [0,1]
While Migrations < Migrations

max

While ¢ < PathLength

if rnd ; < PRT pak PRTVector ;=1 else 0, j=1,..,N
Vi< PopSize x} = xM L+ (e = x .. ) t PRTVector

ML +1 : ML ML ML
f xi,j B ): lf f(xi,j )S f xi,j,smrt ) else f xi,j,start )
t=1t+ Step

Migrations = Migrations +1

Fig. 10. Pseudocode of SOMA

Now a day, there are some versions of algorithms SOMA. In this work, I
have used three strategies of SOMA for optimization and predictive control of
chemical reactors. They are “All to One” (SOMAATO) and “All to One
Random” (SOMAATR):

e All to One — this strategy was described in previous section. “All to
one” means that all subjects in population migrate to the leader (except
leader itself).

e All to One Random — is strategy, in which all individuals move back to
one individual (Leader), which is not the deepest position on the
hyperplane, but it is on the migration of individuals of each randomly
selected from the population. Here emerged possible modification of this
strategy, and such that the individuals don’t select randomly, but as
appropriate, as is the case of genetic algorithms.
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Control parameter

PRT vector

Step 0.3 If Rand < PRT then 1 else 0 <+ 1
PathLength 3 If Rand < PRT then 1 else 0 <+ 0
PRT 0.1 If Rand < PRT then 1 else Q <+ 0
MinDiv 0.1 If Rand < PRT then 1 else 0 < > 1
Migrations 1000/ If Rand < PRT then 1 else O o+ 0
PopSize 7| If Rand < PRT then 1 else O P 1
Cost function f(x) = Abs(Parameter 1)+ Abs(Parameter 2} +...+ Abs(Parameter §)
Travelling individual Leader
Individual 1 Individtal 2 Individual 3 Individual 4  Individual 5 Individual 6  Individual 7
CostValue 204.91528 261.3632] 163.79679] 121.73019 107.52784] 121.06024] 120.20974
Parameter 1 3.0615753] -46.635691] 5.0246553| 38.723912| 35.822343] 0.0715185| 23.761224
Parameter 2 2.5117282] 54.036685] 85.104704| 0.2928606| 24.111443] 4.2879691| 20.384665
Parameter 3 46.75014| 51.282894| 11.347164| 3.0796963| 24.657689| 60.241731| 33.437248
Parameter 4 72.486617] 15.080129] 2.916686| 3.6713463| 5.8142407| 4.5385164| 4.0482021
Parameter 5 6.316564| 57.155744| 58.829537| 26.610056] 12.43856| 23.891907| 4.2271271
Parameter & 73.788657| -37.172056] 0.5740442| 49.352316| 4.6835676| 28.028598| 34.351273
.+ i i i
xﬂf '= xf’f art +(xff,. - xﬂmﬁ) t PRTVector;
t E<0, by Step to, PathLength >
New positions
t=0 t=1 t=2 t=8 t=9 t=10
CostValue 261.3632] 221.28934] 186.89373 384.17836] 424.25222 464.32608
-46.63569| -21.898281| 2.8391294 151.26359 176.001] 200.73841
54.036685] 54.036685] 54.036685 54.036685] 54.036685| 54.036685
51.282804| 51.282804| 51.282894 51.282894| 51.282894| 51.282894
15.080129] 12.300362] 9.5205959 -7.158003| -9.937769| -12.71754
57.155744| 57.155744| 57.155744 57.155744| 57.155744] 57.155744
-37.17206] -24.615369] -12.05868 63.281441] 75.838128| B88.394815
CostValue 261.3632 Individual 186.8937 JIndividual with the lowest costvalue
-46.635691) with lower || 2.8391294of all positions
—_—— 54.036685| cost value | 54.036685
51.282894 51.28289%4
Individual 1 Individual 2 # Individual 3 Individual 4  Individual 5  Individual 6  Individual 7
CostValue 204.91528] 186.89373
Parameter 1 3.0615753] 2.8391294
Parameter 2 | 2.5117282] 54.036685
Parameter 3 46.75014| 51.282894
Parameter 4 72.486617| 9.5205959
Parameter 5 6.316564| 57.155744
Parameter 6 73.788657| -12.058682

Fig. 11. SOMA, an artificial example (http://www.fai.uth.cz/people/zelinka/soma).
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4.3.3 Genetic Algorithm (GA)

Genetic Algorithms (GA) imitate the evolutionary processes with emphasis
on genotype based operators (genotype/phenotype dualism). The GA works on
a population of artificial chromosomes, referred to as individuals. Each
individual is represented by a string of L bits. Each segment of this string
corresponds to a variable of the optimizing problem in a binary encoded form.

The population is evolved in the optimization process mainly by crossover
operations. This operation recombines the bit strings of individuals in the
population with a certain probability Pc. Mutation is secondarily in most
applications of a GA. It is responsible to ensure that some bits are changed,
thus allowing the GA to explore the complete search space even if necessary
alleles are temporarily lost due to convergence.

The following pseudocode describes the general principle of a Genetic
Algorithm:

t=0;

nitialize(P(t=0));
evaluate(P(t=0));

while is NotTerminated() do
P, (t) = P(t).selectParent();
P.(t) = reproduction(Py);
mutace(Pe(t));

evaluate(Pe(t));

P(t+1) = buildNextGenerationForm(Pe(t), P(t));
t=t+1;

end

Fig. 12. Pseudocode of GA (http://www.ra.cs.uni-tuebingen.de/software/EvA2/)

4.3.4 Simulated annealing (SA)

Simulated annealing (SA) is based on the similarity between the solid
annealing process and solving combinatorial optimization problems (S.
Kirkpatrick, C.D. Gelatt Jr and M.P. Vecchi,1983). SA consists of several
decreasing temperatures. Each temperature has a few iterations. First, the
beginning temperature is selected and an initial solution is randomly chosen.
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The value of the cost function based on the current solution (i.e., the initial
solution in this case) will then be calculated. The goal is to minimize the cost
function. Afterwards, a new solution from the neighborhood of the current
solution will be generated. The new value of the cost function based on the
new solution will be calculated and compared to the current cost function
value. If the new cost function value is less than the current value, it will be
accepted. Otherwise, the new value would be accepted only when the
Metropolis's criterion (N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth,
A.H. Teller and E. Teller,1953), which is based on Boltzman's probability, is
met. According to Metropolis's criterion, if the difference between the cost
function values of the current and the newly generated solutions (AE) is equal
to or larger than zero, a random number 6 in [0,1] is generated from a uniform
distribution. If Eq. (4.1) is met, the newly generated solution is accepted as the
current solution.

5<e(—AE/T) (4.1)

The number of new solutions generated at each temperature is the same as
the iteration number at the temperature which is constrained by the
termination condition. The termination condition could be as simple as a
certain number of iterations. After all the iterations at a temperature complete,
the temperature would be lowered based on the temperature updating rule. At
the updated (and lowered) temperature, all required iterations will have to be
completed before moving to the next temperature. This process would repeat
until the halting criterion is met. The halting criterion could be “reaching the
pre-set minimum temperature.” The result of simulated annealing (SA) is
related to the number of iterations at each temperature and the speed of
reducing temperature. The temperature updating rule proposed in this paper is
shown in Eq. (4.2).

Temperature = Te*™" (4.2)
where T is the initial temperature, r the cooling ratio, and t the number of
times the temperature has been lowered. The cooling ratio controls the speed
of cooling. The higher the cooling ratio, the faster the temperature cools
down.
Structure of simulated annealing algorithm show in Fig.13
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Input, Assess Initial Solution

Estimate Initial Temperature

Generate New Solution

Assess New Solution
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Solution?

Yes
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No .
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Search?
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Fig. 13. Structure of simulated annealing algorithm
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In this thesis I have chosen two versions of SA algorithms (SA elitism
(SA_Elitism) and SA without elitism (SA NoElitism)) for investigation on
optimization and predictive control of a chemical reactor.

0 Usage of elitism

It uses synchronization at the end of temperature phase, otherwise the
communication proceeds asynchronous after each iteration.

e Disadvantage of this approach lies in excessive communication, which
results in computation time increase.

e Advantage — elitism removes problem with the acceptance of worse
solutions at low temperature phase

4.4 The cost function and principle simulation
evolutionary algorithms in environment Mathematica

Evolutionary algorithms emerged as a mathematical analogy of the natural
processes taking place in nature during evolution, which, if done completely at
random, ensuring that they survive only individuals who are able to withstand
the battle with the natural effect. This is the natural breeding population of
individuals, when properties of the individual shall be amended so as to better
accommodate natural conditions. This has become a fundamental principle of
evolutionary algorithms to the initial randomly generated population of
individuals forming a new generation of individuals with better characteristics,
if appropriate, amending the parameters so that the values of cost function
attained optimal values. Normally, therefore, looking for extreme function,
usually a minimum, the n-dimensional hyperplane. Cost function of
optimization problems can be specified as follows:

min(f,,,, (x)) (4.3)

Using the optimal values of the arguments:

X = (x50 (44)
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Where X is a vector composed of D parameters of cost function, they have
limitations:

(Lo) (Hi) .
X, Sx; SX; j=1,...,D 4.4)

Where Lo is the lower limit, Hi is the higher limit.

Evolutionary algorithms (EAs) in environment mathematica perform
according to a general cycle is illustrative in Fig. 14. Principle simulation
evolutionary algorithms can be split into several steps: Setting parameters and
starting EAs, Generating population, Migration Process, Stop EAs and
selecting the best individuals.

Concretely, evolutionary algorithms SOMA will be governor through the
following steps:

1. Definition of parameters - before running the algorithm it is
necessary to select parameters such as: Step (step size of migration),
PathLength (max distance migration), MinDiv (maximum division cost
function values of individuals sufficient for stopping algorithms),
PopSize (population size), migration (number of rounds of migration),
PRT (constant perturbation), the PRT parameter is in some sense the
equivalent of CR for parameter genetic algorithm and differential
evolution. It has an impact on whether an individual will migrate
directly to the leaders, or its trajectory will be diverted to the improved
scanning n-dimensional space and thus to a higher robustness in
finding global extreme. Without the use of PRT parameters SOMA
often find only a local extreme .

2. Generating population - in this step is a randomly generated initial
population in using the standard individual - specimen, which is
precisely defined type and range of values <Lo, Hi> each of the
individual parameters.

3. Migration Process - In this step, the actual migration of individual
subjects after the n-dimensional hyperplane according to the rules of
strategies SOMA algorithm.
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4. Evaluation - At the end of the migration process is to evaluate the
division cost function values of individual subjects. If this division is
less than parameter MinDiv, the algorithm is ended - Step 5, otherwise
the re-start the migration process - step 3.

5. Stop algorithms SOMA and select the best individuals of cost
function values.

Functional for static Mathematica

optimization in . .
p Definition of parameters and starting EA.

environment . . .
Mathematica Processing with form of graphics and tables

Setting
parameters and
Return back starting EA
: best values
Evaluation ([ Return back and history
flmc‘t'lonal values of running EA Start EA from
with functional AGO libra
model of for existing {} (Codin : f gx
reactor individual i1(1) langgl(l)age
to EA Stop EA Mathematica)

‘ N
| 3! RunEA(SOMA, DE, GA, SA)

and call functional in environment
Mathematica

Fig. 14. Principle simulation evolutionary algorithms

From environment Mathemtica, I have created the “General subroutines
call of SOMA, DE, GA, SA”, which was shown in Fig. 15 and example for
the overview process “Start EA” in environment Mathematica show in Fig. 16
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StartEA[opt ] := Modulel[{pbest, pworst},
ret = StringTake[ToStringl[opt], 2];
FinalPopulation =Switchl[ret,

"SOMA'"™, Population =
DoPopulation[PopSize, Specimen];Print["\nPopulation has
been initialized\n",Population // Transpose //
Tab.Form] ;CheckAbort [NestList[opt, Population,
Migrations], FinPop],

"DE",Population =
DoPopulation[NP, Specimen]; Print["\nPopulation has been
initialized\n",Population // Transpose //
Tab.Form];CheckAbort [NestList[opt, Population,
Generations], FinPopl],

"GA",Population =
DoGAPopulation[PopSize, Specimen];Print ["\nPopulation has
been initialized\n",Population // Transpose //
Tab.Form];NestList[opt, Population, Generations],

"SA",Population =
DoPopulation[PocetCastic, Specimen];Print["\nPopulation
has been initialized\n",Population // Transpose //
Tab.Form];StartSA[opt],

_, Print["Unknown algorithm"]
17
Print["\nFinal population is\n",
Tab.Form|[Transpose[Take[FinalPopulation, -11[[1]11111;
Print["\n"];
BestInd[Take[FinalPopulation, -1]1[[1]1]11;

Return[FinalPopulation]

Fig. 15. General subroutines call of SOMA, DE, GA, SA in environment
Mathematica
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B3 start_SOMAATO.Nb EEE
~

In[F]:= ‘ Specimen = {{{Real, {0.015, 0.1}}}, {{Real, {0.05, 0.12}}}, {{Real, {2, 3.5}}}, {{Real, {303, 333}}}, {{Real, {288, 303}}}}: ‘ ]

in= | Dim = Dimensions[Specimen][[111; 1
PopSize = 20;

Migrations = 10;

Step = .11:

PathLength = 3.;

PRT = .1;

MinDiv = -1.:

In[15]= StartEA[SOMRATO] 1

Population has been initialized

-147.852 -6l.6032 -158. 56 -276.444 -102.263 -140.128 -162. 464 -a72.867 -226. 518 -104.34.

0.0755377 0.0217187 0.0423503 0.0363041 0.0527268 0.0626415 0.0956771 0.0745174 0.0284876 0.04394(
0.0512387 0.0704239 0.0604426 0.0504167 0.0904723 0. 0665683 0.109457 0.0615242 0.114306 0.DA529:

3.23687 3.36607 2.52363 3.16918 2.008535 3.14104 2.77058 3.04716 2.42609 2.21098
316.629 329,983 325,247 3zl.362 311.45 315.405 318,19 329,863 315.867 332.494
292,773 30a.127 298, 968 288,409 298,975 295.222 297,411 294,744 298,722 299.7

Final population is
-319. 264 -319.473 -313.5 -305.124 -316.675 -308.157 -3l6.817 -316.755 -313.541 -316.54
0.0930335 0. 098603 0.092456 0.0363041 0.098402 0.0666192 0.0304239 0.0872561 0.0282467 0.0379643
0.115512 0.117563 0.079619 0.073292 0.102504 0.0665638 0.105375 0.0954587 0.0965173 0.103426

3.23687 3.36607 2.70918 3.16918 2.008535 3.14104 2.77058 3.04718 2.83638 2.21098
324.154 324,087 326,811 3zl.362 326.403 324.263 326.46 323.51 315.687 317.8
296.042 296.075 294,417 288,409 291,518 295,408 268,805 297,965 301,193 299.7

Best indiwidual iz on position 2 with cost value
~3.19479<E+2 and parameters {0,098603, 0.117563, 3.36697, 324,087, 296.075) |

b
100% =

Fig. 16. Overview process “Start EA” in environment Mathematica (1x
simulation of version SOMAATO)

4.4.1 Quality of the evolutionary processes

The quality and course of the evolutionary processes can be influenced by
many factors, notably:

e Setting parameters - a combination of which may have a significant
influence on the course and speed of evolution;

e Population size - a small population will limit choice while a major
population will need more time to pass for the gradual creation of
newer population;

e Definition of cost function - if badly or inappropriately defined,
evolution may slow down to a stop;
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Number of generations - for a small number of generations,
evolution may end before they find the extreme; and

Definition of the interval - it is better to define the interval of
evolution, and if there are uncertainties about, the evolutionary
process can be maintained in the area of foreseeable solutions by
looking at the extreme.

- 48 -



5 SIMULATION PART - PROBLEM DESIGN AND
EXPERIMENTAL RESULTS

5.1 Introduction to simulation part

Presently, the chemical industry developes a wide range of products using a
number of known physical and chemical laws in its chemical and
technological processes. Quantitative and qualitative assessment should be
done on these processes, particularly in the application of automated systems
on the technological process, to ensure it is successfully managed.

Automated project management consist of several stages of which the most
important step is the detailed analysis of the production systems. Evaluation
on whether the system is in accordance with the description of its behaviour is
done through simulation calculations performed on the computer. The
calculations are based on the idea of the actual physical-chemical mechanisms,
beginning with the original materials right through a defined sequence of
events which eventually lead to the creation of the finished product with the
desired characteristics and quality. The simulation calculations could help
reveal key points of the technological process that needed modification
through optimization techniques in order to meet the requirements of quality
control with minimal production costs.

The application domain of the chemical reactions and reactors constitute
one of the backbones for interdisciplinary collaboration. In fact, the
optimization of industrial chemical processes has drawn attention in recent
years, of which the optimal design and operation of chemical reactor is one of
the most popular areas of study. The goal of this chapter is to show
semirealistic design and optimization of chemical reactors processes,
specifically of the Batch reactor and CSTR.

5.2 The main aim of chapter

This chapter's objective is to describe the implementation of optimization
parameters of the Batch reactor and CSTR and the subsequent management of
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the optimized reactors using the methods of artificial intelligence, namely
EAs. Specifically, the algorithms are used to find the optimum parameters of
the chemical reactor and model the technical requirements for chemical
reaction. These tasks can be discussed within a few points:

e Development of a mathematical model of the process of chemical
batch and CSTR reactor;

e Design optimization of the physical parameters of the reactor using
EAs, i.e. finding appropriate cost functions, including the definition
of its limitations and the implementation of the optimization using
different versions of algorithms (SOMAATO, SOMAATR,
DERan1Bin, DERan2Bin, GA, SA_Elitism, SA NoElitism);

e The design of the reactor is based on standard chemical-
technological methods and proposes a physical dimensions of the
reactor and the parameters of the chemical substances. These values
are known in this work as expert parameters. The objective of this

part of the work is to perform a simulation and optimization of the
given reactor.

e Evaluating and comparing the results obtained of each EA.

5.3 Optimization of batch reactor

5.3.1 Description of batch reactor

This work uses a mathematical model of a reactor shown in Fig. 17. From
constructional standpoint, the acts about the vessel with double side for
cooling medium and is further equipped with stirrer for mixing reactionary
mixtures.

Reactor disposes by two physical inputs. First input denoted “Input
Chemical FK” is chemical dosing into reaction about mass flow rate mi, ,
temperature 7., and specific heat c¢,, . Second input denoted “Input cooling
medium” is water drain into the reactor double side with mass flow raten, ,

temperature 7, and specific heat ¢, . This coolant further traverses among -
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jacketed through space of reaction and his total weight in this space is m,, .

Coolant after it gets off the exit reaction denoted “output cooling medium”
about mass flow raterm,, temperature 7, and specific heatc,. At the

beginning of the process there is an initial batch inside the reactor with
parameter mass m, . Reactionary mixture then has total mass m , temperature
T , specific heat c, and stirs till the time chemicals FK described by
parameter concentration a . .

This technique partially allows controlling the temperature of reaction
mixture by the controlled feeding of the input chemical FK.

The main objective of optimization is to achieve the processing of large
amount of chemical FK in a very short time. An exothermal reaction described
by relationships (5.1) — (5.3) takes place in the reactor.

In general, this reaction is highly exothermal. Hence, the most important
parameter is the temperature of the reaction mixture. This temperature must
not exceed 100°C because of safety aspects and quality of the product.

Mgy T Cope c d

Input chemical FE

I\e\:
\ _,////

iy Iy, €y my 1, .y

_ m . T\, age.c, |
Input cooling Qutput cooling
medium (water) medinm (water)

h

-
w
k iy // !

Fig. 17. Scheme Batch reactor
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5.3.2 Problem design - Non-linear model of reactor

Description of the reactor applies a system of four balance equations (5.1).
The first one expresses a mass balance of reaction mixture inside the reactor,
the second a mass balance of the chemical FK, and the last two formulate
entalpic balances, namely balances of reaction mixture and cooling medium.

Equation (5.1), in which (5.2) is represented by term “k”, is written out here
for simplified notation of basic equations.

m g = m'[t]
Mg = mlt] ay [t]+ km[t]ag [t]
. , (5.1)
Mg Cog T + AH km[t]ay [t]= K S(T[t]-T,[t]) + m[t]c, T'[¢]
mycyTyp + K S(T[t]-Ty[t]) = mycyTy[t]+ mypcy Ty[t]

_ E
k= Ae RTI (5.2)

After modification into the standard form, the balance equations are
obtained in form (5.3)

m'[t]z mFK

m g Ae_RT[t]

ag [t] = mit] a . [t]
; _Rf[t] (5.3)
pie) - PexCecTe  Ae "UAH a0 KST() | KST, 1]
mitler ¢y mitle,  mifle,
T/[t] = myTy,, KST[t] KST,[t]_ m,T,[t]

myg Myp Cy Myp Cy myp

The parameters for this reactor and initial conditions (arkg, Tvo, To, my, ... )
were specified by expert, giving physical dimensions as well as parameters of
individual chemical substances. These were used to simulate the behaviour of
this reactor. The design of the reactor was based on standard chemical-
technological methods and gives a proposal of reactor physical dimensions
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and parameters of chemical substances. These values are called in this
participation expert parameters. The objective of the work is to perform a
simulation and optimization of the given reactor.

Therefore into system equations (5.3) were instated constants:

A =219,588 s-1, E =29967,5087 J.mol-1, R = 8,314 J. mol-1.K-1, cFK =
4400 J.kg. K-1, cV = 4118 J.kg. K-1, cR = 4500 J.kg. K-1, AHr = 1392350 J.
kg-1, K =200 kg. s-3. K-1.

Next parameters, that are important for calculations are:
e Geometric dimension of the reaction: #[m] , A[m]
e Density of chemicals: pp = 1203 kg.m™ , ppx = 1050 kg.m™

e Stoicheiometric rate chemical: mp = 2,82236.mpx

5.3.3 Optimization of process parameters and the reactor
geometry

The design approach using the batch reaction system show in Fig.18. The
main aim in this example is finding the optimization of process parameters
and the reactor geometry. Here, it is a optimization of batching value 1.,
together with process parameters of the cooling medium and including also
reactor geometry and cooling area.

Tab.1 Parameters of reactor, “yellow” was optimized

Kil Kil .
My — 59T i1, STogtam m, — Kilogram m, — Kilogram
Second Second
E o Joule R Joule . 1 AH - -Joule
Mole Mole Kelvin Second Kilogram
Kilogram
Ty — Kelvin T,, — Kelvin Kelvin Second> T — Kelvin

Joule
KilogramKelvin

Crx

d — Meter

Joule
Kilogram Kelvin

h — Meter

Joule
Kilogram Kelvin

r — Meter

m — Kilogram

m,, —> Kilogram
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5.3.3.1 Mathematical problems

In this optimization was founded optimized parameters with one another
linked ,so that heat transfer surface, volume, and hence also mass mixtures of
reaction was mutually in relation. Heat transfer surface S has relation:

S =2mrh + mwr’ (5.4)
Where 7 is radius and # is high of the space reactor (see Fig.15)
Volume of vessel of rector applies to relation:
V =7xr’h (5.5)

Total mass of mixtures in the reaction is initial batch inside the reactor with
parameter mass m, a mass “input chemical FK” m,, , that:

m=m, + Mg (5.6)
The stechiometric ratio is given by (5.7).
my, =2,82236m,, (5.7)

Total volume of mixtures in the reaction equal sum of volume initial
mixtures in the reaction and volume of FK:

p

m
V=V, 4V =—2+ 28 (5.8)

» P rx

The relationship between the optimized volume of reactor and the mass of
added chemical FK is given by (5.8). Then substituting to (5.7) gives the mass
of the initial batch in the reactor.

_ pppFKV
2,82236 p +p,

mFK

(5.9)

In this example, the optimization was then added parameter thickness d of
vessel, which have relation that:

My, = p,Sd (5.10)
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5.3.3.2 The Cost Function (CF)

In this optimization the point was to minimize the area arising as a
difference between the required and real temperature profile of the reaction
mixture in a selected time interval, which was the duration of a batch cycle.
The required temperature was 97°C (370.15 K). The cost function that was
minimized is given in (5.11):

funi = o= 1] s.11)

Where:  w - control point, 7 — temperature

The CF has been calculated in general from the distance between desired
state and actual system output.

5.3.3.3 Parameter settings

The control parameter settings have been found empirically and are given
in Tab. 2 (SOMA) and Tab. 3 (DE). In Tab. 4 and Tab. 5 are parameters
setting for GA and SA. The main criterion for this setting was to keep the
same setting of parameters as much as possible and of course the same number
of cost function evaluations as well as population size (parameter PopSize for
SOMA, GA and NP for DE). Number of optimized reactor parameters and
their range inside represents in Tab. 6.

Tab.2 SOMA parameter setting

A
PathLength 3
Step 0.41
PRT 0.1
PopSize 20
Migrations 50
MinDiv -1
Individual Length 6
CF Evaluations 6951
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Tab.3 DE parameter setting

A
NP 20
F 0.9
CR 0.2
Generations 200
Individual Length 6
CF Evaluations 4000

Tab.4 GA parameter setting

A
PopSize 20
MutationCostant 0.2
Generations 200
Individual Length 6
CF Evaluations 4000

Tab.5 SA parameter setting

A
PocetCastic 2
diameter 0.5
kmax 66
Tmin 0.0001
Tmax 1000
alfa(cooling factor) 0.8
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Tab.6 Optimized reactor parameters and their range inside which has been
optimization done

Parameter Range

ity [kg.s™'] 0—500

r [m] 0.3-3.0

h [m] 0.5-3.5

T, [K] 273.15-323.15
m, [kg.s'] 0-10

d [m] 0.03-0.1

5.3.3.4 Experimental Results

Due to the fact that EAs are partly of stochastic nature, a large set of
simulations has to be done in order to get data for statistical data processing.
Four algorithms (SOMA, DE, GA and SA) have been applied 100 times in
order to find the optimum of process parameters and the reactor geometry. All
important data has been visualized directly or/and processed for graphs
demonstrating performance of four algorithms. Estimated parameters and their
diversity (minimum, maximum and average) are depicted in Fig. 18 - Fig. 19.
From those pictures it is visible that results from four algorithms are
comparable. For the demonstration are graphically the best solutions show in
Fig. 20 — Fig. 26 of items (b), (d), (f), (h). There is shown time dependence of
processes parameters from four algorithms. The best values of parameters
setting are recorded in Tab.7 & Tab. 8. All one hundred simulations diversity
(minimum, maximum and average) were described from Tab. 9 to Tab. 15 for
each versions of four algorithms. On Fig. 20 — Fig. 26 are for example shown
records of all 100 simulations and the best solutions of all 100 simulations
(Fig. 20-21 for SOMA, Fig. 22 — 23 for DE, Fig. 24 for GA and Fig. 25-26
for SA).
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Tab.7 The best values of optimized parameters by SOMA, DE

Parameter SOMAATO SOMAATR | DERanlIBin | DERan2Bin
M e [kg.s_l] 0.0226579 0.0370397 0.225063 0.135087
r [m] 0.302427 0.496691 0.195776 2.50725
h [m] 3.12646 2.46924 0.83969 0.715263
T, [K] 319.286 311.758 296.179 318.115
m, [kg.s_l] 5.58697 9.57913 9.35465 9.431
d [m] 0.0474563 0.0379435 0.030377 | 0.0583956

Tab.8 The best values of optimized parameters by GA, SA

Parameter GA SA_Elitism | SA NoElitism
riy [kegs'] | 0.00417218 | 0.187008 0.519387
r [m] 2.58293 2.51294 2.84268
h [m] 3.40438 0.858557 2.76458
T, [K] 310.944 314.657 319.494
m, [kg.s'] 5.09912 9.02945 6.56782
d [m] 0.0315134 0.0597223 0.0918064

Parameter diversity for repeated 100 times simulations

Tab.9 Estimated parameters for DERand1Bin

Parameter Min Avg Max

iy [kgs'] | 000973292 | 0 157858 | 0.467508
r [m] 0.360715 1.80667 2.97025
h [m] 0.506418 1.79237 3.47477
T, [K] 293.29 306.98 322.669
i, [kg.s'] 5.32214 9.31932 9.99522
d [m] 0.0300719 | 0.0391487 0.078392
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Tab. 10 Estimated parameters for DERand2Bin

Parameter Min Avg Max
i kgs'] | 09928572 1 0133546 | 0.551649
r [m] 0.328569 1.48296 2.99652
h [m] 0.527274 1.96553 3.48392
T, [K] 293.185 306.886 323.001
m, [kg.s_l] 0.382172 8.31582 9.99879
d [m] 0.0300549 | 0.0440286 | 0.0941844
Tab.11 Estimated parameters for SOMAATO
Parameter Min Avg Max
Tty [kg.s_l] 0.0006463 0.0289002 0.126721
r [m] 0.3 0.719769 2.38758
h [m] 0.500022 | 1.22914 3.29516
T, [K] 293.52 308.434 322.923
i, [kg.s'] 2.91889 8.84481 9.99993
d [m] 0.0390451 0.0595827 0.0987916
Tab. 12 Estimated parameters for SOMAATR
Parameter Min Avg Max
Vit [kg.s_l] 0.0125992 0.0962730 0.378352
r [m] 0.321836 1.28136 2.88948
h [m] 0.501199 | 1.76971 3.47737
T, [K] 293 .444 303.046 322.487
m, [kg.s'] 1.66669 9.53494 9.99987
d [m] 0.0360146 0.0348627 0.093981
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Tab.13 Estimated parameters for GA

Parameter Min Avg Max
iy [kgs'] | 0.0041721 | 0.362735 | 1.4908
r [m] 0.308429 2.20758 2.98134
h [m] 0.673105 2.2323 3.48275
T, [K] 293.253 308.797 323.114
i, [kg.s'] 0.234471 | 5.14055 9.96397
d [m] 0.0303933 | °-%%°272 1 0.0995752
Tab.14 Estimated parameters for SA_Elitism
Parameter Min Avg Max
e kgs'] | 00027408 | 0.25735 | 0.978476
r [m] 0.382136 2.12841 2.9857
h [m] 0.570715 2.25282 3.47805
T, [K] 293.557 309.318 322.894
iy kes'] | 0098177 | 5 77572 | 9.99886
d [m] 0.0320338 0.0696109 0.0994636
Tab.15 Estimated parameters for SA_NoElitism
Parameter Min Avg Max
M, [kg.s™'] 0.0176978 | 0.315186 | 1.19071
r [m] 0.506012 2.1492 2.99712
h [m] 0.513602 2.30953 3.49055
T, [K] 293.282 306.615 322.332
m, [kg.s'] 0.0015723 | 5.27791 9.90747
d [m] 0.0300534 0'0633021 0.0994389
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Mass of muxture processes in reactor — All Solutions

Ilass of mixture processes in reactor — Best Solutions
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Nlass of mixture processes in reactor — All Solutions
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Ilass of mixture processes in reactor — ALl Solutions
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Nlass of mixture processes in reactor — A1l Solutions

Nlass of mixture processes in reactor — Best Solutions
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5.3.3.5 Discussion to the results optimization

This project of thesis has presented a systematic procedure to derive a
solution model for operation of a dynamic chemical reactor process. The
results produced by the optimizations depend not only on the problem being
solved but also on the way how to define a given function. All simulations
were repeated 100 times for each EA with the same initial conditions for each
simulation. In total, 2800 (7 algorithmsx4 case studiesx100 repeated
experiments) independent simulations were conducted of real-time
optimization of Batch reactor on Power Mac G5 Quad 2.5 GHz with software
Grid Mathematica®.

The differences between four methods SOMA, DE, GA and SA are best
seen in Tab.6, Tab. 7 and Tab.8. The first part shows the parameters of batch
reactor designed by an expert , and the second part shows the parameters
obtained through static optimization.

Calculation was 100 times repeated and the best, worst and average result
(individual) was recorded from the last population in each simulation. All one
hundred triplets (best, worst, average) were used to create Fig. 18 and Fig.19.

Four algorithms (SOMA, DE, GA, SA) have been applied 100 times in
order to find the optimum of process parameters and the reactor geometry. The
primary aim of this comparative study is not to show which algorithm is better
or worse. But in this investigation, the results from the outputs of all
simulations are depicted in Fig. 22-26 show that evolution SOMA represents
the best solution from actual simulation more than DE, GA and SA. Based on
data from all simulations, four comparisons can be done. From parameter
variation of view, the estimated parameters depicted in Fig.18 & Fig.19 show
that four algorithms are comparable in performance (with small deviations).

From the graphs, it is evident that the courses of SOMA algorithm are more
densities in a thin spectra and not far from the start of mass axis (see Fig. 20a).
Only few values drifting out of the spectra. From these results we may
conclude, that SOMA has much better convergence than DE, GA, SA
algorithm (see Fig.20 - Fig.26). Or for better overview of comparison
between four algorithms, I have chosen processes temperature of reactionary
mixture 7, show in Fig. 27
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Fig. 27. 100 simulations for T

In Fig. 27 we can see the process parameters temperature 7 simulation by
SOMA were stability more than other algorithms (concretely, in this

experimental problem of Batch reactor).

From the obtained results, it is possible to say that all simulations give
satisfactory results and thus evolutionary algorithms are capable of solving

this class of difficult problems and the quality of results does not depend

only on the problem being solved but they are extremely sensitive on the

proper definition of the cost function, selection of parameters setting of

evolutionary algorithms.
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5.3.4 Optimization of Continuous stirred tank reactor
5.3.4.1 Mathematical problems

Consider a CSTR with the first order consecutive exothermic reaction
according to the scheme A—%3>B—2 3C and with a perfectly mixed

cooling jacket. The model CSTR show in Fig. 28. Using the usual

simplifications, the model of the CSTR is described by four nonlinear
differential equations.

dc 0, 0,
a (V_k] e G
dC Qr Qr
dtB :—(V +k2JCB +kch +7035 (513)
dT h 0 AU

r=—t = (T, -T)+———(T.-T
dt (pcp)r V,: ( " r) Vr(pcp)r( ‘ r) (514)
dT AU

ey AY 7 (5.15)
ai V. V.(pc,), '

@y:Ci» Lp0
< ns
1 u_.\
T
Qc 10 ] I:'
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Fig. 28. Continuous Stirred Tank reactor
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with initial conditions ¢ ,(0)=c’,, c,4(0)=c,, T.(0)=T"and T (0)=T. Here, ¢
is the time, ¢ are concentrations, 7 are temperatures, V are volumes, p are
densities, ¢, are specific heat capacities, Q are volumetric flow rates, A, is the
heat exchange surface area and U is the heat transfer coefficient. The
subscripts are denoted (.)r for the reactant mixture, (.)c for the coolant, (.)i for
feed (inlet) values and the superscript (.)s for steady-state values. The reaction
rates and the reaction heat are expressed as

- F.
ky =ko, eXP(R—T’j J=12 (5.16)

r

h,=hkc,+hk,cg (5.17)

where ky are pre-exponential factors, E are activation energies and / are
reaction entalpies. The values of all parameters, feed values and steady-state
values are given in

Tab. 16 Parameters, inlet values and initial conditions

Vi=12m’ 0,=0.08 m’min”'
Ve=0.64m’ 0. =0.03 m’min”’
pr=985kgm” cpr=4.05 kI kg 'K

0. =998 kg m™ cpe =418 kI kg 'K
A,=55m’ U=43.5kJ m min"'K!

kio=75.616 10" min™
kyo=1.128 - 10'® min™
hi=4.8 10* kJ kmol

E/R=13477K
E)/ R=15290 K
hy=2.2"10* kJ kmol

cai=2.85 kmol m™

cgi = 0 kmol m>

T.=323K T =293 K
ca® = 0.1649 kmol m™ cg® = 0.9435 kmol m™
T =350.19 K T.°=1330.55 K
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5.3.5 Static optimization reactor

In this model of CSTR the parameters were optimized include: the
parameters of volumetric flow rates of the reactant mixture and the coolant O,
0., the parameter of concentration for feed values ca; and temperature reactant

mixture and colant 73 Ty,

Tab. 17. Parameters of reactor, “yellow” was optimized
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5.3.5.1 The Cost Function (CF)

In this research, the objective was to minimize the area arising as a
difference of the process between the observed and real selected time interval,
which was the duration of a CSTRs cycle. With the inlet concentration cp; = 0
kmol m™, the cost function that was minimized is given in (5.17). In the cost
function, we multiplied by (-1) in order to transfer from maximization into

minimization.

fusr =) ]
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5.3.5.2 Parameter settings

The control parameter settings for simulation by EAs of model CSTR have
been found empirically and are given in Tab. 18 for SOMA. In this model o
CSTR, I have changed number of migration from 50 to 10 and the parameters
setting of algorithms DE, GA and SA are the same in the previous part of
simulation for model of Batch reactor. Number of optimized reactor
parameters and their range inside represents in Tab. 19.

Tab.18 SOMA parameter setting for simulation of CSTR model

A
PathLength 3
Step 0.1
PRT 0.1
PopSize 20
Migrations 10
MinDiv -1
Individual Length 6
CF Evaluations 5182

Tab.19 Optimized reactor parameters and their range inside which has
been optimization done

Parameter Range
Q. [m’min™] 0.015-0.1
O: [m’min™'] 0.05-0.012
cai [kmol m'3] 2-35
T [K] 303 — 333
T.i [K] 288-303
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5.3.5.3 Experimental results

The best values of parameter setting are recorded in Tab. 20 & 21 of each
algorithms SOMA, DE, GA, SA. Then, four algorithms have to been applied
100 times in order to find the optimum of process parameters and get data for
statistical data processing. All important data has been visualized directly

or/and processed for graphs demonstrating performance of this algorithms.

Estimated parameters and their diversity (minimum, maximum and average)
are depicted in Tab. 22 - Tab. 28. From those figures of parameter variation, it
is visible that results from each of evolutionary algorithms are showed detail
“optimal points”. For the demonstration are graphically the best solutions

shown in Fig. 29 & 30. On Fig. 31 - Fig. 34 are for example shown records of

all 100 simulations of each algorithm.

Tab. 20. The best values of optimized parameters by SOMA, DE

Parameter SOMAATO SOMAATR DERan1Bin | DERan2Bin
0. [m’min™'] 0.071157 0.0822537 |[0.0761633 |0.0922708
O: [m’min™'] 0.119602 0.119802 | 0.119109 | 0.118459
cai [kmol m™] 2.46777 2.26616 2.26559 3.46583
Ty [K] 321.212 321.326 321.124 321.808
T. [K] 299.741 301.983 301.767 302.244

Tab. 21. The best values of optimized parameters by GA, SA

Parameter GA SA_Elitism | SA NoElitism
O.[m’min'] | 0.0566459 | 0.0958446 | 0.0176245
O; [m’min™'] 0.107929 0.110968 0.111787
cai[kmol m®] | 2.222009 2.12066 2.38449
Ty [K] 319.325 323.437 314.535
T, [K] 302.563 297.987 301.052
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Tab.22 Estimated parameters of version SOMAATO

Parameter Min Avg Max
O. [m’min™"] 0.0171178 | 0.0750863 0'0999976
O: [m’min™'] 0.103969 | 0.117765 | 0.119991
cAi[kmolm'3] 2.01516 2.76918 3.48831
T [K] 314.729 320.984 323.913
T [K] 294.149 300.861 302.986

Tab.23 Estimated parameters of version SOMAATR

Parameter Min Avg Max
O [m’min™'] 0.0152446 | 0.0713548 | 0057742
O: [m’min™'] 0.101533 0.115791 | 0.119991
cai [kmol m™] 2.00351 2.70686 3.4979
T;i [K] 313.8 320.759 326.271
T [K] 290.142 300.467 302.924

Tab.24 Estimated parameters of version DERanlBin

Parameter Min Avg Max
O [m’min™'] 0.0165912 | 0.0771171 | 0090742
O: [m’min™] 0.107223 0.117691 | 0.119999
cai [kmol m™] 2.00871 2.70933 3.49065
T;i [K] 314.373 321.107 325.252
T [K] 291.929 300.735 302.959
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Tab.25 Estimated parameters of version DERan2Bin

Parameter Min Avg Max
Q. [m’min™'] 0.0150441 | 0.076943 | 0.099324
O: [m’min™"] 0.111014 | 0.117478 | 0.119987
cai [kmol m™] 2.00442 2.76267 3.4904
Ty [K] 314.342 320.982 323.118
T [K] 295.49 301.138 302.939
Tab.26 Estimated parameters of version GA
Parameter Min Avg Max
O, [m’min™] 0.0152769 | 0.0706135 | 0 0774>%
O; [m’min™'] 0.105348 0.115416 | 0.119818
cai [kmol m™] 2.00811 2.69678 3.49589
T [K] 314.177 320.645 324.491
T [K] 290.091 299.845 302.908

Tab.27 Estimated parameters of version SA_Elitism

Parameter Min Avg Max
O, [m’min™] 0.0153787 | 0.0720453 | 0-097%4¢
O: [m’min™'] 0.108632 | 0.115819 | 0.119973
cai [kmol m™] 2.00362 2.82362 3.47147
T [K] 313.761 320.712 324.473
T, [K] 292.07 300.187 302.983

-78 -




Tab.28 Estimated parameters of version SA_NoFElitism

Parameter Min Avg Max
O, [m’min™] 0.0162479 | 0.0733041 | 0077887
O, [m’min™] 0.103081 | 0.115918 | 0.119989
cai [kmol m™] 2.0153 2.7703 3.48319
T [K] 314.29 320.966 | 324.916
Tu [K] 292.525 300.063 | 302.977
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5.3.5.4 Discussion and conclusion

Just as in the case mentioned in the previous section for optimization of
batch reactor, all simulations were repeated 100 times for each EA with the
same principle simulation evolutionary algorithms. The parameters setting for
EAs is the same in the case of optimization for bacth reactor, only I have
changed number migrations of parameters setting of SOMA from 50 to 10 in
order to get speedier simulation. The optimization by the cost function with
concentration ¢z show in (5.17) and time of each simulation is 200 seconds.

Calculation was 100 times repeated and the best, worst and average result
(individual) was recorded from the last population in each simulation. All one
hundred triplets (best, worst, average) were used to create Fig.29 & 30.

Compared with model of Batch, that the results from optimization on
CSTR have obtained nearly resemblance. Estimated parameters and their
diversity (minimum, maximum and average) are near approximately (see in
Tab. 22-28). From the graphs of processes parameters for 100 simulations for
c4, cg, T, T, (see Fig. 31-34) of each algorithm, it is very difficult to determine
which algorithm is better. There are only small differences between them. On
optimization of SOMA and DE, it is evident that the courses of algorithm are
densities in a thin spectrum more than GA and SA. Alongside it, sometime
few values drift out of the actual solution. But by the repetition of simulation
was recorded the best result. On Fig. 35, the process of parameters by SOMA
algorithm obtained best solution for the optimization.

Specially, there is difference between from both chosen model of chemical
reactors (batch and CSTR). From investigation on optimization of process
parameter of CSTR we can see, that four evolutionary algorithms (SOMA,
DE, SA, GA) have obtained optimized results on very approximate value.

From these results we may conclude, that the quality and course of the
evolutionary processes can be influenced by many factors, notably: setting
parameters, definition of cost function, number of generations.... Moreover
the results produced by the optimization process depends on the problem
being solved, e.g. dynamical systems (mathematical and physical model).
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6 PREDICTIVE CONTROL

During the last decade, control scientists and experts have been thinking
and given ideas in order to explore future directions of control theory and its
applications. In addition, recent advances in computer technology, modern
control techniques, and computational intelligence have opened a path for
application of new generations of advanced process control algorithms
(Takatsu et al., 1998; VanDoren, 1998).

Predictive control by mean evolutionary algorithms is very robust method,
particular in system with many disturbing effects and failures. It's also a
powerful tool in the search for optimal solutions to very complex problem in
the field of control process. The basic idea is to find a set of action that lead to
the principle optimization with required value. The block prediction procedure
is shown in Fig. 36.

w

-—>
; k_, ! ; ; 1 time
k-1 k+l k+N, k+N,
u(t) _,_I
history future
NLI
N»
Model of system
. ¢
—_—>
Algorithms u y
optimization System ——

Fig. 36. Principle of predictive control by evolutionary algorithm
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In block ,,Algorithms optimization® are evolutionary algorithms, the
predictive control is selected by minimising the commonly cost function J:

N, N,
J(N, Ny, N ) = D [k + ) =wik+ )+ D ADAuk+ j =1 (6.1)
J=N j=1
Here y is the output of system, u is actuating signal, w is the controlled
value prediction, Au is the control value change, £ is the control step, N, is the
lower and N, is the upper output prediction horizon, Nu is control horizon and
A is a weight sequence control of action.

Block "system" is a control process and block "model system" is used
to predict its behaviour, it often represented in the appropriate algorithms of
artificial intelligent, commonly artificial neural network.

Predictive control proceed that when change of required value running
optimization algorithms in conjunction with model of system and minimising
cost function (6.1) is found optimal action, which is for chosen system.

6.1 Principle simulation

In simulation of predictive control were used non-linear models, which
were described in “problem design” of batch reactor and “mathematical
problems” of CSTR. It was used such as block “system” and “model of
system”. The principle simulation shown in Fig. 37.
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Fig. 37. Principle simulation

6.2 Optimization of CSTR value with prediction control

In this part of thesis, the temperature of CSTR reactor were chosen for
prediction control. On this optimization the point was to minimize the area
arising as a difference between the required and real temperature profile of the
reaction mixture in a selected time interval, which was the duration of CSTR
cycle. The cost functions that were minimized is given in (6.2) for T,
temperature and (6.3) for 7.

t

S = 2w =T [t]|

(6.2)
=0

fcost = Z|W2 _Tc[t:H
t=0

(6.3)
Where w; w; are required values (control points)
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For static optimization of CSTR value with prediction control we have
added required value for simulation of temperature 7, and 7. belong
following below Tab.29 & 30. The range inside of temperature 7. and 7; for
predictive is <273.;380> [K ].

Tab. 29 Range inside for predictive control of CSTR

Parameter Range
T [K] 273 - 380
T. [K] 273 -380

Tab. 30. Parameters setting for predictive control of CSTR

Time Required value w; Required value w,
simulation(s] JorT [K] SforT [K]
0-80 360 340
80 - 150 340 320
150 - 200 320 300
200 - 300 370 370

Simulations were conducted so that the first minimising cost function using
the prediction horizon is found within the optimal action and intervention that
was held for the control horizon. After that was calculated new intervention
and has been applied during control horizon etc. till to do filling of reactor.
For the CSTR reactor was selected: N; = 1, N, =300 a N, = till to change.

6.3 Results of predictive control

On investigation of predictive control chemical reactor CSTR, I have
chosen one basic version of each algorithm to optimize process parameters
reactor. Concretely: version SOMAATO for SOMA; version DERan1Bin for
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DE; version SA Elitism for SA. The evolutionary algorithms have been
applied 100 times and the evolutionary processes of four algorithms show in
follow graphs from Fig. 38 - 41.
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Fig. 38. Predictive control temperatures T, and T, of CSTR by SOMAATO,
“red” was required value

-92 .




Processes Concentration ¢4

Process concentration cp

25F 20 B
20
— L5p =
= =
= o
<
Lo}
0.5F
0.0 v I s L L 1 14 0 50 100 150 200 250 300
0 20 100 150 200 220 oo t[s]
tfs]
Reyquired value for temprature 7, of product Temperaturs T, [t][K]
3F ' ' ' I R A p ]
350 [ ] 360
_ 3s0f 1 g 350
B3 saf = 340k
30l 330F
30f L ] 320, . s s . . 3
0 50 100 150 200 250 300 0 30 100 150 200 250 300
tis) tl=]
Required value for 7; of product Temperaturs T [t][K]
370 T T T T
3T0F ' ?
w0 f 360
50 330
30 2340
& X] N = 330
0 L 320 L
310 310
300 |— ] 300L, ‘ : : : : -
0 Sil lliﬂ 15IIl Zlill 25'0 360 0 30 100 150 200 250 300
t[=]

tis)

Fig. 39. Predictive control temperatures T, and T, of CSTR by DERanlBin,
“red” was required value

-903 -




Processes Conceniration c g

. . . N
100 150 200 250

Joo

eglt]

Process conceniration ¢ »

2.0

LE

Lo &

0.5

L L L L 1
100 150 200 250 300

1] =0
ils] Hs]
Required value for temprature 7, of product
M T T T T T T
360 [ B
=)
350 f i
= &
3
30 \—‘
330}
L L L 1 1 1 L
R0L L L h 1 . 1 0 50 100 150 200 250 300
0 50 100 150 200 250 300
tfs]
tis)
Required value for 7, of product Terperature T[tTK]
I T T T T T T j j = 4
360 F 360 F
350 F
= MO E 3401
= =
a1 B
3201
320¢ \—‘
3W0F ol
300 E, X ) : i L ] L L L L 1 L L
0 50 100 150 200 250 300 0 50 100 150 200 250 300
16s) =]

Fig. 40. Predictive control temperatures T,
was required value

-94 -

and T. of CSTR by GA, “red”




Processes Conceniration o4 Process concentration ¢z
3
=
e— |
0 50 100 150 200 250 Joo
1fs]
Required value for ure 7y of product Teraperature T[tTE]
FTOF T 70k
Ja0 - B 360
= 30 E 350 B
= o
i =
340 | \—‘ 540
sa0f 330 F
a0k
320, \ , h f . .1
1] 50 100 150 200 250 300 L . . L - L L
1} 50 100 150 200 250 300
is)
=]
Required value for 7. of product Terperature T[tTK]
[ ; ' ' ' ' '
360 F w60
¥S0E
= 340 é 340 -
= 30} &
s20f \—‘ 320 +
Jlof
300 F
300 . . h ! . . L . L L ! . .
1} 50 100 150 200 250 300 ] 50 100 150 200 250 300
tis) ts]
d) Evolutionary process for T,

Fig. 41. Predictive control temperatures T,

and T, of CSTR by SA_Elitism, “red”

was required value

-95.




6.4 Discussion and conclusion to the results of predictive
control

The work here is performed through predictive control on non-linear

system using evolutionary algorithms SOMA, DE, SA GA. Based on the

achieved results it can be stated as follows:

EA is used successfully on predictive control of the chemical
reactors' processes;

In the previous section about part optimization process of
chemical reactions, it cannot be fully confirmed if any one of
the chosen algorithm produced better results than the others.
However, from the image results shown above, it may be
concluded that SOMA and DE algorithms are best for the
predictive control (at least in this case). Specifically, it can be
seen in figures 38-41 items (c¢) & (d) for evolutionary process
Tr and Tc. All 100 simulations of SOMA and DE have
obtained very approximate values, which evidently prove that
the courses of algorithm are densities in a thin spectrum and
they meet the required value more closely than GA and SA; and

From the results obtained, it is found that the process of
concentration c4 was in inverse ratio to the process
temperatures. When temperature of the reactant mixture and
coolant increased, temperature of concentration c4 decreased.
And when the temperature was stable, the concentration too
was stable. Only on the process of concentration ¢z did it
appear to be failure. From interval time simulation 150-200,
process of ¢z decreased in direct ratio to the temperatures, and
from time simulation 200, failure appeared.

Finally, it can be asserted that EAs are certainly and completely capable of

controlling simple faulted system. Nevertheless, this topic deserves further
and more detailed study that goes beyond the scope of the work presented

here.
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7 RESULTS OF DISSERTASION THESIS AND
FURTHER RESEARCH PERSPECTIVE

7.1 Evaluation of the objectives

This thesis has identified six targets and the achievement of those targets
are discussed here. The evaluation of each objective is contained in the
information provided at the end of each chapter where the respective
evaluation is carried out. Specifically:

a The introduction of chemical engineering process, application
domain of chemical reactions and reactors and analysis of chosen
dynamic systems

The objective has been achieved. In the chapter "Chemical Engineering
process" -- it is raised that this is the important period to analyse industrial

producing system, especially of chemical engineering process in the
industries. This chapter confirms that the application domain of chemical
reactions and reactors constitute one of the backbones for interdisciplinary
collaboration. In fact, the optimization of industrial chemical processes has
drawn attention in recent years, and designing the optimal parameters of
reactor and its control system is one of the most difficult tasks of process
engineering. Here, the thesis uses as model case, two chemical reactors,
namely Batch and CSTR (known as an expert proposed), for optimization.
Finding the optimum parameters of the chemical reactor and the exact
procedure will greatly aid in drawing up proposal for technological equipment
that can meet the economic and quality demands placed on an industrial
operation.

Q Analysis of evolutionary algorithm, principle simulation and
selecting new methods of algorithms, from artificial intelligence to
optimization and predictive control chemical reactor.

The objective has been achieved. Chapter 4 analysed and described very

concretely about EAs and their principle in use. A brief survey of Scoping
and Screening chemical reaction networks using stochastic optimization is
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also raised in this chapter. Four algorithms from the field of artificial
intelligence -- Differential evolution (DE), Self-organizing migrating
algorithm (SOMA), Genetic algorithm (GA) and Simulated annealing (SA) --
are used in the investigation. In the first section, EAs are used investigate and
optimize the batch reactor to improve its parameters. Consequently, EAs are
used to model the technical requirements for chemical reaction. The second
section presents the optimizing of chemical engineering processes, particularly
those in which the evolutionary algorithm is used for static optimization and
control of Continuously-stirred tank reactors (CSTRs).

Q Demonstrating successfully on simulation by mean evolutionary
algorithms, the problem design model of chemical reactors and the
practical method to optimize chemical processes.

The objective has been achieved. In chapter 5 "Simulation part" the
optimization tool has been described and four EAs were selected, especially
for a certified high robustness and the ability to successfully solve complex
optimization problems. Mathematical model of the process, established on the
basis of balance equations, coupled with other important relationships derived
for the real reactor, are used to conduct simulations of experts to set the
reactor for optimization. The aim of this work was to use artificial
intelligence methods, namely evolutionary algorithms, for static optimization
of chemical reactor in order to improve the quality of its behaviour.

a Demonstrating the use of designed algorithms global optimization
on the predictive control chemical processes and comparing
between each selected algorithms.

The objective has been achieved. Here it is demonstrated that methods of
artificial intelligence, mainly EA, are successfully applied to predictive
control of a chemical reactor. The optimized reactor is used in a simulation
with prediction control by evolutionary algorithms and the results are

presented in graphs (see chapter 6).
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7.2 General conclusion and further research perspective

In this thesis, evolutionary algorithms are used for static optimization of
chemical reactors in order to improve the quality of their behaviour in the
uncontrolled state and in predictive control. The optimization tool has been
described and four EAs (SOMA, DE, SA and GA) are chosen, especially for a
certified high robustness and the ability to successfully solve complex
optimization problems of chemical reactors.

The optimization and control of the chemical reactors have been performed
in several ways, each one for a different set of reactor parameters or different
cost function. From the results obtained, it is possible to say that all
simulations give satisfactory results and thus EAs are capable of solving this
class of difficult problems. The quality of the results depends not only on the
problems being solved, they are also extremely sensitive to the proper
definition of the cost function and the selection of parameters setting of
evolutionary algorithms.

In fact, methods of artificial intelligence, mainly evolutionary
computational techniques, should be used in the difficult tasks of analysing
and optimizing dynamical systems, especially of chemical reactors. The main
aim of the dissertation is focused on examples of EA implementation on the
methods for chemical reaction that could be robust and effective to optimize
difficult problems in the field of chemical engineering, with the intent to
obtain better results, i.e. efficiency in reaching the desired stable state and
superior stabilization.

The basic optimization process presented here is based on a relatively
simple function. Nevertheless, there is no problem in defining more complex
functional including as subcriteria, e.g. stability, costs, time-optimal criteria,
controllability and etc., or their arbitrary combinations; unless the experiment
is limited by technical issues while searching for optimal parameters.

Future research of evolutionary algorithms SOMA, DE, GA and SA is still
ongoing. Based to all results obtained from this current research, it is
suggested that the main activities should be focused on the expanding of this
study for other chemical dynamic systems.
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It can be concluded from the results of this dissertation that EAs have
shown great potential and ability to solve complex problems of optimization,
not only in the fields of chemical engineering process but also in diverse
industrial fields.
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