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ABSTRACT 

Chemical process control requires intelligent monitoring due to the 
dynamic nature of the chemical reactions and the non-linear functional 
relationship between the input and output variables involved. Chemical 
reactors is one of the major processing unit in many chemical, pharmaceutical 
and petroleum industries as well as in environmental and waste management 
engineering. In spite of continuing advances in optimal solution techniques for 
optimization and control problems, many of such problems remain too 
complex to be solved by the known techniques.  

The main aim of this thesis is to show that such a powerful optimizing tool 
like evolutionary algorithms (EAs) can be in reality used for the optimization 
and predictive control of chemical processes. Four algorithms from the field of 
artificial intelligent - Differential evolution (DE), Self-organizing migrating 
algorithm (SOMA), Genetic algorithm (GA) and Simulated annealing (SA) 
are used in this investigation. In the first section EAs were used to 
investigative and optimize of batch reactor to improve its parameters. 
Consequently, EAs are used to model the technical requirements for chemical 
reaction. The second section presents the optimizing of chemical engineering 
processes, particularly those in which the evolutionary algorithm is used for 
static optimization and control of Continuous stirred tank reactors (CSTRs). 

The optimizations and control chemical reactors have been performed in 
several ways, each one for a different set of reactor parameters or different 
cost function. The optimized and predictive control chemical reactor processes 
were used in simulations with optimization by evolutionary algorithms and the 
results are presented in graphs. Finally, experimental results are reported, 
followed by conclusion. 

Keywords: Optimization, Simulation, Evolutionary Algorithms, Batch, 
CSTR. 

 



RESUMÉ 

Vzhledem k dynamice chemických reakcí a nelinearitě funkčních vztahů 
mezi vstupy a výstupy proměnných, vyžaduje řízení chemických procesů 
inteligentní kontrolu. „Chemický reaktor“ je jednou z hlavních procesních 
jednotek v chemickém, farmaceutickém a petrochemickém průmyslu, stejně 
jako v inženýrství řízení odpadu a životního prostředí. Navzdory pokračujícím 
pokrokům v rozvoji technik optimalizace a problémům řízení, stále existuje 
velká část příliš komplexních problémů, které se nedají řešit klasickými 
metodami. 

Hlavním cílem této práce je demonstrovat fakt, že optimalizační nástroje, 
jakými jsou evoluční algoritmy (EA), mohou být použity pro prediktivní řízení 
a optimalizaci chemických procesů. V práci jsou použity čtyři algoritmy: 
Diferenciální evoluce (DE), Self organizing migrating algorithm (SOMA), 
Genetický algoritmus (GA) a Simulované žíhání (SA). V první části práce 
byly tyto evoluční algoritmy použity k optimalizaci parametrů dávkového 
reaktoru („batch reactor“). Následně jsou EA použity k modelování 
technických parametrů chemických reaktorů. Druhá část demonstruje 
optimalizaci chemických procesů, zvláště těch, ve kterých je použit evoluční 
algoritmus pro optimalizaci a řízení „Continuous stirred tank“ reaktorů. 

Optimalizace a řízení chemických reaktorů byla provedena několika 
způsoby, každá pro jiný vektor parametrů reaktoru nebo s rozdílnou účelovou 
funkcí evolučního algoritmu. Veškeré optimalizované procesy jsou 
demonstrovány v grafech. Závěrem práce jsou prezentovány experimentální 
výsledky a jejich zhodnocení. 

Klíčová slova: Optimalizace, Simulace, evoluční algoritmy, Batch, CSTR. 
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1 INTRODUCTION 

The optimization of dynamic process has received growing attention in 
recent years because it is essential for the process industry to strive for more 
efficient and agile manufacturing in face of saturated market and global 
competition (T. Backx, O. Bosgra 2000).  

Evolutionary algorithms such as evolution strategies and genetic algorithms 
have become the method of choice for optimization problems that are too 
complex to be solved using deterministic techniques such as linear 
programming or gradient (Jacobian) methods. The large number of 
applications (Beasley (1997)) and the continuously growing interest in this 
field are due to several advantages of EAs compared to gradient based 
methods for complex problems (Ivo F. Sbalzarini, Sibylle Muller and Petros 
Koumoutsakos 2000).  

In chemical engineering, evolutionary optimization has been applied by the 
author and others to system identification (Pham and Coulter, 1995; Moros, 
1996); a model of a process is built and its numerical parameters are found by 
error minimization against experimental data. Evolutionary optimization has 
been widely applied to the evolution of neural networks models for use in 
control applications (e.g. Li & Haubler, 1996).  

The area of reactor network synthesis currently enjoys a proliferation of 
contributions in which researchers from various perspectives are making 
efforts to develop systematic optimization tools to improve the performance of 
chemical reactors. The contributions reflect on the increasing awareness that 
textbook knowledge and heuristics (Levenspiel, 1962), commonly employed 
in the development of chemical reactors, are now deemed responsible for the 
lack of innovation, quality, and efficiency that characterizes many industrial 
designs. 

The main aim of this participation is to show that evolutionary algorithms 
(EAs) are capable of optimization on chemical engineering processes. The 
ability of EAs to successfully work with at investigation on optimization and 
predictive control of chemical reactors. 
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Firstly, a non-linear mathematical model is required to describe the 
dynamic behaviour of batch process; this justifies the use of evolutionary 
method of the EAs to deal with this process, for static optimization of a 
chemical batch reactor. Consequently, it is used to design geometry technique 
equipments for chemical reaction. The method was used to optimize the 
design of the growth chamber, and was found to be in good agreement with 
the observed growth rate results. The second one was chosen for optimization 
of a continuous stirred tank reactor (CSTR). On the next part, we have used 
EAs to predictive control of chemical process of rectors too. 

The following and the biggest part describes the results of optimization of 
chemical process. The optimizations and control chemical reactors have been 
performed in several ways, each one for a different set of reactor parameters or 
different cost function. The optimized reactor and predictive control were used 
in a simulation with optimization by evolutionary algorithms and the results 
are presented in graphs. 

This thesis is followed by a brief description of the chemical reactors and 
used EAs. Evolutionary algorithms are then studied, and finally experimental 
results are reported, followed by conclusion. 
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2 THE AIMS OF DISSERTATION 

This dissertation aims to show how methods of artificial intelligence--
mainly evolutionary computational techniques--can be used in dynamical 
systems of chemical reactors, particularly for the complex tasks of analyses 
and optimization of predictive control.  The main focus here is on the 
examples of evolution algorithms (EAs) implementation in methods for 
achieving stable chemical reaction.  The purpose is to obtain better results, 
meaning efficiency in reaching the desired stable state and superior 
stabilisation, through having robust and effective optimization of predictive 
control.  

EAs is used to determine the optimal settings for the adjustable parameters, 
which are then used to achieve the desired state or behaviour of the chemical 
reactors' process.  As noted in the results and conclusion of the presented 
project, EAs are able to find the optimal solution for the selected control 
technique.  Thus avoiding complicated mathematical analysis of chemical 
process to find the settings for control method.   

Research on this thesis is concerned with the field of optimization of 
chemical engineering through EAs.  The main purposes and goals of the 
research can be summarised as thus: 

1. Introduction of the chemical engineering process, formulation 
of the mathematical problems, and the description and analysis 
of the chosen dynamic systems--more concretely those in the 
processes of a Batch reactor and a Continuous stirred-tank 
reactor (CSTR);  

2. Proposing a set of solving algorithms for the application of 
stochastic optimization, which enhances confidence in the 
optimization results, particularly in the chemical reaction;  

3. Selecting and demonstrating EAs and practical method to 
optimize the chemical process, especially of Batch and CSTR 
reactors;  
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4. Demonstrating the use of designed algorithms for global 
optimization of the predictive control chemical processes and 
comparison between each selected algorithms; and   

5. Presenting conclusions and suggesting further research 
perspective.  
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3 CHEMICAL ENGINEERING PROCESS 

3.1 General introduction 
The chemical industry produces many products by using chemical reaction 

and physical processes. To successfully realize these processes of chemical 
technology, it is necessary to make quantitative and qualitative analyses, 
especially in places where there is planned automated systems of technology 
processes control. To make the modernization of present and future processes 
purposeful, it is necessary to divide the modernization into periods. 

The first and very important period is the analyzing of the industrial 
producing system. It usually includes simulations based on real model of 
chemical-physical processes for converting input sources into output products. 
These simulations will show the important key points of the technological 
process and where necessary changes to a new control system will be able to 
significantly improve the technological process’s efficiency.  

It is possible to say generally that the key technological points are the 
chemical reactors. To design the optimal parameters of reactor and its control 
system is one of the most difficult tasks of the process engineering. The 
situation is very often complicated by the imprecise kinetic principles of 
chemical reaction, which necessitates extensive measurements of 
dependencies of input and output elements on time, temperature, pressure, and 
etc. These quite complicated kinetic models (which are usually verified by 
experimental measurements) can be simplified using different methods into 
simpler models of which known methods of control already exist. 

Notwithstanding the petrochemical industry, big attention must be paid to 
materials used in the production of macromolecular substances, i.e. plastic 
materials. Macromolecular substances are created from two kinds of reactions 
– polymerization and polycondensation. Algorithms must be designed to 
control these reactions, of which the majority comprises exothermic reactions 
(they produce heat). From an economic point of view, it is expected to have 
maximum efficiency of chemical reactor productivity with required quality. 
The reactor productivity depends on reacting speed, and reacting speed usually 
rises exponentially with temperature.  
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Although it may seem that the exothermal kind of reaction is a big 
advantage for us, it may not always be true due to security reasons and product 
quality (rising temperature may decrease the output product quality). The 
product quality may decrease especially in cases when the main reaction is 
followed by side reactions, their speed exponentially raised with temperature 
as well. As such, the most important parameter that has to be controlled during 
exothermic reactions is the reaction compound temperature. For this reason, 
the models presented in this work are based on enthalpy balances, with 
relevant simulations. 

Nowadays, the application domain of chemical reactions and reactors 
constitutes one of the backbones for interdisciplinary collaboration. In fact, the 
optimization of industrial chemical processes has drawn attention in recent 
years. For experimental determination of the most important parameter - this 
thesis is described and analysed process of a Batch and Continuous stirred 
tank reactors. It is hoped that the examples presented here will provide some 
appreciation of the creative process. 

 

3.2 Batch reactor 
The Batch reactor is the generic term for a type of vessel widely used 

in the process industries. Its name is something of a misnomer since vessels of 
this type are used for a variety of process operations such as solids dissolution, 
product mixing, chemical reactions, batch distillation, crystallization, 
liquid/liquid extraction and polymerization. In some cases, they are not 
referred to as reactors but have a name which reflects the role they perform 
(such as crystallizer, or bio reactor).  

The advantages of the batch reactor lie with its versatility. A single 
vessel can carry out a sequence of different operations without the need to 
break containment. This is particularly useful when processing, toxic or highly 
potent compounds. 
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3.2.1 Characteristics of batch processes 

The optimization of batch processes has attracted attention in recent years 
(Aziz  et al. 2000; Silva et al. 2003) because, in the face of growing 
competition, it is a natural choice for reducing production costs, improving 
product quality, meeting safety requirements and environmental regulations. 
Batch and semi-batch processes are of considerable importance in the fine 
chemicals industry. A wide variety of special chemicals, pharmaceutical 
products, and certain types of polymers are manufactured in batch operations. 
Batch processes are typically used when the production volumes are low, 
when isolation is required for reasons of sterility or safety, and when the 
materials involved are difficult to handle. In batch operations, all the reactants 
are charged in a tank initially and processed according to a pre-determined 
course of action during which no material is added or removed. In semi-batch 
operations, a reactant may be added with no product removal, or a product 
may be removed with no reactant addition, or a combination of both. From a 
process systems point of view, the key feature that differentiates continuous 
processes from batch and semi-batch processes is that continuous processes 
have a steady state, whereas batch and semi-batch processes do not 
(Srinisavan 2000 et al. 2002a and 2000b). 

 

Reactor Configurations  

In batch system all reactants are added to the tank at the given starting time. 
During the course of reaction, the reactant concentrations decrease 
continuously with time, and products are formed. On completion of the 
reaction, the rector is emptied, cleaned and is made ready for another batch. 

This type of operation provides great flexibility with very simple 
equipment and allows differing reaction to be carried out in the same reactor. 
The disadvantages are the downtime needed for loading and cleaning and 
possibly the changing reaction conditions. Batch operation is often ideal for 
small scale flexible production and high value, low output product production, 
where the chemistry and reaction kinetics are not known exactly. In semi-
batch operation, one reactant may be charged to the vessel at the start of the 
batch, and then the other fed to the reactor at perhaps varying rate and over 
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differing time periods. When the vessel is full, feeding is stopped and the 
contents allowed to discharge. Semi-batch operation allows one to vary the 
reactant concentration to a desired level in a very flexible way, and thus to 
control the reaction rates and the reactor temperature. It is, however, necessary 
to develop an appropriate feeding strategy. Modelling and simulation allows 
estimation of optimal feeding profiles. Sometimes it is necessary to adjust the 
feeding rates using feedback control. The flexibility of      operation is 
generally similar to that of a batch reactor system.  (J. Ingham, I.J.Dunn, 
E.Heinzle, J.E.P 2000). 

 

Heat transfer to and from reactor 

Heat transfer is usually affected by coils or jackets, but can also be 
achieved with the use of external loop heat exchanger and, in certain case; heat 
is transported out of the reactor. The treatment here mainly concerns jackets 
and coils. 

 

Fig. 1. Batch reactor with single external cooling jacket 
 

3.3 Continuous stirred tank reactors (CSTR) 
The continuous stirred-tank reactor (CSTR), also known as vat- or back 

mix reactor is a common ideal reactor type in chemical engineering. A CSTR 
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often refers to a model used to estimate the key unit operation variables when 
using a continuous agitated-tank reactor to reach a specified output.  

CSTR runs at steady state with continuous flow of reactants and products; 
the feed assumes a uniform composition throughout the reactor, exit stream 
has the same composition as in the tank. 

 

Fig. 2.  Scheme of Continuous Stirred Tank Reactor with Cooling Jacket 
 

where A is the raw material, B is the desired product, and C is an undesired 
by-product. 

 

3.3.1 Characteristics of CSTR process 

Continuous stirred tank reactors (CSTRs) belong to a class of nonlinear 
systems where both steady-state and dynamic behaviour are nonlinear. Their 
models are derived and described in e.g. (Ogunnaike and Ray, 1994), 
(Schmidt, 2005) and (Corriou, 2004).  verification can be found in (Stericker 
and Sinha, 1993).  

Chemical process control requires intelligent monitoring due to the 
dynamic nature of the chemical reactions and the non-linear functional 
relationship between he input and output variables involved. CSTR is one of 
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the major processing unit in many chemical, pharmaceutical and petroleum 
industries as well as in environmental and waste management engineering. In 
spite of continuing advances in optimal solution techniques for optimization 
and control problems, many of such problems remain too complex to be 
solved by the known techniques (Emuoyibofarhe O.Justice, Reju A Sunday, 
2008). 
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4 METHODS AND EVOLUTIONARY 

ALGORITHMS 

4.1 Introduction and a brief survey to Evolutionary 
Algorithms 

As the history of the field suggests there are many different variants of 
Evolutionary Algorithms. The common underlying idea behind all these 
techniques is the same: given a population of individuals the environmental 
pressure causes natural selection (survival of the fittest) and this causes a rise 
in the fitness of the population. Given a quality function to be maximised we 
can randomly create a set of candidate solutions, i.e., elements of the 
function’s domain, and apply the quality function as an abstract fitness 
measure – the higher the better. Based on this fitness, some of the better 
candidates are chosen to seed the next generation by applying recombination 
and/or mutation to them. Recombination is an operator applied to two or more 
selected candidates (the so-called parents) and results one or more new 
candidates (the children). Mutation is applied to one candidate and results in 
one new candidate. Executing recombination and mutation leads to a set of 
new candidates (the offspring) that compete – based on their fitness (and 
possibly age)– with the old ones for a place in the next generation. This 
process can be iterated until a candidate with sufficient quality (a solution) is 
found or a previously set computational limit is reached. In this process there 
are two fundamental forces that form the basis of evolutionary systems.  

Variation operators (recombination and mutation) create the necessary 
diversity and thereby facilitate novelty, while Selection acts as a force pushing 
quality. 

The combined application of variation and selection generally leads to 
improving fitness values in consecutive populations. It is easy (although some-
what misleading) to see such a process as if the evolution is optimising, or at 
least “approximising”, by approaching optimal values closer and closer over 
its course. Alternatively, evolution it is often seen as a process of adaptation. 
From this perspective, the fitness is not seen as an objective function to be 
optimised, but as an expression of environmental requirements. Matching 



- 26 - 

these requirements more closely implies an increased viability, reflected in a 
higher number of offspring. The evolutionary process makes the population 
adapt to the environment better and better. 

Let us note that many components of such an evolutionary process are 
stochastic. During selection fitter individuals have a higher chance to be 
selected than less fit ones, but typically even the weak individuals have a 
chance to become a parent or to survive. For recombination of individuals the 
choice of which pieces will be recombined is random. Similarly for mutation, 
the pieces that will be mutated within a candidate solution, and the new pieces 
replacing them, are chosen randomly. The general scheme of an Evolutionary 
Algorithm can is given in Fig. 3 in a pseudo-code fashion. (A.e. Eiben and j.e. 
Smith, 2003). 

 
BEGIN 

  INITIALISE population with random candidate 
solutions; 

  EVALUATE each candidate; 

  REPEAT UNTIL ( TERMINATION CONDITION  is satisfied ) 
DO 

     1 SELECT  parents; 

     2 RECOMBINE  pairs of parents; 

     3 MUTATE  the resulting offspring; 

     4 EVALUATE  new candidates; 

     5 SELECT  individuals for the next generation; 

  OD 

END 

Fig. 3. The general scheme of an Evolutionary Algorithm in pseudo-code 
 

Structure of a population evolutionary algorithm show in Fig. 4. & 5.  
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Fig. 4.  Structure of a single population evolutionary algorithm 
 

 

 

Fig. 5. Structure of an extended multipopulation evolutionary algorithm 
 

Overview from source: http://www.geatbx.com/docu/algindex-01.html 
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According to (Zelinka, 2008) that extremely simply said, EA is a numerical 
process, during which N possible solutions of a given problem are processed 
together. These solutions are called “individuals” and are usually represented 
by a vector consisting of arguments of a defined cost function. A set of 
individuals (their number is called population size, which is the above-
mentioned N) is called “population” and each individual is attached with a 
“fitness” , which can be in the simplest case the value of the cost function 
indicative of their suitability. For example, let us have a function Fcost (p1, 
p2, p3, p4, p5), then an individual is a set of parameters p, i.e. I={p1, p2, p3, 
p4, p5}, the population consists of N individuals with numerical values instead 
of x, like I1={2, 44, 51, −3.24, −22, 2}, I2, I3, …, IN={0.22, 3.4, 44, 1, 0.001, 
0} (see Fig. 6). Parameter values in the individuals are assigned randomly at 
the beginning of the evolutionary process, i.e. the whole population is 
randomly generated. The population is then used to create the so-called 
offspring—new individuals, by means of selected individuals from a 
population (also called parents). This is done by operations like crossover, 
mutation, etc. A number of various variants of such operations are available 
because of the presence of a rich family of EAs. However, in principle, these 
operations are, in fact, arithmetical (or geometrical) operations, which 
combine selected individuals from a parental population. 

 

Fig. 6. Population in the evolutionary algorithm 
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Evolutionary process is thus an iterative process with the selection and 
survival of the temporarily best solutions, which are used in the next 
generation to create better solutions. 

Finally, the best individual (i.e. problem solution) is selected from the last 
population and is regarded like the best solution from the actually ended 
evolution. The cost function used in the population should be defined so that 
its minimization or maximization should lead to the optimal solution. From 
this point of view, evolution can be also regarded like a mutually parallel 
search of an N-dimensional, nonlinear and complicated surface, where each 
point represent a possible solution. Example of the “cost function landscape” 
of the individual with two parameters, I={x, y} is depicted in Fig. 7 (see also 
Zelinka, 2004). Cost value is on the axis “z”. 

 

 

Fig. 7. Cost function surface representation, called Rana's function. 
 

Today, a rich set of various versions of EAs exists. They differ by 
mathematical principles driving their evolutionary process as well as by the 



- 30 - 

fundamentally unique terminology and algorithm philosophy employed. 
Another difference is also that of individual representation, i.e. an individual 
can consist of integer or/and real numbers like I={2, 44, 51, −3.24, −22, 2} or 
can be based on binary string I={0010101101010101}, which is typical for 
genetic algorithm (GA) in its canonical version. 

For a closer and more detailed study of EAs, which is time-consuming, it is 
recommended to use the literature like, for example, Holland (1975) and Davis 
(1996) (GAs), (Price, 1994), (Price, 1996) and (Price, 1999) (differential 
evolution (DE)), Kirkpatrick et al. (1983) and Cerny (1985) (simulated 
annealing (SA)), Eberhart and Kennedy (1995) and Clerc (2006) (particle 
swarm), Zelinka, (2004) (self-organizing migrating algorithm (SOMA)), 
Beyer (2001) (evolutionary strategies (ES)), Dorigo and Stützle (2004) (ant 
colony optimization), or in general Back et al. (1997). 

 

4.2 A brief survey of Scoping and Screening chemical 
reaction networks using stochastic optimization 

Many methods were adapted for the so-called optimal chemical reactors. 
The new methods focus on a systematic and thorough consideration of the 
available options and employ technology in the form of superstructures, 
optimization techniques, and a variety of graphical methods.  

The importance of mathematical methods in optimizing reactors has been 
exemplified early enough with the application of dynamic programming for 
the estimation of optimal operating conditions in CSTR cascades (Aris, 1960) 
and the development of graphical techniques for single reversible reactions in 
PFRs (1961). 

Around the same time, a set of brilliant contributions by Horn (1964) 
provided the basis of material that later emerged as attainable-region (AR) 
approaches. Dyson and Horn (1967) developed graphical tools for optimal 
temperature control schemes, feed distribution profiles along a PFR and 
catalyst minimization problems (Dyson and Horn, 1969). In these early days, 
separate groups made attempts to consolidate options and alternatives within 
comprehensive reactor structures (Ng and Rippin, 1965; Jackson, 1968; 
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Ravimohan, 1971). Optimization approaches initially addressed fixed reactor 
structures. Examples include the work of Paynter and Haskins (1970), and 
Chitra and Govind (1981, 1985a,b). The first studies of comprehensive 
structures should be attributed to Achenie and Biegler (1986, 1988, 1990), 
who employed existing representations (Jackson, 1968; Ng and Rippin, 1965) 
to launch optimization techniques in the form of NLP methods. 

Kokossis and Floudas (1990, 1991, 1994) first introduced the idea of a 
reactor network superstructure modeled and optimized as an MINLP 
formulation. Though general and inclusive, their representation did not follow 
previous developments, but made an effort to facilitate the functionalities of 
the MINLP technology with the synthesis objectives. Mainly to scope, 
optimize and analyze the reaction process, Kokossis and Floudas replaced 
detailed models with simple though generic structures, enough to screen for 
design options and estimate the limiting performance of the reaction system. 
In the same vane, dynamic components have been replaced by CSTR 
cascades. A superstructure of generic elements (ideal CSTRs and PFRs) was 
postulated to account for all possible interconnections among the units. The 
representation was modeled and optimized as a MINLP model.  

Though fundamental limitations appear evident, persistent efforts to extend 
the graphical methods have appeared in the literature (Hildebrandt et al., 1990; 
Hildebrandt and Glasser, 1990; Glasser et al., 1992, 1994; Feinberg and 
Hildebrandt, 1997; Price et al., 1997; Glasser and Hildebrandt, 1997; Hopley 
et al., 1996; Nisoli et al., 1997; McGregor et al., 1999; Godorr et al., 1999.) 

A more promising direction has been pursued by Biegler and coworkers. 
The motivation has been to instill better guarantees in the optimization efforts 
by exploiting ideas and rules established in the construction of the AR. 
Applications presented in this area include the work by Balakrishna and 
Biegler (1992a,b) and Lakshmanan and Biegler (1994, 1996, 1997), and 
involved mathematical programming applications in the form of NLP and 
MINLP formulations. Optimal control formulation has been presented by 
Rojnuckarin et al. (1996) and Schweiger and Floudas (1999). Hildebrandt and 
Biegler (1994) presented a review of the attainable region approaches and 
suggested areas for future development of the concept. (Marcoulaki and 
Kokossis, 2004).  
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Especially in recent years, the methods of artificial intelligence, namely the 
evolutionary algorithms were used to optimise successfully chemical 
processes. 

The optimization of non-linear constrained problems is  relevant to 
chemical engineering practice [Wong, (1990); Salcedo, (1992); Floudas, 
(1995)]. Nonlinearities are introduced by process equipment design relations, 
by equilibrium relations and by combined heat and mass balances. The design 
variables may be floating points [non-linear programming (NLP) problems] or 
some of them may be integers [mixed integer non-linear programming 
(MINLP) problems]. 

In recent years, evolutionary algorithms (EAs) have been applied to the 
solution of NLP in many engineering applications. The best-known algorithms 
in this class include Genetic Algorithms (GA), Evolutionary Programming 
(EP), Evolution Strategies (ES) and Genetic Programming (GP). There are 
many hybrid systems, which incorporate various features of the above 
paradigms and consequently are hard to classify, which can be referred just as 
EC methods Dasgupta and Michalewicz, (1997). They differ from the 
conventional algorithms since, in general, only the information regarding the 
objective function is required.  In recent years, EC methods have been applied 
to a broad range of activities in process system engineering including 
modeling, optimization and control. See for example real-time control of 
plasma reactor (Nolle et al., 2001 and (Nolle et al., 2005); Zelinka and Nolle, 
2006), Optimization and control of batch reactor by  evolutionary algorithms 
Senkerik, Zelinka, 2005], Optimization of reactive distillation processes using 
Self-organizing Migrating Algorithm and Differential Evolution Strategies 
(Tran, Zelinka, 2008), Using method of artificial intelligence to optimise and 
control chemical reactor (Tran, Zelinka, 2009), Investigation on optimization 
of Process Parameters and chemical reactor geometry by evolutionary 
algorithms (Tran, Zelinka, 2009) or An optimum solution for a process control 
problem (continuous stirred tank reactor) using a hybrid neural network 
(Emuoyibofarhe O.Justice, Reju A Sunday, 2008)… 
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4.3 Select Evolutionary Algorithms 
For the experiments described here, stochastic optimisation algorithms, 

such as Differential Evolution (DE) (Price, 1999), Self-Organizing Migrating 
Algorithm (SOMA) (Zelinka, 2004), Genetic Algorithms (GA) (Holland, 
1975) and Simulated Annealing (SA) (Kirkpatrick et al., 1983; Cerny, 1985) 
were selected. Main reason why DE, SOMA, GA and SA have been seed 
comes from contemporary state in chemical engineering and EAs use. Since 
now has been done some research with attention on use of EAs in chemical 
engineering optimization, including DE. This participation has to show that 
applicability of relatively new algorithms is also positive and can lead to 
applicable results, as was shown for example in Zelinka (2001), which has 
been done under 5th EU project RESTORM (acronym of Radically 
Environmentally Sustainable Tannery Operation by Resource Management) 
and main aim was to use EAs in chemical engineering processes.  True is also 
that there is a plenty of other heuristic like particle swarm (Liu, Liu, Cartres, 
2007), scatter search (Glover, Laguna, Martí, 2003), memetic algorithms, 
simulated annealing (Kirkpatrick, Gelatt, Vecchi, 1983), etc. and according to 
No Free Lunch teorem (Wolpert, Macready, 1997) is clear that each heuristic 
would be less or more applicable on example presented here. SOMA is a 
stochastic optimization algorithm that is modelled on the social behaviour of 
co-operating individuals (Zelinka, 2004). It was chosen because it has been 
proved that the algorithm has the ability to converge towards the global 
optimum (Zelinka, 2004). GA is one of the most modern paradigms for 
general problem solving. Genetic algorithms are more robust than existing 
directed search methods. Another important property of GA based search 
methods is that they maintain population of potential solutions – all other 
methods process a single point of the search space like hill climbing method. 
Hill climbing methods provide local optimum values and these values depend 
on the selection of starting point. Also there is no information available on the 
relative error with respect to global optimum. To increase the success rate in 
hill climbing method, it is executed for large number of randomly selected 
different starting points. On the other hand, GA is a multi-directional search 
maintaining a population of potential solutions and encourages information 
formation and exchange between these directions. Furthermore, SA is a 
generic probabilistic meta-algorithm for the global optimization problem, 
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namely locating a good approximation to the global optimum of a given 
function in a large search space. SA has been used in various combinatorial 
optimization problems and has been particularly successful in circuit design 
problems (see Kirkpatrick et al. 1983).  

 

4.3.1  Differential Evolution (DE) 

Differential Evolution (Price, 1999) (see Fig. 9) is a population-based 
optimization method that works on real-number coded individuals. For each 
individual xi,G in the current generation G, DE generates a new trial individual 
x’i,G by adding the weighted difference between two randomly selected 
individuals xr1,G and xr2,G to a third randomly selected individual xr3,G. The 
resulting individual x’i,G is crossed-over with the original individual xi,G. The 
fitness of the resulting individual, referred to as perturbated vector ui,G+1, is 
then compared with the fitness of  xi,G. If the fitness of  ui,G+1 is greater than 
the fitness of  xi,G,  xi,G is replaced with ui,G+1, otherwise xi,G remains in the 
population as xi,G+1. Deferential Evolution is robust, fast, and effective with 
global optimization ability. It does not require that the objective function is 
differentiable, and it works with noisy, epistatic and time-dependent objective 
functions. Pseudocode of DE shows: 
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Fig. 8.  Pseudo code of DE 
 

There are some version for optimization by mean differential evolution and 
two standard versions of DE, concretely DERand1Bin and DERand2Bin were 
chosen for optimization and predictive control of chemical reactors. 
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Fig. 9.  Differential evolution, an artificial example 

(http://www.icsi.berkeley.edu/~storn/code.html). 
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4.3.2 Self Organizing Migrating Algorithm (SOMA) 

SOMA is a stochastic optimization algorithm that is modelled on the social 
behaviour of co-operating individuals (Zelinka, 2004). It was chosen because 
it has been proved that the algorithm has the ability to converge towards the 
global optimum (Zelinka, 2004). SOMA works on a population of candidate 
solutions in loops called migration loops. The population is initialized 
randomly distributed over the search space at the beginning of the search. In 
each loop, the population is evaluated and the solution with the highest fitness 
becomes the leader L. Apart from the leader, in one migration loop, all 
individuals will traverse the input space in the direction of the leader. 
Mutation, the random perturbation of individuals, is an important operation for 
evolutionary strategies (ES). It ensures the diversity amongst the individuals 
and it also provides the means to restore lost information in a population. 
Mutation is different in SOMA compared with other ES strategies. SOMA 
uses a parameter called PRT to achieve perturbation. This parameter has the 
same effect for SOMA as mutation has for GA. The PRT Vector defines the 
final movement of an active individual in search space. 

The randomly generated binary perturbation vector controls the allowed 
dimensions for an individual. If an element of the perturbation vector is set to 
zero, then the individual is not allowed to change its position in the 
corresponding dimension. An individual will travel a certain distance (called 
the path length) towards the leader in n steps of defined length. If the path 
length is chosen to be greater than one, then the individual will overshoot the 
leader. This path is perturbed randomly. For an exact description of use of the 
algorithms see (Price, 1999) for DE and (Zelinka, 2004) for SOMA. 
Pseudocode of SOMA shown in Fig. 10 and SOMA, an artificial example 
show in Fig. 11: 
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Fig. 10.  Pseudocode of SOMA 
 

Now a day, there are some versions of algorithms SOMA. In this work, I 
have used three strategies of SOMA for optimization and predictive control of 
chemical reactors. They are “All to One” (SOMAATO) and  “All to One 
Random” (SOMAATR): 

• All to One – this strategy was described in previous section. “All to 
one” means that all subjects in population migrate to the leader (except 
leader itself).  

• All to One Random – is strategy, in which all individuals move back to 
one individual (Leader), which is not the deepest position on the 
hyperplane, but it is on the migration of individuals of each randomly 
selected from the population. Here emerged possible modification of this 
strategy, and such that the individuals don’t select randomly, but as 
appropriate, as is the case of genetic algorithms. 



- 39 - 

 

Fig. 11 .  SOMA, an artificial example (http://www.fai.utb.cz/people/zelinka/soma). 
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4.3.3 Genetic Algorithm (GA) 

Genetic Algorithms (GA) imitate the evolutionary processes with emphasis 
on genotype based operators (genotype/phenotype dualism). The GA works on 
a population of artificial chromosomes, referred to as individuals. Each 
individual is represented by a string of L bits. Each segment of this string 
corresponds to a variable of the optimizing problem in a binary encoded form.  

The population is evolved in the optimization process mainly by crossover 
operations. This operation recombines the bit strings of individuals in the 
population with a certain probability Pc. Mutation is secondarily in most 
applications of a GA. It is responsible to ensure that some bits are changed, 
thus allowing the GA to explore the complete search space even if necessary 
alleles are temporarily lost due to convergence.  

The following pseudocode describes the general principle of a Genetic 
Algorithm:  

t = 0; 
initialize(P(t=0)); 
evaluate(P(t=0)); 
while is NotTerminated() do 
Pp (t) = P(t).selectParent(); 
Pc(t) = reproduction(Pp); 
mutace(Pc(t)); 
evaluate(Pc(t)); 
P(t+1) = buildNextGenerationForm(Pc(t), P(t)); 
t=t+1; 
end 

Fig. 12.  Pseudocode of GA (http://www.ra.cs.uni-tuebingen.de/software/EvA2/)  

4.3.4 Simulated annealing (SA) 

Simulated annealing (SA) is based on the similarity between the solid 
annealing process and solving combinatorial optimization problems (S. 
Kirkpatrick, C.D. Gelatt Jr and M.P. Vecchi,1983). SA consists of several 
decreasing temperatures. Each temperature has a few iterations. First, the 
beginning temperature is selected and an initial solution is randomly chosen. 
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The value of the cost function based on the current solution (i.e., the initial 
solution in this case) will then be calculated. The goal is to minimize the cost 
function. Afterwards, a new solution from the neighborhood of the current 
solution will be generated. The new value of the cost function based on the 
new solution will be calculated and compared to the current cost function 
value. If the new cost function value is less than the current value, it will be 
accepted. Otherwise, the new value would be accepted only when the 
Metropolis's criterion (N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, 
A.H. Teller and E. Teller,1953), which is based on Boltzman's probability, is 
met. According to Metropolis's criterion, if the difference between the cost 
function values of the current and the newly generated solutions (ΔE) is equal 
to or larger than zero, a random number δ in [0,1] is generated from a uniform 
distribution. If Eq. (4.1) is met, the newly generated solution is accepted as the 
current solution. 

δ≤e(−ΔE/T) (4.1) 

The number of new solutions generated at each temperature is the same as 
the iteration number at the temperature which is constrained by the 
termination condition. The termination condition could be as simple as a 
certain number of iterations. After all the iterations at a temperature complete, 
the temperature would be lowered based on the temperature updating rule. At 
the updated (and lowered) temperature, all required iterations will have to be 
completed before moving to the next temperature. This process would repeat 
until the halting criterion is met. The halting criterion could be “reaching the 
pre-set minimum temperature.” The result of simulated annealing (SA) is 
related to the number of iterations at each temperature and the speed of 
reducing temperature. The temperature updating rule proposed in this paper is 
shown in Eq. (4.2). 

Temperature = Te(−rt) (4.2) 

where T is the initial temperature, r the cooling ratio, and t the number of 
times the temperature has been lowered. The cooling ratio controls the speed 
of cooling. The higher the cooling ratio, the faster the temperature cools 
down. 

Structure of simulated annealing algorithm show in Fig.13 
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Fig. 13. Structure of simulated annealing algorithm 
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In this thesis I have chosen two versions of SA algorithms (SA elitism 
(SA_Elitism) and SA without elitism (SA_NoElitism)) for investigation on 
optimization and predictive control of a chemical reactor. 

 Usage of elitism 

It uses synchronization at the end of temperature phase, otherwise the 
communication proceeds asynchronous after each iteration.  

• Disadvantage of this approach lies in excessive communication, which 
results in computation time increase. 

• Advantage – elitism removes problem with the acceptance of worse 
solutions at low temperature phase 

 

4.4 The cost function and principle simulation 
evolutionary algorithms in environment Mathematica  

Evolutionary algorithms emerged as a mathematical analogy of the natural 
processes taking place in nature during evolution, which, if done completely at 
random, ensuring that they survive only individuals who are able to withstand 
the battle with the natural effect. This is the natural breeding population of 
individuals, when properties of the individual shall be amended so as to better 
accommodate natural conditions. This has become a fundamental principle of 
evolutionary algorithms to the initial randomly generated population of 
individuals forming a new generation of individuals with better characteristics, 
if appropriate, amending the parameters so that the values of cost function 
attained optimal values. Normally, therefore, looking for extreme function, 
usually a minimum, the n-dimensional hyperplane. Cost function of 
optimization problems can be specified as follows: 

( )( )xf tcosmin  (4.3) 

Using the optimal values of the arguments: 

( )DxxX ,...,1=  (4.4) 
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Where X is a vector composed of D parameters of cost function, they have 
limitations:  

)()( Hi
jj

Lo
j xxx ≤≤     j = 1,…,D (4.4) 

Where Lo is the lower limit, Hi is the higher limit. 

Evolutionary algorithms (EAs) in environment mathematica perform 
according to a general cycle is illustrative in Fig. 14. Principle simulation 
evolutionary algorithms can be split into several steps: Setting parameters and 
starting EAs, Generating population, Migration Process, Stop EAs and 
selecting the best individuals. 

Concretely, evolutionary algorithms SOMA will be governor through the 
following steps:  

1. Definition of parameters - before running the algorithm it is 
necessary to select parameters such as: Step (step size of migration), 
PathLength (max distance migration), MinDiv (maximum division cost 
function values of individuals sufficient for stopping algorithms), 
PopSize (population size), migration (number of rounds of migration), 
PRT (constant perturbation), the PRT parameter is in some sense the 
equivalent of CR for parameter genetic algorithm and differential 
evolution. It has an impact on whether an individual will migrate 
directly to the leaders, or its trajectory will be diverted to the improved 
scanning n-dimensional space and thus to a higher robustness in 
finding global extreme. Without the use of PRT parameters SOMA 
often find only a local extreme . 

2. Generating population - in this step is a randomly generated initial 
population in using the standard individual - specimen, which is 
precisely defined type and range of values <Lo, Hi> each of the 
individual parameters.  

3. Migration Process - In this step, the actual migration of individual 
subjects after the n-dimensional hyperplane according to the rules of 
strategies SOMA algorithm. 
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4. Evaluation - At the end of the migration process is to evaluate the 
division cost function values of individual subjects. If this division is 
less than parameter MinDiv, the algorithm is ended - Step 5, otherwise 
the re-start the migration process - step 3. 

5. Stop algorithms SOMA and select the best individuals of cost 
function values.  

 

 

Fig. 14. Principle simulation evolutionary algorithms 
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StartEA[opt__] := Module[{pbest, pworst}, 

  ret = StringTake[ToString[opt], 2]; 

  FinalPopulation =Switch[ret, 

  "SOMA",Population = 
DoPopulation[PopSize,Specimen];Print["\nPopulation has 
been initialized\n",Population // Transpose // 
Tab.Form];CheckAbort[NestList[opt, Population, 
Migrations], FinPop], 

"DE",Population = 
DoPopulation[NP,Specimen];Print["\nPopulation has been 
initialized\n",Population // Transpose // 
Tab.Form];CheckAbort[NestList[opt, Population, 
Generations], FinPop], 

  "GA",Population = 
DoGAPopulation[PopSize,Specimen];Print["\nPopulation has 
been initialized\n",Population // Transpose // 
Tab.Form];NestList[opt, Population, Generations], 

  "SA",Population = 
DoPopulation[PocetCastic,Specimen];Print["\nPopulation 
has been initialized\n",Population // Transpose // 
Tab.Form];StartSA[opt], 

_, Print["Unknown algorithm"] 

]; 

    Print["\nFinal population is\n",  

  Tab.Form[Transpose[Take[FinalPopulation, -1][[1]]]]]; 

      Print["\n"]; 

   BestInd[Take[FinalPopulation, -1][[1]]]; 

   Return[FinalPopulation] 
] 

Fig. 15. General subroutines call of SOMA, DE, GA, SA in environment 
Mathematica 
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Fig. 16. Overview process “Start EA” in environment Mathematica (1x 
simulation of version SOMAATO) 

 

4.4.1 Quality of the evolutionary processes 

The quality and course of the evolutionary processes can be influenced by 
many factors, notably: 

• Setting parameters - a combination of which may have a significant 
influence on the course and speed of evolution;  

• Population size - a small population will limit choice while a major 
population will need more time to pass for the gradual creation of 
newer population;  

• Definition of cost function - if badly or inappropriately defined, 
evolution may slow down to a stop;  
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• Number of generations - for a small number of generations, 
evolution may end before they find the extreme; and 

• Definition of the interval - it is better to define the interval of 
evolution, and if there are uncertainties about, the evolutionary 
process can be maintained in the area of foreseeable solutions by 
looking at the extreme. 
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5 SIMULATION PART – PROBLEM DESIGN AND 

EXPERIMENTAL RESULTS 

5.1 Introduction to simulation part 

Presently, the chemical industry developes a wide range of products using a 
number of known physical and chemical laws in its chemical and 
technological processes.  Quantitative and qualitative assessment should be 
done on these processes, particularly in the application of automated systems 
on the technological process, to ensure it is successfully managed.  

Automated project management consist of several stages of which the most 
important step is the detailed analysis of the production systems.  Evaluation 
on whether the system is in accordance with the description of its behaviour is 
done through simulation calculations performed on the computer.  The 
calculations are based on the idea of the actual physical-chemical mechanisms, 
beginning with the original materials right through a defined sequence of 
events which eventually lead to the creation of the finished product with the 
desired characteristics and quality.  The simulation calculations could help 
reveal key points of the technological process that needed modification 
through optimization techniques in order to meet the requirements of quality 
control with minimal production costs.   

The application domain of the chemical reactions and reactors constitute 
one of the backbones for interdisciplinary collaboration.  In fact, the 
optimization of industrial chemical processes has drawn attention in recent 
years, of which the optimal design and operation of chemical reactor is one of 
the most popular areas of study.  The goal of this chapter is to show 
semirealistic design and optimization of chemical reactors processes, 
specifically of the Batch reactor and CSTR. 

 

5.2 The main aim of chapter 
This chapter's objective is to describe the implementation of optimization 

parameters of the Batch reactor and CSTR and the subsequent management of 
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the optimized reactors using the methods of artificial intelligence, namely 
EAs.  Specifically, the algorithms are used to find the optimum parameters of 
the chemical reactor and model the technical requirements for chemical 
reaction.  These tasks can be discussed within a few points: 

• Development of a mathematical model of the process of chemical 
batch and CSTR reactor;  

• Design optimization of the physical parameters of the reactor using 
EAs, i.e. finding appropriate cost functions, including the definition 
of its limitations and the implementation of the optimization using 
different versions of algorithms (SOMAATO, SOMAATR, 
DERan1Bin, DERan2Bin, GA, SA_Elitism, SA_NoElitism);  

• The design of the reactor is based on standard chemical-
technological methods and proposes a physical dimensions of the 
reactor and the parameters of the chemical substances. These values 
are known in this work as expert parameters. The objective of this 
part of the work is to perform a simulation and optimization of the 
given reactor.  

• Evaluating and comparing the results obtained of each EA. 

 

5.3 Optimization of batch reactor 

5.3.1 Description of batch reactor 

This work uses a mathematical model of a reactor shown in Fig. 17. From 
constructional standpoint, the acts about the vessel with double side for 
cooling medium and is further equipped with stirrer for mixing reactionary 
mixtures. 

Reactor disposes by two physical inputs. First input denoted ”Input 
Chemical FK” is chemical dosing into reaction about mass flow rate FKm&  , 
temperature FKT  and specific heat FKc . Second input denoted “Input cooling 
medium” is water drain into the reactor double side with mass flow rate Vm& , 
temperature VPT  and specific heat Vc . This coolant further traverses among - 
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jacketed through space of reaction and his total weight in this space is VRm . 
Coolant after it gets off the exit reaction denoted “output cooling medium” 
about mass flow rate Vm& , temperature VT  and specific heat Vc . At the 
beginning of the process there is an initial batch inside the reactor with 
parameter mass Pm . Reactionary mixture then has total mass m , temperature 
T  , specific heat Rc  and stirs till the time chemicals FK described by 
parameter concentration FKa . 

This technique partially allows controlling the temperature of reaction 
mixture by the controlled feeding of the input chemical FK. 

The main objective of optimization is to achieve the processing of large 
amount of chemical FK in a very short time. An exothermal reaction described 
by relationships (5.1) – (5.3) takes place in the reactor.  

In general, this reaction is highly exothermal. Hence, the most important 
parameter is the temperature of the reaction mixture. This temperature must 
not exceed 100°C because of safety aspects and quality of the product. 

 

 

Fig. 17. Scheme Batch reactor 
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5.3.2 Problem design - Non-linear model of reactor 

Description of the reactor applies a system of four balance equations (5.1). 
The first one expresses a mass balance of reaction mixture inside the reactor, 
the second a mass balance of the chemical FK, and the last two formulate 
entalpic balances, namely balances of reaction mixture and cooling medium.  

Equation (5.1), in which (5.2) is represented by term “k”, is written out here 
for simplified notation of basic equations. 

][ tmm FK ′=&  

][][][][ tatmktatmm FKFKFK +′=&  

][][])[][(][][ tTctmtTtTSKtatmkHTcm RVFKrFKFKFK ′+−=Δ+&
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After modification into the standard form, the balance equations are 
obtained in form (5.3) 
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(5.3) 

 
The parameters for this reactor and initial conditions (aFK0, TV0, T0, m0,…. ) 

were specified by expert, giving physical dimensions as well as parameters of 
individual chemical substances. These were used to simulate the behaviour of 
this reactor. The design of the reactor was based on standard chemical-
technological methods and gives a proposal of reactor physical dimensions 
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and parameters of chemical substances. These values are called in this 
participation expert parameters. The objective of the work is to perform a 
simulation and optimization of the given reactor. 

Therefore into system equations (5.3) were instated constants:  

A = 219,588 s-1, E = 29967,5087 J.mol-1, R = 8,314 J. mol-1.K-1,  cFK = 
4400 J.kg. K-1, cV = 4118 J.kg. K-1, cR = 4500 J.kg. K-1, ΔHr = 1392350 J. 
kg-1, K = 200 kg. s-3. K-1.  

Next parameters, that are important for calculations are: 

• Geometric dimension of the reaction: r[m] , h[m] 

• Density of chemicals: ρP  = 1203 kg.m-3 , ρFK  = 1050 kg.m-3  

• Stoicheiometric rate chemical: mP = 2,82236.mFK  

 

5.3.3 Optimization of process parameters and the reactor 
geometry 

The design approach using the batch reaction system show in Fig.18. The 
main aim in this example is finding the optimization of process parameters 
and the reactor geometry. Here, it is a optimization of batching value FKm&  
together with process parameters of the cooling medium and including also 
reactor geometry and cooling area. 

 

Tab.1 Parameters of reactor, “yellow” was optimized 
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5.3.3.1 Mathematical problems  

In this optimization was founded optimized parameters with one another 
linked ,so that heat transfer surface, volume, and hence also mass mixtures of 
reaction  was mutually in relation. Heat transfer surface S has relation:  

22 rrhS ππ +=  (5.4) 

Where r is radius and h is high of the space reactor (see Fig.15) 

Volume of vessel of rector applies to relation: 

hrV 2π=  (5.5) 

Total mass of mixtures in the reaction is initial batch inside the reactor with 
parameter mass Pm  a mass “input chemical FK” FKm , that: 

FKp mmm +=
 (5.6) 

The stechiometric ratio is given by (5.7). 

FKP mm 82236,2=  (5.7) 

Total volume of mixtures in the reaction equal sum of volume initial 
mixtures in the reaction and volume of FK: 

FK

FK

p

p
FKp

mm
VVV

ρρ
+=+=

 
(5.8) 

The relationship between the optimized volume of reactor and the mass of  
added chemical FK is given by (5.8). Then substituting to (5.7) gives the mass 
of the initial batch in the reactor. 

pFK

FKp
FK

V
m

ρρ
ρρ

+
=

82236,2  
(5.9) 

In this example, the optimization was then added parameter thickness d of 
vessel, which have relation that: 

Sdm VVR ρ=  (5.10)
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5.3.3.2 The Cost Function (CF)  

In this optimization the point was to minimize the area arising as a 
difference between the required and real temperature profile of the reaction 
mixture in a selected time interval, which was the duration of a batch cycle. 
The required temperature was 97°C (370.15 K). The cost function that was 
minimized is given in (5.11):  

[ ]∑
=

−=
t

t
t tTwf

0
cos   (5.11)

  Where:  w - control point, T – temperature  

The CF has been calculated in general from the distance between desired 
state and actual system output. 

 

5.3.3.3 Parameter settings 

The control parameter settings have been found empirically and are given 
in Tab. 2 (SOMA) and Tab. 3 (DE). In Tab. 4 and Tab. 5 are parameters 
setting for GA and SA. The main criterion for this setting was to keep the 
same setting of parameters as much as possible and of course the same number 
of cost function evaluations as well as population size (parameter PopSize for 
SOMA, GA and NP for DE). Number of optimized reactor parameters and 
their range inside represents in Tab. 6.  

Tab.2  SOMA parameter setting 
 A 

PathLength 3 

Step 0.41 

PRT 0.1 

PopSize 20 

Migrations 50 

MinDiv -1 

Individual Length 6 

CF Evaluations 6951 
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Tab.3 DE parameter setting 
 A 

NP 20 

F 0.9 

CR 0.2 

Generations 200 

Individual Length 6 

CF Evaluations 4000 

 

Tab.4 GA parameter setting 
 A 

PopSize 20 

MutationCostant 0.2 

Generations 200 

Individual Length 6 

CF Evaluations 4000 

 

Tab.5 SA parameter setting 
 A 

PocetCastic 2 

diameter 0.5 

kmax 66 

Tmin 0.0001 

Tmax 1000 

alfa(cooling factor) 0.8 
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Tab.6 Optimized reactor parameters and their range inside which has been 
optimization done 

Parameter Range 

FKm&  [kg.s-1] 0 – 500 
r  [m] 0.3 – 3.0 
h [m] 0.5 – 3.5 

VPT  [K] 273.15 – 323.15 

Vm&  [kg.s-1] 0-10 
d [m] 0.03 – 0.1 

 

5.3.3.4 Experimental Results  

Due to the fact that EAs are partly of stochastic nature, a large set of 
simulations has to be done in order to get data for statistical data processing. 
Four algorithms (SOMA, DE, GA and SA) have been applied 100 times in 
order to find the optimum of process parameters and the reactor geometry. All 
important data has been visualized directly or/and processed for graphs 
demonstrating performance of four algorithms. Estimated parameters and their 
diversity (minimum, maximum and average) are depicted in Fig. 18 - Fig. 19. 
From those pictures it is visible that results from four algorithms are 
comparable. For the demonstration are graphically the best solutions show in 
Fig. 20 – Fig. 26 of items (b), (d), (f), (h). There is shown time dependence of 
processes parameters from four algorithms. The best values of parameters 
setting are recorded in Tab.7 & Tab. 8. All one hundred simulations diversity 
(minimum, maximum and average) were described from Tab. 9 to Tab. 15 for 
each versions of  four algorithms. On Fig. 20 – Fig. 26 are for example shown 
records of all 100 simulations and the best solutions of all 100 simulations 
(Fig. 20-21  for SOMA, Fig. 22 – 23 for DE,  Fig. 24 for GA and Fig. 25-26 
for SA).  
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Tab.7 The best values of optimized parameters by SOMA, DE  
Parameter SOMAATO SOMAATR DERan1Bin DERan2Bin 

FKm&  [kg.s-1] 0.0226579 0.0370397 0.225063 0.135087 
r  [m] 0.302427 0.496691 0.195776 2.50725 
h [m] 3.12646 2.46924 0.83969 0.715263 

VPT  [K] 319.286 311.758 296.179 318.115 

Vm&  [kg.s-1] 5.58697 9.57913 9.35465 9.431 
d [m] 0.0474563 0.0379435 0.030377 0.0583956 

  

 

Tab.8 The best values of optimized parameters by GA, SA 
Parameter GA SA_Elitism SA_NoElitism 

FKm&  [kg.s-1] 0.00417218 0.187008 0.519387 
r  [m] 2.58293 2.51294 2.84268 
h [m] 3.40438 0.858557 2.76458 

VPT  [K] 310.944 314.657 319.494 

Vm&  [kg.s-1] 5.09912 9.02945 6.56782 
d [m] 0.0315134 0.0597223 0.0918064 

 

Parameter diversity for repeated 100 times simulations 

Tab.9 Estimated parameters for DERand1Bin 
Parameter Min Avg Max 

FKm&  [kg.s-1] 0.0073202
6 0.157858 0.467508 

r  [m] 0.360715 1.80667 2.97025 
h [m] 0.506418 1.79237 3.47477 

VPT  [K] 293.29 306.98 322.669 

Vm&  [kg.s-1] 5.32214 9.31932 9.99522 
d [m] 0.0300719 0.0391487 0.078392 
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Tab.10 Estimated parameters for DERand2Bin 
Parameter Min Avg Max 

FKm&  [kg.s-1] 0.0098592
4 0.133546 0.551649 

r [m] 0.328569 1.48296 2.99652 
h [m] 0.527274 1.96553 3.48392 

VPT  [K] 293.185 306.886 323.001 

Vm&  [kg.s-1] 0.382172 8.31582 9.99879 
d [m] 0.0300549 0.0440286 0.0941844 

 

Tab.11 Estimated parameters for SOMAATO 
Parameter Min Avg Max 

FKm&  [kg.s-1] 0.006463
0 

0.029002
8 0.126721 

r  [m] 0.3 0.719769 2.38758 
h [m] 0.500022 1.22914 3.29516 

VPT  [K] 293.52 308.434 322.923 

Vm&  [kg.s-1] 2.91889 8.84481 9.99993 

d [m] 0.030451
9 

0.055827
9 0.0987916 

 

Tab.12 Estimated parameters for SOMAATR 
Parameter Min Avg Max 

FKm&  [kg.s-1] 0.015992
2 

0.092730
6 0.378352 

r  [m] 0.321836 1.28136 2.88948 
h [m] 0.501199 1.76971 3.47737 

VPT  [K] 293.444 303.046 322.487 

Vm&  [kg.s-1] 1.66669 9.53494 9.99987 

d [m] 0.030146
6 

0.038627
4 0.093981 
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Tab.13 Estimated parameters for GA 
Parameter Min Avg Max 

FKm&  [kg.s-1] 0.0041721 0.362735 1.4908 
r  [m] 0.308429 2.20758 2.98134 
h [m] 0.673105 2.2323 3.48275 

VPT  [K] 293.253 308.797 323.114 

Vm&  [kg.s-1] 0.234471 5.14055 9.96397 

d [m] 0.0303933 0.065272
8 0.0995752 

 

Tab.14 Estimated parameters for SA_Elitism 
Parameter Min Avg Max 

FKm&  [kg.s-1] 0.023406
3 0.25735 0.978476 

r  [m] 0.382136 2.12841 2.9857 
h [m] 0.570715 2.25282 3.47805 

VPT  [K] 293.557 309.318 322.894 

Vm&  [kg.s-1] 0.098199
6 5.77572 9.99886 

d [m] 0.030338
2 

0.066109
9 0.0994636 

 

Tab.15 Estimated parameters for SA_NoElitism 
Parameter Min Avg Max 

FKm&  [kg.s-1] 0.0176978 0.315186 1.19071 
r  [m] 0.506012 2.1492 2.99712 
h [m] 0.513602 2.30953 3.49055 

VPT  [K] 293.282 306.615 322.332 

Vm&  [kg.s-1] 0.0015723 5.27791 9.90747 

d [m] 0.0300534 0.063021
3 0.0994389 
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a) Parameter variation (DERan1Bin) 
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b)Parameter variation (DERan1Bin) – 

detail 
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c) Parameter variation (DERan2Bin) 
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d).Parameter variation (DERan2Bin) – 

detail 

 
e) Parameter variation (SOMAATO) 

 
f) Parameter variation (SOMAATO) – 

detail 

 
g) Parameter variation (SOMAATR) 

 
h) Parameter variation (SOMAATR) – 

detail 
Fig. 18. Parameter variation of SOMA and DE 
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a) Parameter variation (GA) 
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b) Parameter variation (GA) – detail 

c) Parameter variation (SA_Elitism) d) Parameter variation (SA_Elitism) – 
detail 

e) Parameter variation (SA_NoElitism) f)Parameter variation (SA_NoElitism) – 
detail 

Fig. 19. Parameter variation of GA and SA 
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a) 100 simulations for m (SOMAATO) b).The best solution for m (SOMAATO) 

c).100 simulations for aFK (SOMAATO) d) The best solution for aFK (SOMAATO) 

 
e) 100 simulations for T (SOMAATO) 

 
f) The best solution for T (SOMAATO) 

 
g) 100 simulations for TV (SOMAATO) 

 
h) The best solution for TV (SOMAATO) 

Fig. 20. Process parameters for 100 simulations of SOMA - version 
SOMAATO 
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a) 100 simulations for m (SOMAATR) 

 
b).The best solution for m (SOMAATR) 

 
c).100 simulations for aFK (SOMAATR) 

 
d) The best solution for aFK (SOMAATR) 

 
e) 100 simulations for T (SOMAATR) 

 
f) The best solution for T (SOMAATR) 

 
g) 100 simulations for TV (SOMAATR) 

 
h) The best solution for TV (SOMAATR) 

Fig. 21. Process  parameters for 100 simulations of SOMA - version 
SOMAATR 
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a) 100 simulations for m (DERan1Bin)  

b).The best solution for m (DERan1Bin) 

 
c) 100 simulations for aFK (DERan1Bin) 

 
d) The best solution for aFK (DERan1Bin) 

 
e) 100 simulations for T (DERan1Bin) 

 
f) .The best solution for T (DERan1Bin) 

 
g) 100 simulations for TV (DERan1Bin) 

 
h) The best solution for TV (DERan1Bin) 

Fig. 22. Process parameters for 100 simulations of DE - version DERan1Bin 
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a) 100 simulations for m (DERan2Bin) 

 
b) The best solution for m (DERan2Bin) 

 
c) 100 simulations for aFK (DERan2Bin) 

 
d) The best solution for aFK (DERan2Bin) 

 
e) 100 simulations for T (DERan2Bin) 

 
f) The best solution for T (DERan2Bin) 

g) 100 simulations for TV (DERan2Bin) 
 

h) The best solution for TV (DERan2Bin) 

Fig. 23. Process parameters for 100 simulations of DE - version DERan2Bin 
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a) 100 simulations for m (GA) 

 
b) The best solution for m (GA) 

c) 100 simulations for aFK (GA) 
 

d) The best solution for aFK (GA) 

 
e) 100 simulations for T (GA) 

 
f) The best solution for T (GA) 

g) 100 simulations for TV (GA) 
 

h) The best solution for TV (GA) 

Fig. 24. Process parameters for 100 simulations of GA 
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a) 100 simulations for m (SA_Elitism)  

b) The best solution for m (SA_Elitism) 

 
c) 100 simulations for aFK (SA_Elitism)  

d) .The best solution for aFK (SA_Elitism) 

 
e) 100 simulations for T (SA_Elitism)  

f) The best solution for T (SA_Elitism) 

g) 100 simulations for TV (SA_Elitism) 
 

h) The best solution for TV (SA_Elitism) 

Fig. 25. Process parameters for 100 simulations of SA – version SA_Elitism 
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a) 100 simulations for m (SA_NoElitism)  

b) The best solution for m (SA_Elitism) 

 
c) 100 simulations for aFK (SA_NoElitism) 

 
d) The best solution for aFK 

(SA_NoElitism) 

 
e) 100 simulations for T (SA_NoElitism) 

 
f) The best solution for T 

(SA_NoElitism) 

 
g) 100 simulations for TV (SA_NoElitism) 

 
h) The best solution for TV 

(SA_NoElitism) 

Fig. 26. Process parameters for 100 simulations of SA – version SA_NoElitism 
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5.3.3.5 Discussion to the results optimization 

This project of thesis has presented a systematic procedure to derive a 
solution model for operation of a dynamic chemical reactor process. The 
results produced by the optimizations depend not only on the problem being 
solved but also on the way how to define a given function. All simulations 
were repeated 100 times for each EA with the same initial conditions for each 
simulation. In total, 2800 (7 algorithms×4 case studies×100 repeated 
experiments) independent simulations were conducted of real-time 
optimization of Batch reactor on Power Mac G5 Quad 2.5 GHz with software 
Grid Mathematica®.  

The differences between four methods SOMA, DE, GA and SA are best 
seen in Tab.6, Tab. 7 and Tab.8. The first part shows the parameters of batch 
reactor designed by an expert , and the second part shows the parameters 
obtained through static optimization.  

Calculation was 100 times repeated and the best, worst and average result 
(individual) was recorded from the last population in each simulation. All one 
hundred triplets (best, worst, average) were used to create Fig. 18 and Fig.19. 

Four algorithms (SOMA, DE, GA, SA) have been applied 100 times in 
order to find the optimum of process parameters and the reactor geometry. The 
primary aim of this comparative study is not to show which algorithm is better 
or worse. But in this investigation, the results from the outputs of all 
simulations are depicted in Fig. 22-26 show that evolution SOMA represents 
the best solution from actual simulation more than DE, GA and SA. Based on 
data from all simulations, four comparisons can be done. From parameter 
variation of view, the estimated parameters depicted in Fig.18 & Fig.19 show 
that four algorithms are comparable in performance (with small deviations).  

From the graphs, it is evident that the courses of SOMA algorithm are more 
densities in a thin spectra and not far from the start of mass axis (see Fig. 20a). 
Only few values drifting out of the spectra. From these results we may 
conclude, that SOMA has much better convergence than DE, GA, SA 
algorithm (see Fig.20 -  Fig.26). Or for better overview of comparison 
between four algorithms, I have chosen processes temperature of  reactionary 
mixture T,  show in Fig. 27 
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SOMA 

 
DE 

GA 
 

SA 

Fig. 27. 100 simulations for T 
 

In Fig. 27 we can see the process parameters temperature T  simulation by 
SOMA were stability more than other algorithms (concretely, in this 
experimental problem of  Batch  reactor).  

From the obtained results, it is possible to say that all simulations give 
satisfactory results and thus evolutionary algorithms are capable of solving 
this class of difficult problems and the quality of results does not depend 
only on the problem being solved but they are extremely sensitive on the 
proper definition of the cost function, selection of parameters setting of 
evolutionary algorithms.  
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5.3.4 Optimization of Continuous stirred tank reactor 

5.3.4.1 Mathematical problems 

Consider a CSTR with the first order consecutive exothermic reaction 
according to the scheme CBA 21 ⎯→⎯⎯→⎯ kk  and with a perfectly mixed 
cooling jacket. The model CSTR show in Fig. 28. Using the usual 
simplifications, the model of the CSTR is described by four nonlinear 
differential equations. 

iA
r

r
A

r

rA c
V
Qck

V
Q

dt
cd

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−= 1

 
(5.12) 

iB
r

r
AB

r

rB c
V
Q

ckck
V
Q

dt
cd

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−= 12

 
(5.13) 

)(
)(

)(
)( rc

rpr

h
rri

r

r

rp

rr TT
cV
UATT

V
Q

c
h

dt
dT

−+−+=
ρρ  

(5.14) 

)(
)(

)( cr
cpc

h
cci

c

cc TT
cV
UA

TT
V
Q

dt
dT

−+−=
ρ  

(5.15) 

 

 
Fig. 28. Continuous Stirred Tank reactor 
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with initial conditions (0) s
A Ac c= , (0) s

B Bc c= , (0) s
r rT T= and (0) s

c cT T= . Here, t 
is the time, c are concentrations, T are temperatures, V are volumes, ρ are 
densities, cp are specific heat capacities, Q are volumetric flow rates,  Ar is the 
heat exchange surface area and U is the heat transfer coefficient. The 
subscripts are denoted (.)r for the reactant mixture, (.)c for the coolant, (.)i  for 
feed (inlet) values and the superscript (.)s for steady-state values. The reaction 
rates and the reaction heat are expressed as 

2,1,exp0 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
= j

TR
E

kk
r

j
jj

 
(5.16) 

BAr ckhckhh 2211 +=  (5.17) 

 
where k0 are pre-exponential factors, E are activation energies and h are 

reaction entalpies. The values of all parameters, feed values and steady-state 
values are given in  

 

Tab. 16 Parameters, inlet values and initial conditions 

Vr = 1.2 m3 
Vc = 0.64 m3 
ρr = 985 kg m-3 
ρc = 998 kg m-3 
Ar = 5.5 m2 

Qr = 0.08 m3min-1 
Qc

s = 0.03 m3min-1 
cpr = 4.05 kJ kg-1K-1 
cpc = 4.18 kJ kg-1K-1 
U = 43.5 kJ m-2min-1K-1 

k10 = 5.616 . 1016 min-1 
k20 = 1.128 . 1018 min-1 
h1 = 4.8 . 104 kJ kmol-1 

E1/ R = 13477 K 
E2/ R = 15290 K 
h2 = 2.2 . 104 kJ kmol-1 

cAi = 2.85 kmol m-3 
Tri = 323 K 

cBi = 0 kmol m-3 
Tci = 293 K 

cA
s = 0.1649 kmol m-3 

Tr
s = 350.19 K 

cB
s = 0.9435 kmol m-3 

Tc
s = 330.55 K 
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5.3.5 Static optimization reactor 

 In this model of CSTR the parameters were optimized include: the 
parameters of volumetric flow rates of the reactant mixture and the coolant Qr, 

Qc, the parameter of concentration for feed values cAi and temperature reactant 
mixture and colant Tri, Tci. 

 

Tab. 17. Parameters of reactor, “yellow” was optimized 
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5.3.5.1 The Cost Function (CF)  

In this research, the objective was to minimize the area arising as a 
difference of the process between the observed and real selected time interval, 
which was the duration of a CSTRs cycle. With the inlet concentration cBi = 0 
kmol m-3, the cost function that was minimized is given in (5.17). In the cost 
function, we multiplied by (-1) in order to transfer from maximization into 
minimization. 
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5.3.5.2 Parameter settings 

The control parameter settings for simulation by EAs of model CSTR have 
been found empirically and are given in Tab. 18 for SOMA. In this model o 
CSTR, I have changed number of migration from 50 to 10 and the parameters 
setting of algorithms DE, GA and SA are the same in the previous part of 
simulation for model of Batch reactor. Number of optimized reactor 
parameters and their range inside represents in Tab. 19.  

 

Tab.18 SOMA parameter setting for simulation of CSTR model 
 A 

PathLength 3 

Step 0.1 

PRT 0.1 

PopSize 20 

Migrations 10 

MinDiv -1 

Individual Length 6 

CF Evaluations 5182 

 

Tab.19 Optimized reactor parameters and their range inside which has 
been optimization done 

Parameter Range 

Qc [m3min-1] 0.015 – 0.1 

Qr [m3min-1] 0.05 – 0.012 

cAi [kmol m-3] 2 – 3.5 

Tri [K] 303 – 333 

Tci [K] 288-303 
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5.3.5.3 Experimental results  

The best values of parameter setting are recorded in Tab. 20 & 21 of each 
algorithms SOMA, DE, GA, SA. Then, four algorithms have to been applied 
100 times in order to find the optimum of process parameters and get data for 
statistical data processing. All important data has been visualized directly 
or/and processed for graphs demonstrating performance of this algorithms. 
Estimated parameters and their diversity (minimum, maximum and average) 
are depicted in Tab. 22 - Tab. 28. From those figures of parameter variation, it 
is visible that results from each of  evolutionary algorithms are showed detail 
“optimal points”. For the demonstration are graphically the best solutions 
shown in Fig. 29 & 30.  On Fig. 31 - Fig. 34 are for example shown records of 
all 100 simulations of each algorithm.  

 

Tab. 20. The best values of optimized parameters by SOMA, DE  

Parameter SOMAATO SOMAATR DERan1Bin DERan2Bin 

Qc [m3min-1] 0.071157 0.0822537 0.0761633 0.0922708 

Qr [m3min-1] 0.119602 0.119802 0.119109 0.118459 

cAi [kmol m-3] 2.46777 2.26616 2.26559 3.46583 

Tri [K] 321.212 321.326 321.124 321.808 

Tci [K] 299.741 301.983 301.767 302.244 
 

Tab. 21. The best values of optimized parameters by GA, SA 
Parameter GA SA_Elitism SA_NoElitism 

Qc [m3min-1] 0.0566459 0.0958446 0.0176245 

Qr [m3min-1] 0.107929 0.110968 0.111787 

cAi [kmol m-3] 2.22209 2.12066 2.38449 

Tri [K] 319.325 323.437 314.535 

Tci [K] 302.563 297.987 301.052 
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Tab.22 Estimated parameters of version SOMAATO 

Parameter Min Avg Max 

Qc [m3min-1] 0.0171178 0.0750863 0.099976
9 

Qr [m3min-1] 0.103969 0.117765 0.119991 

cAi [kmol m-3] 2.01516 2.76918 3.48831 

Tri [K] 314.729 320.984 323.913 

Tci [K] 294.149 300.861 302.986 

 

Tab.23 Estimated parameters of version SOMAATR 

Parameter Min Avg Max 

Qc [m3min-1] 0.0152446 0.0713548 0.099742
6 

Qr [m3min-1] 0.101533 0.115791 0.119991 

cAi [kmol m-3] 2.00351 2.70686 3.4979 

Tri [K] 313.8 320.759 326.271 

Tci [K] 290.142 300.467 302.924 

 

Tab.24 Estimated parameters of version DERan1Bin 

Parameter Min Avg Max 

Qc [m3min-1] 0.0165912 0.0771171 0.099742
5 

Qr [m3min-1] 0.107223 0.117691 0.119999 

cAi [kmol m-3] 2.00871 2.70933 3.49065 

Tri [K] 314.373 321.107 325.252 

Tci [K] 291.929 300.735 302.959 
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Tab.25 Estimated parameters of version DERan2Bin 

Parameter Min Avg Max 

Qc [m3min-1] 0.0150441 0.076943 0.099324 

Qr [m3min-1] 0.111014 0.117478 0.119987 

cAi [kmol m-3] 2.00442 2.76267 3.4904 

Tri [K] 314.342 320.982 323.118 

Tci [K] 295.49 301.138 302.939 
 

Tab.26 Estimated parameters of version GA 

Parameter Min Avg Max 

Qc [m3min-1] 0.0152769 0.0706135 0.099458
3 

Qr [m3min-1] 0.105348 0.115416 0.119818 

cAi [kmol m-3] 2.00811 2.69678 3.49589 

Tri [K] 314.177 320.645 324.491 

Tci [K] 290.091 299.845 302.908 
 

Tab.27 Estimated parameters of version SA_Elitism 

Parameter Min Avg Max 

Qc [m3min-1] 0.0153787 0.0720453 0.099846
3 

Qr [m3min-1] 0.108632 0.115819 0.119973 

cAi [kmol m-3] 2.00362 2.82362 3.47147 

Tri [K] 313.761 320.712 324.473 

Tci [K] 292.07 300.187 302.983 
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Tab.28 Estimated parameters of version SA_NoElitism 

Parameter Min Avg Max 

Qc [m3min-1] 0.0162479 0.0733041 0.099887
7 

Qr [m3min-1] 0.103081 0.115918 0.119989 

cAi [kmol m-3] 2.0153 2.7703 3.48319 

Tri [K] 314.29 320.966 324.916 

Tci [K] 292.525 300.063 302.977 
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a) Parameter variation (SOMAATO) 

 
b) Parameter variation 

(SOMAATO)-detail 

 
c)  Parameter variation (SOMAATR) 

 
d) Parameter variation 

(SOMAATR)-detail 

 
e) Parameter variation (DERan1Bin) 

 
f) Parameter variation 
(DERan1Bin)-detail 

 
g) Parameter variation  (DERan2Bin) 

  
h) Parameter variation 

(DERan2Bin)-detail 

Fig. 29. Parameter variation of SOMA and DE for model CSTR 
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a) Parameter variation (SA_Elitism)  

b) Parameter variation (SA_Elitism)-
detail 

 

 
c) Parameter variation (SA_NoElitism) 

 
d) Parameter variation (SA_NoElitism) 

 

 
e) Parameter variation (GA) 

 
f). Parameter variation (GA)-detail 

 

Fig. 30. Parameter variation of SA and GA for model CSTR 
 

 



- 82 - 

 
a) 100 simulations for cA (SOMAATO) 

 
b) 100 simulations for cA (SOMAATR) 

 c) 100 simulations for cA (DERan1Bin) 
 d) 100 simulations for cA (DERan2Bin) 

 
e) 100 simulations for cA (SA_Elitism) 

 
f) 100 simulations for cA (SA_NoElitism) 

 
g) 100 simulations for cA (GA)

 

 

Fig. 31. Process parameters of  cA  for 100 simulations of each algorithm   
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a) 100 simulations for cB (SOMAATO) 

 
b) 100 simulations for cB (SOMAATR) 

 c) 100 simulations for cB (DERan1Bin) 
 c) 100 simulations for cB (DERan2Bin) 

 
a) 100 simulations for cB (SA_Elitism) a) 100 simulations for cB (SA_NoElitism) 

 
c) 100 simulations for cB (GA) 

 

Fig. 32. Process parameters of  cB  for 100 simulations of each algorithm   
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a) 100 simulations for Tr (SOMAATO) 

 
b) 100 simulations for Tr (SOMAATR) 

 c) 100 simulations for Tr (DERan1Bin)  
c) 100 simulations for Tr (DERan2Bin) 

 
a) 100 simulations for Tr (SA_Elitism) 

 
a) 100 simulations for Tr (SA_NoElitism) 

 
c) 100 simulations for Tr (GA) 

 

Fig. 33. Process parameters of  Tr  for 100 simulations of each algorithm  
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a) 100 simulations for Tc (SOMAATO) 

 
b) 100 simulations for Tc (SOMAATR) 

 c) 100 simulations for Tc (DERan1Bin) 

 c) 100 simulations for Tc (DERan2Bin) 

 
a) 100 simulations for Tc (SA_Elitism) 

 
a) 100 simulations for Tc (SA_NoElitism) 

 
c) 100 simulations for Tc (GA) 

 

Fig. 34. Process parameters of Tc  for 100 simulations  of each algorithm   
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5.3.5.4 Discussion and conclusion 

Just as in the case mentioned in the previous section for optimization of 
batch reactor, all simulations were repeated 100 times for each EA with the 
same principle simulation evolutionary algorithms. The parameters setting for 
EAs is the same in the case of optimization for bacth reactor, only I have 
changed number migrations of parameters setting of SOMA from 50 to 10 in 
order to get speedier simulation. The optimization by the cost function with 
concentration cB show in (5.17) and time of each simulation is 200 seconds. 

 Calculation was 100 times repeated and the best, worst and average result 
(individual) was recorded from the last population in each simulation. All one 
hundred triplets (best, worst, average) were used to create Fig.29 & 30. 

Compared with model of Batch, that the results from optimization on 
CSTR have obtained nearly resemblance. Estimated parameters and their 
diversity (minimum, maximum and average) are near approximately (see in 
Tab. 22-28). From the graphs of processes parameters for 100 simulations for 
cA, cB, Tr Tc (see Fig. 31-34) of each algorithm, it is very difficult to determine 
which algorithm is better. There are only small differences between them. On 
optimization of SOMA and DE, it is evident that the courses of  algorithm are 
densities in a thin spectrum more than GA and SA. Alongside it, sometime 
few values drift out of the actual solution. But by the repetition of simulation 
was recorded the best result. On Fig. 35, the process of parameters by SOMA 
algorithm obtained best solution for the optimization.  

Specially, there is difference between from both chosen model of chemical 
reactors (batch and CSTR). From  investigation on optimization of process 
parameter of CSTR  we can see, that four evolutionary algorithms (SOMA, 
DE, SA, GA) have obtained optimized results on very approximate value.  

From these results we may conclude, that the quality and course of the 
evolutionary processes can be influenced by many factors, notably: setting 
parameters, definition of cost function, number of generations…. Moreover 
the results produced by the optimization process depends on the problem 
being solved, e.g. dynamical systems (mathematical and physical model). 
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a) Best solution  for cA  

 
a) Best solution  for cB  

 

 
c)  Best solution  for Tr  

 
c) a) Best solution  for Tc  

Fig. 35.  Best solution of SOMA  
 

 



- 88 - 

6 PREDICTIVE CONTROL 

 During the last decade, control scientists and experts have been thinking 
and given ideas in order to explore future directions of control theory and its 
applications. In addition, recent advances in computer technology, modern 
control techniques, and computational intelligence have opened a path for 
application of new generations of advanced process control algorithms 
(Takatsu et al., 1998; VanDoren, 1998). 

Predictive control by mean evolutionary algorithms is very robust method, 
particular in system with many disturbing effects and failures. It's also a 
powerful tool in the search for optimal solutions to very complex problem in 
the field of control process. The basic idea is to find a set of action that lead to 
the principle optimization with required value. The block prediction procedure 
is shown in Fig. 36.  
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Fig. 36. Principle of predictive control by evolutionary algorithm 

 

Model of system 

Algorithms 
optimization 

 
System 

w 
u y 



- 89 - 

In block „Algorithms optimization“ are evolutionary algorithms, the 
predictive control is selected by minimising the commonly cost function J: 

∑∑
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Here y is the output of system, u is actuating signal, w is the controlled 
value prediction, Δu is the control value change, k is the control step, N1 

is the 
lower and N2 is the upper output prediction horizon, Nu is control horizon and 
λ is a weight sequence control of action.  

Block "system" is a control process and block "model system" is used 
to predict its behaviour, it often represented in the appropriate algorithms of 
artificial intelligent, commonly artificial neural network.   

Predictive control proceed that when change of required value running 
optimization algorithms in conjunction with model of system and minimising 
cost function (6.1) is found optimal action, which is for chosen system. 

 

6.1 Principle simulation 

In simulation of predictive control were used non-linear models, which 
were described in “problem design”  of batch reactor and “mathematical 
problems” of CSTR. It was used such as block “system” and “model of 
system”. The principle simulation shown in Fig. 37. 
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Fig. 37. Principle simulation 

 

6.2 Optimization of CSTR value with prediction control 

In this part of thesis, the temperature of CSTR reactor were chosen for 
prediction control. On this optimization the point was to minimize the area 
arising as a difference between the required and real temperature profile of the 
reaction mixture in a selected time interval, which was the duration of CSTR 
cycle. The cost functions that were minimized is given in  (6.2) for Tc 
temperature and (6.3) for Tr. 
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Where  w1 , w2   are required values (control points) 

Mathematica 
Definition of parameters and starting EA. 

Processing with form of graphics and tables 

Return back 
best values 
and history 
running EA 

 
Setting 

parameters and 
starting EA 

 

 EA from AGO library 
(Coding of EA in 

language Mathematica) Stop EA Start EA 

Return back 
values of 

functional for 
existing 

individual to EA 
Valuation 
functional 

with model of 
reactor 

Cycle till 
stopping 

Run EA and call functional in 
environment Mathematica 

Functional for static 
optimization in environment 

Mathematica 



- 91 - 

For static optimization of CSTR value with prediction control we have 
added required value for simulation of temperature  Tr  and Tc  belong 
following below Tab.29 & 30. The range inside of temperature Tr  and Tc for 
predictive is <273.;380> [K ]. 

 

Tab. 29 Range inside for predictive control of CSTR 

Parameter Range 

rT  [K] 273 – 380 

cT  [K] 273 – 380 

 

Tab. 30. Parameters setting for predictive control of CSTR 
Time 

simulation[s] 
Required value w1 

for rT [K] 
Required value w2 

for cT [K] 

0 - 80 360 340 

80 - 150 340 320 

150 - 200 320 300 

200 - 300 370 370 
 

Simulations were conducted so that the first minimising cost function using 
the prediction horizon is found within the optimal action and intervention that 
was held for the control  horizon. After that was calculated new intervention 
and has been applied during control horizon etc. till to do filling of reactor. 
For the CSTR reactor was selected: N1 = 1, N2 =300 a Nu = till to change.  

 

6.3 Results of predictive control 

On investigation of predictive control chemical reactor CSTR, I have 
chosen one basic version of each algorithm to optimize process parameters 
reactor. Concretely: version SOMAATO for SOMA; version DERan1Bin for 
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DE; version SA Elitism for SA. The evolutionary algorithms have been 
applied 100 times and the evolutionary processes of four algorithms show in 
follow graphs from Fig. 38 - 41. 

 

 
 

 
 
 

 
 
 

 
 

Fig. 38. Predictive control temperatures Tr  and Tc  of CSTR  by SOMAATO, 
“red” was  required value  



- 93 - 

 
 

 
 

   
 
 

  
 

Fig. 39. Predictive control temperatures Tr  and Tc of CSTR by DERan1Bin, 
“red” was  required value 
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Fig. 40. Predictive control temperatures Tr  and Tc of CSTR  by GA, “red” 
was  required value 
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d) Evolutionary process for Tc 

 

Fig. 41. Predictive control temperatures Tr  and Tc of CSTR  by SA_Elitism, “red” 
was  required value 
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6.4 Discussion and conclusion to the results of predictive 
control 

The work here is performed through predictive control on non-linear 
system using evolutionary algorithms SOMA, DE, SA GA.  Based on the 
achieved results it can be stated as follows: 

• EA is used successfully on predictive control of the chemical 
reactors' processes;  

• In the previous section about part optimization process of 
chemical reactions, it cannot be fully confirmed if any one of 
the chosen algorithm produced better results than the others.  
However, from the image results shown above, it may be 
concluded that SOMA and DE algorithms are best for the 
predictive control (at least in this case).  Specifically, it can be 
seen in figures 38-41 items (c) & (d) for evolutionary process 
Tr and Tc.  All 100 simulations of SOMA and DE have 
obtained very approximate values, which evidently prove that 
the courses of algorithm are densities in a thin spectrum and 
they meet the required value more closely than GA and SA; and  

• From the results obtained, it is found that the process of 
concentration cA was in inverse ratio to the process 
temperatures.  When temperature of the reactant mixture and 
coolant increased, temperature of concentration cA decreased.  
And when the temperature was stable, the concentration too 
was stable.  Only on the process of concentration cB did it 
appear to be failure.  From interval time simulation 150-200, 
process of cB decreased in direct ratio to the temperatures, and 
from time simulation 200, failure appeared.  

Finally, it can be asserted that EAs are certainly and completely capable of 
controlling simple faulted system.  Nevertheless, this topic deserves further 
and more detailed study that goes beyond the scope of the work presented 
here. 
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7 RESULTS OF DISSERTASION THESIS AND 

FURTHER RESEARCH PERSPECTIVE 

7.1 Evaluation of the objectives 

This thesis has identified six targets and the achievement of those targets 
are discussed here.  The evaluation of each objective is contained in the 
information provided at the end of each chapter where the respective 
evaluation is carried out.  Specifically: 

 The introduction of chemical engineering process, application 
domain of chemical reactions and reactors and analysis of chosen 
dynamic systems 

The objective has been achieved.  In the chapter "Chemical Engineering 
process" -- it is raised that this is the important period to analyse industrial 
producing system, especially of chemical engineering process in the 
industries.  This chapter confirms that the application domain of chemical 
reactions and reactors constitute one of the backbones for interdisciplinary 
collaboration.  In fact, the optimization of industrial chemical processes has 
drawn attention in recent years, and designing the optimal parameters of 
reactor and its control system is one of the most difficult tasks of process 
engineering.  Here, the thesis uses as model case, two chemical reactors, 
namely Batch and CSTR (known as an expert proposed), for optimization.  
Finding the optimum parameters of the chemical reactor and the exact 
procedure will greatly aid in drawing up proposal for technological equipment 
that can meet the economic and quality demands placed on an industrial 
operation. 

 Analysis of evolutionary algorithm, principle simulation and 
selecting new methods of algorithms, from artificial intelligence to 
optimization and predictive control chemical reactor. 

The objective has been achieved.  Chapter 4 analysed and described very 
concretely about EAs and their principle in use.  A brief survey of Scoping 
and Screening chemical reaction networks using stochastic optimization is 
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also raised in this chapter.  Four algorithms from the field of artificial 
intelligence -- Differential evolution (DE), Self-organizing migrating 
algorithm (SOMA), Genetic algorithm (GA) and Simulated annealing (SA) -- 
are used in the investigation.  In the first section, EAs are used investigate and 
optimize the batch reactor to improve its parameters.  Consequently, EAs are 
used to model the technical requirements for chemical reaction.  The second 
section presents the optimizing of chemical engineering processes, particularly 
those in which the evolutionary algorithm is used for static optimization and 
control of Continuously-stirred tank reactors (CSTRs). 

 Demonstrating successfully on simulation by mean evolutionary 
algorithms, the problem design model of chemical reactors and the 
practical method to optimize chemical processes. 

The objective has been achieved.  In chapter 5 "Simulation part" the 
optimization tool has been described and four EAs were selected, especially 
for a certified high robustness and the ability to successfully solve complex 
optimization problems.  Mathematical model of the process, established on the 
basis of balance equations, coupled with other important relationships derived 
for the real reactor, are used to conduct simulations of experts to set the 
reactor for optimization.  The aim of this work was to use artificial 
intelligence methods, namely evolutionary algorithms, for static optimization 
of chemical reactor in order to improve the quality of its behaviour. 

 Demonstrating the use of designed algorithms global optimization 
on the predictive control chemical processes and comparing 
between each selected algorithms. 

The objective has been achieved.  Here it is demonstrated that methods of 
artificial intelligence, mainly EA, are successfully applied to predictive 
control of a chemical reactor.  The optimized reactor is used in a simulation 
with prediction control by evolutionary algorithms and the results are 
presented in graphs (see chapter 6). 
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7.2 General conclusion and further research perspective 

In this thesis, evolutionary algorithms are used for static optimization of 
chemical reactors in order to improve the quality of their behaviour in the 
uncontrolled state and in predictive control.  The optimization tool has been 
described and four EAs (SOMA, DE, SA and GA) are chosen, especially for a 
certified high robustness and the ability to successfully solve complex 
optimization problems of chemical reactors. 

The optimization and control of the chemical reactors have been performed 
in several ways, each one for a different set of reactor parameters or different 
cost function.  From the results obtained, it is possible to say that all 
simulations give satisfactory results and thus EAs are capable of solving this 
class of difficult problems.  The quality of the results depends not only on the 
problems being solved, they are also extremely sensitive to the proper 
definition of the cost function and the selection of parameters setting of 
evolutionary algorithms. 

In fact, methods of artificial intelligence, mainly evolutionary 
computational techniques, should be used in the difficult tasks of analysing 
and optimizing dynamical systems, especially of chemical reactors.  The main 
aim of the dissertation is focused on examples of EA implementation on the 
methods for chemical reaction that could be robust and effective to optimize 
difficult problems in the field of chemical engineering, with the intent to 
obtain better results, i.e. efficiency in reaching the desired stable state and 
superior stabilization. 

The basic optimization process presented here is based on a relatively 
simple function.  Nevertheless, there is no problem in defining more complex 
functional including as subcriteria, e.g. stability, costs, time-optimal criteria, 
controllability and etc., or their arbitrary combinations; unless the experiment 
is limited by technical issues while searching for optimal parameters. 

Future research of evolutionary algorithms SOMA, DE, GA and SA is still 
ongoing.  Based to all results obtained from this current research, it is 
suggested that the main activities should be focused on the expanding of this 
study for other chemical dynamic systems. 
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It can be concluded from the results of this dissertation that EAs have 
shown great potential and ability to solve complex problems of optimization, 
not only in the fields of chemical engineering process but also in diverse 
industrial fields. 
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